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Cylinders over λ-dendroids have the fixed point property

by

Roman Mańka (Warszawa)

Abstract. It is proved that the cylinder X × I over a λ-dendroid X has the fixed
point property. The proof uses results of [9] and [10].

1. Introduction. The aim of this paper is to prove the following.

1.1. Main Theorem. If X is a λ-dendroid then X × I has the fixed
point property.

Remarks. 1. It will be clear from the proof that the conclusion still
holds if I is replaced by any compact absolute retract. Note that any den-
drite, i.e. locally connected λ-dendroid, is a compact absolute retract of
dimension 1 (cf. [7, p. 442, Cor. 8 and p. 344, Thm. 16]). Therefore, by a
standard argument of fixed point theory, the segment I can be replaced by
any λ-dendroid which can be approximated from within by dendrites, for
instance, it can be replaced by any smooth dendroid (cf. Fugate [4]).

2. From a result of Cook [3], it follows that every λ-dendroid is a tree-like
continuum, i.e. the inverse limit of a sequence of trees, thus, by Lelek [8, 2.2
and 2.3]: A continuum X is a λ-dendroid if and only if X is tree-like and
contains no indecomposable (non-degenerate) continuum. Each λ-dendroid
has the fixed point property [9]. A first example of a tree-like continuum
without the fixed point property was discovered by Bellamy [1] (cf. also [2]
and Minc [12]).

3. The proof of the Main Theorem must depend on considerations of
arcs because of the following theorem: The cylinder X × I has the fixed
point property if X has this property and contains no arc.

Indeed, let f = (f1, f2) be a continuous function of X × I into itself. Fix
y0 ∈ I. Then there is a fixed point x0 ∈ X of the function x′ = f1(x, y0).
Consequently, f must carry the arc component {x0}× I of X× I into itself,
hence f has a fixed point in {x0} × I.
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Here, of course, one can replace I by any arcwise connected space with
the fixed point property.

The idea of the proof of the Main Theorem is briefly described in Sec-
tion 4.

2. Preliminaries. By a continuum we mean a non-void compact con-
nected metrizable space. A continuum cotaining only one point is said to be
degenerate. A continuum is said to be irreducible between two of its points if
no other subcontinuum of it contains these points. By the Brouwer reduction
theorem, for any two points of a continuum X there exists a subcontinuum
of X which is irreducible between them (cf. [13, p. 17]). The notion of an
irreducible continuum is a generalization of the notion of an arc, i.e. hom-
eomorphic image of an interval of real numbers.

A continuum C is said to be unicoherent if for every representation
C = A ∪ B, where A and B are continua, the intersection A ∩ B is a
continuum. A continuum X is said to be hereditarily unicoherent if all its
subcontinua are unicoherent. This is obviously equivalent to saying that for
any two points a and b of X there is a unique subcontinuum of X which
is irreducible between a and b; it will be denoted simply by ab. Following
Gurevich [5], we denote by [a]b the set of all points p of X such that ab
is irreducible between p and b: ab = pb; analogously we define the set of
irreducibility [b]a relative to b in ab.

A continuum is said to be decomposable if it can be represented as a
union of two proper subcontinua; otherwise it is indecomposable. A contin-
uum is hereditarily decomposable if all its non-degenerate subcontinua are
decomposable.

By a λ-dendroid we mean a continuum that is both hereditarily decom-
posable and hereditarily unicoherent. By a standard result of the theory of
irreducible continua (cf. [6, p. 239, Final conclusion]), a hereditarily unico-
herent continuum X is a λ-dendroid if and only if for any two points a and
b of X the sets of irreducibility [a]b and [b]a are continua. They are disjoint
(and nowhere dense in ab) whenever ab is non-degenerate, i.e. whenever
a 6= b.

2.1. Lemma ([9, Props. 13 and 14]). For any continua ab and bc in a
λ-dendroid , if [b]c  [b]a, then ab ∩ bc ⊂ ac, and then ab ∪ bc = ac and
[a]c = [a]b.

