
FUNDAMENTA
MATHEMATICAE

213 (2011)

Orbit spaces, Quillen’s Theorem A and
Minami’s formula for compact Lie groups

by

Assaf Libman (Aberdeen)

Abstract. Let G be a compact Lie group. We present a criterion for the orbit spaces
of two G-spaces to be homotopy equivalent and use it to obtain a quick proof of Webb’s
conjecture for compact Lie groups. We establish two Minami type formulae which present
the p-localised spectrum Σ∞BG+ as an alternating sum of p-localised spectra Σ∞BH+ for
subgroups H of G. The subgroups H are calculated from the collections of the non-trivial
elementary abelian p-subgroups of G and the non-trivial p-radical subgroups of G. We
also show that the Bousfield–Kan spectral sequences of the normaliser decompositions
associated to these collections and to any p-local cohomology theory h∗ collapse at their
E2-pages to their vertical axes, and converge to h∗(BG). An important tool is a topological
version of Quillen’s Theorem A which we prove.

1. The main results. Let G be a compact Lie group. A collection H
in G is a union of conjugacy classes (H) of subgroups H of G. We topologise
H as the disjoint union of its conjugacy classes and let G act on H in this
way. More generally, (H0 ≤ · · · ≤ Hn) denotes the conjugacy class of a
chain of inclusions of subgroups Hi ∈ H. As a G-orbit it is homeomorphic
to G/

⋂
iNG(Hi).

Inclusion of subgroups endows H with a G-invariant partial order. This
yields a G-simplicial complex |H| whose n-simplices are ∆n×(H0< · · ·<Hn).
Faces are formed by removing elements from the chain H0 < · · · < Hn.
A more elaborate discussion is deferred to §5.

Throughout we shall adopt the convention that H0 denotes the sub-
collection of H from which the trivial subgroup is removed. Recall that a
p-toral group is an extension of a torus by a finite p-group. Every compact
Lie group G contains a maximal normal p-toral subgroup Op(G). See Ap-
pendix A.1.
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Definition 1.1. Let Sp(G) denote the collection of all the p-toral sub-
groups of G. The collection of all the elementary abelian p-subgroups of G
is denoted Ep(G).

A p-toral subgroup P of G is called p-radical if Op(NGP ) = P . The
collection of all the p-radical subgroups is denoted Bp(G).

The collections S0
p (G), E0

p (G) and B0
p(G) are obtained by removing the

trivial subgroup.

The collection Bp(G) should be compared with the smaller collection
Rp(G) of the p-stubborn subgroups which was studied by Jackowski, Mc-
Clure and Oliver in [23]. When G is finite, Bp(G) is Bouc’s collection (e.g.
[4, pp. 222]).

The starting point of this paper is Theorem A below. For finite groups
it was obtained by Minami in [29, Theorem 6.5]. In the present form it was
announced by Martino and Priddy in [27], with the caveat that they use the
collectionR0

p(G) instead of B0
p(G). Martino and Priddy’s argument hinges on

[27, Theorem 6.1] whose statement and proof was criticised by the reviewer
of their article for being “not explicit”. Specifically, they apply Webb’s results
from [40] to “Mackey functors” which take values in the homotopy category
of spectra which is only an additive category, rather than an abelian one,
as Webb requires. Another flaw in Martino and Priddy’s argument in [27,
§4] is the application of Quillen’s Theorem A [32] to posets which carry
non-trivial topologies. As we show in Example 5.4, Quillen’s theorem fails
in these cases.

Let Σ∞+ X denote the suspension spectrum of a spaceX to which a disjoint
basepoint is added.

Theorem A. Let G be a compact Lie group which contains a non-trivial
p-toral subgroup. Let C denote either the collection E0

p (G) or B0
p(G). Then C

contains finitely many conjugacy classes of chains of the form P0 < · · · < Pk
and after localisation at the Moore spectrum SZ(p) of type (Z(p), 0) one has
an equivalence of spectra

(Σ∞+ BG)SZ(p)
'

∑
(P0<···<Pk)

(−1)k(Σ∞+ BGP0<···<Pk
)SZ(p)

where GP0<···<Pk
=
⋂k
i=0NGPi and the sum runs through all the conjugacy

classes of P0 < · · · < Pk in C.

Bousfield’s localisation of spectra [8] is recalled in §A.3. Proposition A.3.2
shows that the localisation (−)SZ(p)

used in the theorem is equivalent to
H∗(−;Z(p))-localisation. By transferring the negative terms in the sum to
the left hand side one obtains a genuine equivalence of spectra, and the
statement of the theorem should be understood in this way.
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Proof. There are finitely many conjugacy classes (P0 < · · · < Pn) by
Propositions 7.4(i), 8.2, 9.2 and Definition 5.11. The rest is the content of
Corollaries 8.4(c) and 9.6(c).

Webb showed that if G is a finite group then |S0
p (G)|/G is a Z(p)-acyclic

space. He conjectured that this space is in fact contractible. Webb’s conjec-
ture was resolved by Symonds in [36]. Another proof was given by Bux [11].
For compact Lie groups Słomińska shows in [34] that |E0

p (G)|/G is con-
tractible. In this paper we offer a generalisation of Symonds’ theorem.

Following Słomińska’s terminology, we say that C is a concave collection
of p-toral subgroups of G if whenever Q is a p-toral subgroup of G and Q
contains an element from C then Q ∈ C.

Theorem B. Let G be a compact Lie group which contains a non-trivial
p-toral subgroup. If C is either a non-empty concave collection of p-toral
subgroups of G or C = E0

p (G), then |C|/G is contractible.

Proof. Corollaries 8.4(a) and 9.7.

The proof of Theorem B as well as the rest of the results depend on
Lemma 3.2. It gives a criterion for the orbit spaces of twoG-CW complexes to
be homotopy equivalent by checking the subspaces fixed by p-toral subgroups
of G only (!). Even though we do not state the lemma in this introduction,
it is by all means the key observation of this paper.

The second goal of this paper is to generalise Dwyer’s work on homology
decompositions in [13] to compact Lie groups. The main tool we need is a
topological version of Quillen’s Theorem A, which we prove as Theorem 5.8.
More importantly, we generalise Dwyer’s results in [14] on sharp homology
decompositions of finite groups to compact Lie groups. Dwyer’s chain level
arguments do not carry over to the compact Lie group case and we develop
a new approach.

Notation. For an element g ∈ G we let cg denote the inner automorphism
x 7→ gxg−1. If U is a subset of G, then gU denotes cg(U) and Ug denotes
cg−1(U). Given two subgroups H,K we let

NG(H,K) = {g ∈ G : gH ≤ K}.

For a set H={H0, . . . ,Hk} of subgroups of G denote NG(H)=
⋂k
i=0NG(Hi).

Notation. We fix once and for all a free G-CW complex EG on which G
acts freely. The Borel construction XhG on a G-space X is the orbit space
EG×G X of the diagonal action of G on EG×X. The orbit space EG/H,
where H ≤ G, is the classifying space BH of H.

We now fix a collection H in a compact Lie group G. Throughout, GT
denotes the category of compactly generated G-spaces.
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1.2. The subgroup decomposition. LetOG(H) denote the full subcategory
of the category GT of G-spaces whose objects are the orbits G/H for all H ∈
H and whose morphism spaces are mapG(G/H,G/H ′). By abuse of notation
we identify the objects G/H with the subgroups H ∈ H. Clearly OG(H)
is a topological category in the sense that morphism sets carry non-trivial
topologies (see 5.1). Let β̃H denote the inclusion of OG(H) into GT . The
subgroup decomposition functor βH is defined using the Borel construction
by

βH := (β̃H)×G EG ≡ (β̃H)hG.

Note that βH(H) ' BH and the natural cone β̃H → ∗ [26, §III.3] induces a
natural cone βH → BG, whence a natural map

hocolim
OG(H)

βH → BG.

1.3. The centraliser decomposition. Let AG(H) denote the topological
category whose objects are the elements H of H and whose morphism spaces
are

HomG(H,H ′) := {cg : H → H ′ : g ∈ G}.
Define a functor α̃H : AG(H)op → GT by

α̃H(H) = HomG(H,G).

Note that HomG(H,G) ≈ G/CGH. Define the centraliser decomposition αH
by αH := (α̃H)hG. Clearly αH(H) ' BCG(H) and the cone α̃H → ∗ gives
rise to a cone αH → BG and a natural map

hocolim
AG(H)op

αH → BG.

1.4. The normaliser decomposition. Let s̄(H) denote the poset whose
underlying set is the set of conjugacy classes (H0 < · · · < Hn) of chains of
proper inclusions in H. Denote such a chain by H and its conjugacy class
by (H). Define a unique morphism (H)→ (H′) in s̄(H) if H′ is conjugate to
a subchain of H. Note that the subchain of H, if it exists, is unique and is
determined by the dimensions and the number of components of the groups
in the chains H and H′. There is a tautological functor

δ̃H : s̄(H)→ GT
which sends the object (H) to the G-space (H). A morphism (H) → (H′)
in s̄(H) is carried to the obvious G-map (H) → (H′) which sends H to
its unique subchain that belongs to (H′). We may assume that H′ ⊂ H,
and δ̃H((H)) → δ̃H((H′)) correspond to the quotient map G/NG(H) →
G/NG(H′).

The normaliser decomposition δH : s̄(H)→ T is defined by δH = (δ̃H)hG.
Clearly δH((H)) ' BNG(H) and the natural cone δ̃H → ∗ gives rise to a
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natural map
hocolim
s̄(H)

δH → BG.

When G is finite the following result is due to Dwyer [13]. We generalise
it to compact Lie groups.

Theorem C. Fix a collection H in a compact Lie group G. Then there
are natural weak homotopy equivalences

hocolim
OG(H)

βH, hocolim
AG(H)op

αH, hocolim
s̄(H)

δH → |H|hG.

Proof. See §10.

Definition 1.5 (Dwyer, [13, 1.3]). Fix a generalised cohomology the-
ory h∗. A collection H is h∗-ample if the natural map |H|hG → BG is an
h∗-isomorphism.

In light of Theorem C, either the homotopy colimits of all three decom-
positions 1.2, 1.3 and 1.4 are h∗-equivalent to BG or none of them is.

The topology on the morphism spaces of OG(H) and AG(H) is in gen-
eral non-trivial. When OG(H) has discrete morphism spaces we obtain a
Bousfield Kan spectral sequence [9, Ch. XII.5.8]

Ei,j2 = lim←−
i

OG(H)op

hj(βH) ⇒ hi+j(hocolimβH) ≈ hi+j(|H|hG).

The isomorphism of the abutment modules follows from Theorem C. Simi-
larly, when AG(H) has discrete morphism spaces we get a spectral sequence

Ei,j2 = lim←−
i

AG(H)

hj(αH) ⇒ hi+j(hocolimαH) ≈ hi+j(|H|hG).

This happens, for example, when H = E0
p (G), and more generally when the

elements of H are finite groups. By definition s̄H is a poset so we always
have a spectral sequence for the normaliser decomposition

Ei,j2 = lim←−
i

s̄(H)op

hj(δH) ⇒ hi+j(hocolim δH) ≈ hi+j(|H|hG).

Definition 1.6. A collectionH is subgroup sharp (resp. centraliser sharp,
normaliser sharp) for h∗ if it is h∗-ample and if the Bousfield–Kan spectral
sequence of βH (resp. αH, δH) collapses at its E2-page to the vertical axis.
That is, all the higher derived functors lim←−

i vanish for i > 0.

Definition 1.7. A cohomology theory h∗ is p-local if π∗h are Z(p)-
modules where h is the spectrum which represents h̃∗.

Equivalently, by Proposition A.3.1, h is SZ(p)-local.

Theorem D. Let G be a compact Lie group which contains a non-trivial
p-toral subgroup. Then the collections E0

p (G) and B0
p(G) are normaliser sharp
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for any p-local cohomology theory h∗. The collection E0
p (G) is centraliser

sharp for any p-local cohomology theory h∗.

Proof. This is immediate from Corollaries 7.11, 8.4(b) and 9.6(b).

A special case of the first assertion of Theorem D was obtained by Dwyer
in [14] for finite groups and the cohomology theory H∗(−,Z/p). Our exten-
sion of his result requires totally different methods. The second assertion
was obtained by Jackowski and McClure in [22] but we use different meth-
ods.

2. Mackey functors and Bredon cohomology. Fix a compact Lie
group G. Recall that a G-CW complex is a G-space X together with a filtra-
tion X0 ⊆ X1 ⊆ · · · such that X =

⋃
nXn and the following holds. There

exists a sequence of G-spaces X0,X1, . . . , each of which is a coproduct of or-
bits, that is, Xn/G is a discrete space, and for every n ≥ 0 there is a pushout
square

(2.1)

∂∆n × Xn
ϕn //

� _

��

Xn−1� _

��
∆n × Xn

// Xn

The ϕn’s are called the attaching maps and they are part of the structure of
X as a G-CW complex. The spaces Xn are called the spaces of n-cells and
X−1 is by convention the empty space.

We shall denote the category of G-spectra by GS as constructed by Lewis
May and Steinberger in the encyclopedic account [25]. A more readable ex-
position can be found in [28] and also in [17]. Throughout we shall assume
familiarity with the terminology of these sources. To every G-space X there
is an associated G-spectrum X+. The homotopy category h̄GS of GS is a
triangulated category, and in particular an additive one.

The category GO of stable orbits is the full subcategory of GS whose
objects are the suspension G-spectra G/H+ for all H ≤ G. Its homotopy
category is the full subcategory hGO of h̄GS.

Fix a commutative ring k. Recall that aMackey functor is a contravariant
additive functor M : hGOop → k-mod. Mackey functors form an abelian
category and they give rise to Eilenberg–Mac Lane G-spectra HM of type
(M, 0) as explained in [28, Ch. XIII, Theorem 4.1]. Explicitly, πK0 (HM) =
M(G/K+) and πKi 6=0(HM) = 0.

Definition 2.2. The G-equivariant cohomology theory represented by
HM is called the reduced Bredon cohomology with coefficients M and is de-
noted H̃∗G(−;M). Thus, H̃V

G (−;M) = [ΣV−, HM ]G for every G-representa-
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tion V . There is an unreduced theory H∗G(−;M) := H̃∗G(−+;M) defined on
G-spaces.

Note that ∗ can be any finite-dimensional representation of G. We shall
however restrict attention to trivial representations, i.e. ∗ is an integer. Also
observe that by definition H0

G(G/H;M) = M(G/H+) and H∗6=0
G (G/H;M)

= 0. Fix a G-CW complex X and consider the chain complex of Mackey
functors C∗(X) defined by

Cn(X)(G/H+) = h̄GS(Sn ∧G/H+, Xn/Xn−1) = πHn (Xn/Xn−1).

The differentials are induced by the connecting maps Xn/Xn−1 →
ΣXn−1/Xn−2 associated to the triple (Xn, Xn−1, Xn−2). According to [28,
Ch. X, §4], the cohomology groups H∗G(X;M) are isomorphic to the co-
homology groups of the cochain complex HomhGO(C∗(X),M). It follows
immediately that the skeletal filtration of X gives an isomorphism

(2.3) H∗G(X;M) = lim←−
k

H∗G(Xk;M).

In fact for each ∗ the tower stabilises. More generally, Xk can be replaced
with any subcomplex which contains the k-skeleton of X. It also follows that
the cohomology groups vanish for ∗ < 0.

Proposition 2.4. If Y is a G-subcomplex of X and M(G/H+) = 0 for
every orbit G/H in X \ Y then H∗G(Y ;M) ≈ H∗G(X;M).

Proof. By (2.3) it suffices to prove the isomorphism for the inclusion of
the skeleta Yn ⊆ Xn. Equivalently, we have to show that H̃∗G(Xn/Yn;M) = 0.
This follows easily by induction using the cofibre sequences Xn−1/Yn−1 →
Xn/Yn → Xn/Yn ∪Xn−1 '

∨
α(Sn ∧G/Hα+) where G/Hα ⊆ X \ Y .

We shall now define a class of Mackey functors which is central to this
paper. Fix a G-free G-CW complex EG. Define functors B,S : hGO → h̄S,
where h̄S is the homotopy category of spectra, as follows:

B(−) = EG+ ∧G −, S(−) = S.

Here S denotes the sphere spectrum.

Definition 2.5. Fix a ring k and a spectrum h such that π0h is a
k-module. Define functorsMh,Consth : hGOop → k-mod by

Mh(−) = h̃0B(−), Consth(−) = h̃0S(−).

