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On invariants for measure preserving transformations

by

G. Hjorth (Los Angeles, CA)

Abstract. The classification problem for measure preserving transformations is
strictly more complicated than that of graph isomorphism.

1. Preamble. We consider the group M∞ of all invertible measure pre-
serving transformations either on the unit interval or any other reasonable
measure space. It seems natural to say that two of these transformations,
σ1, σ2, are equivalent or isomorphic if there is a third, π, so that

π ◦ σ1 ◦ π−1 = σ2 a.e.

To what extent can this equivalence relation be considered classifiable?
In specific cases—for instance σ1, σ2 both Bernoulli or discrete spec-

trum—there are well accepted systems of complete invariants. However, in
the completely general context of arbitrary measure preserving transforma-
tions there is no known satisfactory system of complete invariants nor even
a clear statement of what this would entail.

For instance, Halmos in [7] despairs of precisely formulating the problem
but at page 1029 suggests that its solution should fulfill the “the vague task
of finding a complete set of invariants. . . ” At page 75 of [8] he proposes that
the central problem is to “find usable necessary and sufficient conditions for
the conjugacy of two measure preserving transformations.” Some time later
Weiss at page 670 of [23] raises the problem of finding “a set of invariants
large enough so that if all invariants agree for two m.p.t. one can conclude
that the m.p.t. are isomorphic”.

This article considers attempts to make this precise and ask abstractly
whether the problem of classifiability could in principle have a positive solu-
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tion. We present a clearly identifiable lower bound on the classification dif-
ficulty of the isomorphism relation for measure preserving transformations.

One precise formulation of the problem would be to understand a classi-
fiable equivalence relation on a Polish space to be one for which we may find
a Borel assignment of reals or points in some other standard Borel space
as complete invariants. This is the notion of classifiable suggested by the
Glimm–Effros dichotomy of [10].

Indeed, Feldman in [4] takes exactly that position. Appealing to [18]
he observes that the isomorphism relation for Bernoulli shifts allows real
numbers to be assigned in a Borel manner as a complete invariant and uses
[19] to remark that such an assignment is already impossible for the class of
measure preserving transformations having the property of K.

A more generous notion of classification, closer to the kinds we consider
below, is already implicit in sources [7], [8], [23]. In each case the results
of [9] are accepted as providing a complete classification for the discrete
spectrum measure preserving transformations. Here the invariants are not
real numbers or single points in a standard Borel space, but rather countable
sets of complex numbers. The significance of this is not in the use of complex
numbers as against reals—this is immaterial since all uncountable Polish
spaces are Borel isomorphic. The significant feature of the invariants from
[9] is that they have the form of a countable unordered set of points in a
standard Borel space (1).

Thus we may in general ask for an equivalence relation E on a standard
Borel space X:

Question Q1. Does there exist a countable sequence (fi)i∈N of Borel
functions, each fi : X → C, such that for all x1, x2 ∈ X,

x1Ex2 ⇔ {fi(x1) : i ∈ N} = {fi(x2) : i ∈ N}? (2)

(1) Superficially it might be thought that the ability to assign countable sets of points
in a standard Borel space as a complete invariant is tantamount to classifiability in the
sense of [4]. In fact this is untrue—there is in general no canonical way to encode or
parameterize a countable set of complex numbers by a real, or by a point in any other
separable completely metrizable (i.e. Polish) space. Indeed, this can already been seen
in the present context, as it is known that there is no Borel function that assigns to a
discrete spectrum measure preserving transformation a complex number as a complete
invariant (compare the start of §5 below). More starkly, and just to allay suspicions that
this may be a consequence of restricting to the Borel category, the techniques of [22] are
sufficient to demonstrate the consistency of set theory without the axiom of choice along
with the non-existence of any function assigning complex numbers as complete invariants
for discrete spectrum transformations.

It is intrinsic to the methods of [9] that we obtain countable sets of points as complete
invariants, and no amount of modification will squeeze it into the form requested by [4].

(2) Matt Foreman has shown that the procedure of [9] indeed obtains such a classifi-
cation, that is to say, in the Borel category, for discrete spectrum m.p.t.’s.
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As suggested by Matt Foreman, we might hope that “usable and suffi-
cient conditions” should at least make the relation of isomorphy Borel in
M∞ ×M∞.

Question Q2. Let Graph(E) ⊆ X ×X be the set of (x1, x2) for which
x1Ex2. Is Graph(E) Borel in the product Borel structure on X × X? (In
future I will refer to this conclusion simply as the statement that E is Borel.)

These are in general distinct notions. For an equivalence relation E on a
Polish space X, classifiability in the sense of a single Borel function assigning
points as complete invariants implies a positive answer to Q1. A positive
answer to Q1 implies one for Q2. Neither of these implications reverses.

Below we consider these questions for the specific case of X = M∞ and E
the equivalence relation of conjugacy, given by setting σ1Eσ2 if there exists
π ∈M∞ such that

σ1(x) = π ◦ σ2 ◦ π−1(x) a.e.

We place onM∞ the customary Borel structure, described by [4] and recalled
in Section 2 below.

Theorem 1.1. The conjugacy equivalence relation on M∞ is non-Borel.

In fact, the situation is much worse than this alone would suggest. It
turns out that the classification problem for measure preserving transforma-
tions encompasses the classification problem for arbitrary countable discrete
structures—countable groups, countable linear orderings, graphs, and so on.
For L a countable language, Mod(L), the space of all L-structures whose
underlying set is N, is naturally a standard Borel space; the details of this
definition are recalled in Section 2 below, and discussed at length in many
places, such as [15], [13], [12]. A specific example of such a collection is the
space of (directed) graphs on N, which by appeal to the corresponding char-
acteristic function of the adjacency relation can be identified with {0, 1}N×N
and given a natural topology.

Theorem 1.2. If L is a countable language then there is a Borel func-
tion θ : Mod(L)→M∞ such that for all M,N ∈Mod(L),

M ∼= N ⇔ ∃π ∈M∞ (π ◦ θ(M) ◦ π−1 = θ(N) a.e.).

It is not known whether 1.2 or 1.1 can be obtained for the ergodic measure
preserving transformations—that is to say, whether we may have θ as in 1.2
but with the further requirement that it always assume a value θ(M) ∈M∞
such that every Borel θ(M)-invariant set is either null or conull.

These further and still open questions are of interest given the ergodic
decomposition theorem, stating that every element of M∞ may be in some
sense written as the integral of its ergodic components (see for instance [8],
§2.3, [25], [20]). In this context one could compare the conjugacy equivalence
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relation on the unitary representations of a discrete group: in the case of
irreducible representations this is known to be not only Borel but actually
Fσ in an appropriate topology. (See [3].)

For the narrow case of ergodic transformations we only know the follow-
ing:

Theorem 1.3. There is a Polish group G and a “turbulent” Polish G-
space X and a Borel function θ : X →M∞ such that

(i) θ(x) is ergodic for all x ∈ X;
(ii) x0E

X
G x1 if and only if

∃π ∈M∞ (π ◦ θ(x0) ◦ π−1 = θ(x1))

for all x0, x1 ∈ X.

In other words, we may embed a turbulent orbit equivalence relation into
the isomorphism relation on ergodic measure preserving transformations.
In light of the results from [12], this provides a succinct anti-classifiability
result. In particular, the reduction in 1.2 does not reverse: The classification
problem for measure preserving transformations is strictly more complicated
than for discrete countable structures.

Theorem 1.4. For L a countable language, there is no Borel θ1 : M∞ →
Mod(L) such that for all σ1, σ2 ∈M∞,

∃π ∈M∞ (π ◦ σ1 ◦ π−1 = σ2 a.e.) ⇔ θ1(σ1) ∼= θ1(σ2).

Indeed, there is no such θ1 even with domain just the ergodic transforma-
tions. Actually we find in 1.3(i) that each θ(x) is in the class of rank 2 gener-
alized discrete spectrum (see [6]). This is an important detail: Since the dis-
crete spectrum measure preserving transformations do admit classification
by countable sets of complex numbers, and hence by countable models, we
might have hoped for instance that the αth level of the generalized discrete
spectrum transformations admit complete invariants in something like the
αth iteration of the operation of taking all countable subsets applied to C.

It should not be thought that the results above are fragile to the choice of
the Borel category. We can define more generous classes of reducibility and
show that even with broader but still reasonable classes of functions—of the
kind that are encountered in Ulm invariants for abelian p-groups and the
Scott analysis for countable structures—there is no reduction of conjugacy
on M∞ to isomorphism on countable structures, or equality on countable
sets of reals, or indeed to any Borel equivalence relation.

Finally, I suppose it might be felt that the real problem is not that we
are demanding Borel functions but more generally that we are requiring any
sort of definability whatsoever. In this way we might dream of some manner
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of classification, only without the invariants being produced in an “effective”
manner.

But not even that much can be hoped for. If ≈ is the conjugacy equiva-
lence relation on M∞, and ∼= isomorphism on countable structures, then by
the techniques of [22] it is consistent with ZF and enough of the axiom of
choice to develop most classical mathematics that there be no injection:

M∞/≈ ↪→Mod(L)/∼=.
In particular, if Pℵ0(A) denotes the collection of all countable subsets of a
set A, then there will be no injection

M∞/≈ ↪→ Pℵ0(C),
nor

M∞/≈ ↪→ Pℵ0(Pℵ0(C)),

and so on. Similarly, it is consistent with ZF and a large fragment (DC) of
choice that for any Borel equivalence relation on a Polish space X there is
no injection

M∞/≈ ↪→ X/E.