A space Z has the fixed point property if every continuous function f of
Z into itself has a fixed point, i.e. a point z ∈ Z such that z = f(z).

Notation. From now on, X will denote an arbitrary non-degenerate
λ-dendroid and I will stand for a closed interval of real numbers. Arguing
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by contradiction, we let f denote a fixed point free continuous function of
X × I into itself. Denoting by π the projection of X × I onto X, we set

F (x) = π(f({x} × I)) for all x ∈ X.
This formula assigns to every x ∈ X a (non-void) subcontinuum F (x)

of X; F will be called the c-function induced in X by the function f . We
define the image F (K) of a set K ⊂ X by the formula

F (K) =
⋃

x∈K
F (x).

Since the c-function F induced by f is upper semicontinuous, i.e. the
(upper) counter-image F−1(S) = {x ∈ X : F (x) ∩ S 6= ∅} is closed if S is a
closed subset of X, from [9] we obtain

2.2. Lemma. There exists a ∈ X such that a ∈ F (a) (a fixed point of F ).

Since for every arc A ⊂ X the image F (A) is an arcwise connected (even
locally connected) continuum, it follows that the arc component Y of a in
X is mapped into itself by F : F (Y ) ⊂ Y . Note that Y is uniquely arcwise
connected, i.e. any two points of Y are joined by a unique arc in Y ; this
follows directly from the hereditary unicoherence of the λ-dendroid X.

By the upper semicontinuity of F , we also have the equality F (
⋂∞
n=1 Kn)

=
⋂∞
n=1 F (Kn) for every decreasing sequence of continua Kn+1 ⊂ Kn ⊂ X,

n = 1, 2, . . . Therefore, by the Brouwer reduction theorem, we have

2.3. Lemma. For every continuum C ⊂ X such that C∩F (C) 6= ∅ there
exists a continuum K ⊂ C which is minimal with respect to the property
K ∩ F (K) 6= ∅; it has the property that K = aa′ for every a′ ∈ K ∩ F (K)
and a ∈ K such that a′ ∈ F (a).

For any three points a, b, c ∈ X, by the hereditary unicoherence of X,
the condition (i) b ∈ ac, is equivalent to each of the following: (ii) ab ⊂ ac,
(iii) bc ⊂ ac, (iv) ab∪bc = ac; if both ab and bc are arcs, then each of (i)–(iv)
is equivalent to (v) ab ∩ bc = {b}.

3. Families Fa and F of subcontinua of X and auxiliary theo-
rems. For a ∈ X consider the family Fa of all non-degenerate irreducible
continua ab ⊂ X such that [b]a ∩ F ([b]a) 6= ∅ and for every p ∈ ab− [b]a the
irreducible continuum pb is not an arc.

Given ab ∪ bc = ac ⊂ X such that bc ∈ Fb, we have obviously ac ∈ Fa,
and in the case when b ∈ ac− [c]a we have bc ∈ Fb if and only if ac ∈ Fa.

The following three theorems on the families Fa will play a crucial role
in the proof of the Main Theorem 1.1. The first of them summarizes most
of the results of [10]. To present it, recall that by a ray in a space Y we
mean the image R = ϕ([0,∞)) of a continuous injection ϕ : [0,∞) → Y .



104 R. Mańka

The canonical linear order ≤ on [0,∞) can be carried over via ϕ to R. The
point ϕ(0) is independent of the parametrization and it is called the origin
of R. For p ∈ R, we denote by R(p) the subray R(p) = {q ∈ R : p ≤ q}. By
the limit of the ray R we mean the set L(R) =

⋂{clR(p) : p ∈ R}. Clearly,
clR = R ∪ L(R).

It follows directly from [10, Thm. 2.2] that for every b ∈ L(R) the closure
clR of a ray R in the λ-dendroid X is irreducible between the origin a of
R and b, and L(R) = [b]a (considering a ray R in the λ-dendroid X, we
consider R simultaneously in the arc component Y of a in X).