Note thatMh(G/H+) ≈ h0(BH) and Consth(G/H) = π0h.

Proposition 2.6. The functors Mh and Consth are Mackey functors.
Moreover, there is a morphism of Mackey functors Mh → Consth which is
a split surjection at every object of hGO.
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Remark. The basic idea of the proof, due to John Greenlees, is to
show that Mh(−) = [−, F (EG+, h)]G, that is, Mh is a restriction of a
representable functor on h̄GS. Then we show that Consth = Mk where
k̃∗ = H̃∗(−;π0h).

Proof. Step 1. Fix a complete G-universe U and let i : UG → U denote
the inclusion [28, §XII]. We view h as a naive G-spectrum, i.e. an object of
GSUG with a trivial G-action. Let i∗h denote the G-spectrum in GSU which
is built out of the naive G-spectrum h by building non-trivial representations
(see [28, p. 163]). Recall from [28, bottom of p. 165] that EG+ is a G-free
G-spectrum and consider the G-spectrum F (EG+, i∗h). Observe that for
every G/K+ in hGO we have

h̄GS(G/K+, F (EG+, i∗h)) = πG0 F (G/K+, F (EG+, i∗h))

= πG0 F (G/K+ ∧ EG+, i∗h)
= h̄GS(i∗(G/K+ ∧ EG+), i∗h)

= h̄S(EG/K+, h)= h̃0B(G/K+)=Mh(G/K+).

The second equality follows from [28, Ch. XI, §4] and the third because the
functor Σ∞ : GT → GSU factors as GT −+−−→ GSUG i∗−→ GSU . The fourth
equality follows from [17, Theorem 4.14]. We see that

(1) Mh(−) = [−, F (EG+, i∗h)]G.

In particular it is a Mackey functor.

Step 2. Let HA denote the Eilenberg–Mac Lane spectrum of type (0, A)
where A = π0h. Since BH is a connected space for any H ≤ G there are
isomorphisms

Mk(G/H+) = k̃0(BH+) = H̃0(BH+;A) ≈ H̃0(S0;A) = Consth(G/H+).

This shows that Consth =Mk and it is therefore also a Mackey functor.

Step 3. We now constructMh → Consth. Let ` be the connected cover
of h. That is, π∗` = 0 for all ∗ < 0 and there is a map `→ h which induces
an isomorphism in all non-negative homotopy groups. By induction, it is
easy to show that `∗(X) → h∗(X) is an isomorphism for all ∗ ≤ 0 and for
all finite-dimensional CW-complexes X. It follows that `∗(X) ≈ h∗(X) for
all ∗ ≤ 0 and all CW-complexes X by filtering X by its skeleta and using
Milnor’s lim←−

1 short exact sequence [1, Ch. III, Proposition 8.1]. In particular
we obtain an isomorphism

(2) M` ≈Mh.

Let k denote the 0th Postnikov piece of ` and note that it is an Eilenberg–Mac
Lane spectrum of type (π0h, 0). We have seen thatMk = Const` = Consth.
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The maps of spectra h← `→ k induce morphisms of G-spectra

F (EG+, i∗h)← F (EG+, i∗`)→ F (EG+, i∗k),

hence, by (1), natural morphisms of Mackey functors

Mh
≈←−M` →Mk = Consth.

We have thus constructed a natural transformationMh → Consth.
Let e denote the trivial subgroup of G. For every object G/K+ of hGO

we can choose a map G/e+ → G/K+ and obtain the commutative diagram

M`(G/K+)

��

//Mk(G/K+)

≈
��

Consth(G/K+)

M`(G/e)
≈ //Mk(G/e)

where the arrow at the bottom is an isomorphism because π0` = π0k and
the vertical arrow on the right is an isomorphism because BK is a con-
nected space and k̃0(−) = H̃0(−;π0h). We see from (2) thatMh(G/K+)→
Consth(G/K+) can be identified withM`(G/K+)→M`(G/e), that is, with
`0(BK)→ `0(Be). This map clearly has a left inverse `0(BK → ∗).

Proposition 2.6 justifies the definition of a new Mackey functor M̃h and
the proposition below, where

(2.7) M̃h = Ker(Mh → Consth).

Proposition 2.8. There is a short exact sequence of Mackey functors

0→ M̃h →Mh → Consth → 0.

Definition 2.9. A Mackey functor M on G is p-constrained if an in-
clusion H ≤ K of subgroups of G induces an isomorphism M(G/K+) ≈−→
M(G/H+) whenever H and K contain a p-toral subgroup which is maximal
in both.

Lemma 2.10. Let G be a p-toral group (A.1) and fix a p-local cohomol-
ogy theory h∗ (1.7). Then Mh, Consth and M̃h are p-constrained Mackey
functors.

Proof. The Mackey functor Consth is trivially p-constrained. The short
exact sequence of Mackey functors in 2.8 implies that M̃h is p-constrained
if Mh is p-constrained, which we now prove.

Let P be a p-toral group which is maximal in both H and K. Proposition
A.1.3 shows that P0 = H0 = K0 and that there are isomorphisms

H/Op′(H) ∼= K/Op′(K) ∼= P/P0,
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the first of which is induced by the inclusion of Op′(H) in Op′(K). As a result
we obtain a morphism of fibre sequences

(1)

BOp′(H) −−−−→ BH −−−−→ B P
P0y y y=

BOp′(K) −−−−→ BK −−−−→ B P
P0

To prove that h∗BH ≈ h∗BK it suffices, by Proposition A.3.3, to prove that
BH → BK is an H∗(−;Z(p))-equivalence. By comparing the E2-pages of
the associated Serre spectral sequences it suffices to show that BOp′(H) →
BOp′(K) is an H∗(−;Z(p))-isomorphism. This is indeed the case because
A.1.3 implies that Op′(H) ≤ Op′(K) are abelian compact Lie groups of the
form P0 × Γ′ where Γ′ is a finite abelian group of order prime to p.

3. The key lemma. Fix a collection F of subgroups of a compact Lie
group G. A G-space has orbit type F if the collection IsoG(X) of the isotropy
groups of the points of X is contained in F . The collection of the maximal
p-toral subgroups of the elements of F is denoted Sylp(F).

Definition 3.1. Fix a collection P of p-toral subgroups of G. The p-type
of a collection F is P if Sylp(F) ⊆ P. It has a finite p-type if Sylp(F)/G <∞.
A G-space has p-type P (resp. finite p-type) if IsoG(X) has the corresponding
properties.

Here is our key lemma.

Lemma 3.2. Let f : X → Y be a G-map of G-CW complexes of finite
p-type P. Assume that f induces an NP -homotopy equivalence XP → Y P

for every P ∈ P. Then

(i) f induces a homotopy equivalence X/G→ Y/G.
(ii) f induces an isomorphism H∗G(Y ;M) → H∗G(X;M) for every p-

constrained Mackey functor M (2.9).

Recall that XH is an NH-space for every G-space X and H ≤ G. Define

(3.3) ZH(X) = G×NH XH .

The assignment X 7→ ZH(X) is clearly functorial in X and the assignment
(g ×NH x) 7→ gx yields a natural map ε : ZH(X)→ X.

Note that when i : A ↪→ X is a closed inclusion of G-spaces and f :
A→ Y is a G-map, then the pushout X tA Y is setwise the disjoint union of
Y and X \A. It follows that the natural map XH tAH Y H → (X tA Y )H is
a bijection. One also easily checks that this map is closed because XH and
Y H are closed subspaces of X and Y , whence it is a homeomorphism. See
e.g. [38, pp. 95–96].
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Proposition 3.4. Let H be a subgroup of G and set Z(−) = ZH(−).
Then ε : Z(X) → X is a closed map. If X ′ is a closed subspace of X then
Z(X ′) is a closed subspace of Z(X).

(a) Consider a G-map f : A → Y and an inclusion i : A ↪→ X of G-
subspaces. Then Z(X) tZ(A) Z(Y ) is homeomorphic to Z(X tA Y )
via the natural map.

(b) If X0⊆X1⊆· · · is a telescope of closed inclusions then Z(colimnXn)
∼= colimn Z(Xn).

Proof. A closed subset F of Z(X) is the NH-orbit of a closed subspace
A of G × XH which is closed in G × X. Now, ε(F ) is closed in X as the
image of A under the action map G×X → X which is a closed map by [10,
Theorem I.1.2].

If X ′ is closed in X then G ×X ′H is a closed subspace of G ×XH and
the NH-orbit space Z(X ′) is a closed subspace of Z(X) by [10, Theorem
I.3.1].

Note that G×NH − is a left adjoint functor. Therefore it commutes with
direct limits. Given i : A ↪→ X and f : A→ Y we know that XH tAH Y H ∼=
(X tA Y )H so applying G×NH − yields Z(X) tZ(A) Z(Y ) ∼= Z(X tA Y ).

Consider a telescope X0 ⊆ X1 ⊆ · · · . Since by definition a subset A of
X = colimnXn is closed if and only if Xn ∩ A is closed in Xn and since
XH
n is closed in Xn, it easily follows that the natural map colimnX

H
n →

(colimnXn)H is closed. It is also bijective, hence a homeomorphism.

The proposition implies that if A and B are closed G-subspaces of X
then ZH(A ∪ B) = ZH(A) ∪ ZH(B). Here are two simple but important
observations.

Proposition 3.5. Let P be a p-toral subgroup of H ≤ G. Then P is
maximal p-toral in H if and only if it is maximal p-toral in NHP .

Proof. Extend P to a maximal p-toral subgroup of H and apply Lemma
A.1.1.

Lemma 3.6. Fix a compact Lie group G. Fix H ≤ G and let P be a
maximal p-toral subgroup of H. Then (G/H)P is homeomorphic to the NP -
orbit NP/NH(P ).

Proof. If gH ∈ (G/H)P then P g ≤ H. Since P is maximal p-toral in H,
P g = P h for some h ∈ H, hence g ∈ NP · H. This shows that G/HP ⊆
NP ·H/H, and the opposite inclusion is obvious. It follows that G/HP ≈
NP/H ∩NP .

Proposition 3.7. Fix a p-toral subgroup P of G. Let X ′ be a subcomplex
of a G-CW complex X and assume that X \ X ′ has p-type {(P )}, that is,
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P is conjugate to a maximal p-toral subgroup of the isotropy group Gx of any
x ∈ X \X ′. Let Z denote ZP (X) and let Z ′ denote ZP (X ′). Then

(a) (Z,Z ′) is a relative G-CW complex.
(b) The map ε : (Z/G,Z ′/G) → (X/G,X ′/G) is a relative homeomor-

phism of relative G-CW complexes.
(c) The map ε : (Z,Z ′)→(X,X ′) induces an isomorphism H∗G(X,X ′;M)
≈ H∗G(Z,Z ′;M) for every p-constrained Mackey functor M (2.9).

Proof. Following the notation of (2.1) let X′n ⊂ Xn denote the spaces of
n-cells of X ′ ⊆ X. Let X̄n denote Xn\X′n and observe that there are pushout
squares

(1)

Sn−1 × X̄n
//

� _

��

Xn−1 ∪X ′� _

��
Dn × X̄n

// Xn ∪X ′

Proposition 3.4(a) shows that there are pushout squares

(2)

Sn−1 × ZP (X̄n) //
� _

��

ZP (Xn−1) ∪ ZP (X ′)� _

��
Dn × ZP (X̄n) // ZP (Xn) ∪ ZP (X ′)

Now, ZP (X̄n) is a disjoint union of orbits by Lemma 3.6 so the pushout
squares (2) and Proposition 3.4(b) imply that (Z,Z ′) is a relative G-CW
complex with skeletal filtration ZP (Xn)∪Z ′ whose n-cells are Dn×ZP (X̄n).
This proves point (a).

For convenience, let XG denote the orbit space of a G-space X. Clearly ε
induces morphisms of pushout squares ε̄ : (2)→ (1). Since the p-type of the
X̄n’s is (P ), Proposition 3.6 shows that ZP (X̄n)/G→ X̄n/G is a bijection of
sets.

Note that ε : Z → X carries Z \ Z ′ into X \ X ′ and Z ′ into X ′. Since
taking orbit spaces commutes with pushouts, induction on n easily shows
using the morphisms of pushout diagrams ε̄G : (2)/G→ (1)/G that

(ZP (Xn) \ ZP (X ′))G → (Xn \X ′)G
is a bijection. Orbit spaces also commute with telescopes so we conclude that
ε̄ : (Z \ Z ′)G → (X \ X ′)G is a bijection. It is a homeomorphism because
it is a closed map by [10, Theorem I.3.1], Proposition 3.4 and the fact that
ε(Z ′) ⊆ X ′. This proves point (b).

We use induction on n to prove that ε : ZP (Xn) → Xn induces isomor-
phisms

H∗G(Xn ∪X ′, X ′;M) ≈ H∗G(ZP (Xn) ∪ Z ′, Z ′;M).
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For n = 0 this is a triviality. Assume the result for n−1 ≥ 0. Propositions 3.5
and 3.6, the pushout squares (1) and (2) and the fact thatM is p-constrained
imply that ε induces an isomorphism

H̃∗G(Xn ∪X ′/Xn−1 ∪X ′;M) ≈ H̃∗G(Sn ∧ X̄n+;M)

≈ H̃∗G(Sn ∧ ZP (X̄n)+;M) ≈ H̃∗G(ZP (Xn) ∪ Z ′/ZP (Xn−1) ∪ Z ′;M).

The second and third isomorphism follow from [38, II.1.1]. The induction
step follows by comparing the long exact sequences in cohomology of

(ZP (Xn) ∪ Z ′, ZP (Xn−1) ∪ Z ′) ε−→ (Xn ∪X ′, Xn−1 ∪X ′).
Finally,

H̃∗G(X/X ′;M) ≈ lim←−
n

H̃∗G(Xn ∪X ′/X ′;M)

≈ lim←−
n

H̃∗G(ZP (Xn) ∪ Z ′/Z ′;M) ≈ H̃∗G(Z/Z ′;M)

by using (2.3).

Definition 3.8. A subcollection F ′ of F is called concave if whenever
H ′ ≤ H are subgroups such that H ′ ∈ F ′ and H ∈ F , then H ∈ F ′.

In [38] tom Dieck calls F ′ closed in F . The term “concave” which is used
by Słomińska in [34] seems more appropriate because later on the collection
F will be considered as a topological space and by using the word “closed”
we run into a possible risk of confusion.

Definition 3.9. Given a G-space X and a collection F let XF denote
the subspace of X consisting of the points x such that Gx ∈ F .

Definition 3.10. Fix a collection P of p-toral subgroups of G. Let
type-P denote the collection of those subgroups of G whose maximal p-toral
subgroups belong to P.

Proposition 3.11. Let P be a collection of p-toral subgroups of G and
let P ′ be a concave subcollection. Then X 7→ Xtype-P ′ defines a functor

{G-spaces of p-type P} X 7→X′−−−−→ {G-spaces of p-type P ′}.
which preserves G-homotopic maps and G-homotopy equivalences. It carries
G-CW complexes to G-CW complexes.

Proof. Lemma A.1.1 clearly implies that F ′ := type-P ′ is a concave
subcollection of F := type-P. T. tom Dieck shows in [38, I.§6] thatX ′ := XF ′
is a closed subspace of X. Since G-maps must increase orbit type we also
see that any G-map f : X → Y restricts to a G-map f ′ : X ′ → Y ′. Similarly
a homotopy h : X × I → Y restricts to h′ : X ′ × I → Y ′. If X is a G-CW
complex then in the notation of (2.1) one easily checks that X ′ is a G-CW
complex whose spaces of n-cells are X′n. See e.g. [38, II.1.12].
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Remark 3.12. Well order the set N×N lexicographically, that is, (n,m)
≺ (n′,m′) if and only if n < n′ or n = n′ and m < m′. Define the order of
a compact Lie group o(G) as the pair (dimG,#π0G). It is not hard to see
that if G ≤ G′ then o(G) � o(G′) and equality holds if and only if G = G′.

As a consequence every compact Lie group satisfies the descending chain
condition for subgroups. In particular, every collection of subgroups of G has
a minimal element.

For H ≤ G let WH denote NH/H and recall XH is a WH-space. Also
recall that Sp(G) denotes the collection of all the p-toral subgroups of G.