In Section 2 we give some definitions and present an outline of the proof
for 1.2, which is in turn completed in Sections 3 and 4. Section 5 embeds a
turbulent orbit equivalence relation into the generalized discrete spectrum
transformations. Section 6 gives a proof of a known result to the effect that
the natural equivalence relation on cocycles from the measure preserving
action of a countable group into a compact group is Borel; this equivalence
relation is closely related to the one needed in §5. It is also noted that the
collection of measurable transformations conjugating a transformation T to
itself is compact if and only if T has discrete spectrum.

In terms of background material needed for reading this paper, formally
it does not assume much more than a general knowledge of elementary
analysis, of the kind which would be found in a text such as [25]. However, as
a practical matter it would be more than helpful to have some acquaintance
with ergodic theory. A knowledge of classical descriptive set theory in the
sense of [15] may also make the paper easier to read. Many of the results
appeal to the modern theory of Borel equivalence relations; for this [5] and
[1] are good references. The theory of turbulence is developed in [12]; the
notation here largely follows the notation there.

We indulge in all the usual sins. A measurable square summable function
is identified with its equivalence class in L2. We say “everywhere” when we
mean “on all but a null set”.

Acknowledgments. I am grateful to Matthew Foreman for several il-
luminating discussions in the neighborhood of these topics and for pointing
out the relevance of [9].
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I am also very much indebted to the referee for an exceptionally thorough
and penetrating report, and in particular for finding a serious mathematical
error in the first draft. This first draft claimed that one can obtain 1.2
by proving that isomorphism on countable torsion-free abelian groups is
Borel complete in the sense of [5]; that proof of the Borel completeness of
torsion-free abelian groups was erroneous.

2. Outline of proof of 1.2. The concept of “Borel reducibility” is
central to the arguments below.

Definition. Let E and F be equivalence relations on Polish spaces X
and Y . We say that E is Borel reducible to F , written E ≤B F, if there is
a Borel function θ : X → Y such that for all x1, x2 ∈ X we have

x1Ex2 if and only if θ(x1)Fθ(x2).

Naturally we write E <B F if E ≤B F holds but F ≤B E fails.

This relation ≤B is clearly transitive and reflexive.

Examples. More detail, along with proofs of the various folklore asser-
tions, can be found in [12].

(i) For X a Polish space, id(X) is the identity equivalence relation on
X. If E ≤B id(X) for any Polish space X then we say that E is smooth.

(ii) Ev is the Vitali equivalence relation on R, given by the cosets of Q.
Here it is known that Ev is not smooth.

(iii) E0 the equivalence relation of eventual agreement on infinite binary
sequences. It is known that E0 ≤B Ev ≤B E0.

(iv) Let 2N×N be the space of functions from N × N to {0, 1}, with the
topology of pointwise convergence (3). Following [5] we define F2 by x1F2x2

if and only if

∀n ∈ N ∃m1,m2 ∈ N ∀k ∈ N (x1(n, k) = x2(m2, k), x1(m1, k) = x2(n, k)).

Then id(R) <B E0 <B F2.

Two important classes of Polish spaces are those consisting of all measure
preserving transformations of a Lebesgue space and those consisting of all
L-structures on N for some countable language L.

Definition. Let M∞ be the group of Borel measure preserving bijec-
tions from [0, 1] to [0, 1] with identification of maps agreeing on a measure
one set. For (On)n∈N a basis of [0, 1] we obtain a separable metric dλ on M∞
by setting

dλ(π1, π2) =
∑

2−n[λ(π1(On) M π2(On)) + λ(π−1
1 (On) M π−1

2 (On))],

(3) Here and elsewhere we identify 2 with {0, 1}, and thus 2N×N is the space of all
functions from N× N to {0, 1}.
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where λ is Lebesgue measure and M is used to denote symmetric difference:
X M Y = (X \ Y ) ∪ (Y \X).

Let ≈∗ denote the conjugacy equivalence relation:

π1 ≈∗ π2 ⇔ ∃σ ∈M∞ (σ ◦ π1 ◦ σ−1 = π2).

Definition. For L a countable language, let Mod(L) be the collection
of all different ways we may place an L-structure on the natural numbers
N. We then place a topology on this space by taking as subbasic open sets
those of the form

{M ∈Mod(L) : (n1, . . . , nk) ∈ RM},
{M ∈Mod(L) : (n1, . . . , nk) 6∈ RM},
{M ∈Mod(L) : fM(n1, . . . , nk) = m},
{M ∈Mod(L) : fM(n1, . . . , nk) 6= m},

where n1, . . . , nk,m range over finite sequences from N, R ranges over rela-
tion symbols in L, and f ranges over function symbols in L.

We let ∼=|Mod(L) denote the isomorphism relation on these L-structures.
Thus M1 ∼=M2 if and only if there is a bijection σ : N→ N with

(n1, . . . , nk) ∈ RM1 ⇔ (σ(n1), . . . , σ(nk)) ∈ RM2

and
fM1(n1, . . . , nk) = m ⇔ fM2(σ(n1), . . . , σ(nk)) = σ(m)

for all relation symbols R, function symbols f , and n1, . . . , nk,m ∈ N.

Lemma 2.1. M∞ is a Polish group; dλ is complete.

Proof. This was shown in [4]; a proof can also be found in Chapter 2 of
[12].

Lemma 2.2. Mod(L) is a Polish space whenever L is a countable lan-
guage.

Proof. This lemma should be obvious, since the space can be naturally
identified with a suitable countable product of the Polish spaces N{0,1} and
NN.

We wish to start working towards a proof that for any countable language
L we have

∼=|Mod(L) ≤B ≈∗.
An equivalence relation E on X is said to be Borel if it is Borel as a subset of
X ×X. It is then easily seen that the Borel equivalence relations are closed
downwards under ≤B . And thus since it is well known (see [5], or 6.16 in
[12]) that for many L one has ∼=|Mod(L) non-Borel, a proof of
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≈∗ ≤B ∼=|Mod(L)

will in particular imply that ≈∗ is non-Borel.
It is rather cumbersome to be continually working with the full range

of possible ∼=|Mod(L) as L ranges over countable languages. Instead, it will
be convenient to work with a canonical example, which is already known to
have maximal complexity in the ≤B-ordering.

For us a graph will be a directed graph where loops are possible but par-
allel edges are not. Thus we may naturally identify a graph on the underlying
set N with a binary relation on N, and this in turn may by consideration of
the characteristic function be identified with 2N×N.

Definition. Let Mod(Gph) be the Polish space 2N×N equipped with
the product topology.

We let the infinite symmetric group, S∞, consisting of all permutations
of the natural numbers, act on 2N×N in the following manner: Given σ ∈ S∞
and x ∈ 2N×N, we define σ · x by

(σ · x)(n,m) = x(σ−1(n), σ−1(m)).

We then let EMod(Gph)
S∞ denote the resulting orbit equivalence relation:

x1E
Mod(Gph)
S∞ x2 if and only if ∃σ ∈ S∞ (σ · x1 = x2).

Thus EMod(Gph)
S∞ is the isomorphism relation for the space of all binary

relations on N. Of course, as a space Mod(Gph) is nothing other than 2N×N;
it will be convenient to have this separate notation, to remind ourselves with
Mod(Gph) that we are thinking of 2N×N as a Polish S∞-space in a specific
way.

Lemma 2.3. If L is a countable language, then

∼=|Mod(L) ≤B E
Mod(Gph)
S∞ .

Proof. A proof of this well known folklore fact can be found in many
places, including [5].

Thus the task of showing ≈∗ non-Borel has been reduced to showing that
for any countable language L we have

∼=|Mod(L) ≤B ≈∗,
which has in turn been reduced to showing

E
Mod(Gph)
S∞ ≤B ≈∗.

In order to do this we will introduce one further equivalence relation,
EY2
G∞ , defined shortly, and show in Section 3 first that

EY2
G∞ ≤B ≈

∗,
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and then in Section 4 that

E
Mod(Gph)
S∞ ≤B EY2

G∞ .

Definition. Let M(S∞) = {g ∈ (S∞)[0,1] : g Borel} be the group of
measurable functions from [0, 1] to S∞, where S∞ is the infinite symmetric
group on N; we multiply pointwise,

(g1g2)(x) = g1(x)g2(x),

and identify functions that agree λ-a.e.

Observe then that if g−1 is the group theoretic inverse of g ∈ M(S∞)
then g−1(x) = (g(x))−1 for (λ-a.e.) x ∈ [0, 1].

Definition. Define ψ : M∞ → Aut(M(S∞)) by the requirement that
for π ∈M∞, x ∈ [0, 1], g ∈M(S∞),

((ψ(π))(g))(x) = g(π−1(x)).

So ψ(π) is the (group theoretic) automorphism of M(S∞) obtained by
shift.

In fact, these groups all have natural topologies and ψ is a homeomor-
phism from M∞ into the group of continuous automorphisms of M(S∞).

Definition. Form the semidirect product M(S∞)oψM∞ in the usual
way, so that for g0, g1 ∈M(S∞), π0, π1 ∈M∞,

(g0, π0)(g1, π1) = (g0(ψ(π0))(g1), π0π1).

For short write G∞ := M(S∞)oψ M∞.

Definition. For y ∈ 2N×N and n ∈ N we define y(n, ·) ∈ 2N in the
obvious way, by (y(n, ·))(m) = y(n,m). Let

B2 = {x ∈ 2N×N : n 6= m⇒ x(n, ·) 6= x(m, ·)};
B2 is a Gδ subset of the Polish space 2N×N and hence is Polish itself (see
[15], 3C). Let

Y2 = {y ∈ (B2)[0,1] : y Borel}
be the space of measurable functions from [0, 1] to B2 where we identify
functions agreeing almost everywhere. We give this space the topology of
convergence almost everywhere, so that fn → f if for almost every x ∈ [0, 1]
we have fn(x)→ f(x).