By a pursuit ray of the c-function F we mean a ray R = ϕ([0,∞)) ⊂
X such that there are arbitrarily large τ ∈ [0,∞) such that ϕ([0, τ ]) is
contained in an arc ϕ(0)q′ for some q′ ∈ F (ϕ(τ)). Obviously, if the pursuit
ray R is not contained in an arc in X then for an arbitrary point a of the
arc component of R in X we can find an arc ap for some p ∈ R so that
ap ∪R(p) is still a pursuit ray of F in X. Therefore, we have

3.1. Theorem (cf. [10, Thms. 3.1 and 3.2]). For every a ∈ X such that
a ∈ F (a) there exists ab ∈ Fa such that ab− [b]a is a pursuit ray of F .

Denote by F the family of all non-degenerate subcontinua C of X such
that C ∩ F (C) 6= ∅ and for every p ∈ X the following condition holds:

(∗) for every pq ∈ Fp such that [p]q  C we have pq ⊂ C.
3.2. Theorem. For every continuum ab ∈ Fa there exists a continuum

ac ⊂ X which contains ab and is maximal with respect to the property

(∗∗) ac ∈ Fa and [a]c = [a]b,

and then [c]a ∈ F .

Proof. Firstly, we prove that for any continuum ac ⊂ X which is maxi-
mal with respect to the property (∗∗) we have [c]a ∈ F .

Indeed, [c]a ∩ F ([c]a) 6= ∅ because ac ∈ Fa by (∗∗). By Lemma 2.1, also
(∗) holds for C = [c]a. It remains to show that [c]a is non-degenerate.

If, on the contrary, [c]a = {c} then c ∈ F (c). Hence, by Theorem 3.1,
there exists cd ∈ Fc such that cd − [d]c is a ray. Since ac ∈ Fa, it follows
that ac∩ cd ⊂ [c]a. By Lemma 2.1, ac ⊂ ad and [a]c = [a]d. Since cd ∈ Fc, it
follows that ad ∈ Fa. By the assumed maximality of ac, the inclusion ac ⊂ ad
implies ac = ad. Hence cd ⊂ [c]a because the last set is a subcontinuum of
the λ-dendroid X. But cd is non-degenerate, being a member of Fc, and this
is a contradiction.

It remains to prove that for every ab ∈ Fa there exists ac ⊂ X which
contains ab and is maximal with respect to (∗∗).

Given a strictly increasing sequence of irreducible continua abn ∈ Fa
such that [a]bn = [a]b1 and ab ⊂ abn for n = 1, 2, . . . it suffices to observe,
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by the dual to the Brouwer reduction theorem (Milgram [11, Thm. 3]; cf.
[9, p. 115]), that there exists c ∈ X such that ac = cl

⋃∞
n=1 abn (by [9,

Remark 2]) and to prove that then ac ∈ Fa and [a]c = [a]b1 .

Claim. The sequence of irreducible continua bnc ⊂ ac, n = 1, 2, . . . , is
decreasing with

⋂∞
n=1 bnc = [c]a, and bnc is not an arc for every n = 1, 2, . . .

Indeed, for every n we have bn+1 6∈ abn, and abn ∪ bnc = ac, thus bn+1 ∈
bnc, i.e. bn+1c ⊂ bnc for n = 1, 2, . . .

To prove the equality in the Claim observe that abn  ac and abn ∪
bnc = ac for all n, and hence [c]a ⊂

⋂∞
n=1 bnc by the definition of [c]a. For

the converse inclusion, let p ∈ ac − [c]a and assume that, on the contrary,
p ∈ ⋂∞n=1 bnc. Then U = ac− (ap ∪ [p]c) is an open neighborhood of [c]a in
ac and lies outside of all abn: abn ∩U = ∅, n = 1, 2, . . . Then cl

⋃∞
n=1 abn is

disjoint from the non-empty subset U of ac, which contradicts the equality
ac = cl

⋃∞
n=1 abn.