Proposition 3.13. Consider a non-empty collection P of p-toral sub-
groups of G and let P ′ denote P \{(P )} where P is a minimal element in P.
Let X be a G-space of p-type P and consider X ′ := Xtype-P ′ as in Proposition
3.11. Then X ′P = (XP )type-S0

p(WP ).

Proof. Clearly S0
p (WP ) is concave in Sp(WP ), whence Proposition 3.11

applies to XP . Note that the maximal p-toral subgroup of a compact Lie
group K is trivial if and only if K is finite of order prime to p. In light of
Proposition 3.5 and the fact that the class of p-toral groups is closed under
extensions, the following statements are equivalent:

(a) x ∈ XP \X ′P .
(b) x ∈ XP and Gx contains P as a maximal p-toral subgroup.
(c) x ∈ XP and NGx(P ) contains P as a maximal p-toral subgroup.
(d) x ∈ XP and the maximal p-toral subgroup of NGxP/P is trivial.
(e) x ∈ XP and WPx /∈ type-S0

p (WP ), i.e. x /∈ (XP )type-S0
p(WP ).

Proof of Lemma 3.2. We prove the result by inducting on the size of
P/G. If P is empty then so are X and Y and the result is trivial.

Assume that the result holds whenever |P/G| = n − 1 ≥ 0 and assume
that |P/G| = n. Let P be a minimal element in P and set P ′ := P \ {(P )}.
Clearly P ′ is concave in P and we denote X ′ := Xtype-P ′ and Y ′ := Ytype-P ′ .
Note that f induces a morphism of commutative squares

(1)

G×NP X ′P //
� _

��

X ′
� _

��
G×NP XP // X

f−→

G×NP Y ′P //
� _

��

Y ′
� _

��
G×NP Y P // Y

Clearly, Sylp(IsoG(X \X ′)) ⊆ {(P )}. Since P is minimal in P, if Q ∈ P ′ then
(X \X ′)Q is empty because (Q) � (P ). We see that X ′Q = XQ and similarly
Y ′Q = Y Q for every Q ∈ P ′ and therefore by hypothesis, X ′Q → Y ′Q is an
NQ-homotopy equivalence. Note that the p-type of X ′ and Y ′ is contained
in P ′. The induction hypothesis applies to f ′ : X ′ → Y ′ and P ′ and therefore
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there is a homotopy equivalence and an isomorphism

X ′/G
'−→ Y ′/G,(2)

H∗G(Y ′;M) ≈ H∗G(X ′;M).(3)

By hypothesisXP → Y P is an NP/P -homotopy equivalence, therefore there
is a homotopy equivalence and an isomorphism

XP /NP
'−→ Y P /NP,(4)

H∗G(G×NP Y P ;M) ≈ H∗G(G×NP XP ;M).(5)

Propositions 3.13 and 3.11 now show that X ′P → Y ′P is an NP -homotopy
equivalence and therefore there is a homotopy equivalence and an isomor-
phism

X ′
P
/NP

'−→ Y ′
P
/NP,(6)

H∗G(G×NP Y ′
P ;M) ≈ H∗G(G×NP X ′

P ;M).(7)

Consider the left hand square of (1) and note that the spaces in the left
hand column are ZP (X ′) ⊆ ZP (X). Note that ZP (X) → X and X ′ ↪→ X
are closed maps. It immediately follows from [10, Theorem I.3.1] that

(ZP (X) tZP (X′) X
′)/G→ X/G

is a closed map. It is also a bijection by Proposition 3.7(b), hence a home-
omorphism. This shows that by taking orbit spaces in (1), f/G induces a
morphism of pushout squares. Since the vertical arrows in (1)/G are cofibra-
tions by Proposition 3.7(a), this is in fact a morphism of homotopy pushout
squares. Now (2), (4) and (6) show that X/G→ Y/G is a homotopy equiv-
alence.

The isomorphisms (5) and (7) and Proposition 3.7(a) give an isomor-
phism

H̃∗G(ZP (Y )/ZP (Y ′);M) ≈ H̃∗G(ZP (X)/ZP (X ′);M).

Proposition 3.7(c) now implies that

H̃∗G(Y/Y ′;M) ≈ H̃∗G(X/X ′;M)

and together with (3) and the long exact sequences in cohomology we obtain
the desired isomorphism H∗G(Y ;M) ≈ H∗G(X;M).

4. The transfer and G-acyclicity

Definition 4.1. A G-space X is called G-acyclic for the Mackey functor
M if the map X → ∗ induces an H∗G(−;M)-isomorphism.

The main results of this section are Proposition 4.2, Theorem 4.3 and
Lemma 4.7 below.
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Proposition 4.2. Fix a p-local cohomology theory h∗ (see 1.7) and a
compact Lie group G. Let X be a G-CW complex and assume that

(i) H̃∗(X/G;Z(p)) = 0,
(ii) X is P -acyclic for M̃h (2.7) where P is a maximal p-toral subgroup

of G.

Then X is G-acyclic forMh (2.5).

Theorem 4.3. Let G be a compact Lie group which contains a non-trivial
p-toral subgroup and let X be a G-CW complex of finite orbit type. Assume
that

(a) each isotropy group of a point of X contains a non-trivial p-toral
subgroup,

(b) XK is contractible for every K ≤ G such that Op(K) 6= 1 (A.1.2).

Then

(i) X/G is contractible.
(ii) X is G-acyclic for every p-local coefficient functorMh (2.5).

This section is a convenient place to prove Lemma 4.7. The idea goes
back to Dwyer [14] as the “method of discarded orbits”.

Fix a closed subgroup K of a compact Lie group G. The inclusion α :
K → G induces a functor of equivariant stable categories α∗ : KS → GS by
G+ ∧K −, see [25, p. 75]. It clearly respects the relation of homotopy and
therefore induces a functor α∗ : hKO → hGO. By definition, the restriction
of a Mackey functor M on G to K is the functor M↓GK = M ◦ α∗. That is,
M↓GK(K/L+) = M(G/L+).

Example 4.4. Denote the Mackey functor Mh (resp. M̃h) on G (2.5,
2.7) byMG

h (resp. M̃G
h ). By inspection

(MG
h )↓GK =MK

h and (M̃G
h )↓GK = M̃K

h

One easily checks using induction on the skeleta that for a K-CW com-
plex X there is a natural isomorphism

H∗G(G×K X;M) ≈ H∗K(X;M↓GK).

We denote G×K X by X↑GK and call it the induction from K to G. Clearly
if X is a K-CW complex then X↑GK is a G-CW complex.

When X is a G-CW complex then by restriction it is also a K-CW
complex by Illman [21] and X↑GK is canonically homeomorphic to X×G/K.

The projection X ×G/K → X gives rise to a natural map H∗G(X;M)
resG

K−−−→
H∗K(X;M). In this section we shall recall and exploit the transfer map

H∗K(X;M)
trG

K−−→ H∗G(X;M).
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Definition 4.5. A collection C of subgroups of G is convex if it is closed
under formation of subgroups. The complement of C is the collection of all
subgroups of G not in C and is denoted by C. For a subgroup K ≤ G we let
C ∩K denote the collection of all the subgroups of K which belong to C.

We remark that C is convex if and only if C is concave (3.8). Furthermore
C ∩K is convex in K if C is convex in G.

Definition 4.6. Fix collections F and D in G where D is convex.
A Mackey functor M is (F ,D)-discardable if for every stable G-map ξ :
G/H+ → G/D+ where H ∈ F and D ∈ D, the induced homomorphism
M(ξ) is the trivial homomorphism M(G/D+) 0−→M(G/H+).

Lemma 4.7. Let M be an (F ,D)-discardable Mackey functor on G and
let X be a G-CW complex of orbit type F . Fix a subgroup P ≤ G and let C
denote the P -collection P ∩ D. Then C is concave in P and the transfer map
trGP : H∗P (X;M)→ H∗G(X;M) factors as follows:

H∗P (X;M) i∗−→ H∗P (XC ;M)→ H∗G(X;M)

where i is the inclusion of the P -subcomplex XC of X (3.9).

We recall that for every finite G-CW complex F there is an associated
stable transfer map τ(F ) : S → F+ in GS where S is the sphere spectrum.
It is the composition [25, Ch. XVII (1.2)]

S
η−→ X ∧DX γ−→ DX ∧X 1∧∆−−−→ DX ∧X ∧X ε−→ S ∧X ' X.

where X is the suspension spectrum F+ and DX is its Spanier–Whitehead
dual. By definition DX = F (X,S) where G acts by “conjugation”. There-
fore the map τ(F )↓GK which is obtained by restriction of the action to a
subgroup K, is the transfer map of F considered as a finite K-CW complex.

Consider the projection ξ : X × F → X where X is another G-CW
complex. There is an associated transfer map τ(ξ) in h̄GS defined by

X+
1∧τ(F )−−−−→ X+ ∧ F+.

See [28, pp. 191] for details; in the notation there we use Π = 1.
By applying the Borel construction we may consider the fibre bundle of

spaces ξhG : (X × F )hG → XhG with fibre F . It has an associated stable
(non-equivariant) transfer map τ(ξhG).

Proposition 4.8. Fix a finite G-CW complex F and a projection ξ :
X × F → X where X is any G-CW complex. Then τ(ξhG) = τ(ξ) ∧G EG+

in h̄GS.
Proof. The fibre bundle ξhG : (X ×F )hG → XhG has structure group G.

According to [28] the stable transfer τ(ξhG) in h̄S is constructed as follows.
Fix a complete G universe U . First one looks at the bundle of free G-spaces
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X ×F ×EG→ X ×EG. It has an associated transfer in h̄GS, which up to
an equivalence is

X+ ∧ EG+
X+∧τ(F )∧EG+−−−−−−−−−−→ X+ ∧ F+ ∧ EG+.

Since these are free G-spectra, there is a map, by [28, Theorem XVI.5.3],
unique up to homotopy, of naive G-spectra τ̃ : X+∧EG+ → X+∧F+∧EG+,
namely a map in GSUG, such that i∗(τ̃) = X+∧τ(F )∧EG+, where i : UG →
U is the inclusion. By definition τ(ξhG) := τ̃ /G. But this is exactly how
τ(ξ)hG = (1X+ ∧ τ(F )) ∧G EG+ is defined in [28, p. 165, last paragraph].

Note that X × G/K = X↑GK for any G-space X. The projection ξ :
X ×G/K → X and τ(ξ) give rise to maps

H∗G(X;M)
ξ∗−→ H∗K(X;M)

τ(ξ)∗−−−→ H∗G(X;M)

which are natural in X. They are denoted resGK := ξ∗ and trGK := τ(ξ)∗.

Proposition 4.9. Let h∗ be a p-local cohomology theory and let M de-
note one of the Mackey functors Mh, Consth or M̃h (2.5, 2.7). Let P be a
maximal p-toral subgroup of G. Then for every G-CW complex X the com-
position

H∗G(X;M)
resG

P−−−→ H∗P (X;M↓GP )
trG

P−−→ H∗G(X;M)

is an isomorphism.

Proof. Consider first the case M = Mh. The composition X+ → X+ ∧
G/P+ → X+ is natural with respect to X so by (2.3) it suffices to prove the
isomorphism for the skeleta of X. Using induction and the cofibre sequence
of G-CW complexes Xn−1+ → Xn+ → Xn/Xn−1 '

∨
i(S

n ∧G/Hi+) we see
that it suffices to prove the isomorphism for orbits, namely, that

(1) H0
G(G/K;Mh)

trG
P−−→ H0

P (G/K ×G/P ;Mh)
resG

P−−−→ H0
G(G/K;Mh)

is an isomorphism. Set τ = τ(G/P ) : S → G/P+ and let ξ : G/K ×
G/P → G/K denote the projection. By definition, (1) is obtained by apply-
ing H̃0

G(−;Mh) to the maps of G-spectra

G/K+
1∧τ−−→ G/K+ ∧G/P+

ξ+−→ G/K+.

Since this is a stable map of G-orbits, by the definition ofMh we obtain

H̃0
G(ξ+ ◦ (1 ∧ τ);Mh) =Mh(ξ+ ◦ (1 ∧ τ))

= h̃0
(
(ξ+ ◦ (1 ∧ τ)) ∧G EG+

)
= h̃0

(
ξhG+ ◦ ((1 ∧ τ) ∧G EG+)

)
.

Proposition 4.8 now implies that

H̃0
G(ξ+ ◦ (1 ∧ τ);Mh) = h̃0(ξhG+ ◦ τ(ξhG)).
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Proposition A.3.3 shows that this map is an isomorphism if the composite
map of spectra

BK+
τ(ξhG)−−−−→ (G/K ×G/P )hG+

ξhG+−−−→ BK+

induces an H̃∗(−;Z(p))-isomorphism. This is indeed the case because in or-
dinary cohomology this map induces multiplication by χ(G/P ) which is a
unit in Z(p). See, e.g., [2]. This completes the proof when M =Mh.

IfM = Consth then we have seen in Proposition 2.6 thatM =Mk where
k̃∗ = H̃∗(−;π0h) and the result follows from the previous case. The caseM =
M̃h follows from the previous two cases by examination of the self-map trGP ◦
resGP of the long exact sequence in Bredon cohomology which is associated
to the short exact sequence of Mackey functors in Proposition 2.8.

Proof of Proposition 4.2. First, X is G-acyclic for Consth by hypothesis
(i) because H∗G(X; Consth) = H∗(X/G;π0h). The map X → ∗ induces a
morphism of the long exact sequences in cohomology associated with the
short exact sequence of Mackey functors (2.8) which shows that X is G-
acyclic for Mh if and only if it is G-acyclic for M̃h. The naturality of the
transfer with respect to X → ∗ gives a commutative diagram

(1)

H∗G(∗;M̃h)
resG

P //

��

H∗P (∗;M̃h)
trG

P //

��

H∗G(∗;M̃h)

��

H∗G(X;M̃h)
resG

P // H∗P (X;M̃h)
trG

P // H∗G(X;M̃h)

where the composition along the rows are isomorphisms by Proposition 4.9.
We see that the homomorphism H∗G(∗;M̃h) → H∗G(X;M̃h) is a retract of
H∗P (∗;M̃h)→ H∗P (X;M̃h) which is an isomorphism by hypothesis (ii). The
result now follows because a retract of an isomorphism is an isomorphism.

We quote from Palais [31, Corollary 1.7.29]

Proposition 4.10. Let H,K be subgroups of a compact Lie group G.
Then the number of H-conjugacy classes of subgroups of H of the form
H ∩Kg is finite.

Proof of Theorem 4.3. First we observe that if Q is a non-trivial p-toral
subgroup of G then XQ is NQ-contractible. To see this note that if K/Q is a
subgroup of NQ/Q then Op(K) 6= 1, hence, by hypothesis, (XQ)K/Q = XK

is contractible. Now [38, Proposition II.2.7] implies that XQ → ∗ is an
NQ/Q-homotopy equivalence, whence an NQ-homotopy equivalence.

(i) Consider the G-map X → ∗. If Q is a maximal p-toral subgroup of
H ∈ IsoG(X ∪ ∗) then Q 6= 1 by hypothesis (a) and the hypothesis on G.
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We have seen that XQ is NQ-contractible and we can therefore apply part
(i) of the key Lemma 3.2 to X → ∗ and conclude that X/G is contractible.

(ii) Fix a maximal p-toral subgroup P of G. Note that X↓GP has finite
orbit type by 4.10 and it is a P -CW complex by [21]. With the notation
of Example 4.4, Lemma 2.10 shows that M̃G

h ↓
G
P = M̃P

h is p-constrained. In
particular M̃P

h vanishes on orbits P/Q where Q is finite of order prime to p
because M̃h vanishes on free orbits. Let Z denote the P -subcomplex of X
consisting of all the orbits whose type is not a finite group of order prime
to p, that is, Z = Xtype-S0

p(P ). Proposition 2.4 implies that

(1) H∗P (Z;M̃h) ≈ H∗P (X;M̃h).

Furthermore Z has finite orbit type and we now consider the map Z → ∗.
If Q is a maximal p-toral subgroup of some H ∈ IsoP (Z ∪ ∗) then Q 6= 1
because P 6= 1 and because a compact Lie group which is not finite of
order prime to p contains a non-trivial p-toral subgroup. It immediately
follows that ZQ = XQ and the latter was shown to be NQ-contractible,
hence NPQ contractible. Now part (ii) of Lemma 3.2 applies to Z → ∗, that
is, Z and thanks to (1) also X, are P -acyclic for M̃h. Part (i) shows that
X/G is contractible, therefore Proposition 4.2 applies, namely X is G-acyclic
forMh.