Lemma 2.4. Y2 is a Polish space.

Proof. Let d′ be a complete compatible metric on B2. We obtain a com-
plete metric d2 by setting

d2(y0, y1) =
�
d′(y0(x), y1(x)) dλ(x)

for y0, y1 ∈ Y2.
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Definition. Let G∞ act on Y2 as follows: Given y ∈ Y2,

y : [0, 1]→ 2N×N,

and (g, π) ∈ G∞,
g : [0, 1]→ S∞, π ∈M∞,

we define (g, π) · y : [0, 1]→ 2N×N by

(((g, π)(y))(x))(m,n) = (y(π−1(x)))(g−1(x)(m), n).

(Here g−1 is intended to be the group theoretic inverse of g ∈M(S∞); thus
g−1(x) = (g(x))−1.) Observe that

([(g0, π0)((g1, π1)(y))](x))(m,n)

= [((g1, π1)(y))(π−1
0 (x))]((g−1

0 (x))(m), n)

= (y(π−1
1 (π−1

0 (x))))(g−1
1 (π−1

0 (x))(g−1
0 (x))(m), n)

= (y(π−1
1 (π−1

0 (x))))(((((ψ(π0))(g1))−1g−1
0 )(x))(m), n).

The last equality uses the fact that the group operations for M(S∞) are
calculated pointwise, and hence

g−1
1 (π−1

0 (x)) = (g1(π−1
0 (x)))−1

and
[(((ψ(π0))(g1))−1g−1

0 )](x) = [((ψ(π0))(g−1
1 ))(x)][g−1

0 (x)].

Thus,

[(((g0, π0)((g1, π1)(y)))(x))](m,n)

= [y(π−1
1 (π−1

0 (x)))](((((ψ(π0))(g1))−1g−1
0 )(x))(m), n)

= [((g0(ψ(π0)(g1)), π0π1)(y))(x)](m,n),

which establishes this to be an action.
We then let EY2

G∞ be the orbit equivalence relation on Y2 resulting from
this action.

Lemma 2.5. For y0, y1 ∈ Y2 we have y0E
Y2
G∞y1 if and only if there is

some π ∈M∞ such that

λ({x : {(y0(x))(n, ·) : n ∈ N} = {(y1(π−1(x)))(n, ·) : n ∈ N}}) = 1.

Proof. The “only if” part of the lemma is trivial. The “if” direction uses
the well known fact, whose proof can be found in 18A of [15], that any Borel
set in the plane may be uniformized by a Lebesgue measurable function.

Notation. Following the Kuratowski–Mycielski theorem of 19A of [15],
choose C ⊂ [0, 1] to be a perfect set such that for any k ∈ N and x1, . . . , xk
∈ C, if xi 6= xj for all i < j ≤ k then x1, . . . , xk are rationally independent.
Fix a continuous injection ϕC : 2N ↪→ C.
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With each element y of Y2 we wish to associate a measure preserving
transformation

Ty : [0, 1]× (R/Z)N → [0, 1]× R/ZN

whose ergodic components have the form {x}×(R/Z)N for x ∈ [0, 1]; on each
such ergodic component we will have a discrete spectrum measure preserving
transformation with eigenvalues {e2πiϕC((y(x))(n,·)) : n ∈ N}. The proof that
y1E

Y2
G∞y2 if and only if Ty1 and Ty2 are conjugate is then a consequence

of the well known fact that two measure preserving transformations are
conjugate if and only if there is a measure one set on which their ergodic
components are individually conjugate component by component. Partly
for the convenience of the reader, and partly because there seems no easy
source listing exactly the facts we need in exactly the form we need them, we
write out the proof in §3 without assuming any familiarity with the ergodic
decomposition of a measure preserving transformation.

3. The relation EY2
G∞ ≤B ≈

∗

Definition. Let T : (X,B, µ)→ (X,B, µ) be a Borel measure preserv-
ing map, X a Polish space, µ a Borel probability measure on X, B the
collection of Borel subsets of X. A non-zero f ∈ L2(X,µ) (:= the Hilbert
space of all square integrable complex-valued functions on (X,µ), subject
to the usual identification of functions that agree almost everywhere) is said
to be an eigenfunction for T if for some λ ∈ C we have f ◦ T = λf a.e.; we
then also say that λ is an eigenvalue. T is said to be ergodic if all T -invariant
Borel sets are either null or conull with respect to µ.

Lemma 3.1. T : (X,B, µ)→ (X,B, µ) is ergodic if and only if the space
of eigenfunctions with eigenvalue 1 is one-dimensional.

Proof. If f : X → C is a non-constant eigenfunction for the eigenvalue 1,
then for some U ⊂ C the pullbacks f−1[U ] and f−1[C \ U ] are disjoint and
non-null.

Hence if T is ergodic then no eigenvalue can have corresponding eigen-
space with dimension greater than 1—for if f1, f2 : X → C are linearly
independent non-zero functions with f1 ◦ T = cf1 and f2 ◦ T = cf2 then
f2/f1 : X → C would be a non-constant function with eigenvalue 1.

Definition. Let X = [0, 1] × (R/Z)N with the product of Lebesgue
measure on [0, 1] and Haar measure ν on each copy of R/Z (so that ν({xZ :
a ≤ x ≤ b}) = b−a for any 0 < a < b ≤ 1). For y ∈ Y2 we define Ty : X → X
by

Ty(x, z0, z1, . . .) = (x, ϕC((y(x))(0, ·))⊕ z0, ϕC((y(x))(1, ·))⊕ z1, . . .).
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where ⊕ is addition modulo 1. For x ∈ [0, 1] we let T xy : (R/Z)N → (R/Z)N

be the map resulting from restriction to the fiber above x:

T xy (z0, z1, . . .) = (ϕC((y(x))(0, ·))⊕ z0, ϕC((y(x))(1, ·))⊕ z1, . . .).

Lemma 3.2. For all y ∈ Y2 and x ∈ [0, 1]:

(i) the set of eigenvalues of T xy is the subgroup of the complex unit circle
generated by {e2πiϕC((y(x))(n,·)) : n ∈ N};

(ii) T xy : (R/Z)N → (R/Z)N is ergodic.

Proof. For x such that {(y(x))(n, ·)) : n ∈ N} is a rationally independent
set we can use the Stone–Weierstrass theorem to see that the sums of the
finite multiples of the projection functions and their inverses

Prk : (R/Z)N → C, ~z 7→ e2πizk ,

are dense in L2((R/Z)N, µN). Hence the functions of the form

(Prk1)n1 · . . . · (Prkp)
np ,

as 〈n1, . . . , np〉 and 〈k1, . . . , kp〉 range over finite sequences from Z and N,
form a Hilbert basis for L2((R/Z)N, µN). The rational independence property
assumed for C implies

(Prk1)n1 · . . . · (Prkp)
np and (Prl1)m1 · . . . · (Prlq)

mq

have distinct eigenvalues whenever these functions are distinct, so any eigen-
function must be a finite multiple of these coordinate functions Prk : (R/Z)N

→ C. Thus up to scalar multiplication the only eigenfunctions are 1 and the
finite multiples of the coordinate projections {Prk : k ∈ N}.

Lemma 3.3. If y ∈ Y2 and A ⊂ X is Borel and Ty-invariant then there
is a Borel B ⊂ X so that A = B × (R/Z)N modulo some null set.

Proof. For each x ∈ [0, 1] the set Ax = {~z : (x, ~z ) ∈ A} is T xy -invariant.
Thus by 3.2, νN(Ax) ∈ {0, 1} (where νN is the N-fold product of Haar
measure ν on R/Z). Thus for B = {x ∈ [0, 1] : νN(Ax) = 1} we have
A = B × (R/Z)N off a null set by Fubini.

Lemma 3.4. If y1, y2 ∈ Y2 and x1, x2 ∈ [0, 1], then the transformations
T x1
y1

and T x2
y2

are conjugate if and only if

{(y1(x1))(n, ·) : n ∈ N} = {(y2(x2))(n, ·) : n ∈ N}.
Proof. By 3.2, the transformations T x1

y1
and T x2

y2
are conjugate only if

the sets of eigenvalues are equal, which is to say that the multiplicative
subgroups of the complex unit circle generated by {e2πiϕC((y1(x1))(n,·)) :
n ∈ N} and by {e2πiϕC((y2(x2))(n,·)) : n ∈ N} are equal; and this in turn,
by the assumptions on C, holds only if
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{e2πiϕC((y1(x1))(n,·)) : n ∈ N} = {e2πiϕC((y2(x2))(n,·)) : n ∈ N}.
The converse direction is trivial.

Lemma 3.5. If y1, y2 ∈ Y2 with Ty1 , Ty2 conjugate then we may find
g ∈ G∞ with g · y1 = y2.

Proof. If π : X → X is measure preserving and conjugates Ty1 and Ty2

then we use 3.3 to find some measure one set M such that for all basic open
O ⊂ [0, 1] there are BO,DO ⊂ [0, 1] so that

π[(O × (R/Z)N) ∩M ] = (BO × (R/Z)N) ∩M,

π−1[(O × (R/Z)N) ∩M ] = (DO × (R/Z)N) ∩M.

We may also assume that M is invariant under π, Ty1 , Ty2 . Thus, on the
measure one set M for all (x, ~z ) ∈ M there is some π̂(x) ∈ [0, 1] so that
π|({x}×R/ZN) conjugates

Ty1 |{x}×(R/Z)N∩M and Ty2 |{π̂(x)}×(R/Z)N∩M .