Finally, we have bnbn+i  abn+1 and bn ∈ abn+i − [bn+1]a so that, as
abn+1 ∈ Fa, the continua bnbn+1 are not arcs for each n. Since bn+1 ∈ bnc,
i.e. bnbn+1 ⊂ bnc, it follows that bnc is not an arc for each n, which proves
the Claim.

Now, to prove that ac ∈ Fa observe that [bn+1]a ⊂ bnc and [bn+1]a ∩
F ([bn+1]a) 6= ∅, since abn+1 ∈ Fa, for all n. Hence bnc ∩ F (bnc) 6= ∅ for all
n, and thus [c]a ∩ F ([c]a) 6= ∅ by the equality in the Claim.

For every p ∈ ac − [c]a we have ap ∪ pc = ac and bnc ∩ ap = ∅ for
sufficiently large n. Thus bnc ⊂ pc and hence pc is not an arc by the last
statement in the Claim.

Finally, if abn0 ⊂ [a]c for some n0, then [a]bn  [a]c for all n, and thus
ac ⊂ [a]c contrary to ac being non-degenerate. Therefore bn ∈ ac− [a]c and
then [a]c = [a]bn for all n = 1, 2, . . .

3.3. Theorem. For any two points a, a′ ∈ X such that

a′ ∈ F (a) and [a]a′ ∩ F ([a]a′) = ∅
there exists ab ∈ Fa such that [a]b = [a]a′ .

The proof of this theorem will occupy Sections 5–7.

4. Theorems 3.1–3.3 imply the Main Theorem 1.1. The auxil-
iary Theorems 3.1–3.3 yield a procedure of constructing sequences of non-
degenerate irreducible continua in the λ-dendroid X, each contained in a
set of irreducibility of the previous one. The idea of the proof of the Main
Theorem is to show that 1o this procedure must end and 2o it can be con-
tinued without end. This contradiction will prove the fixed point property
of X × I.



106 R. Mańka

1o The family F contains a minimal element , i.e. one contained in no
other element of F .

Indeed, in view of Lemma 2.2, Theorems 3.1 and 3.2 directly imply that
F is non-empty. By the Brouwer reduction theorem, it suffices to show that
for any decreasing sequence Cn ∈ F we have

⋂∞
n=1 Cn ∈ F . Obviously,

setting C =
⋂∞
n=1 Cn, we have C ∩ F (C) 6= ∅ and also (∗) is satisfied. It

remains to prove that C is non-degenerate.
Assume, to get a contradiction, that C = {a} for some a ∈ X. Then

a ∈ F (a) and, by Theorem 3.1, there exists ab ∈ Fa such that [a]b = {a}.
Since all the continua Cn are non-degenerate, we have [a]b  Cn for all n.
Therefore ab ⊂ Cn for all n, and thus ab ⊂ C. Since ab is non-degenerate,
being a member of Fa, it follows that C is non-degenerate, a contradiction.

2o The family F contains no minimal element , i.e. for every C ∈ F
there exists C0 ∈ F such that C0  C.

Namely, take a continuum K ⊂ C which is minimal with respect to the
property K ∩ F (K) 6= ∅ so that K = aa′ for some a, a′ ∈ X such that
a′ ∈ F (a) (cf. Lemma 2.3). We show that

[a]a′  C and [a]a′ = [a]b for some ab ∈ Fa.
If a = a′ then [a]a′ reduces to the point {a} and hence, C being non-

degenerate as a member of F , we have the proper inclusion needed; the
equality follows too because we have a ∈ F (a) and Theorem 3.1 applies.

If a 6= a′ then [a]a′ , is a proper subcontinuum of aa′ = K and thus
[a]a′ ∩ F ([a]a′) = ∅ by the minimality of K. Hence we also have [a]a′  
aa′ ⊂ C, and the equality needed follows by Theorem 3.3.