In the remainder of this section we will prove Lemma 4.7.

4.11. Fix a G-representation V and recall that SV denotes the one-point
compactification of V . For a pointed G-CW complex (resp. a G-spectrum)
X the smash product X ∧ SV is denoted ΣVX. For a pointed G-space X
there is an equivalence of G-spectra Σ∞ΣVX ' ΣV Σ∞X.

We now fix a pointed G-CW complex X and a Mackey functor M . The
filtration ΣVXn of ΣVX is exhaustive and gives rise to a convergent spectral
sequence

Ei,j1 (X) = H̃V+i+j
G (ΣVXi/Xi−1;M) ⇒ H̃V+i+j

G (ΣVX;M)(1)

≈ H̃ i+j
G (X;M).

Clearly, ΣVXi/ΣVXi−1 '
∨
i(S

V+n ∧ G/Hi+) and therefore the spectral
sequence collapses to its horizontal axis giving rise to a cochain complex
CV,∗G (X;M) where in the notation of (2.1),

(2) CV,nG (X;M) ≈ H̃n+V
G (ΣVXn/Xn−1;M) ≈ H̃0

G(Xn+;M).

Thus, H∗G(X;M) is isomorphic to the cohomology groups of CV,∗G (X;M).
In fact, it is not difficult to check that the cochain complex CV,∗G (X;M) is
isomorphic to the cochain complex HomhGO(C∗(X),M) which was described
after Definition 2.2. The differentials are obtained by applying H̃V+n

G (−;M)
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to the map ΣVXn/Xn−1 → ΣV+1Xn−1/Xn−2 in the cofibre sequence of the
subspaces Xn ⊇ Xn−1 ⊇ Xn−2. When V = 0 we simply write C∗G(X;M).

Let Y be another pointed G-CW complex and let f : ΣVX → ΣV Y be a
G-map such that f(ΣVXn) ⊆ ΣV Yn. Oliver shows in [30, p. 546] that every
G-map f ′ : ΣVX → ΣV Y is G-homotopic to a G-map f with the prop-
erty above. Since f preserves the filtrations of ΣVX and ΣV Y , it induces a
morphism of spectral sequences (1) and consequently a morphism of cochain
complexes

CV,∗G (f ;M) : CV,∗G (Y )→ CV,∗G (X).

In every degree i it is induced by the maps fi : ΣVXi/Xi−1 → ΣV Yi/Yi−1.
By taking cohomology groups we obtain
HCV,∗G (f ;M) = H̃∗+VG (f ;M) = H̃∗G(Σ−V f ;M) : H̃∗G(Y ;M)→ H̃∗G(X;M).

Proof of Lemma 4.7. We leave it to the reader to verify that C is a
concave collection of subgroups in P .

Claim. Fix a G-representation V and consider f : ΣVX+ → ΣV Y+

where Y is another G-CW complex. Then H̃∗G(Σ−V f ;M) factors through
(4.5, 3.9)

i∗ : H∗G(Y ;M)→ H∗G(YD;M).

Proof. Wemay assume by [30, p. 546] that f(ΣVXn) ⊆ ΣV Yn and consider
CV,∗G (f,M) as in 4.11. In degree n it is obtained by applying H̃n+V

G (−;M) to
the map fn : ΣVXn/Xn−1 → ΣV Yn/Yn−1. Thus, in the notation of 4.11(2),

CV,nG (f ;M) = H̃0
G(Σ−V−nfn;M) : H̃0

G(Yn+;M)→ H̃0
G(Xn+;M).

Now consider the stable map ϕn := Σ−V−nfn : Xn+ → Yn+. It follows from
[28, Corollary XIX.3.2] that every stable map G/H+ → Yn is a Z-linear
combination of stable maps G/H+ → G/K+ where G/K ⊆ Yn. Since M is
(F ,D)-discardable, if H ∈ F then H0

G(YnD;M) is in the kernel of

ϕ∗n : H̃0
G(Yn+;M)→ H̃0

G(G/H+;M)

for any stable G-map G/H+ → Yn+. Therefore there is a unique diagonal
arrow which renders the following triangle commutative:

(1)

H̃0
G(Yn+;M)

H̃0
G(ϕn;M)

//

(i+)∗

����

H̃0
G(Xn+;M)

H̃0
G((YnD)+;M)

44jjjjjjjjjjjjjjjj

where i is the inclusion (Yn)D ⊆ Yn. Since the maps (i+)∗ are surjective, we
obtain a factorisation of CV,∗G (f ;M) through i∗ :CV,∗G (Y ;M)→CV,∗G (YD;M).
The result follows by taking the cohomology groups of these cochain com-
plexes. Claim
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We recall that Becker and Gottlieb constructed the transfer map in a
geometric way as follows (see [2] and also [28, p. 180]). Choose an embed-
ding of G/P in a G-representation V and let νG/P be a tubular neigh-
bourhood homeomorphic to the normal bundle. Then the Thom–Pontryagin
construction gives a map SV → G/P+ ∧ SV . For a G-space X we obtain
f : ΣVX+ → ΣVX+ ∧G/P+. On the spectrum level Σ∞f = ΣV τ(ξ) where
ξ : X ×G/P → X is the projection.

The result now follows from the claim by observing that (X ×G/P )D =
G×P XC , hence H∗P (XC ;M) ≈ H∗G((X ×G/P )D;M).

Proposition 4.12. Fix a compact Lie group G and let D denote the
collection of all its finite subgroups of order prime to p. Then the constant
Mackey functor ConstZ/p is (F ,D)-discardable for any collection F contained
in D.

Proof. Recall from Proposition 2.6 that ConstZ/p = Mh where h̃∗ =
H̃∗(−;Z/p). If H ∈ F then it contains a non-trivial p-toral subgroup and
therefore χ(H) = 0 mod p. A stable map ξ : G/H+ → G/D+ where D ∈ D
is a Z-linear combination of (see [28, XIX.3])

(1) G/H+
τ−→ G/L+

λ+−−→ G/D+

where τ is the transfer map associated to the inclusion L ≤ H and λ is a
G-map of spaces. Note that L ∈ D because D is convex. Also observe that

H0(BL;Z/p)
trH

L−−→ H0(BH;Z/p) ≈−→ H0(BL;Z/p)
is multiplication by χ(H/L) = 0 mod p and the second map is an isomor-
phism because BL and BH are connected. ThereforeMh(τ) = trHL = 0 and
consequently Mh(−) applied to (1) vanishes. It follows that ConstZ/p(ξ)
= 0.

5. A topological version of Quillen’s Theorem A

5.1. A topological category is a category enriched over the category T
of compactly generated topological spaces; see Borceux [6, §§6 and 7.2] and
Steenrod [35]. The morphism spaces of a topological category C are denoted
C(C,C ′). A functor F : C→ T is an assignment of a space F (C) for every
object C ∈ C and continuous maps F (C) × C(C,C ′) → F (C ′) for any
objects C,C ′ ∈ C which are compatible with the identities and composition
rules (see [6, §6.2]).

The simplicial replacement of a functor F : C → T is the simplicial
object

∐
∗F in T where∐
nF =

∐
C0,...,Cn∈C

F (C0)×C(Cn−1, Cn)× · · · ×C(C0, C1).
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Composition of arrows induces the face maps dk and d0 is the structure
map F (C0)×C(C0, C1)→ F (C1) of the functor F . Degeneracies are formed
by inserting identity morphisms. Compare with [9, p. 337] and [19]. The
homotopy colimit of F is the geometric realisation of

∐
∗F , that is,

hocolim
C

F := |
∐
∗F |.

Throughout we shall assume that morphism spaces in C are cofibrant, i.e.
have the homotopy type of retracts of CW-complexes and the inclusions
{idC} ⊆ C(C,C) are closed cofibrations for all C ∈ C. When the values
of F are also cofibrant, this construction is homotopy invariant, that is, if
F → F ′ is a natural transformation such that F (C) ' F ′(C) for all C ∈ C,
then the homotopy colimits of F and F ′ are homotopy equivalent. See e.g.
Hollender and Vogt [19].

5.2. Fix a compact Lie group G. An internal G-space category is a cate-
gory object in the category of G-spaces; see [5, §8]. More concretely, an inter-
nal G-space category C consists of two G-spaces C0 (objects) and C1 (mor-
phisms) together with continuous G-maps d1, d0 : C1 → C0 (d1 for domain
and d0 for codomain) and s0 : C0 → C1 (identities). It is also equipped with a
“composition map” c : C2 → C1 where C2 ⊆ C1×C1 is the space of compos-
able arrows in C. The maps d0, d1, s0 and c are subject to the obvious asso-
ciativity and unitality relations [5, §8.1]. Alternatively, we require that upon
forgetting the topologies on C0 and C1, this structure becomes a small cate-
gory in the usual sense (see Borceux [5, §8.1.5] using C = G). When G is triv-
ial we call C an internal space category. The slogan is that an internal space
category is one whose object and morphism sets carry non-trivial topologies.

A functor Φ : C → D between internal G-space categories consists of
continuous G-maps between the object and morphism spaces of these cate-
gories which become a functor between small categories upon forgetting the
topologies on C and D. See [5, §8.1.2].

A natural transformation t : Φ ⇒ Ψ is a G-map t : C0 → D1 with
the obvious properties (see [5, §8.1.3]). Equivalently, it is a functor t : C ×
{0→ 1} → D such that t|C×{0} = Φ and t|C×{1} = Ψ.

The nerve of an internal G-space category C is the simplicial space Nr C
where the space Nrk C of k-simplices is the obvious subspace of C0 ×Ck

1 of
k composable arrows. Explicitly

Nrk C = {(C, ck, . . . , c0) : C = d1(c0), d0(ci) = d1(ci+1)}.
Face and degeneracy maps are defined in the usual way (cf. [9, Ch. XI, §2]
and [19]).

A functor Φ : C → D gives rise to an obvious simplicial map between
the nerves. A natural transformation t : Φ ⇒ Ψ gives rise to a simplicial
map Nr C×∆[1]→ Nr D, whence a homotopy from |Nr Φ| to |Nr Ψ|.
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The nerve of an internal G-space category is rarely Reedy cofibrant (see
A.2.1). Hence, the realisation of nerves of internal space categories is not in
general homotopically invariant.

5.3. Throughout G is a compact Lie group and GT is the category of
compactly generated G-spaces. Fix a topological category C and a functor
F : C→ GT . The transporter category of F is the internal G-space category
TrF whose structure is determined by the first three spaces in the simplicial
replacement

∐
∗ F (5.1). That is, the object and morphism spaces are

∐
0 F

and
∐

1 F , and the category structure is described by

∐
0F s0 //

∐
1F

d1
oo
d0oo ∐

2F
d1oo .

It is not hard to check that TrF is an internal G-space category and that

(1) Nr Tr(F ) ≈
∐
∗F.

In particular (cf. Thomason [37] and Dwyer [13, §2]),

hocolim
C

F ≈ |Nr Tr(F )|.

Fix a functor j : C → D between internal space categories (5.2). The
over category (D↓j) where D is an object in D is an internal space category
whose object space is the subspace of C0 ×D1 consisting of the pairs (C, d)
where d ∈ D(D, jC). The morphism space is the subspace of C0 ×D1 ×C1

consisting of the triples (C, d, c) where (C, d) is an object of (D↓j) and c is a
morphism c ∈ C(C,C ′). Such a triple is a morphism (C, d)→ (C ′, j(c) ◦ d).
Compare with the discrete version [26, §II.6].

It is easily seen that Nrk(D↓j) can be identified with the subspace of
C0 ×D1 × (C1)×k of the points

{(C0, D
d−→ jC0, C0

c1−→ · · · ck−→ Ck)}.

Quillen’s Theorem A [32, Theorem A] asserts that a functor j : C → D of
small categories induces a weak homotopy equivalence on nerves if for every
object D ∈ D the nerve of the comma category (D↓j) is contractible. His
theorem fails when C and D are internal space categories.

Example 5.4. Let X be any non-empty connected space distinct from
a point. Let Xd denote its underlying set. One may consider X and Xd as
internal space categories X and Xd whose object and morphism spaces are
X and Xd respectively. Thus X and Xd have only identity morphisms. The
identity functor j : Xd → X gives rise to contractible spaces |(Y ↓j)| for all
objects Y ∈ X. However |j| is canonically identified with j : Xd → X which
is not an equivalence.
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Definition 5.5. Fix a functor j : C → D of internal space categories.
The join of j is the bisimplicial space X(j) where Xs,t(j) is the subspace of
Nrs(Dop)×D1 ×Nrt(C) consisting of

Xs,t(j) = {(Ds
ds−→ · · · d1−→ D0, D0

d−→ j(C0), C0
c1−→ · · · ct−→ Ct)}.

Face and degeneracy maps are defined in the obvious way. For every s ≥ 0
we obtain a simplicial space Xs,∗(j) and for every t ≥ 0 a simplicial space
X∗,t(j). These simplicial spaces are augmented (A.2.4) in an obvious way by
the projections

πv : Xs,t(j)→ Nrs(Dop), πh : Xs,t(j)→ Nrt(C).

Throughout D• denotes elements Ds → · · · → D0 in Nrs(Dop) and C•
denotes elements C0 → · · · → Ct in Nrt(C). It easily follows from the defi-
nitions that for every D• there is a pullback square

(5.6)

Nrt(D0↓j) −−−−→ {D•}y yincl

Xs,t(j)
πv−−−−→ NrsDop

Definition 5.7. A functor of internal space categories j : C → D is
called tame if the pullback squares (5.6) are homotopy cartesian for all
s, t ≥ 0 and all D• ∈ NrsDop. That is, Nrt(D0↓j) is weakly equivalent,
via the natural map, to the homotopy fibre of Xs,t(j)

πv−→ NrsDop. We call
j absolutely tame if πv are Serre fibrations for all s, t ≥ 0 and all objects
D• ∈ NrsDop.

The main result of this section is a topological variant of Quillen’s Theo-
rem A [32]. The statement of Quillen’s result is very clean in the sense that
there are no restrictions on the categories and functors it applies to. In light
of the theorem below, the reason for this is that every function between dis-
crete sets is a Serre fibration and every simplicial set is Reedy cofibrant (see
A.2). In other words the nerve of every small category is Reedy cofibrant
and every functor between small categories is tame.

Theorem 5.8. Let j : C→ D be a tame functor of internal space cate-
gories. Assume that

(a) Nr C and Nr D are Reedy cofibrant,
(b) for every D ∈ D the nerve of (D↓j) is Reedy cofibrant and its reali-

sation is contractible.

Then |j| : |Nr C| → |Nr D| is a homotopy equivalence.

Proof. We follow Quillen’s original proof. Note that the functor j induces
a commutative diagram of augmented bisimplicial spaces
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(1)

Nrs(Dop) πv←−−−− Xs,t(j)
πh−−−−→ NrtC

id

y yj∗ yNrt j

Nrs(Dop) πv←−−−− Xs,t(1D) πh−−−−→ NrtD

We first claim that for every t ≥ 0 the augmented simplicial spaces

X∗,t(j)
πh−→ NrtC and X∗,t(1D) πh−→ NrtD(2)

admit left contractions (A.2.4). Indeed, define s−1 : NrtC→ X0,t(j) by

s−1(C•) = (jC0, jC0
id−→ jC0, C•).

For all r ≥ 0 define s−1 : Xr,t(j)→ Xr+1,t(j) by

s−1(D•, D0
d−→ jC0, C•) = (D•

d−→ jC0, jC0
id−→ jC0, C•).

The verification of the continuity of these maps and that for every t they
give rise to a left contraction, is straightforward. By replacing j with 1D we
obtain a left contraction for the second augmented simplicial space (2).

Now consider the augmented simplicial spaces

(3) Xs,∗(1D) πv−→ Nrs(Dop) (s ≥ 0).

They admit left contractions defined by

s−1 : NrsDop → Xs,0(1D), s−1(D•) = (D•, D0
id−→ D0, D0),

s−1 : Xs,t(1D)→ Xs,t+1(1D), s−1(D•, D0
d−→ D′0, D

′
•)

= (D•, D0
id−→ D0, D0

d−→ D′•).

We leave it to the reader to verify the continuity of these assignments and
the simplicial identities.