This π̂ : [0, 1]→ [0, 1] is measure preserving since for a.e. (x, ~z ) ∈ [0, 1]×TN
we have π(x, ~z ) = (π̂(x), ~z ′) some ~z ′ ∈ TN. Thus we are finished by 2.5.

Lemma 3.6. If g ∈ G∞ with g · y1 = y2 then Ty1 and Ty2 are conjugate.

Proof. This is simply unpacking the definitions.
First consider the case of g = (1, π̂) for some π̂ ∈M∞. Then

(y2(x))(n, ·) = ((g · y1)(x))(n, ·) := (y1(π̂−1(x)))(n, ·)
for a.e. x ∈ [0, 1] and all n ∈ N. Thus we can define π : X → X by
π(x, ~z ) = (π̂(x), ~z ) to obtain Ty2 = π ◦ Ty1 ◦ π−1.

Similarly, if σ ∈M(S∞) with (σ, 1) · y1 = y2 then we can define π : X →
X by

(x, z0, z1, . . .) 7→ (x, z(σ(x))(0), z(σ(x))(1), . . .).

The above terminates the proof, since any g ∈ G∞ can be written in the
form g = (σ, 1)(1, π̂).

Definition. Following earlier notation, let M∞(X) be the group of
Borel measure preserving bijections from X to X, again identifying two
maps that agree a.e. with respect to the measure λ × νN. For (On)n∈N a
basis of X we obtain a complete separable metric dX on M∞(X) by setting

dX(π1, π2) =
∑

2−n[λ×νN(π1(On)Mπ2(On))+λ×νN(π−1
1 (On)Mπ−1

2 (On))].

Note then that M∞(X) is a Polish group under composition. It is in fact
isomorphic to M∞, since we can find a measure isomorphism Φ : (X,λ×νN)
→ ([0, 1], λ) and then take the induced isomorphism

Φ̂ : M∞(X)→M∞, π 7→ Φ−1 ◦ π ◦ Φ.
Let ≈∗∗ denote the conjugacy equivalence relation on M∞(X).
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Lemma 3.7. The map

Y2 →M∞(X), y 7→ Ty,

is continuous.

Proof. Let M(λ×νN) be the algebra of measurable subsets of (X,λ×νN)
subject to the usual identification of sets which agree off a null set; this is a
Polish space in the metric d(A,B) = λ×νN(AMB) (see for instance [12], 2.2).
First note almost immediately from the definitions that if A ⊂ [0, 1]×(R/Z)N

is a basic open set of the form {~x : x(i) ∈ J} for some open interval J
included in either [0, 1] or R/Z, then the resulting map into the measure
algebra

Y2 →M(λ× νN), y 7→ Ty(A),

is continuous. Since the subalgebra of the Boolean algebra of measurable
sets in (X,λ × νN) generated by the cylinders is dense, we conclude that
y 7→ Ty is continuous.

Proposition 3.8. EY2
G∞ ≤B ≈

∗.

Proof. X and [0, 1] are two non-atomic, standard Borel probability
spaces, and hence (4) they are isomorphic as measure spaces. Thus it suf-
fices to show EY2

G∞ ≤B ≈
∗∗, which is exactly the content of the last three

lemmas.

There are some details here which were not needed in developing a proof
of 3.8 but which might have independent interest. Namely, the group G∞ is
a Polish group, and its action on Y2 is not only continuous but also turbulent
in the sense of [12].

4. The relation E
Mod(Gph)
S∞ ≤B EY2

G∞

Notation. From now until the end of the section fix continuous one-
to-one

f0 : 2N ↪→ 2N, f1 : 2N × 2N ↪→ 2N

with
f0[2N] ∩ f1[2N × 2N] = ∅.

It is easily seen that such a pair f0, f1 exists. For instance

(f0(y))(n+ 1) = y(n), (f0(y))(0) = 0,

(f1(y1, y2))(2n+ 1) = y1(n),

(f1(y1, y2))(2n+ 2) = y2(n), (f1(y1, y2))(0) = 1.

(4) See for instance 17.41 of [15].
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Notation. For ~z = (zi)i∈N ∈ (2N)N and x ∈ Mod(Gph) we let

P(2N, x, ~z ) = {y ∈ 2N : ∃n (y = f0(zn))}
∪ {y ∈ 2N : ∃n,m (y = f1(zn, zm), x(n,m) = 1)}.

We have previously defined B2 to be the set of w ∈ 2N×N such that for
all n1 6= n2 we have w(n1, ·) 6= w(n2, ·).

Lemma 4.1. There is a Borel function ϕeva : Mod(Gph) × (2N)N → B2
such that for all x ∈ Mod(Gph) and ~z ∈ (2N)N with zi 6= zj all i 6= j we
have

{(ϕeva(x, ~z ))(n, ·) : n ∈ N} = P(2N, x, ~z ).

Proof. We may partition Mod(Gph) into Borel sets A0, A1, . . . , Aℵ0 such
that for each κ ∈ {0, 1, . . . ,ℵ0} and each x ∈ Aκ there are exactly κ many
pairs (n,m) with x(n,m) = 1. It suffices then to show ϕeva|Aκ×(2N)N is Borel
for each κ.

Fixing κ, we divide N into sets {ai : i ∈ N}, {bj : j < κ}. Then for a
given x ∈ Aκ we can let (mj, nj)j<κ enumerate, in the ordering obtained
by comparing maximums and then adjudicating ties lexicographically, the
pairs (m,n) with x(m,n) = 1. We can then let ϕeva(x, ~z ) ∈ 2N×N be defined
by

(ϕeva(x, ~z ))(ai,m) = (f0(zi))(m),

(ϕeva(x, ~z ))(bj,m) = (f1(zmj , znj ))(m).

The verification that the resulting function is Borel is routine.

Notation. Let µ be the usual product measure on 2N, so that for each
n we have

µ({x ∈ 2N : x(n) = 1}) = 1
2 .

Let µN be its corresponding product measure on (2N)N. Let N2 = {~z ∈
(2N)N : ∀i 6= j (zi 6= zj)}, and note that µN(N2) = 1.

Since ((2N)N, µN) and ([0, 1], Lebesgue measure) are both non-atomic and
both have standard Borel structures, we can find a Borel measure preserving
bijection ϕiso : N2 → [0, 1].

Notation. For x ∈ Mod(Gph) define ψx : [0, 1]→ 2N×N by

ψx(α) = ϕeva(x, ϕ−1
iso (α)).

Lemma 4.2. The function x 7→ ψx is a Borel function from Mod(Gph)
to Y2.

Proof. The key point is that we can apply 4.1 to see that if

f(·, ·) = ϕeva(·, ϕ−1
iso (·))

then for each x the set

{ψx} = {ψ ∈ Y2 : ψ(β) = f(x, β) a.e. β}
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is a Borel singleton uniformly in x; thus the assignment of ψx to x is Borel
by the uniformization theorem for Borel subsets of the plane with countable
sections.

Lemma 4.3. If x1, x2 ∈Mod(Gph) with x1E
Mod(Gph)
S∞ x2, then

ψx1E
Y2
G∞ψx2 .

Proof. Fix σ ∈ S∞ with σ ·x1 = x2. Thus for all (n,m) ∈ N×N we have

x1(n,m) = x2(σ(n), σ(m)).

And so if we define σ̂ : (2N)N → (2N)N by

(σ̂(~z ))n = ~zσ(n)

then σ̂ is an invertible measure preserving transformation such that at
each ~z,

P(2N, x1, ~z ) = P(2N, x2, σ̂(~z )).

From this we obtain ψx1E
Y2
S∞ψx2 by 2.5.

Lemma 4.4. If x1, x2 ∈Mod(Gph) with ψx1E
Y2
G∞ψx2 , then

x1E
Mod(Gph)
G∞ x2.

Proof. The assumption that ψx1E
Y2
G∞ψx2 in particular implies the exis-

tence of some ~z 1 and ~z 2 with

P(2N, x1, ~z
1) = P(2N, x2, ~z

2)

and for all n 6= m,

(~z 1)n 6= (~z 1)m, (~z 2)n 6= (~z 2)m.

This in turn implies

{f0((~z 1)i) : i ∈ N} = {f0((~z 2)i) : i ∈ N},
and so we can find some σ ∈ S∞ with

(~z 1)n = (~z 2)σ(n)

for all n ∈ N. At this point the assumptions on f0 and f1 entail that for all
n,m,

x1(n,m) = x2(σ(n), σ(m)),

and so σ · x1 = x2.

Proposition 4.5. EMod(Gph)
S∞ ≤B EY2

G∞ .

Proof. This is exactly what the last three lemmas show.
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5. Turbulence for the generalized discrete spectrum transfor-
mations. Now we consider the isomorphism relation for generalized dis-
crete spectrum transformations, or what [2] calls the “measure-distal” ac-
tions. The results below show non-classifiability by countable structures, but
perhaps raise more questions than they answer. For instance, it is not known
if there is a way to embed isomorphism of countable models into the gen-
eralized discrete spectrum transformations, or more modestly just embed
the equivalence relation Fα, arising from the αth iteration of the operation
“countable subset of” applied to some standard Borel space (5), into some
appropriate level of the generalized discrete spectrum hierarchy.

Just by way of comparison, I should mention that for the very simple
subclass consisting of the transformations having completely discrete spec-
trum the situation is totally understood. Here [9] shows that we may assign
countable subsets of C as complete invariants. Indeed, Foreman and Louveau
have observed that even in the Borel context this precisely encapsulates the
classification difficulty of the discrete spectrum maps.