Now, by Theorem 3.2, there is a continuum ac ∈ Fa such that [a]c = [a]b
and [c]a ∈ F . Therefore, from [a]c  C and C ∈ F , it follows that ac ⊂ C.
Since obviously [c]a  ac, we can set C0 = [c]a.

5. A fixed point lemma. In this section, Y is a uniquely arcwise con-
nected space. The unique arc between p, q ∈ Y will be denoted by pq. Obvi-
ously, for any two arcwise connected subsets A and B of Y the intersection
A ∩B is arcwise connected.

Let F be any upper semicontinuous continuum-valued function mapping
a non-degenerate arc p0q0 ⊂ Y onto Y : F (p0q0) = Y (in particular, F can
be determined on the arc p0q0 only), such that for every proper subarc A of
p0q0 the image F (A) is an arcwise connected continuum. We are going to
prove

5.1. Lemma. If there exist p′0 ∈ F (p0) and q′0 ∈ F (q0) such that p0 ∈
p′0q0 and q0 ∈ q′0p0, then there exists r0 ∈ p0q0 such that r0 ∈ F (r0).
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Proof. We can assume that p0 6∈ F (p0) and q0 6∈ F (q0) so that

F (p0) ∩ p0q0 = ∅ and F (q0) ∩ p0q0 = ∅.
Indeed, we have p0 ∈ p′0q0 for some p′0 ∈ F (p0) by assumption.
If there were r ∈ p0q0 such that r ∈ F (p0) then r 6= p0 and thus p0 6∈ rq0.

Since rp′0 ⊂ F (p0), F (p0) being arcwise connected by the assumption on
F , it follows that p0 6∈ rp′0. Thus p0 6∈ rq0 ∪ rp′0 and hence p0 6∈ p′0q0,
a contradiction proving the first equality needed; the second one follows
dually.

Therefore, by the upper semicontinuity of F , there exist p1, q1 ∈ p0q0

such that

(1) F (p0p1) ∩ p0q0 = ∅ and F (q1q0) ∩ p0q0 = ∅
and p0 < p1 < q1 < q0 in the natural order < from p0 to q0 in p0q0.

Let Φ be the family of all arcs p0p− {p} ⊂ p0q0 such that

(2) r ∈ r′q0 for every r′ ∈ F (r) and p0 ≤ r < p < q0,

and define r0 to be the end of the union of all arcs in Φ (other than p0).
The family Φ is non-empty, namely p0p1 − {p1} ∈ Φ.
Indeed, take r′ ∈ F (r) for p0 ≤ r < p1. Then p′0r

′ ⊂ F (p0p1), the
image F (p0p1) being arcwise connected, and obviously r′p0 ⊂ r′p′0 ∪ p′0p0.
It follows, in view of (1) (first equality), that r′p0 ∩ p0q0 = {p0}. Then
r′q0 = r′p0 ∪ p0q0. Since r ∈ p0p1 ⊂ p0q0, it follows that r ∈ r′q0.

Thus Φ is non-empty and we have

p0 < p1 ≤ r0 < q0.

We need to prove only the last inequality. To this end, assume on the
contrary that r0 = q0. Then for q1 < r < p < q0, p0p − {p} ∈ Φ, i.e. (2)
holds. But r′q′0 ⊂ F (q1q0), and r′q0 ⊂ r′q′0 ∪ q′0q0. It follows, in view of (1)
(second equality), that r′q0 ∩ q0p0 = {q0}. By (2), we have r ∈ r′q0. Since
r ∈ p0q0, it follows that r = q0, a contradiction.

Now, we prove that r0 ∈ F (r0). Assume that r0 6∈ F (r0). By the upper
semicontinuity of F , it follows that

(3) F (s0t0)∩ s0t0 = ∅ for some s0 and t0 such that p0 < s0 < r0 < t0 < q0.

Then we have

(4) r∗s0 ∩ s0q0 = {s0} for every r∗ ∈ F (s0t0).