For a space X we denote X ′ = |Sing(X)|. There is a natural weak equiv-
alence X ′ → X and X ′ is always a CW-complex, that is a cofibrant space.
By applying this construction to (2) and (3) we obtain augmented simpli-
cial objects of cofibrant spaces with left contractions (A.2.4), hence weak
homotopy equivalences

hocolim
s

Xs,t(j)′
∼−→ (NrtC)′ ∼−→ NrtC,(4)

hocolim
s

Xs,t(1D)′ ∼−→ (NrtD)′ ∼−→ NrtD,(5)

hocolim
t

Xs,t(1D)′ ∼−→ (NrsDop)′ ∼−→ NrsDop.(6)

We now consider the augmented simplicial spaces Xs,∗(j)
πv−→ NrsDop for all

s ≥ 0. Since j is tame, for every D• ∈ NrsDop we have the following commu-
tative ladder of cofibrant spaces whose rows are homotopy fibre sequences



Orbit spaces and Minami’s formula 141

over the point D•:

Nrt(D0↓j)′ //

∼
��

Xs,t(j)′

∼
��

// NrsDop

Nrt(D0↓j) // Xs,t(j) // NrsDop

Puppe’s Lemma [12, pp. 180] implies that

hocolim
t

Nrt(D0↓j)′ → hocolim
t

Xs,t(j)′ → NrsDop

is a homotopy fibre sequence over D•. By assumption Nr(D0↓j) is Reedy
cofibrant, therefore there are homotopy equivalences (A.2.3)

hocolim
t

Nrt(D0↓j)′
∼−→ hocolim

t
Nrt(D0↓j)

∼−→ |Nr(D0↓j)| ' ∗.

Thus the homotopy fibres of

(7) hocolim
t

Xs,t(j)′
πv−→ Nrs(Dop)

over every point in the base are contractible, and this map is therefore a
homotopy equivalence. Now, (6), (7) and the left hand square of (1) imply
that

hocolim
t

Xs,t(j)′ → hocolim
t

Xs,t(1D)′

are homotopy equivalences for all s ≥ 0 and therefore

hocolim
s

hocolim
t

Xs,t(j)′ → hocolim
s

hocolim
t

Xs,t(1D)′

is a homotopy equivalence. By commuting homotopy colimits there is a ho-
motopy equivalence

(8) hocolim
t

hocolim
s

Xs,t(j)′
'−→ hocolim

t
hocolim

s
Xs,t(1D)′.

The equivalences (4), (5) combined with (8) and the right hand square in (1)
show that the left arrow in the following commutative square is a homotopy
equivalence.

hocolimt NrtC −−−−→ |Nr C|

∼
y y|j|

hocolimt NrtD −−−−→ |Nr D|
The horizontal arrows are homotopy equivalences because Nr C and Nr D
are Reedy cofibrant. Therefore |j| is a homotopy equivalence.

Remark 5.9. The category (D↓j) in Theorem 5.8 can be replaced with
(j↓D). To see this, note that |j| is an equivalence if and only if |jop| is one.
The latter is true, by Theorem 5.8, if Nr(D↓jop) are Reedy cofibrant and
their realisations are contractible. Note that (D↓jop) = (j↓D)op whose nerve
is Reedy cofibrant and contractible if and only if this is the case for (j↓D).
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We close this section by giving a criterion for a functor between internal
G-space categories to satisfy the conditions of Theorem 5.8.

Lemma 5.10. Let G be a compact Lie group. Suppose that f : X → Y is
a map of G-spaces such that Y/G is discrete. Then f is a Serre fibration.

Proof. Since Y =
∐
P∈Y/G P where P is an orbit of G it follows that

f =
∐
P (XP

fP−→ P ) where XP denotes f−1(P ). Bredon [10, II.3.2] shows
that the fP ’s are fibre bundles, which implies the lemma.

Definition 5.11. Let G be a compact Lie group. A G-model is a sim-
plicial G-space X such that X/G is a simplicial set, that is, Xn/G is discrete
for all n.

Remark. The geometric realisation of a G-model X is a G-CW complex
whose spaces of n-cells (2.1) are the spaces NXn of non-degenerate simplices
of Xn.

There is a natural context in which G-models arise. Consider a functor
F̃ : C→ GT whose values are transitive G-spaces and C is a small category.
The simplicial replacement

∐
∗ F̃ is clearly a G-model because by inspection∐

∗ F̃ /G = Nr C.

Corollary 5.12. Fix a compact Lie group G. If the nerve Nr D of an
internal G-space category D is a G-model, then it is Reedy cofibrant. A func-
tor j : C→ D of internal G-space categories is absolutely tame if Nr D is a
G-model.

Proof. The first assertion follows from Proposition A.2.2, and the second
from Lemma 5.10 which implies that the arrow πv in the pullback square
(5.6) is a Serre fibration.

6. Stable splittings and spectral sequences. In this section we relate
G-acyclicity to split exact chain complexes of spectra and to the collapsing
of the Bousfield–Kan spectral sequence. The main results of this section are
Theorem 6.4 and Proposition 6.5.

A chain complex in an additive category is a sequence of objects

· · · → An+1
∂n−→ An

∂n−1−−−→ An−1 → · · ·

such that ∂n−1 ◦ ∂n = 0 for all n. We shall be interested in chain complexes
of spectra.

Definition 6.1. A chain complex T of spectra is called split exact if it
is isomorphic in h̄S to a sum of complexes of the form · · · → 0→ A

'−→ A→
0→ · · · .
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Consider the skeletal filtration {Xn} of a G-CW complex X. There are
maps Xn/Xn−1

∂n−→ ΣXn−1/Xn−2 associated to the inclusions Xn−2 ⊆
Xn−1 ⊆ Xn. Clearly ∂n−1 ◦ ∂n are null homotopic. Also observe that X1/X0
∂0−→ ΣX0+ → ΣX+ where the second arrow is induced by the inclusion
X0 ⊆ X1 ⊆ X, is null homotopic.

Definition 6.2. Let {Xn} be the skeletal filtration of a G-CW com-
plex X. Define a chain complex TGX of G-spectra indexed by integers n ≥ 0
by

· · · → ΣnXn/Xn−1
Σ−n∂n−−−−→ Σn−1Xn−1/Xn−2

→ · · · → Σ−1X1/X0
Σ−1∂0−−−−→ X0+.

The chain complex T a,GX indexed by integers n ≥ −1 is obtained by aug-
menting TGX via the inclusion X0 ⊆ X, that is, T a,GX has the form

· · · → ΣnXn/Xn−1
Σ−n∂n−−−−→ Σn−1Xn−1/Xn−2 → · · · → X0+ → X+.

Define chain complexes of spectra

TX = TGX ∧G EG+ and T aX = T a,GX ∧G EG+.

In the notation of (2.1), TGn X ' Xn+, hence TnX '
∨
G/H⊆Xn

BH+.
Fix a cohomology theory h∗. By the definition of C∗G(X;M) in 4.11(2) and
Definition 2.5,

C∗G(X;Mh) ≈ H̃0
G(TGX;Mh) ≈ h̃0TX.

It follows that

(6.3) H∗G(X;Mh) ≈ H∗h̃0TX.

The first goal of this section is to prove

Theorem 6.4. Let X be a G-CW complex of dimension d <∞. If X is
G-acyclic for all p-local coefficient functorsMh (2.5) then:

(i) After localisation at SZ(p) (see A.3) the chain complex of spectra
T aX is split exact. In particular

(XhG+)SZ(p)
'

d∑
k=0

(−1)k
∨

G/H⊆Xk

(BH+)SZ(p)
.

(ii) The natural map XhG → ∗hG = BG induces an equivalence of SZ(p)-
localised spectra (XhG+)SZ(p)

' (BG+)SZ(p)
.

Proof. For convenience, replace T a(X) with its SZ(p)-localisation
T a(X)SZ(p)

. This remains a chain complex of connective spectra by Propo-
sition A.3.1.
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(i) If d = 0 there is nothing to prove because X = X0. We therefore
assume d > 0. Consider the Mackey functorMh where h = TdX. Since TdX
is Z(p)-local so is Mh so by hypothesis Hd

G(X;Mh) = 0. Equivalently, in
light of (6.3), the homomorphism

h̃0(Td−1X) = [Td−1X,TdX]→ [TdX,TdX] = h̃0(TdX)

is surjective. A preimage of the identity on TdX is a left inverse for the
differential TdX → Td−1X in TX. We deduce that

Td−1X ' T ′d−1X ∨ TdX

for some T ′d−1X which is connective and SZ(p)-local because it is a summand
of Td−1X.

If d−1 > 0 we set h = T ′d−1X. Once again,Mh is p-local soHd−1
G (X;Mh)

= 0 by hypothesis. Equivalently, in light of (6.3),

h̃0(Td−2X) = [Td−2X,T
′
d−1X]→ [T ′d−1X,T

′
d−1X] = h̃0(T ′d−1X)

is surjective. A preimage of the identity on T ′d−1X yields a splitting

Td−2X ' T ′d−2X ∨ T ′d−1X,

where T ′d−2X is SZ(p)-local and connective, being a retract of one.
We continue in this way and show that TnX ' T ′nX ∨ T ′n+1X for all

n ≥ 0 where T ′nX are Z(p)-local and connective. In particular T aX takes the
form

(1) (XhG+)SZ(p)
← T ′0X ∨ T ′1X ← T ′1X ∨ T ′2X ← · · ·

· · · ← T ′d−2X ∨ T ′d−1X ← T ′d−1X ∨ TdX ← TdX.

Consider the filtration {XihG} of XhG. It gives rise to a convergent first-
quadrant spectral sequence

E1
i,j = H̃i+j(XihG/X(i−1)hG;Z(p)) ⇒ Hi+j(XhG;Z(p)).

Theorem A.3.2 shows that E1
∗j = Hj(T∗X;Z(p)) and (1) shows that the

spectral sequence collapses at its E2-page to its vertical axis and therefore

Hj(XhG;Z(p)) ≈ E2
0,j = Hj(T ′0X;Z(p)).

It follows that T ′0X → (XhG+)SZ(p)
is an H∗(−;Z(p))-isomorphism, and

therefore an equivalence by Theorem A.3.2. This establishes the splitting
of T aX. As a consequence

(XhG+)SZ(p)
'

d∑
k=0

(−1)k(TkX)SZ(p)
'

d∑
k=0

(−1)k(XkhG+)SZ(p)
.
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(ii) For any cohomology theory represented by a SZ(p)-local spectrum h
we have

[BG+, h] = h̃0(BG+) =Mh(∗) ≈ H0
G(∗;Mh) ≈ H0

G(X;Mh)

≈ H0(h̃0T (X)) ≈ h̃0(T ′0(X)) = [T ′0(X), h].

Therefore (BG+)SZ(p)
' T ′0X. We have already seen in part (i) that T ′0X '

(XhG+)SZ(p)
. The proof is complete.

Our next goal in this section is to interpret the collapsing of the Bousfield–
Kan spectral sequence in terms of G-acyclicity of spaces. Our treatment is
inspired by Dwyer’s insight [14].

Proposition 6.5. Consider a functor F̃ : C→ GT where C is a small
category and F (C) is an orbit of G for every object C ∈ C. Let F : C→ T
denote F̃hG and consider a cohomology theory h∗ represented by a spectrum h.
Then the E2-page of the Bousfield–Kan spectral sequence [9, Ch. XII.5.8]

(1) Ei,j2 = lim←−
Cop

ihj(F ) ⇒ hi+j(hocolim
C

F )

can be identified with (see 5.3 and 2.5)
H i
G(|Nr Tr F̃ |;MΣjh).

In particular the Bousfield–Kan spectral sequence of F with respect to h∗

collapses at its E2-page to the vertical axis if and only if |Nr Tr F̃ | is G-
acyclic for all the Mackey functorsMΣjh.

Proof. Consider the simplicial replacements
∐
∗ F and

∐
∗ F̃ (see [9, p.

337] and 5.1) and set X = |
∐
∗ F̃ |. Note that

∐
∗ F̃ is a G-model, hence X

is a G-CW complex. Clearly
∐
∗ F = (

∐
∗ F̃ )hG and by definition

hocolim
C

F = |
∐
∗F | = XhG.

The simplicial structure of
∐
∗ F induces a filtration on its realisation which

gives rise to the Bousfield–Kan spectral sequence (1). Since Xn/Xn−1 '
Sn ∧ Xn+ (see 2.1), the E1-page of this spectral sequence is

Ei,j1 = h̃i+j(XihG/X(i−1)hG) = H̃ i
G(XihG/X(i−1)hG;MΣjh).

By 4.11(2) we can identify the jth row of the E1-page with C∗G(X;MΣjh).
Consequently, the E2-page of this spectral sequence has the form
(2) Ei,j2 = H iC∗G(X;MΣjh) = H i

G(X;MΣjh).

The result follows by recalling from 5.3 that X = |
∐
∗ F̃ | = |Nr Tr F̃ |.

We end this section with a remark on the chain complex TX (6.2) in
favourable cases.

Definition 6.6. AG-model X (5.11) is combinatorial if the face of every
non-degenerate simplex of X/G is a non-degenerate simplex. We call X a
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finite G-model if the simplicial set X/G has finitely many non-degenerate
simplices.

Note that if X is a finite G-model then |X| is a finite G-CW complex.
Consider now a combinatorial G-model X and a spectrum h. By identifying
the groups H i

G(|X|;MΣjh) = H ih̃jT |X| with the Bousfield–Kan spectral
sequence [9, Ch. XI.7.3] of the geometric realisation of the simplicial space
XhG, we can identify T |X| with the chain complex of spectra

· · · → (NXn)hG+

Pn
k=0(−1)k∂k−−−−−−−−−→ (NXn−1)hG+ → · · ·

· · · → (NX1)hG+
∂0−∂1−−−−→ (NX0)hG+

where ∂i are the face maps in the simplicial space XhG, and NXn are the
spaces of non-degenerate n-simplices of X.

Since we shall not need this explicit description of T |X| in what follows,
the details are left to the interested reader.

7. Posets of subgroups. A topological poset is a topological space X
together with a partial order. It gives rise to an internal space category (5.2)
whose object space is X and its morphism space is the obvious subspace of
X ×X consisting of the pairs (x0, x1) such that x0 ≤ x1. The space NrsX
(see 5.2) can be identified with the subspace of X×(s+1) of the s + 1-tuples
x0 ≤ x1 ≤ · · · ≤ xs.

If Y is another topological poset, a functor f : X → Y is the same as an
order preserving continuous map f : X → Y . Continuity on morphism spaces
is automatic from the continuity of f . Similarly, a natural transformation T
of functors f ⇒ g : X → Y exists if and only if f(x) ≤ g(x) for every x ∈ X.

Continuity of the map X
(f,g)−−−→ Y ×Y which defines T is automatic from the

continuity of f and g. We immediately deduce

Proposition 7.1. Let X be a topological poset. If x0 ∈ X is a terminal
(resp. initial) object, then |NrX| is contractible.

Proof. The constant function Fx0 : X → X is continuous and order pre-
serving, hence a functor. The continuous assignment x 7→ (x, x0) provides a
natural transformation Id→ Fx0 (resp. Fx0 → Id). There results a homotopy
from 1|NrX| to the constant map |NrX| x0−→ |NrX|.

Definition 7.2. Fix a topological poset X and an element x0 ∈ X.
The subposet of all x ∈ X such that x0 ≤ x is denoted [x0,−)X . Similarly,
(x0,−)X denotes the subposet of the elements x ∈ X such that x0 < x.

Proposition 7.1 shows that the geometric realisation of the nerve of
[x0,−)X is contractible. Note that if j is the inclusion of the poset X in Y ,
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then (y↓j) is isomorphic to the poset [y,−)Y ∩X which we shall denote by
[y,−)X .

Fix a compact Lie group G. Recall that G acts by conjugation on any
collectionH of subgroups ofG and we topologiseH as the coproduct of its or-
bits (i.e. conjugacy classes). We partially order H by inclusion of subgroups.
Since conjugation in G carries inclusions to inclusions, the poset H becomes
an internal G-space category. The points of NrsH are chains of inclusions
H0 ≤ · · · ≤ Hs in H. The isotropy group of such an s-simplex is

⋂
iNGHi

and its orbit, i.e. its conjugacy class, is denoted by (H0 ≤ · · · ≤ Hs).

Lemma 7.3 (Bredon [10, II.5.7]). Let H,K be closed subgroups of a com-
pact Lie group G. Then (G/H)K/NK is a finite set.

Proposition 7.4. Let H be a collection in a compact Lie group G. Then

(i) NrH is a combinatorial G-model (6.6) which is finite if H/G is finite.
The non-degenerate simplices of NrH have the form H0 � H1 �
· · · � Hn.