Theorem 5.1 (Foreman, Louveau). Let D ⊂M∞ be the class of discrete
spectrum measure preserving transformations. Then:

(i) The set D is a Borel subset of M∞.
(ii) There is a sequence of Borel functions fn : D → R such that for all

π1, π2 ∈ D,

π1 ≈∗ π2 if and only if {fn(π1) : n ∈ N} = {fn(π2) : n ∈ N};
thus there is a Borel θ1 : D → 2N×N such that for all π1, π2 ∈ D,

π1 ≈∗ π2 ⇔ {(θ1(π1))(n, ·) : n ∈ N} = {(θ1(π2))(n, ·) : n ∈ N},
so in other words we have

≈∗|D ≤B F2.

(iii) Conversely ,
F2 ≤B ≈∗|D

in the sense that there is a Borel function θ2 : 2N×N → D such that for all
x1, x2 ∈ 2N×N,

{x1(n, ·) : n ∈ N} = {x2(n, ·) : n ∈ N} ⇔ θ2(x1) ≈∗ θ2(x2).

In particular, the isomorphism relation on the discrete spectrum trans-
formations is non-smooth.

Notation. Let T = {e2πix : x ∈ [0, 1]}, the complex unit circle, be
viewed as a group under multiplication. For the remainder of this section
let λ be the usual Lebesgue measure on T normalized so that λ(T) = 1.

(5) See [5].
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Let H0 = {f : T → T : f is Lebesgue measurable}, where we identify
f0, f1 ∈ H0 if they agree λ-a.e. For f0, f1 ∈ H0 the product f0f1 ∈ H0 is
defined by pointwise multiplication:

(f0f1)(ζ) = (f0(ζ))(f1(ζ)).

We give this group the topology of a.e. pointwise convergence, which is to
say, the topology induced by the metric

d0(f0, f1) =
1
2

�
|f0(ξ)− f1(ξ)| dλ,

where | · | is the usual Euclidean distance in C. The technical advantage of
just this choice for d0 is that whenever f0 and f1 differ on a set of measure
less than ε we must have

dG((1, 0, f0), (1, 0, f1)) < ε.

In future I will use 1 to denote the function in H0 which constantly takes
the value 1 for all ζ ∈ T. This is the group identity, which of course creates
some notational conflict with H0 being commutative.

Lemma 5.2. H0 is an abelian Polish group.

Proof. The metric d0 is easily checked to be complete, continuous with
respect to the group action, and separable since L1(T, λ) is separable.

Notation. Let H1 = T×Z2 be the direct product of the groups T and
Z2. We define ϕ : H1 → Aut(H0) by the requirement that

((ϕ(ζ, 1))(f))(ξ) = (f(ξζ))−1, ((ϕ(ζ, 0))(f))(ξ) = (f(ξζ)).

Note that H1 is a compact Polish group and ϕ is a group homomorphism.
I will write ϕ(ζ,k) for the homomorphism ϕ(ζ, k) : H0 → H0. The map ϕ

is continuous in the following sense:

Lemma 5.3. The function

H1 ×H0 → H0, ((ζ, i ), f) 7→ ϕ(ζ,i)(f)

is continuous as a map from H1 ×H0 to H0.

Proof. Recall that the step functions consisting of finite linear combina-
tions of the characteristic functions of intervals are dense in L1(T, λ). This
rapidly implies that for f0 ∈ H0 and ε > 0 there is g ∈ H0 of the form

g =
k∑

j=1

cjχAj

with
d0(g, f0) < ε/3
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for some k ∈ N, c1, . . . , ck ∈ C, of absolute value 1, and measurable subsets
A1, . . . , Ak of T, each given by

An = {e2πix : an ≤ x < an+1}.
For continuity it is enough to check that for (ζ, j ) = (e2πiy, j ) sufficiently

close to the identity and f ∈ H0 sufficiently close to f0 we have

d0(ϕ(e2πiy ,j)(f), f0) < ε.

But if j = 0 and y is close enough to 0 that

|cny| = |y| < ε/(3k), n = 1, . . . , k,

then
d0(ϕ(e2πiy ,0)(g), g) < ε/3,

since at each n ≤ k,

λ(An M {e2πyζ : ζ ∈ An}) ≤ |y|.
The function ϕ(e2πiy ,0) is an isometry, so for f close to f0 we have

d0(ϕ(e2πiy ,0)(g), ϕ(e2πiy,0)(f)) < ε/3,

and thus by the triangle inequality

d0(ϕ(e2πiy ,j)(f), f0)

≤ d0(ϕ(e2πiy ,j)(f), ϕ(e2πiy ,0)(g)) + d0(ϕ(e2πiy ,0)(g), g) + d0(g, f0)

< ε/3 + ε/3 + ε/3 = ε.

Notation. Let G = H1oϕH0 be the semidirect product of H1 and H0

along ϕ. Thus for (ζ0, i0, f0), (ζ1, i1, f1) ∈ G,

(ζ0, i0, f0)(ζ1, i1, f1) = (ζ0ζ1, i0 + i1, (ϕ(ζ1, i1))(f0)f1).

This order of taking the semidirect product does give us a group since
H1 is abelian.

Here and elsewhere I simply write (ζ, i, f) for an arbitrary element of
G, instead of the more cumbersome but perhaps more formally correct
((ζ, i), f).

Fix complete metrics d0 and d1 on H0 and H1.

Lemma 5.4. G is a Polish group.

Proof. We obtain a complete and compatible metric dG on G by

dG((ζ0, i0, f0), (ζ1, i1, f1)) = d1((ζ0, i0), (ζ1, i1)) + d0(f0, f1).

It follows from 5.3 and H0 and H1 being topological groups that the
group operation of multiplication is continuous on G. Since G is Polish as a
space it follows from say [21] that g 7→ g−1 is continuous as well.
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Notation. Let X = {h : T→ T : h is Lebesgue measurable}, where we
identify functions agreeing a.e. For future reference we let dX be the metric
given on X by dX(h0, h1) = 1

2 � |h0(ξ)− h1(ξ)| dλ.
We let G act on X as follows:

((ζ, i, f) · h)(ξ) = [f(ξ/ζ)h(ξ/ζ)(f(e2πi
√

2ξ/ζ))−1](−1)i.

(Of course, literally as a space X is the same as H0. But here we are thinking
of X as coming equipped with a G-action, while we think of H0 as presented
with a group structure.)

Lemma 5.5. This is an action.

Proof. It is trivial to confirm that (1, 0, 1) ·h = h for all h ∈ X; the main
task is to show the associativity properties of the action.

Let Ĥ0 be the subgroup of G consisting of elements of the form (1, 0, f)
and let Ĥ1 consist of those of the form (ζ, i, 1). Every element g of G can
be written in the form

g = h0h1 = h∗1h
∗
0

for suitable h0, h
∗
0 ∈ Ĥ0 and h1, h

∗
1 ∈ Ĥ1. Hence it suffices to show purely

for k1, k2 ∈ Ĥ0 ∪ Ĥ1 that for all x ∈ X we have

k1 · (k2 · x) = (k1k2) · x;

the point is that given arbitrary g1, g2 ∈ G we can write

g1 = h0,1h1,1, g2 = h1,2h0,2

(for suitable h0,i ∈ Ĥ0, h1,i ∈ Ĥ1) and then steadily multiply through to get

g1 · (g2 · x) = h0,1 · h1,1 · h1,2 · h0,2 · x
= h0,1 · (h1,1h1,2) · h0,2 · x
= (h0,1h1,1h1,2) · h0,2 · x = h∗1h

∗
0 · h0,2 · x

(for suitable h∗0 ∈ Ĥ0, h∗1 ∈ Ĥ1)

= h∗1 · (h∗0h0,2) · x = (h∗1h
∗
0h0,2) · x.

So we are left only with checking the associativity of the action for
k1, k2 ∈ Ĥ0 ∪ Ĥ1. There are four possibilities, but only the case k2 ∈ Ĥ1,
k1 ∈ Ĥ0 requires close inspection.

Here, however, we see that for any h ∈ X, (ζ, i) ∈ H1, f ∈ H0,

(((1, 0, f)(ζ, i, 1)) · h)(ξ)

= ((ζ, i, ϕ(ζ,i)(f)) · h)(ξ)

= [((ϕ(ζ,i)(f))(ξ/ζ))h(ξ/ζ)((ϕ(ζ,i)(f))(ξe2πi
√

2/ζ))−1](−1)i
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= [(f(ζξ/ζ))(−1)ih(ξ/ζ)(f(ζe2πi
√

2ξ/ζ))(−1)i+1
](−1)i

= (f(ξ))(−1)2i
(h(ξ/ζ))(−1)i(f(ξe2πi

√
2))(−1)2i+1

= f(ξ)(h(ξ/ζ))(−1)i(f(ξe2πi
√

2))−1

= f(ξ)(((ζ, i, 0) · h)(ξ))(f(e2πi
√

2ξ))−1

= ((1, 0, f) · (ζ, i, 1) · h)(ξ)

as required.

The action is clearly continuous, and so X is a Polish G-space.

Notation. Let EX
G denote the orbit equivalence relation induced by

this action.

Notation. From now until the end of the section, M∞ is used to denote
M∞(T2, λ2), the group of invertible λ2 measure preserving functions π :
T2 → T2, subject to the usual identification in the event of agreement almost
everywhere.

Thus we are using M∞ to denote a different Polish group to the one from
Section 2, but since these two are naturally isomorphic the identification
would seem harmless.

Notation. For h ∈ X, let Th : T2 → T2 be given by

(ζ, ξ) 7→ (ζe2πi
√

2, ξh(ζ)).