Indeed, setting r = s0 and taking p such that s0 < p < r0, we have
p0p− {p} ∈ Φ, i.e. by (2), s0 ∈ s′0q0 for every s′0 ∈ F (s0). Hence

s′0s0 ∩ s0q0 = {s0},
and s′0r

∗ ⊂ F (s0t0) by assumption on F . It follows by (3) that

s′0r
∗ ∩ s0t0 = ∅,
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and obviously s0r
∗ ⊂ s0s

′
0 ∪ s′0r∗. Therefore, we have

{s0} ⊂ s0r
∗ ∩ s0q0 ⊂ s0s

′
0 ∩ s0q0 ∪ s′0r∗ ∩ s0q0 ⊂ {s0} ∪ t0q0.

Since the intersection s0r
∗ ∩ s0q0 is an arc, (4) follows.

Finally, take any p2, r2 ∈ p0q0 such that s0 < r0 ≤ r2 < p2 < t0,
and let r′2 ∈ F (r2). Then r′2s0 ∩ s0q0 = {s0} by (4) and hence we have
r′2s0 ∪ s0q0 = r′2q0. Since r2 ∈ s0q0, it follows that r2 ∈ r′2q0. But, of course,
p0r0 − {r0} ∈ Φ. Hence p0p2 − {p2} ∈ Φ for any p2 ∈ r0t0 − {t0}, which
contradicts the meaning of r0, concluding the proof of Lemma 5.1.

6. Families Pa, P∗a of irreducible continua in the λ-dendroid X.
Given irreducible continua ab and ac in the λ-dendroid X, we write ab ≺ ac
if and only if [a]b = [a]c 6= ab ∩ ac (thus there is a common portion ap of
continua ab and ac). This is equivalent to saying (cf. [9, Prop. 1]) that a 6∈ bc.
Thus we then have a 6= b and a 6= c, i.e. ab and ac are non-degenerate.

For an arbitrary upper semicontinuous continuum-valued function F
mapping X into itself, we say that ab ∈ Pa [9, p. 113] if ab ≺ aa′ for
all a′ ∈ F (a) and for every p ∈ ab− [b]a there exist q0, r ∈ pb− [p]b such that

pq0 ⊂ pr ⊂ pb and q0r ≺ q0q
′
0 for all q′0 ∈ F (q0).

Note that if the irreducible continuum pb is an arc, the above is equivalent
to saying that there exists q0 ∈ pb such that (cf. [9, (IV), (V), Prop. 2 and
Def. 3])

{p} 6= pq0 ⊂ pb− {b} and q0b ≺ q0q
′
0 for all q′0 ∈ F (q0).

Then it follows that (cf. [9, Prop. 6])

(5) pq0 ⊂ pq′0 and q0 6∈ bq′0 for all q′0 ∈ F (q0).

We shall write ab ∈ P∗a if ab ∈ Pa and p 6∈ F (p) for all p ∈ ab− [b]a. As
in [9, proof of Lemma 2] we obtain

6.1. Proposition. If a′ ∈ F (a) and [a]a′ ∩ F ([a]a′) = ∅, then there
exists an irreducible continuum ab0 ⊂ X which is maximal in P∗a , and then
[a]b0 = [a]a′ .

Also the following proposition has the same proof as in [9].

6.2. Proposition. If an irreducible continuum ab0 ⊂ X is maximal in
P∗a and [b0]a ∩ F ([b0]a) = ∅, then for every b′0 ∈ F (b0) we have ab0 ∩ b0b′0 ⊂
[b0]a (cf. [9, Prop. 13 and Lemma 3]), and there exists an irreducible contin-
uum b0s ⊂ X such that

(i) b0s ⊂ [b0]b′ ([9, (15)]);
(ii) [b0]b′0 ∩ F (b0s− [s]b0) = ∅ ([9, (17)]);
(iii) there is d ∈ [s]b0 such that d ∈ F (d) ([9, pp. 119–120, the (degener-

ate) continuum K1]).
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7. Proof of Theorem 3.3. Consider the c-function F induced in the λ-
dendroid X by the fixed point free continuous function f : X×I → X×I. By
Proposition 6.1, take an irreducible continuum ab0 ⊂ X which is a maximal
member of P∗a . Then [a]b0 = [a]a′ for some a′ ∈ F (a).