(ii) Let P be a subgroup of G fixed by K ≤ G, that is, K ≤ NP . Then
the nerves of [P,−)HK and (P,−)HK are NNP (K)-models.

Proof. (i) We prove by induction on s that NrsH/G is a discrete (resp.
finite ifH is finite). The case s = 0 follows from the definition of the topology
on H. Now, NrsH is a G-subspace of H× Nrs−1H. For an orbit (H0) in H
and an orbit (H1 ≤ · · · ≤ Hs) in Nrs−1H, the points of NrsH belonging to
(H0) × (H1 ≤ · · · ≤ Hs) are in a G-equivariant one-to-one correspondence
with a G-subspace of

G×NH0 (H1 ≤ · · · ≤ Hs)H0 ≈ G×NH0

(
G/

s⋂
i=1

NHi

)H0

which consists of finitely many orbits by Lemma 7.3. By the induction hy-
pothesis on Nrs−1H/G it follows that NrsH/G is discrete, being a coproduct
of finite sets (resp. it is finite as a finite union of finite sets).

Clearly the non-degenerate simplices in NrH are the chains H0 < · · · <
Hs, thus the face of any such s-simplex is non-degenerate. It follows that
NrH is a combinatorial G-model.

(ii) Set I = [P,−)H and J = (P,−)H. Clearly I,J are NP -subposets
of HP . Note that NrHP is an NP -model by Lemma 7.3 and part (i). It
immediately follows that Nrs I/NP and Nrs J /NP are discrete for all s ≥ 0,
that is, Nr I and NrJ are NP -models. Note that K ≤ NP so we can
apply Lemma 7.3 to Nr I and NrJ and deduce that Nr IK and NrJK are
NNP (K)-models.

Definition 7.5. Fix a collection H in G. The subdivision poset of H is
the topological poset s(H) whose underlying set consists of the chains H0 <
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· · · < Hk of proper inclusions in H. We let G act on s(H) by conjugation
and topologise it as the coproduct of its orbits. The elements H of s(H)
are called simplices which we view as finite non-empty subsets of H ordered
linearly by inclusion. There is a unique morphism H → H′ in s(H) if H′ is
a subset of H.

Proposition 7.6. Fix a collection H of subgroups of G. Then Nr s(H)
is a combinatorial G-model (6.6).

Proof. Set K = s(H) and note that K/G is discrete. For natural numbers
n, k ≥ 0 let U(k, n) denote the set of chains Tn ⊆ · · · ⊆ T1 of non-empty
subsets Ti of {0, 1, . . . , k}. Given an H = {H0 < · · · < Hk} in K, every
element Tn ⊆ · · · ⊆ T1 in U(k, n) gives rise to an element H0 → · · · → Hn in
NrnK where H0 = H and Hi is the obvious subset of H corresponding to the
inclusion of Ti in {0, 1, . . . , k}. Conversely, every element H0 → · · · → Hn

in NrnK corresponds to a k-simplex H0 in s(H) and a unique element in
U(k, n). The uniqueness follows by considering o(Hi) (see 3.12). We obtain
a G-equivariant continuous bijection

ϕ :
∐
k

K × U(k, n)→ NrnK.

To see that ϕ−1 is also continuous we note that NrnK is a subspace of

K×(n+1) ∼=
∐

(H0),...,(Hn)⊆K

(H0)× · · · × (Hn).

Therefore it suffices to prove that ϕ−1 is continuous on every subspace
(H0) × · · · × (Hn) ∩ NrnK. This map has its image in K × U(k, n) and
it is induced by the projection to the first factor K×(n+1) → K and a con-
stant map K×(n+1) → U(k, n), hence it is continuous. Since the orbit space
of the domain of ϕ is discrete, so is NrnK/G. It follows that Nr s(H) is a
G-model. The verification that it is combinatorial is straightforward.

Definition 7.7. Fix a collection H and define a functor µ : s(H) → H
by mapping a k-simplex H in s(H) to its minimal element, that is,

µ : {H0 < · · · < Hk} 7→ H0.

We have to show that the assignment µ is continuous and order preserv-
ing.

Proof. A morphism H → H′ in s(H) exists if an only if H′ ⊆ H, hence
H0 ≤ H ′0, so µ respects the partial order. To see that µ is a functor we have
to show that it is continuous. This is obvious because it is the composition

s(H)→
∐
k

H×(k+1)
‘

k proj
−−−−−→

∐
k

H fold−−→ H

where the projections are to the first factor.
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Lemma 7.8. Any G-equivariant function G/H → G/K is continuous.

Proof. This is immediate from Bredon [10, Theorem I.3.3].

The next result is known for finite groups (e.g. [33]).

Proposition 7.9. Fix a collection H in G. Then µ (7.7) induces a G-
homotopy equivalence |Nr s(H)| → |NrH|.

Proof.
Claim. For every L ∈ H the nerve of (L↓µ) is an NL-model whose

geometric realisation is NL-equivariantly contractible.

Proof. Proposition 7.6 and Lemma 7.3 imply that NrHL and Nr s(H)L

are NL-models. Therefore Nr(L↓µ) is an NL-model because (L↓µ) is the
NL-subposet of s(H)L consisting of the simplices H such that L ≤ H0. In
particular the poset (L↓µ) is a coproduct of its NL-orbits. Define functions
Φ,Ψ : (L↓µ)→ (L↓µ) by

Φ : H 7→ {L} ∪H, Ψ : H 7→ {L}.
Both assignments are NL-equivariant and are therefore continuous by Lem-
ma 7.8. They are also order preserving and therefore Φ and Ψ are functors
of NL-posets. For any H ∈ (L↓µ), the zigzag of inclusions

(1) H ⊆ {L} ∪H ⊇ {L}
gives rise to natural transformations Id ← Φ → Ψ. There results an NL-
equivariant contraction of |Nr(L↓µ)| because Ψ is constant. Claim

Propositions 7.4(i) and 7.6 imply that NrH and Nr s(H) are G-models,
hence |H| and |s(H)| are G-CW complexes. By [38, Ch. II, Proposition 2.7]
it suffices to prove that µ induces a homotopy equivalence |s(H)|K → |H|K
for all K ≤ G.

Lemma 7.3 shows that NrµK is a map of NK-models. In particular µK
is absolutely tame by Corollary 5.12. Also, Proposition A.2.2 shows that
NrHK and Nr s(H)K are Reedy cofibrant. We now consider (L↓µK) for
some L ∈ HK , that is, K ≤ NL. Lemma 7.3 and the claim above show
that Nr(L↓µK) is an NNLK-model and in particular it is Reedy cofibrant
by Proposition A.2.2. Furthermore, the NL-equivariant contraction (1) of
|(L↓µ)| provides, by restriction, a contraction of |(L↓µK)|. We are now in a
position to apply Theorem 5.8 to µK and deduce that µK induces a homotopy
equivalence on nerves.

The orbit space s(H)/G is easily seen to be a poset which was denoted by
s̄(H) in 1.4 where the “tautological” functor δ̃H : s̄(H) → GT was defined.
The normaliser decomposition is defined by δH := (δ̃H)hG.

Proposition 7.10. Let H be a collection in G. Then Tr δ̃H = s(H).
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Proof. This follows from a straightforward inspection of the definitions
of Tr in 5.3 and s(H) in 7.5.

Corollary 7.11. A collection H is normaliser sharp for a cohomology
theory h∗ if |NrH| is G-acyclic forMΣjh for all j (see 2.5, 4.1).

Proof. This follows from Propositions 6.5, 7.9 and 7.10 and Defini-
tion 1.6.

8. Elementary abelian p-subgroups. Fix a prime p. In every compact
Lie group G we let Ω1(G) denote the closed subgroup of G generated by the
elements of order p. It is clearly a characteristic subgroup. It is an elementary
abelian p-group if G is abelian. If G is p-toral it is also clear that Ω1(G) is
not trivial.

Proposition 8.1. The centre of a non-trivial p-toral group G is not triv-
ial. Furthermore Ω1Z(G) is a non-trivial characteristic elementary abelian
p-subgroup of G.

Proof. The second assertion follows from the first by the remarks above.
View G as a space on which G acts by conjugation. Smith theory implies
that χ(ZG) = χ(G) ≡ 0 mod p, hence ZG 6= 1.

Proposition 8.2 ([22, Lemma 6.1]). In every compact Lie group there
are only finitely many conjugacy classes of elementary abelian p-subgroups.

Recall from A.1.2 that every compact Lie group K contains a maximal
normal p-toral subgroup Op(K). Also recall that the collection of all the
non-trivial elementary abelian p-subgroups of G is denoted E0

p (G).

Proposition 8.3. Let G be a compact Lie group which contains a non-
trivial p-toral subgroup and let E denote E0

p (G). Then

(i) Nr E is a finite combinatorial G-model (6.6).
(ii) Every H ∈ IsoG(|Nr E|) contains a non-trivial p-toral subgroup.
(iii) If K ≤ G is such that Op(K) 6= 1 then |Nr E|K is contractible.

Proof. (i), (ii). First, Nr E is a finite G-model by Propositions 7.4 and 8.2,
and the isotropy groups of the points of |Nr E| have the form H = NE0 ∩
· · · ∩NEk for some E0 ≤ · · · ≤ Ek in E . In particular 1 6= E0 ≤ H.

(iii). Consider K ≤ G such that Op(K) 6= 1. Set Z = Ω1(ZOp(K)) and
observe that Z ∈ E by Proposition 8.1. Furthermore Z CNK because Z is
characteristic in K.

Observe that the poset EK is topologically a disjoint union of NK-orbits
by Lemma 7.3. Note that if E ∈ EK then K normalises E and therefore
CE(Z) 6= 1 (see e.g. [13, Proposition 5.2]). The assignments

Φ : E 7→ CE(Z), Ψ : E 7→ CE(Z) · Z, Ξ : E 7→ Z
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are order preserving NK-equivariant functions on EK . In particular they are
endofunctors on EK by Lemma 7.8. The zigzag of inclusions

E ≥ CE(Z) ≤ CE(Z) · Z ≥ Z (E ∈ EK)

provides natural transformations Id ← Φ → Ψ ← Ξ which connect the
identity on EK to the constant functor Ξ. It follows that |E|K is contractible.
This argument appears in Dwyer [14, §8] who attributes it to Quillen.

Point (a) of the next corollary was obtained by J. Słomińska in [34]. Points
(b) and (c) are used to prove Theorems D and A. Note that Nr(E0

p (G)) is a
finite G-model (6.6) by Propositions 7.4 and 8.2, so in particular there are
finitely many conjugacy classes of chains E0 < · · · < Ek in E0

p (G).

Corollary 8.4. Let G be a compact Lie group which contains a non-
trivial p-toral subgroup, and let E denote E0

p (G). Then

(a) |E|/G is contractible.
(b) |E| is G-acyclic for any p-local coefficient functorMh (2.5).
(c) After localisation at the Moore spectrum SZ(p), there is an equiva-

lence of spectra

BG+ '
∑

(E0<···<Ek)

(−1)k
(
B(NE0 ∩ · · · ∩NEk)

)
+

where the sum is taken over all the conjugacy classes (E0 < · · · < Ek)
in E.

Proof. This is immediate from Proposition 8.3 and Theorems 4.3 and
6.4.

In the remainder of this section we will give a new proof for the results of
Jackowski and McClure in [22]. Fix a compact Lie group G which contains
a non-trivial p-toral subgroup and set E = E0

p (G). Recall that AG(E) has
discrete morphism spaces (1.3) and therefore

∐
∗ α̃E is a G-model (5.1, 5.11).

In particular |Nr Tr α̃E | is a G-CW complex (5.3).

Proposition 8.5. In the notation above, let X denote |Nr Tr α̃E | and
let P be a maximal p-toral subgroup of G. Consider X as a P -space and set
X ′ = Xtype-S0

p(P ) (see 3.9, 3.10). Then X ′Q is NPQ-equivalent to a point for
every Q ∈ S0

p (P ).

Proof. Fix Q ∈ S0
p (P ) and observe that X ′Q = XQ. Set

H = NPQ · CQ.
This is a subgroup of NQ and it suffices to show that XQ is H-equivalent
to a point.

Set C := Tr ε̃E and consider the internal NQ-space category CQ. Clearly
XQ = |Nr CQ| and note that HomG(E,G)Q = HomG(E,CQ). Therefore the
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object and morphism spaces of CQ are∐
E∈E

HomG(E,CQ),
∐

E′,E∈E
HomG(E,CQ)×HomG(E′, E).

Lemma 7.3 shows that HomG(E,CQ) has finitely many NQ-orbits. In addi-
tion NQ/Q · CQ < ∞ by [39, Lemma 5.9.11], therefore HomG(E,CQ) has
finitely many CQ-orbits. In particular Obj(CQ) is a coproduct of H-orbits,
and more generally Nr CQ is an H-model.

Let D denote the full subcategory of CQ whose objects have the form
E

ch−→ CQ for E ≤ CQ and h ∈ H. It is easily seen that the object and
morphism spaces of D are∐

E∈E∩CQ
HomH(E,CQ),

∐
E′,E∈E∩CQ

HomH(E,CQ)×HomH(E′, E).

Let J : D → CQ denote the inclusion of these internal H-space categories.
Fix an object c ∈ CQ of the form E

cg−→ CQ. For every E′ ∈ E ∩ CQ
the set HomG(E′, cg(E)) is finite. Hence, there are only finitely many ch ∈
HomH(E′, CQ) which admit a morphism ch → c in CQ. This shows that the
object space of (J↓c) is discrete. The morphism spaces of (J↓c) are subspaces
of the morphism spaces of the objects of CQ and they are therefore discrete
as well. We have shown that for every c ∈ CQ the category (J↓c) is a small
category.

Claim 1. J induces an H-homotopy equivalence |Nr D| → |Nr CQ|.
Proof. Since Nr D and Nr CQ are H-models, their geometric realisations

are H-CW complexes fixed by Q. To prove the equivalence it suffices to show
that for every K/Q ≤ H/Q the functor JK induces a homotopy equivalence.

Fix K/Q ≤ H/Q and consider c ∈ CK of the form E
cg−→ CK. First,

(JK↓c) is a small category because it is a subcategory of (J↓c) which we have
shown to have discrete object and morphism spaces. In particular, Nr(JK↓c)
is Reedy cofibrant by A.2.2. Clearly cg(E) ∈ E ∩CQ because CK ≤ CQ. By

inspection, the object idcg(E)

cg−1

−−−→ c is terminal in (Jk↓c). It follows that
|Nr(JK↓c)| is contractible.

We have noted that Nr D and Nr CQ are H-models and therefore Nr DK

and Nr CK are NHK-models (7.3) and in particular Reedy cofibrant by
A.2.2. Corollary 5.12 also shows that JK is tame. We can now apply The-
orem 5.8 and Remark 5.9 and deduce that JK induces a homotopy equiva-
lence. Claim 1

Claim 2. |D| is H-equivariantly contractible.

Proof. Recall that NPQ is a p-toral group (A.1.1) and let E denote
Ω1(ZQ) as in Proposition 8.1. Note that E is normal in NPQ and since
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it is finite, the action of NPQ on E factors through the finite p-group of
components NPQ. It follows that Z = CE(NPQ) is a non-trivial elementary
abelian p-subgroup of Q which is central in NPQ. It must also be central
in Q, whence Z ≤ CQ and Z ≤ ZH.

We now deduce that every ϕ ∈ HomH(E,CQ) where E ≤ CQ can be
unambiguously extended to E · Z by setting it equal to the identity on Z.
We obtain H-equivariant maps HomH(E,CQ)→ HomH(EZ,CQ). This, in
particular, gives rise to an H-equivariant map ζ : Obj(D)→ Obj(D) which
is also continuous by Lemma 7.8 because Nr D is an H-model. Similarly, for
every E,E′ ≤ E ∩ CQ we have an H-equivariant bijection

ζ : HomH(E′, E)×HomH(E,CQ)→ HomH(E′·Z,E·Z)×HomH(E·Z,CQ).

We obtain an endofunctor ζ on D. Define γ : D → D to be the constant
functor

γ : (E
cg−→ CQ) 7→ (Z incl−−→ CQ)

which is clearly H-equivariant. The zigzag of inclusions E ≤ E ·Z ≥ Z gives
rise to natural transformations Id← ζ → γ which provide an H-equivariant
contraction of |Nr D|. Claim 2

Claims 1 and 2 show that XQ = |Nr CQ| is H-equivalent to a point.