Lemma 5.6. The function h 7→ Th is a continuous function from X
to M∞.

Proof. In general, “skew products” of this form give rise to measure pre-
serving transformations (compare §2 of [2] or Chapter 1 of [20]). The further
facts that Th is invertible and that the assignment h 7→ Th is continuous fol-
low almost immediately from the definitions.

Lemma 5.7. Every G-orbit in X is dense; in fact , for any h ∈ X,
{(1, 0, f) · h : f ∈ H0} is dense in X.

Proof. Fix h0, h1 ∈ X and ε > 0. Following the Kakutani–Rokhlin
lemma (see page 48 of [20]) we may find A ⊆ T so that for some n

(i) A, e2πi
√

2A, e4πi
√

2A, . . . , e2nπi
√

2A are pairwise disjoint (6);

(ii) λ(
⋃
l<n e

2lπi
√

2A) > 1− ε.

(6) Here e2πi
√

2A = {e2πi
√

2ζ : ζ ∈ A}.
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To obtain the existence of this set A we apply Kakutani–Rokhlin to any
n > 2/ε to obtain A so that

λ
( ⋃

l≤n
e2lπi

√
2A
)
> 1− ε

2

and the sets
A, e2πi

√
2A, e4πi

√
2A, . . . , e2nπi

√
2A

are disjoint as in (i). Then we must have λ(A) < ε/2 and (ii) follows as well.
Now we may simply step around this sequence A, e2πi

√
2A, e4πi

√
2A, . . . ,

e2nπi
√

2A, defining f |
e2lπi

√
2A

by induction on l so that at each ξ ∈ e2lπi
√

2A

we have f(ξ)h0(ξ)(f(ξe2πi
√

2))−1 = h1(ξ).
More formally, we let f |A just be constantly 1. Assuming inductively

that l < n and f |
e2lπi

√
2A

has been defined, we let

f(ξe2πi
√

2) = f(ξ)h0(ξ)(h1(ξ))−1

for any ξ ∈ e2lπi
√

2A.
Finally, for all ξ ∈ ⋃l<n e

2lπi
√

2A we have

f(ξ)h0(ξ)(f(ξe2πi
√

2))−1 = h1(ξ),

and thus
dX((1, 0, f) · h0, h1) < ε.

Notation. Let ≈ denote the conjugacy equivalence relation on M∞, so
that for σ1, σ2 ∈ M∞ we write σ1 ≈ σ2 if there is a π ∈ M∞ such that for
a.e. (ζ, ξ) ∈ T2,

π ◦ σ1 ◦ π−1 = σ2.

Lemma 5.8. For all h0, h1 ∈ X,

h0E
X
G h1 ⇒ Th0 ≈ Th1 .

Proof. We may break this down into three cases.

(i) (ζ0, 0, 1) ·h0 = h1, so that h1(ξ) = h0(ξ/ζ0) for λ-a.e. ξ. Then we may
define π : T2 → T2 by (ζ, ξ) 7→ (ζζ0, ξ). We then have, for a.e. (ζ, ξ),

(π ◦ Th0 ◦ π−1)(ζ, ξ) = (π ◦ Th0)(ζ/ζ0, ξ) = (π(e2πi
√

2ζ/ζ0), h0(ζ/ζ0)ξ)

= (e2πi
√

2ζ, ξh1(ζ)) = Th1(ζ, ξ).

(ii) (1, 1, 1) ·h0 = h1, so that h1(ξ) = (h0(ξ))−1 a.e. Then define π : T2 →
T2 by (ζ, ξ) 7→ (ζ, ξ−1) and note that

πTh0π
−1(ζ, ξ) = π(e2πi

√
2ζ, h0(ζ)/ξ) = (e2πi

√
2ζ, (h0(ζ))−1ξ)

= (e2πi
√

2ζ, h1(ζ)ξ).
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(iii) (1, 0, f) · h0 = h1, so that f(ζ)h0(ζ)(f(ζe2πi
√

2))−1 = h1(ζ) a.e.
Define π : T2 → T2 by (ζ, ξ) 7→ (ζ, f(ζ)ξ). Note then that

π−1Th0π(ζ, ξ) = π−1(e2πi
√

2ζ, h0(ζ)f(ζ)ξ)

= (e2πi
√

2ζ, (f(ζe2πi
√

2))−1h0(ζ)f(ζ)ξ) = Th1(ζ, ξ).

Lemma 5.9. The set of h ∈ X for which Th is ergodic is a dense Gδ.

Proof. Recall (compare §2 of [2]) that ergodicity is a Gδ condition on an
element of M∞: π ∈ M∞ is ergodic if and only if for all open A,B ⊆ T2

arising as finite unions of basic open sets there is m with

λ(πm(A) ∩B) > 1
4λ(A)λ(B).

Since h 7→ Th is continuous, the set of h for which Th is ergodic is again Gδ.
However there is some h for which Th is ergodic—for instance h : T→ T,

ζ 7→ ζ (see [2] or [6]). Thus by 5.7, the set of h for which Th ergodic is a
dense Gδ.

Notation. Let X0 = {h ∈ X : Th is ergodic}.
By 5.8 we see that X0 is G-invariant; since it is Gδ it is a Polish G-space

in its own right.
For the convenience of the reader, we give the next definition only in the

narrow context that is directly relevant. The more general definitions can
be found in [24] or [20], §2.4.

Definition. Let % : T2 → T2 be an invertible measure preserving trans-
formation of the form

(ζ, ξ) 7→ (ζe2πi
√

2, %̂(ζ, ξ))

where %̂ : T2 → T. Then a non-zero function f ∈ L2(T2) is said to be a
generalized eigenfunction for % if there is some g ∈ L2(T), called a generalized
eigenvalue, with the property that for all (ζ, ξ) ∈ T2 we have

f ◦ %(ζ, ξ) = g(ζ)(f(ζ, ξ));

in other words, f ◦ % = ĝf for ĝ defined by ĝ(ζ, ξ) = g(ζ).

The next couple of lemmas are standard; more general results, along
with related facts, can be found in [24].

Lemma 5.10. Let h ∈ X0 and let f1, f2 ∈ L2(T2) be generalized eigen-
functions for Th with a common generalized eigenvalue. Then f1 is a linear
multiple of f2.

Proof. f−1
1 f2 is invariant under Th, and hence must be a constant func-

tion by ergodicity.

Lemma 5.11. Let h ∈ X0. Then the only generalized eigenfunctions are

(ζ, ξ) 7→ ξnk(ζ)

for some measurable function k : T→ C.
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Proof. Note that by Stone–Weierstrass, every function f ∈ L2(T2) can
be written as

f : (ζ, ξ) 7→
∑

n∈Z
ξnkn(ζ)

for some kn ∈ L2(T). Moreover, the decomposition is unique, since

(ζ, ξ) 7→ ξnkn(ζ) and (ζ, ξ) 7→ ξmkm(ζ)

are orthogonal for n 6= m.
Now suppose that f : (ζ, ξ) 7→ ∑

n∈Z ξ
nkn(ζ) has g as its generalized

eigenfunction. Hence

f ◦ Th : (ζ, ξ) 7→
∑

n∈Z
ξnh(ζ)nkn(ζe2πi

√
2).

Then the uniqueness of the decomposition of f ◦ Th gives, for a.e. ζ ∈ T,

ξnh(ζ)nkn(ζe2πi
√

2) = g(ζ)ξnkn(ζ).

This means that any kn not identically zero gives rise to

(ζ, ξ) 7→ ξnkn(ζ)

as a function with generalized eigenfunction g; thus by 5.10 we have kn ≡ 0
for all but a single n.

Lemma 5.12. For all h0, h1 ∈ X0,

Th0 ≈ Th1 ⇒ h0E
X
G h1.

Proof. Fix h0, h1 with Th0 ≈ Th1 , and let π ∈M∞ witness this—in that
πTh0π

−1 = Th1 λ
2-a.e.

By ergodicity
(ζ, ξ) 7→ ζ

is up to scalar multiples the only eigenfunction with eigenvalue e2πi
√

2 for
both Th0 and Th1 . Thus

π(ζ, ξ) = (ζ0ζ, %̂(ζ, ξ))

for some fixed ζ0 ∈ T and suitable %̂. By replacing h0 with ((ζ0)−1, 0, 1) · h0
we may assume that ζ0 = 1 and thus

π(ζ, ξ) = (ζ, %̂(ζ, ξ)).

By 5.11, the only generalized eigenfunctions for Thi (i equal to either 0
or 1) are of the form

(ζ, ξ) 7→ ξnk(ζ)

for some n ∈ Z and measurable k : T→ C. Thus we see that the generalized
eigenfunctions of the form

(ζ, ξ) 7→ ξk(ζ), (ζ, ξ) 7→ ξ−1k(ζ)
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have a privileged status of the only generalized eigenfunctions which are
able to generate the space L2(T2, λ2) by the operations of multiplication,
addition, and multiplication by linear combinations of the eigenfunctions
(ζ, ξ) 7→ ζm for some m ∈ Z (here by “generate” I mean that they are dense
in the sense of the Hilbert space norm on L2). Note then that (ζ, ξ) 7→ ξ
must be sent to a generalized eigenfunction for Th1 of the form

(ζ, ξ) 7→ ξjk(ζ)

where j is either 1 or −1.
Thus we may assume

π(ζ, ξ) = (ζ, ξ(−1)ik(ζ))

for some measurable k : T→ T, and so

π−1(ζ, ξ) = (ζ, ξ(−1)i(k(ζ))(−1)i+1
).