We are going to prove that there is ab ∈ Fa such that [a]b = [a]b0 .

Case 1: [b0]a ∩ F ([b0]a) 6= ∅. We can consider the situation when, for
some p ∈ ab0 − [b0]a, the irreducible continuum pb0 is an arc (otherwise it
suffices to set b = b0). Thus we have

(6) [b0]a = {b0} and b0 ∈ F (b0).

By Theorem 3.1, there exists

(7) b0b ∈ Fb0
such that

(8) R0 = b0b− [b]b0 is a pursuit ray of F.

Claim. R0 6⊂ b0a.

To prove the Claim, assume on the contrary that

(9) R0 ⊂ b0a and let b0p be a non-degenerate subarc of R0.

By (8), there exist b0p0 ⊂ R0 and b0p
′
0 ⊂ X such that

(10) b0p ⊂ b0p0 ⊂ b0p′0, b0p
′
0 is an arc, p′0 ∈ F (p0).

Since ab0 ∈ P∗a ⊂ Pa, there exists (cf. (9) and (5))

(11) q0 ∈ b0p− ({p} ∪ F (q0)).

By (10), b0p′0 is an arc, and hence p′0p0 ∩ p0b0 = {p0}. Also, by (10) and
(11), we have q0 ∈ b0p0, i.e. p0q0 ⊂ p0b0. Therefore

{p0} ⊂ p′0p0 ∩ p0q0 ⊂ p′0p0 ∩ p0b0 ⊂ {p0},
and hence p′0p0 ∪ p0q0 = p′0q0, i.e.

(12) p0 ∈ p′0q0.

By (10), we also have p0p ∩ pb0 = {p}, and pq0 ⊂ pb0 by (11). Hence
p0p ∩ pq0 = {p}, i.e.

(13) p0p ∪ pq0 = p0q0 and p 6= q0

in view of (11). Hence q0 6∈ p0p. Take an arbitrary q′0 ∈ F (q0). Since q0 ∈ pq′0
in view of (5), and obviously pq′0 ⊂ pp0 ∪ p0q

′
0, it follows that

(14) q0 ∈ q′0p0.

Observe that

(15) p′0p0 ∩ p0q0 = {p0} and q′0q0 ∩ p0q0 = {q0}.



110 R. Mańka

Indeed, the first equality follows by (10) because p′0q0 is an arc by (10)
and (11). To prove the second equality in (15) (a priori, q′0q0 need not be
an arc), observe that q0b0 ∩ q′0q0 is a subarc q0t of the arc q0b0 (cf. (10)
and (11)):

q0t = q0b0 ∩ q0q
′
0

and (cf. (5))
q0 6∈ tq′0.

Also we have q0 ∈ b0p0 and thus

{q0} ⊂ p0q0 ∩ q0t ⊂ p0q0 ∩ q0b0 = {p0}.
Consequently, {q0} ⊂ p0q0 ∩ q0q

′
0 ⊂ p0q0 ∩ (q0t ∪ tq′0) = (p0q0 ∩ q0t) ∪

(p0q0 ∩ tq′0) = {q0}∪ (p0q0 ∩ tq′0). Since q0 6∈ tq′0, it follows by the hereditary
unicoherence of X that p0q0 ∩ q0q

′
0 = {q0}, which proves (15).