We are now ready to prove the last part of Theorem D.

Theorem 8.6. Let G be a compact Lie group which contains a non-trivial
p-toral subgroup. The collection E = E0

p (G) is centraliser sharp for any p-local
cohomology theory h∗.

Proof. Fix amaximal p-toral subgroupP ofG and letX denote |Nr Tr α̃E |.
We will prove below that

(1) H̃∗(X/G;Z(p)) = 0,
(2) X is P -acyclic for all p-local Mackey functors M̃h.

Proposition 4.2 implies that X is G-acyclic for any p-localMh and the result
follows from Proposition 6.5.

Proof of (1). Proposition 8.2 implies that the category AG(E) contains
a finite skeletal subcategory Ask

G (E) by choosing a representative from every
conjugacy class of E ∈ E . We then have a G-homotopy equivalence

hocolim
Ask

G (E)op
α̃E := Xsk ' X.

Since Ask
G (E) is a finite category, it follows that Xsk has finitely many G-cells

in every dimension and in particular Xsk/G is a CW-complex of finite type.
Therefore X/G is equivalent to a CW-complex of finite type so to prove (1)
it is enough to prove that H̃∗(X/G;Z/p) = 0.
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Let M be the constant Mackey functor ConstZ/p on G. Note that

H∗(X/G;Z/p) ≈ H∗G(X;M).

Lemma 4.7 and Proposition 4.12 show that there is a commutative ladder

H∗G(X;M)
resG

P // H∗P (X;M) i∗ // H∗P (X ′;M) // H∗G(X;M)

H∗G(∗;M)
resG

P //

OO

H∗P (∗;M)
trG

P //

OO 77ooooooooooo
H∗G(∗;M)

OO

where i is the inclusion of X ′ = Xtype-S0
p(P ) in X (3.9, 3.10). Furthermore,

the composition in both rows is an isomorphism by Proposition 4.9. Since
a retract of an isomorphism is an isomorphism we see that it suffices to
prove that H∗P (∗;M) → H∗P (X ′;M) is an isomorphism. This follows from
Proposition 8.5 and Lemma 3.2(ii) by noting that M is p-constrained and
that X ′ has finite P -orbit type (see 4.10) and that G has a non-trivial p-toral
subgroup.

Proof of (2). Note that M̃h↓GP is p-constrained by Lemma 2.10 and van-
ishes on orbits whose isotropy group is finite of order prime to p. Proposition
2.4 shows that H∗P (X;M̃h) ≈ H∗P (X ′;M̃h). With the aid of Proposition 8.5
we can apply Lemma 3.2(ii) again to conclude that X ′ is P -acyclic for M̃h.

9. p-radical subgroups. Recall that S(G) and Sp(G) denote the spaces
of (p-toral) subgroups of G endowed with the Hausdorff metric (A.1). The
subspaces of non-trivial (p-toral) subgroups are denoted S0(G) and S0

p(G).
The associated collections S(G) and Sp(G) have the same underlying set but
they are topologised as the coproduct of their G-orbits.

The following is a consequence of tom Dieck [38, Ch. IV, Proposition 3.4]:

Lemma 9.1. Let X be a G-space with finitely many orbit types and as-
sume that H = limn→∞Hn in S(G). Then XH = XHn for sufficiently
large n.

Proposition 9.2. Bp(G)/G is finite (1.1). In particular B0
p(G)/G is

finite and NrB0
p(G) is a finite G-model.

Proof. Let Bp(G) denote the subspace of Sp(G) of p-radical subgroups.
Note that if P is p-radical and P < P ′ where P ′ is p-toral, then it is im-
possible to have NP ≤ NP ′. This is proved in [23, Lemma 1.5(i)] under the
assumption that NP/P <∞, which is not used.

To complete the proof we follow [23, Proposition 1.6]. If Bp(G)/G is not
finite, the compactness of Sp(G)/G implies the existence of a convergent
sequence of distinct points (Pk) in Bp(G)/G whose limit (P ) ∈ Sp(G)/G is
distinct from all the (Pk)’s. Proposition A.1.4 implies that we may assume
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that Pn � P and Pn → P in Sp(G). Now, G/P is a P -space of finite orbit
type by 4.10 so NP/P = (G/P )P = (G/P )Pn for all large n by 9.1. In
particular NPn ≤ NP , which is a contradiction. It follows that Bp(G)/G
< ∞ and therefore, by Proposition 7.4, NrBp(G) and NrB0

p(G) are finite
G-models.

Lemma 9.3. Let H be a collection with H/G <∞ and let P1 ≤ P2 ≤ · · ·
be a sequence in G which converges to P in Sp(G). Then [P,−)H = [Pn,−)H
for some n (7.2).

Proof. First, HP = HPm for some m by Lemma 9.1. Also note that
[P,−)H is an NP -subspace of HP , hence a coproduct of finitely many NP -
orbits by Lemma 7.3. Similarly, [Pm,−)H is an NPm-subspace of HPm .

Consider an NP -orbit (Q) in HP such that P � Q. Clearly P � Qg for
any g ∈ NP . We claim that there exists k such that Pk � Qg for all g ∈ NP .
If this is not the case, choose gk ∈ NP for every k ≥ 1 such that Pk ≤ Qgk .
Using the compactness of NP we may assume that gk → g and therefore,
by Lemma A.1.5,

P = lim
k→∞

Pk ≤ lim
k→∞

Qgk = Qg,

which is a contradiction. Now, HP =
∐t
i=1(Qi) where Qi are representatives

for the NP -conjugacy classes of the subgroup Q ∈ HP . If t = 0 then HP is
empty and consequently [P,−)H ⊆ [Pm,−)H ⊆ HPm = HP are empty.

Now assume that t ≥ 1. For every i ≤ t, if P ≤ Qi set ni = m. If P � Qi,
choose some ni ≥ m as above such that Pni � Qgi for all g ∈ NP . Define
n = max ni. Clearly n ≥ m so

[P,−)H ⊆ [Pn,−)H ⊆ HPn = HP .

The inclusion [P,−)H ⊆ [Pn,−)H is an equality because we have arranged n
so that every NP -orbit (Qi) in HP which is not in [P,−)H must lie entirely
outside of [Pn,−)HP = [Pn,−)HPn = [Pn,−)H.

The proof of Proposition 9.4 is adapted from [4, Proposition 6.6.5].

Proposition 9.4. Let H be a concave subcollection (3.8) of Sp(G) and
set B = Bp(G). Then the inclusion j : B ∩ H → H induces a G-homotopy
equivalence on their realisations.

Proof. FixK ≤ G. We have to show that |B∩H|K → |H|K is a homotopy
equivalence.

For P ∈ HK we can identify (P↓jK) with [P,−)B∩HK . Consider

C(K) = {P ∈ HK : the realisation of [P,−)B∩HK is not contractible}.

Claim 1. If C(K) is not empty, it must contain a maximal element.
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Proof. Consider a chain of subgroups {Pλ} in C(K) ordered by inclusion.
We will find an upper bound P for this chain in C(K) and apply Zorn’s
lemma.

Consideration of the order of the Pλ’s (3.12) easily yields a cofinal sub-
sequence P1 ≤ P2 ≤ · · · in this chain. Using the compactness of Sp(G)
(Proposition A.1.6) we may assume that this sequence converges to some
P ∈ Sp(G), and therefore (see e.g. [39, p. 108])

P =
⋃
n≥1

Pn.

It follows that P ∈ H because H is concave in Sp(G). Furthermore K must
normalise P because it normalises the Pn’s, that is, P ∈ HK . It remains to
show that the nerve of [P,−)B∩HK is not contractible. This follows immedi-
ately from Lemma 9.3 and Proposition 9.2 because K ≤ NPn for all n and
K ≤ NP , so for some large n,

[P,−)B∩HK = ([P,−)B∩H)K = ([Pn,−)B∩H)K = [Pn,−)B∩HK .

But Pn ∈ C(K) so the nerve of [P,−)B∩HK is not contractible. Claim 1

Claim 2. C(K) cannot contain a maximal element.

Proof. Assume that P is a maximal element of C(K). Clearly P /∈ B by
Proposition 7.1 because the nerve of the poset [P,−)B∩HK is not contractible
so it cannot contain a minimal element. Thus, [P,−)B∩HK = (P,−)B∩HK .
We shall now obtain a contradiction to the existence of P by proving that
the realisation of (P,−)B∩HK must, in fact, be contractible.

Let ` denote the inclusion (P,−)B∩HK ⊆ (P,−)HK . The nerves of these
topological posets are NNP (K)-models by Proposition 7.4. Therefore they
are Reedy cofibrant by A.2.2, and Corollary 5.12 also shows that ` is tame.
If Q is an element in (P,−)HK then the realisation of (Q↓`) = [Q,−)B∩HK

is contractible by the maximality of P in C(K). Furthermore [Q,−)B∩HK is
an NNQ(K)-model by 7.4 and in particular its nerve is Reedy cofibrant. We
can now apply Theorem 5.8 to conclude that ` induces a weak homotopy
equivalence on realisations.

To complete the proof of Claim 2 we now show that |Nr(P,−)HK | is
contractible. The nerve of (P,−)HK is an NNP (K)-model by Proposition
7.4 and in particular this poset is a coproduct of its NNPK-orbits. Define
self-maps Φ,Ψ,Ξ of (P,−)HK which for every Q ∈ (P,−)HK have the effect

Φ : Q 7→ NQP, Ψ : Q 7→ NQP ·Op(NP ), Ξ : Q 7→ Op(NP ).

The assignments are well defined because (i) P � NQP because P � Q, (ii)
NQP normalises Op(NP ) and both are p-toral, (iii) Op(NP )  P because
P /∈ B and (iv) K normalises Q and P hence it normalises NQ(P ) and
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Op(NP ). The assignments are also NNPK-equivariant and order preserv-
ing and therefore, by Proposition 7.8, Φ,Ψ and Ξ are endofunctors of the
topological poset (P,−)HK . The zigzag of inclusions

Q ≥ NQ(P ) ≤ NQ(P )Op(NP ) ≥ Op(NP ), Q ∈ (P,−)HK ,

is clearly NNPK-equivariant and provides a zigzag of natural transforma-
tions Id← Φ→ Ψ← Ξ which connects the identity functor to the constant
functor Ξ. This shows that |Nr(P,−)HK | is contractible. Claim 2

The nerves of B∩HK and HK are NK-models by 7.3 and 7.4, hence their
nerves are Reedy cofibrant (A.2.2) and jK is tame by Corollary 5.12. Simi-
larly, for every P ∈ HK the nerve of (P↓jK) = [P,−)B∩HK is an NNP (K)-
model by Proposition 7.4, hence its nerve is Reedy cofibrant. Claims 1 and
2 show that C(K) must be empty, that is |Nr(P↓jK)| ' ∗ for all P ∈ HK .
Theorem 5.8 shows that jK induces a homotopy equivalence on realisations.
Since this is true for all K, we conclude that |j| is a G-homotopy equiva-
lence.

Proposition 9.5. Let H be a non-empty concave subcollection of Sp(G).
Then |H|K is contractible whenever Op(K) ∈ H.

Proof. Denote Q = Op(K). Clearly NK ≤ NQ. The assignments Φ :
P 7→ PQ and Ψ : P 7→ Q define functions HK → HK . They are or-
der preserving and NK-equivariant, and therefore Propositions 7.4 and 7.8
show that these are endofunctors of the topological poset HK . The NK-
equivariant zigzag of inclusions

P ≤ PQ ≥ Q, P ∈ HK ,
gives rise to a zigzag of natural transformations Id→ Φ← Ψ which connect
the identity on HK to the constant functor Ψ. Therefore |H|K = |HK | is
contractible.

Corollary 9.6. Let G be a compact Lie group which contains a non-
trivial p-toral subgroup. Let S denote S0

p (G) and let B denote B0
p(G). Then

NrB is a finite G-model and

(a) |NrB|/G and |NrS|/G are contractible.
(b) |NrB| and |NrS| are G-acyclic for any p-local coefficient functors
Mh (2.5).

(c) After localisation at the Moore spectrum SZ(p), there is an equiva-
lence of spectra

BG+ '
∑

(P0<···<Pk)

(−1)k
(
B(NP0 ∩ · · · ∩NPk)

)
+

where the sum is over all the conjugacy classes of (P0 < · · · < Pk)
in B.
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Proof. Note that NrB is a finite G-model by 9.2 and 7.4. Proposition
9.4 shows that |NrB| → |NrS| is a G-homotopy equivalence. Proposition 9.5
shows that |NrS|K ' ∗ for all K ≤ G such that Op(K) 6= 1 and therefore
also |NrB|K ' ∗. The result is immediate from Theorems 4.3 and 6.4 applied
to |NrB|.

Part (a) of this theorem can be improved to generalise Symonds’ theorem
[36] to compact Lie groups.

Corollary 9.7. Let H be a concave non-empty collection in Sp(G).
Then |NrH|/G is contractible.

Proof. Set B = Bp(G). The inclusion B ∩H ⊆ H induces a G-homotopy
equivalence on realisations by 9.4. Therefore, it suffices to show |NrB∩H|/G
' ∗. Now, B ∩H/G is finite by 9.2, so |B ∩ H| has finite orbit type by Pro-
position 7.4. Consider a maximal p-toral subgroup Q ofH ∈ IsoG(|B∩H|∪∗).
Then either Q = P where P is a maximal p-toral subgroup of G or Q is a
maximal p-toral subgroup of NQ0 ∩ · · · ∩ NQk for some Q0 ≤ · · · ≤ Qk in
H so Q0 ≤ Q. In either case, since H is concave and non-empty we see that
Q ∈ H. For any subgroupK/Q ≤ NQ/Q one clearly has Op(K) ∈ H because
Q ≤ Op(K) and H is concave. Proposition 9.5 shows that (|H|Q)K/Q = |H|K
is contractible. It follows that |H|Q is NQ-equivariantly contractible and
therefore so is |B∩H|Q. The key Lemma 3.2 applies with P = Sylp(IsoG(|B∩
H|)), hence |B ∩ H|/G ' ∗.

10. Proof of Theorem C

Lemma 10.1. Let C be a topological category whose morphism spaces
are all compact manifolds and let F̃ : C→ T be a functor whose values are
compact manifolds. Then Nr Tr F̃ is Reedy cofibrant.

Proof. Set X = Nr Tr F̃ and recall that

X(k) =
∐

C0,...,Ck∈C
F̃ (C0)×

k∏
i=1

C(Ci−1, Ci).

The space DX(k) of degenerate k-simplices of X is easily seen to be a CW-
subcomplex of X(k) because for every C ∈ C the one-point space {idC} is a
subcomplex of C(C,C). ThereforeDX(k) ⊆ X(k) is a cofibration. Moreover,
DX(k) is topologically a coproduct of compact spaces indexed by k + 1-
element subsets of Obj(C).

Consider the nth latching object LX(n) which is the direct limit over
Γn of the spaces X(k) for k < n (see A.2.1). Since Γn is a finite category,
one sees by inspection that LX(n) is topologically a coproduct of compact
spaces indexed by the n+1-element subsets of Obj(C). Moreover, the natural
maps λn : LX(n) → DX(n) respect the coproduct decomposition above.
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It follows that λn is a closed map and since it is bijective by A.2.2, they
are homeomorphisms. This shows that LX(n)→ X(n) are cofibrations and
therefore X is Reedy cofibrant.

We are now ready to prove Theorem C. Recall that a G-map f : X → Y
induces a homotopy equivalence XhG → YhG if f is a homotopy equivalence.
Observe that for any functor F̃ : C→ GT where C is a topological category
and F̃ (C) are G-orbits for all C ∈ C, we have, by 5.1 and 5.3,

hocolim
C

F̃hG = |
∐
∗(F̃hG)| = |(

∐
∗F̃ )hG| = |

∐
∗F̃ |hG.

Our theorem will follow by the definitions of βH, αH, δH in 1.2–1.4 if we
construct natural G-equivariant maps which are (non-equivariant) homotopy
equivalences

(i) |Nr Tr β̃H| → |H|, (ii) |Nr Tr α̃H| → |H|, (iii) |Nr Tr δ̃H| → |H|.
The map (iii) is obtained from Propositions 7.9 and 7.10. It is a G-homotopy
equivalence which is more than we actually require. For the other two maps
recall that for every subgroup H and g ∈ G we denote gH = gHg−1 and
Hg = g−1Hg.