Thus

(e2πi
√

2ζ, h0(ζ)ξ) = π−1Th1π(ζ, ξ) = π−1Th1(ζ, k(ζ)(ξ)(−1)i)

= π−1(ζe2πi
√

2, k(ζ)h1(ζ)(ξ)(−1)i)

= (ζe2πi
√

2, (k(ζe2πi
√

2))(−1)i+1
(h1(ζ))(−1)ik(ζ)(−1)iξ).

Thus for a.e. (ζ, ξ) we have

[(k(ζe2πi
√

2))−1h1(ζ)k(ζ)](−1)i = h0(ζ),

and so h0E
X
G h1 as required.

Lemma 5.13. Every orbit in X is meager.

Proof. Let
A0 = T×

{
e2πix : 1

4 ≤ x ≤ 3
4

}
.

Claim. For any O1, O2 ⊂ X open, non-empty and A measurable, there
exist h1 ∈ O1, h2 ∈ O2, k ∈ N, k > 0 with

λ2(A M T kh1
(A)) < 1

13 , λ2(A0 M T kh2
(A0)) > 1

4 .

Proof. Let ĥ1 be the function ζ 7→ 1 on T, and let ĥ√3 be the function

ĥ√3 : ζ 7→ e2πi
√

3.

Then by 5.7 we may find (1, 0, f1), (1, 0, f2) ∈ G with

h1 := (1, 0, f1) · ĥ1 ∈ O1, h2 := (1, 0, f2) · ĥ√3 ∈ O2.

Since the continuous functions are dense in L1 we may actually assume
that f1 and f2 are continuous. Then
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h1(e2πix) = f1(e2πix)ĥ1(e2πix)(f1(e2πi(x+
√

2)))−1

= f1(e2πix)(f1(e2πi(x+
√

2)))−1

and thus

Th1 : (e2πix, ξ) 7→ (e2πi(x+
√

2), f1(e2πix)(f1(e2πi(x+
√

2)))−1ξ)

and

(Th1)k : (e2πix, ξ) 7→ (e2πi(x+k
√

2), f1(e2πix)(f1(e2πi(x+k
√

2)))−1ξ).

An exactly similar calculation gives

(Th2)k : (e2πix, ξ) 7→ (e2πi(x+k
√

2), f2(e2πix)e2kπi
√

3(f2(e2πi(x+k
√

2)))−1ξ).

The continuity of f1, f2 guarantees for each δ some corresponding δ̂ > 0 such
that whenever

|e2kπi
√

2 − 1| < δ̂

then for all x ∈ [0, 1],

|f1(e2πix)− f1(e2πi(x+k
√

2))|, |f2(e2πix)− f2(e2πi(x+k
√

2))| < δ.

Since
√

2 and
√

3 are rationally independent, we can therefore apply
Kronecker’s lemma (Theorem 28 of [16]) and find k with

|f1(e2πix)− f1(e2πi(x+k
√

2))|, |f2(e2πix)− f2(e2πi(x+k
√

2))|
both arbitrarily small for all x ∈ [0, 1] and e2kπi

√
3 arbitrarily close to eπi.

Such k clearly suffices.

Now let us choose a sequence of measurable sets (Bi)i such that for all
π ∈M∞ there is some i ∈ N with

λ2(π(A0) MBi) < 1
13 .

Let Vi be {
π ∈M∞ : λ2(π(A0) MBi) < 1

13

}
.

By 5.8 it suffices to show that for each i the set

{(h1, h2) ∈ X ×X : ∃π ∈ Vi(π−1 ◦ Th1 ◦ π = Th2)}
is nowhere dense.

But given any non-empty open O1, O2 ⊂ X × X we can by the above
claim find some non-empty open U1 ⊂ O1, U2 ⊂ O2 and k ∈ N such that for
all h1 ∈ U1, h2 ∈ U2,

λ2(Bi M T kh1
(Bi)) < 1

13 , λ2(A0 M T kh2
(A0)) > 1

4 .

Fixing such h1, h2 and π ∈ Vi we need to show

π−1 ◦ Th1 ◦ π 6= Th2 .
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But since π is measure preserving we have

λ2(A0 M (π−1Th1π)k(A0)) = λ2(A0 M π−1(T kh1
(π(A0))))

= λ2(π(A0) M T kh1
(π(A0))),

which by the triangle inequality is bounded by

λ2(π(A0), Bi) + λ2(Bi, T kh1
(Bi)) + λ2(T kh1

(Bi), T kh1
(π(A0)))

= λ2(π(A0), Bi) + λ2(Bi, T kh1
(Bi)) + λ2(Bi, π(A0))

since T kh1
is measure preserving, which in turn is bounded by

1
13 + 1

13 + 1
13 <

1
4

by the assumption of h1 ∈ U1 and π ∈ Vi.
This is as required to show

λ2(A0 M π−1(T kh1
(π(A0)))) 6= λ2(A0 M T kh2

(A0)). 5.13

Definition. Let H be a Polish group and Y a Polish H-space. The
action of H on Y is said to be turbulent if

(i) every orbit is dense;
(ii) every orbit is meager;

(iii) for all x, y ∈ Y , U ⊆ Y , V ⊆ H open with x ∈ U , 1 ∈ V , there exists
y0 ∈ [y]H (the orbit of y) such that for all open U0 containing y0 there are
k ∈ N, (hi)i<k ⊆ V and (xi)i≤k ⊆ U with

x0 = x, xi+1 = hi · xi, xk ∈ U0.

The usefulness of this concept is that it gives a sufficient condition for a
degree of non-classifiability: As in [12] no turbulent action allows a Borel—or
even Baire—measurable function reducing its orbit equivalence relation to
isomorphism on countable structures. More generally, any equivalence re-
lation into which we can embed a turbulent orbit equivalence relation will
similarly be unclassifiable by countable structures considered up to isomor-
phism.

Lemma 5.14. The action of G on X0 is turbulent.

Proof. We already established that every orbit is dense and meager,
so we are only left to show the “local density” condition at (iii) from the
definition of turbulence.

For this purpose, fix h0, h1 ∈ X and ε > 0. It suffices to show there are
n ∈ N and g0, g1, . . . , gn−1 ∈ G such that

h0,0 = h0, h0,l+1 = gl · h0,l,

and
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(i) dG(gl, 1G) < ε for each l < n;
(ii) dX(h0,l, h0) < dX(h0, h1) + ε for each l ≤ n;

(iii) dX(h0,n, h1) < ε.

We will do this in a manner resembling the proof of 5.7.
Choose n ∈ N such that n > 3/ε. Appealing to Kakutani–Rokhlin we

find A ⊆ T with

(iv) A, e2πi
√

2A, e4πi
√

2A, . . . , e2nπi
√

2A all disjoint;
(v) (therefore) λ(A) < ε/3;

(vi) λ(
⋃
l≤n e

2lπi
√

2A) > 1− ε/3.

We now define fl : T → T by induction on l < n. The function f0 is
constantly 1. Given the definition of fl we let

fl+1(e2πi
√

2ξ) = fl(ξ)h0(ξ)(h1(ξ))−1

for ξ ∈ e2lπi
√

2A, and

fl+1(e2πi
√

2ξ) = 1

otherwise. We then let gi = (1, 0, fi). Next, h0,0 = h0 and h0,l+1 = glh0,l as
indicated above.

At once we have (i), since each fi is not equal to 1 only on a set of
measure < ε. For (ii), note that if k < n then for all ξ ∈ ⋃l<k e

2lπi
√

2A,

h0,k(ξ) = h1(ξ),

while for ξ ∈ ⋃l>k, l<n e
2lπi
√

2A,

h0,k(ξ) = h0(ξ).

Thus

dX(h0,k, h0) =
�

1
2 |h0,k(ξ)− h0(ξ)| dλ

< λ(e2kπi
√

2A) + λ(e2nπi
√

2A) + ε/3 +
�

1
2 |h1(ξ)− h0(ξ)| dλ

< ε+ dX(h0, h1).

Finally, for (iii) note that h0,n and h1 agree except on T \ ⋃l<n e
2lπi
√

2A,
which has measure less than ε.

Summarizing what has been proved:

Theorem 5.15. There is a Polish group G and a Polish G-space X0 and
a Borel function θ : X0 →M∞ such that :

(i) the action of G on X0 is turbulent (Lemma 5.14);
(ii) for each h ∈ X0 the transformation θ(h) ∈M∞ is ergodic (Lemmas

5.9, 5.12);
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(iii) in fact , each θ(h) is “measure-distal” (in the sense of [2]), and
in fact , it is rank 2 generalized discrete spectrum (granting (ii), this is an
immediate consequence of the definition of the assignment h 7→ Th);

(iv) for all h0, h1 ∈ X0,

h0E
X
G h1 if and only if θ(h0) ≈ θ(h1),

where ≈ is the equivalence relation of conjugacy (Lemmas 5.8, 5.12).

Corollary 5.16. (a) There is no countable language L and Borel % :
M∞ → Mod(L) such that for all σ1, σ2 ∈M∞,

σ1 ≈ σ2 ⇔ %(σ1) ∼= %(σ2).

(b) In fact , if B ⊆ M∞ is the subclass consisting of rank 2 generalized
discrete spectrum ergodic transformations then there is no Borel % : B →
Mod(L) such that for all σ1, σ2 ∈M∞,

σ1 ≈ σ2 ⇔ %(σ1) ∼= %(σ2).

Proof. At once by the results of §3.2 of [12].

In actual fact there is no compulsion to restrict ourselves so carefully
to the Borel category. The methods of [12] are sufficient to obtain non-
reducibility to isomorphism on countable structures even using very broad
classes of functions, such as C-measurable, absolutely ∆∼

1
2, and universally

Baire measurable. As mentioned in the introduction, we may even obtain
the consistency of ZF + DC along with the non-existence of any injection

i : P/≈ ↪→Mod(L).