Construction of the map (i). Recall that the object space of OG(H) is
discrete, hence

(10.2)

Obj(Tr β̃H) =
∐
H∈H

G/H,

Mor(Tr β̃H) =
∐

H0,H1∈H
G/H0 × (G/H1)H0 .

Define a functor j : Tr β̃H → H whose effect on object and morphism spaces
is ∐

H∈H
G/H

gH 7→ gH−−−−−→ H,

∐
H0,H1∈H

G/H0 × (G/H1)H0
(gH0,kH1)7→(gH0,gkH1)−−−−−−−−−−−−−−−→ H1 ⊆ H×H.

This is clearly well defined because kH1 ∈ G/HH0
1 implies Hk

0 ≤ H1. The
assignments are also G-equivariant. Lemma 7.8 shows that j is continuous
on objects, and consequently on morphisms because (gH0, kH1) 7→ gkH1 is
the composition of j with the evaluation map G/H0 × G/HH0

1 = G/H0 ×
mapG(G/H0, G/H1) → G/H1 is continuous. The assignments also respect
identities and must respect compositions because H is a poset. It follows
that j is a functor of internal G-space categories and therefore |j| defines
a G-equivariant map |Nr Tr β̃H| → |NrH|. Now Nr Tr β̃H is Reedy cofibrant
by Lemma 10.1 and NrH is Reedy cofibrant by Propositions 7.4 and A.2.2.
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Corollary 5.12 also shows that j is absolutely tame. We now fix K ∈ H and
examine (K↓j). By inspection

(K↓j) = (Tr β̃H)K = Tr β̃KH .

Lemma 10.1 applies to β̃KH and shows that Nr(K↓j) is Reedy cofibrant. LetO
denote the categoryOG(H) (see 1.2) and observe that β̃KH is the representable
functor O(G/K,−). It follows from 5.3 that

|Nr(K↓j)| = |Nr Tr β̃KH | = hocolim
O

O(G/K,−),

which is contractible (see e.g. the reduction theorem [19, 4.4]). We are now
in a position to apply Theorem 5.8 and deduce that |j| is a G-equivariant
map which is a non-equivariant homotopy equivalence |Nr Tr β̃H| → |H|.

Construction of the map (ii). The object space of AG(H) is discrete,
therefore the object and morphism spaces of Tr(α̃H) are given by

(10.3)
∐
H∈H

HomG(H,G),
∐

H0,H1∈H
HomG(H1, G)×HomG(H0, H1).

Define a functor j : Tr α̃H → H whose effect on object and morphism spaces
is ∐
H∈H

HomG(H,G) cx 7→ xH−−−−−→ H,

∐
H0,H1∈H

HomG(H1, G)×HomG(H0, H1)
(cx,cg)7→(xgH0,xH1)−−−−−−−−−−−−→ H1 ⊂ H×H.

These assignments are G-equivariant so Lemma 7.8 shows that the map on
object spaces is continuous. Consequently, the map on morphisms is contin-
uous. Furthermore j clearly respects identities and it must respect composi-
tions because H is a poset. It follows that j is a functor of internal G-space
categories and therefore |j| is a G-map.

Note that for any subgroups J, L ≤ G the space HomG(J, L) is hom-
eomorphic to NG(J, L)/CGJ , hence it is a compact manifold. Lemma 10.1
implies that Nr Tr α̃H is Reedy cofibrant. Propositions 7.4 and A.2.2 show
that NrH is Reedy cofibrant. Corollary 5.12 shows that j is absolutely tame.
We now fix K ∈ H and consider (j↓K). By inspection

Obj(j↓K) =
∐
H∈H

HomG(H,K),

Mor(j↓K) =
∐

H0,H1∈H
HomG(H1,K)×HomG(H0, H1).

Denote A := AG(H) and observe that (j↓K) is equal to TrA(−,K) where
A(−,K) is the representable functor Aop → T . It follows from Lemma 10.1
that Nr(j↓K) is Reedy cofibrant. Furthermore, from 5.3 and the reduction
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theorem [19, 4.4] it follows that

|Nr(j↓K)| = |Nr TrA(−,K)| = hocolim
Aop

A(−,K) ' ∗.

We can now apply Theorem 5.8 and Remark 5.9 to deduce that |j| induces
a G-equivariant map which is a homotopy equivalence |Nr Tr α̃H| → |H|.

A.1. The space of subgroups and p-toral groups. A compact Lie
group G is called p-toral if the connected component of the identity, denoted
G0, is a torus and Ḡ := G/G0 is a finite p-group. The following is contained
in [24, Lemmas A.1, A.2, A.3]

Lemma A.1.1. Every p-toral subgroup of a compact Lie group G can be
extended to a maximal p-toral subgroup. All the maximal p-toral subgroups
of G are conjugate. Furthermore, if Q ≤ P is an inclusion of p-toral groups
then NP (Q) is p-toral and it properly contains Q if and only if Q is properly
contained in P .

Note that a quotient of a p-toral group P is p-toral because P0 is a torus
of finite index in P . Furthermore, p-toral groups are closed under extensions,
that is, if 1→ P ′ → G

π−→ P → 1 is a short exact sequence where P and P ′
are p-toral, then G is p-toral. Note that P ′0 CG0 because it is characteristic
in P ′ and that G0/P

′
0 is a subgroup of P0, hence a torus. It follows from [16,

Proposition 2.6] that G0 is a torus. Finally G/G0 is an extension of the finite
group P ′/G0 ∩ P ′ by the p-group P , hence G is p-toral.

One can easily make sense of the following definition (see e.g. [3, §3]).

Definition A.1.2. Every compact Lie group G contains a unique max-
imal normal p-toral subgroup Op(G).

Proposition A.1.3. Let H be a subgroup of a p-toral group G. Then H0

is a torus and H contains a characteristic abelian subgroup Op′(H) which
contains H0 and such that Op′(H)/H0 is an abelian group of order prime
to p and H/Op′(H) is a finite group of order p-power. If H ≤ K ≤ G then
Op′(H) ≤ Op′(K).

Proof. Clearly H0 is a subgroup of G0, whence a torus. Since G0 is
abelian, G0 ∩ H = H0 × Γ where Γ is a finite abelian group. Clearly Γ =
Γp ⊕ Γp′ where the latter is the subgroup of the elements of order prime
to p. Define Op′(H) = H0 × Γp′ . Clearly Op′(H)/H0 is the subgroup of
H̄ generated by all the elements of order prime to p. Therefore Op′(H) is
characteristic in H and |H/Op′(H)| is a p-power. If H ≤ K then clearly
Op′(H) ≤ G0∩K. It follows that Op′(H)K0/K0 is a quotient of Op′(H)/H0,
hence Op′(H)K0 is a subgroup of Op′(K).

Let G be a compact Lie group. There is a bi-invariant metric d on G
which can be used to equip the set F (G) of all closed non-empty subsets
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of G with the Hausdorff metric ρ; see e.g. [39, p. 108]. In this way F (G)
becomes a compact metric space and moreover ρ is invariant under the left
and right action of G by translation. Note that ρ(U, gU) ≤ d(g, 1) for any
U ∈ F (G).

The subspace S(G) of all the closed subgroups of G is a closed subspace
of F (G), hence it is compact. It has an invariant action of G via conjugation.
The quotient space C(G) = S(G)/G is a countable compact metric space
whose elements are the conjugacy classes of subgroups (H). We recall from
[38, Proposition IV.3.3]

Proposition A.1.4. If (Hn) → (K) in C(G) then there exists n0 such
that for all n ≥ n0 there are Kn ≤ K such that (Hn) = (Kn) and furthermore
Kn → K in S(G).

We also observe

Proposition A.1.5.

(a) If gn → g in G then Hgn → Hg in S(G).
(b) If Hn ≤ Kn in S(G) and Hn → H and Kn → K then H ≤ K.

Proof. Note that ρ(H,Hx) ≤ ρ(H,Hx) + ρ(Hx, x−1Hx) ≤ 2d(x, 1) so if
gn → 1 then Hgn → H. Point (b) follows from [39, p. 108]:

H =
∞⋂
n=1

∞⋃
j=n

Hj ≤
∞⋂
n=1

∞⋃
j=n

Kj = K.

Let Sp(G) denote the subspace of S(G) of p-toral subgroups.

Proposition A.1.6. Sp(G) is a compact subspace of S(G).

Proof. It suffices to show that Sp(G) is closed in S(G). Let Pn be a
sequence in Sp(G) which converges to some H in S(G). Fix a maximal p-
toral subgroup P of H and note that (Pn) → (H) in C(G) so A.1.1 and
A.1.4 imply that for all large n there exist gn ∈ G such that P gn

n ≤ P . We
may assume that gn → g because G is compact. Proposition A.1.5 implies

H = lim
n→∞

Pn ≤ lim
n→∞

P g
−1
n = P g

−1 ≤ Hg−1
.

That is, g ∈ NH, hence H = P is p-toral.

A.2. Homotopy colimits and simplicial spaces. Let T denote the
category of compactly generated spaces. There is a standard model category
structure on T where fibrations are Serre fibrations and weak equivalences
are weak homotopy equivalences [20]. Cofibrant spaces are homotopy equiv-
alent to retracts of CW-complexes.

For a small category C there is a functor EC : Cop → T defined by
C 7→ |(C↓C)|. Taking coends [26] with EC gives rise to a functor hocolim :
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T C → T (see e.g. [9, p. 327]),

hocolim
C

F = EC⊗C F ≡
�C∈C

EC(C)× F (C).

When the values of F : C→ T are cofibrant, hocolimF agrees up to homo-
topy with the total derived functor L colimF (see [20, §1.3.2]). More details
can be found in [15] or [18].

A.2.1. The Reedy structure. Let ∆ denote the category whose ob-
jects are the sets [n] = {0, 1, . . . , n} and its morphisms are order preserving
functions (cf. [20, Ch. 3]). We denote by

~

∆ the subcategory consisting of
all the surjective functions only. Let Γn denote the full subcategory of the
comma category (

~

∆op↓[n]) of all the objects except the identity [n]→ [n].
A simplicial space is a functor X : ∆op → T . The category of simpli-

cial spaces admits a useful simplicial model category structure known as
the “Reedy model structure”. The cofibrant objects are described as fol-
lows. There is an obvious composition Γn → ∆op X−→ T whose colimit is
denoted LX(n) and is called the nth latching object of X. The inclusion
Γn ⊂ (

~

∆op↓[n]) induces a map LX(n) → X(n). A simplicial space X is
Reedy cofibrant if X(n) are cofibrant and the maps LX(n) → X(n) are
cofibrations for all n. See [20, Ch. 5] and [15] for more details.

Here is an important example. It shows that every simplicial set is a
Reedy cofibrant simplicial space.

Proposition A.2.2. Fix a compact Lie group G and a simplicial G-space
X such that X(n)/G is a discrete set for every n. Then X is a Reedy cofibrant
simplicial space. In fact the natural maps LX(n) → X(n) are homeomor-
phisms onto the subspaces DX(n) of degenerate n-simplices of X. Moreover
XhG is a Reedy cofibrant simplicial space.

Proof. According to [9, Ch. VIII.2.3] for every x ∈ X(n) there exists
a unique k ≤ n and a unique non-degenerate simplex y ∈ X(k) and a
unique surjection ϕ : [n] � [k] such that x = X(ϕ)(y). It follows that
there are natural bijections, where NX(n) is the subspace of non-degenerate
n-simplices of X,

DX(n) ≈
∐

[n]�[k], k<n

NX(k) ≈ LX(n).

Since G-equivariant bijections G/H → G/H ′ are homeomorphisms (see e.g.
Lemma 7.8) and since X(n) is a coproduct of its orbits, we see that LX(n)→
X(n) is a homeomorphism onto DX(n). It follows that it is also a cofibration
because X(n) = DX(n) t NX(n) and NX(n) is a coproduct of its orbits
which are compact manifolds and in particular finite CW-complexes.
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The second assertion follows from the fact that EG×G X(n) are clearly
CW-complexes and from the fact that EG×G− commutes with colimits. This
shows that LXhG(n) = LX(n)hG = DX(n)hG and therefore LXhG(n) →
XhG(n) is a cofibration.

A.2.3. The geometric realisation |X| is the coend
	n∈∆ ∆n×X(n) where

∆n is the standard simplex [20, p. 135]. There is a natural map [9, Ch. XI.2.6]

hocolim
∆op

X→ |X|.

It is not in general a homotopy equivalence, unless X is Reedy cofibrant.
The reason is that the standard cosimplicial space ∆• is Reedy cofibrant so
for every space T the simplicial space map(∆•, T ) is a Reedy fibrant. For
more details see [15] and [18].

A.2.4. An augmentation of a simplicial space X is a map X(0) d0−→ Y
such that the maps d0d0, d0d1 : X(1)→ Y are equal. We denote Y by X(−1).
A left contraction for an augmented simplicial space X is a collection of maps
s−1 : X(n) → X(n + 1) for all n ≥ −1 such that the simplicial identities
hold, that is,

d0s−1 = id,
dis−1 = s−1di−1 for all i > 0,
sis−1 = s−1si−1 for all i ≥ 0.

When this is the case, and all the spaces X(n) are cofibrant, the natural map

hocolim
∆op

X→ X(−1)

is a homotopy equivalence. See for example [7, §6]. To see this, let ∆c be
the subcategory of ∆ whose morphisms ϕ : [n]→ [k] are functions such that
ϕ(0) = 0. Let ∆a denote the subcategory of ∆c where the maps ϕ are also
required to have the property that ϕ(i) > 0 if i > 0. Note that [0] is an
initial object in ∆a. It is easy to see that an augmented simplicial object is
a contravariant functor from ∆a. An augmented simplicial object with a left
contraction is the same as a contravariant functor from ∆c. It is easy to see
that the inclusion of these categories is left cofinal [9, p. 316].

A.3. Bousfield localisation of spectra. Throughout hS denotes the
homotopy category of spectra as defined, e.g. by Boardman. A very readable
source is Adams [1]. This is a triangulated category with smash products
A∧B and function complexes F (A,B) which satisfy the usual adjunctions.
A spectrum E gives rise to a homology theory E∗(−) = [S0,−∧E]∗ where S0

denotes the sphere spectrum. It also defines a cohomology theory E∗(−) =
[−, E]−∗.
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Recall from [8] that a spectrum A is called E-acyclic if E∗(A) = 0. A mor-
phism f : A→ B of spectra is an E-equivalence if E∗(f) is an isomorphism.
A spectrum T is E-local if [f, T ]∗ is an isomorphism for every E-equivalence
f : A→ B. It easily follows that an E-equivalence of two E-local spectra is
an equivalence. Bousfield proves in [8] that every spectrum X is associated
with a canonical triangle

EX → X
η−→ XE

Σ−→ EX

where EX isE-acyclic andXE isE-local. It is clear that η is anE-equivalence
and XE is called the E-localization of X. Bousfield shows that

(i) There is a natural equivalence (X ∨ Y )E ' XE ∨ YE .
(ii) There is a natural equivalence (ΣX)E ' Σ(XE).
(iii) (−)E preserves triangles.

Let G be an abelian group. Let SG denote the Moore spectrum of type
(G, 0), that is: (i) πiSG = 0 if i < 0, (ii) H0SG ≈ G and (iii) HiSG = 0 if
i > 0. Let J be a set of primes and Z(J) be the integers localized at J .

Proposition A.3.1 ([8, Proposition 2.4]). For every spectrum X there
is a natural equivalence XSZ(J)

' SZ(J) ∧ X. Moreover π∗XSZ(J)
= Z(J) ⊗

π∗X and X is SZ(J)-local if and only if the groups π∗X are J-local, namely
uniquely p /∈ J divisible.

Theorem A.3.2 ([8, Theorem 3.1]). If X is a connective spectrum then

XHZ(p)
' XSZ(p)

' X ∧ SZ(p).

We deduce

Proposition A.3.3. Consider an SZ(p)-local spectrum E. A map f :
X → Y of connective spectra induces an isomorphism E∗(Y ) ≈ E∗(X) if f
is an H∗(−;Z(p))-isomorphism.

Proof. Note that η : X → XSZ(p)
and η : Y → YSZ(p)

are SZ(p)-
equivalences. Since f is an HZ(p)-equivalence, it is an SZ(p)-equivalence by
A.3.2. Now use the fact that E is SZ(p)-local by A.3.1 and the definition
E∗(−) = [−, E]∗ to obtain the result.
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