6. Remarks on the equivalence of cocycles. There is obviously a
close relation between the arguments of §5 and the isomorphism relation
on cocycles. It might be worth pausing before the finish of this paper to
consider what can be drawn out in this fashion.

Definition. Let (Ω,B, µ) be a probability space and H a countable
group acting by measure preserving transformations onΩ. For later purposes
assume that Ω is a Lebesgue space (that is to say, measurably isomorphic
to ([0, 1], Borel, λ)). Let K be a compact metric group. A measurable map
α : H ×Ω → K is a cocycle if for all h, h′ ∈ H and s ∈ Ω,

α(hh′, s) = α(h, h′s)α(h′, s).

(Here the measurability requirement is that for all h ∈ H we have s 7→
α(s, h) measurable.)

In the case of H = Z the cocycle condition becomes especially transpar-
ent, since we can exactly specify a cocycle by its value on a generator of Z.
Hence we can naturally identify a cocycle for Z with a measurable function
from the space Ω to K.



80 G. Hjorth

The perspective of [24] is to only consider the case when K is a compact
metric group; the remarks below persist in some form even in the more
general context ofK being a locally compact Polish group with a bi-invariant
metric. If dK is a compatible complete metric on a compact metric group
K then we obtain an invariant metric with dK,inv(g0, g1) set equal to

�

K×K
dK(h0g0h1, h0g1h1) d(µK × µK).

Definition. Let (Ω,B, µ), K, H be as above. Two cocycles α, β : H×Ω
→ K are said to be equivalent if there is a measurable function ϕ : Ω → K
such that for every h ∈ H and a.e. s ∈ Ω,

ϕ(h · s)−1α(h, s)ϕ(s) = β(h, s).

Note that—as exploited in §5—this equivalence relation is induced by a
Polish group action.

Notation. Let (Ω,B, µ), K, H be as above. Let dK be an invariant
metric on K; by possibly replacing it with dK/(1 + dK) we may assume
it is bounded by 1. Let X(Ω,K,H, µ) be the space of all cocycles from
H ×Ω to K. Let G(Ω,K,H, µ) be the group of all measurable ϕ : Ω → K
under the operation of pointwise multiplication. We let G(Ω,K,H, µ) act
on X(Ω,K,H, µ) by the specification that

(ϕ · α)(h, s) = ϕ(h · s)−1α(h, s)ϕ(s).

For α ∈ X(Ω,K,H, µ) use G(Ω,K,H, µ)α to denote the stabilizer of α, that
is to say, the set of ϕ for which ϕ · α = α.

The action of G(Ω,K,H, µ) on X(Ω,K,H, µ) is exactly chosen so that
the resulting orbit equivalence relation is the cocycle equivalence relation.
G(Ω,K,H, µ) and X(Ω,K,H, µ) are Polish spaces, and X(Ω,K,H, µ) is a
Polish G(Ω,K,H, µ)-space. For the group we obtain a complete and in fact
invariant metric by

dG(Ω,K,H,µ)(ϕ0, ϕ1) =
�

Ω

dK(ϕ0(s), ϕ1(s)) dµ.

For the cocycles we can choose an enumeration (hi)i∈N of H and let

dX(Ω,K,H,µ)(α, β) =
∑

i∈N
2−i

�

Ω

dK(α(hi, s), β(hi, s)) dµ.

A special case of the above is when H = Z, Ω = T, K = T, and the
action of Z on T is given by

l · ζ = e2lπi
√

2ζ.

Clearly, the arguments of §5 are sufficient to conclude that in this case—and
in many others—the action of G(Ω,K,H, µ) on X(Ω,K,H, µ) is turbulent.
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In showing conditions (i) and (iii) from the definitions of turbulence for G
we only used the G(Ω,K,H, µ) part in 5.7 and 5.14. Clearly, the property
of every orbit being meager goes down to this sub-action by G(Ω,K,H, µ).
Thus in general the cocycle equivalence relation refuses classification by
countable models.

In the presence of ergodicity, the stabilizers are all compact.

Lemma 6.1. Let (Ω,B, µ), K, H be as above. Suppose that the action of
H on Ω is ergodic. Then G(Ω,K,H, µ)α is compact for every α ∈
X(Ω,K,H, µ).

Proof. G(Ω,K,H, µ)α is a complete metric space, so we just need to
show that it is ε-bounded for each ε.

Let (ϕi)i∈N be a countable dense subset of G(Ω,K,H, µ)α. Using the
fact that K is a compact metric space we may find a finite sequence of balls
B0, B1, . . . , Bn of radius < ε/3 covering K. For each i0, i1 ∈ N, j ≤ n let
Ai0,i1,j = {s ∈ Ω : ϕi0(s), ϕi1(s) ∈ Bj}. Let A be the countable collection
{Ai0,i1,j : i0, i1 ∈ N, j ≤ n}. We may clearly find s0 ∈ Ω such that for all
A ∈ A, if s0 ∈ A then A is not null.

Now we may choose a finite collection ϕl0 , ϕl1 , . . . , ϕlk from our sequence
(ϕi)i∈N such that for any j ≤ n, if there exists i ∈ N with ϕi(s0) ∈ Bj then
there is some i′ ≤ k with ϕli′ (s0) ∈ Bj .

Claim. If ϕi(s0) ∈ Bj and ϕli′ (s0) ∈ Bj then for a.e. s ∈ Ω,

dK(ϕi(s), ϕli′ (s)) ≤ 2ε/3.

Proof. Let A = {s ∈ Ω : dK(ϕi(s), ϕli′ (s)) ≤ 2ε/3}. By the assumption
on s0 this set A has non-zero measure. By ergodicity it suffices to show A
is H-invariant.

But for any h ∈ H and s ∈ A,

α(h, s) = (ϕi · α)(h, s) = ϕi(h · s)−1α(h, s)ϕi(s),

hence
ϕi(h · s) = α(h, s)ϕi(s)α(h, s)−1,

and similarly
ϕli′ (h · s) = α(h, s)ϕli′ (s)α(h, s)−1.

Thus by the invariance of the metric dK(ϕi(h · s), ϕli′ (h · s)) ≤ 2ε/3.

Now, it is immediate from the definition of the complete metric on
G(Ω,K,H, µ) and the density of the set (ϕi)i∈N that every element in
G(Ω,K,H, µ)α is within ε of some ϕli′ . 6.1

Thus for any two cocycles α and β the set of ϕ ∈ G(Ω,K,H, µ) with
ϕ · α = β is either empty or compact. Therefore the set
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{(α, β) ∈ X(Ω,K,H, µ)2 : ∃ϕ ∈ G(Ω,K,H, µ) (ϕ · α = β)}
is the projection of a Borel set all of whose sections are compact, and is, by
the Arsenin–Kunugui theorem (see §18 of [15] and §4F of [17]), itself Borel.

We consequently have a short proof of the equivalence relation being
Borel for ergodic actions. I believe a much deeper proof of this fact has been
previously extracted by Foreman and Weiss from the results of [24].

Lemma 6.1 should not be thought of as implying that the measure pre-
serving transformations considered in §5 themselves have compact stabiliz-
ers in the natural action of M∞ (= group of invertible measure preserving
transformations on the unit interval) on M∞. In fact, the ergodic transfor-
mations having compact stabilizer in M∞ are exactly the discrete spectrum
transformations.

Lemma 6.2. Let T ∈ M∞ be ergodic. Then the set {π ∈ M∞ : π ◦ T
◦π−1 = T} is compact if and only if T is a discrete spectrum transformation.

Proof. First let us take the case that T has discrete spectrum. Then by
[9] we can assume that there is a compact abelian metric group G with a
Haar measure µ and corresponding g ∈ G with {n·g : n ∈ Z} dense in G and
T as a measure preserving transformation on [0, 1] isomorphic to translation
of (G,µ) by g. For each k ∈ G let

Tk : G→ G, h 7→ kh,

be the transformation given by k-translation. Let M∞(G) be the group of
invertible measure preserving transformation on (G,µ). Since the assignment

G→M∞(G), k 7→ Tk,

is continuous we need only show that {π ∈ M∞(G) : π ◦ Tg ◦ π−1 = Tg}
equals {Tk : k ∈ G}.

It is clear that the compact group {Tk : k ∈ G} of measure preserving
transformations is included in {π ∈ M∞(G) : π ◦ Tg ◦ π−1 = Tg}, so fix π
with π ◦ Tg ◦ π−1 = Tg a.e. For each x ∈ G let hx ∈ G be such that

hxx = π(x).

We then have
hx(Tgx) = hx(gx)

by the definition of Tg, which in turn equals ghxx by G being abelian, which
now equals gπ(x) = Tgπ(x) = (Tg ◦π)(x), which by assumption on π equals

(π ◦ Tg)(x) = π(Tg(x))

on a measure one set; and thus the function x 7→ hx is a Tg-invariant function
on a measure one set, and hence by ergodicity constant almost everywhere.
Hence π = Thx for some x ∈ G on a measure one set, and we are done.
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Conversely, if {π ∈ M∞ : π ◦ T ◦ π−1 = T} is compact, then T is an
element of a compact subgroup of M∞. Thus by the Peter–Weyl theorem,
as for instance found in [25], we may find a sequence H0,H1,H2, . . . of finite-
dimensional subspaces of L2([0, 1], λ) which are invariant under the unitary
operator f 7→ f ◦ T and which jointly sum up to give

L2([0, 1], λ) =
⊕

n

Hn.

Then diagonalizing this unitary on each of these finite-dimensional subspaces
we finish.
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