Simultaneously, by the hereditary unicoherence of X, we have p′0p0 ∩
q′0q0 = ∅, because otherwise there would be a smallest point u of the arc
p0p
′
0 (directed from p0 to p′0) which is common with q′0q0, so that p0u∪ uq0

would be a continuum irreducible between p0 and q0 other than the arc p0q0.
It follows in view of (15) that p0q0 ⊂ p′0q′0. Since p′0q

′
0 ⊂ F (p0q0), because

the image is arcwise connected, we have p0q0 ⊂ F (p0q0).
Thus all assumptions of Lemma 5.1 are satisfied (with Y = F (p0q0)) by

(12)–(14), and therefore there exists r0 ∈ p0q0 such that r0 ∈ F (r0) and
r0 6= q0 because q0 6∈ F (q0) by (11). Since p0q0 ⊂ p0b0 in view of (10) and
(11), we have r0 ∈ p0b0 − {b0}. Therefore r0 ∈ ab0 − [b0]a in view of (6).
Since ab0 ∈ P∗a , this is a contradiction proving the Claim.

By the Claim, there exists an arc b0e0 of the ray R0 (cf. (8)) such that
b0e0 = R0 ∩ ab0. Then

ae0 ∩ e0b = {e0}
so that ae0 ∪ e0b = ab (cf. Lemma 2.1). Since b0b ∈ Fb0 by (7), and e0 ∈
b0b− [b]b0 in view of (8), we have e0b ∈ Fe0 and thus ab ∈ Fa.

It remains to show that [a]b = [a]b0 .
If e0 6∈ [a]b0 , i.e. e0 ∈ ab0− [a]b0 , then [a]b0 = [a]e0 . Since ae0∩e0b ⊂ [e0]a

and thus [a]e0 = [a]b by Lemma 2.1, it follows that [a]b = [a]b0 .
If e0 ∈ [a]b0 , then [a]b0 = [e0]b0 = {e0}. Hence a = e0. Also, e0 ∈

b0b − [b]b0 and b0b − [b]b0 is a ray by (8). Therefore, {e0} = [e0]b = [a]b. It
follows that [a]b = [a]b0 .

Case 2: [b0]a ∩ F ([b0]a) = ∅. By Theorem 3.1, in view of Proposi-
tion 6.2(iii), there is db ∈ Fd such that

(16) R1 = db− [b]d is a pursuit ray of F,
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and we have simultaneously d ∈ F (d) ∩ [b0]b′0 , and

ab0 ∪ b0d = ad and [a]b0 = [a]d

in view of Lemma 2.1. Also, ad ⊂ ab and [a]d = [a]b on condition that
ad ∩ db ⊂ [d]a. Thus, it remains to prove the last inclusion. Assume that
(ad− [d]a)∩db 6= ∅. By (16) and the hereditary unicoherence of X, it follows
that there is a point

(17) p ∈ (ad− [d]a) ∩R1

and then we have the arc dp ⊂ R1. Also, for s as in Proposition 6.2, [d]a =
{d} = {s}. Hence there is a point

(18) e ∈ dp ∩ db0 − {d}
because ab0  ad, since d 6= b0 as b0 6∈ F (b0) in Case 2 and d ∈ F (d) by
Proposition 6.2. Simultaneously, b0d ⊂ [b0]b′0 and [b0]b′0 ∩ F (b0e) = ∅ (ibid.,
(i) and (ii)), and

(19) [b0]b′0 is not a point

and [b0]b′0 = [e]b′0 . Taking any e′ ∈ F (e), we have e′b′0 ⊂ F (b0e). Con-
sequently, e 6∈ e′b′0 and thus ee′ ≺ eb′0. Therefore [e]e′ = [e]b′0 and thus
[e]e′ = [b0]b′0 . Hence, by (19),

(20) [e]e′ is not a point.

On the other hand, by (16) and (17), there exist dq ⊂ R1 and dq′ ⊂ X
such that

(21) dp ⊂ dq ⊂ dq′ and q′ ∈ F (q)

and

(22) dq′ is an arc.

Hence, e ∈ dp ⊂ dq′ by (17) and (21), and thus eq′ ⊂ dq′. Therefore, by (22),
eq′ is an arc, and thus e′e ∩ eq′ ⊂ [e]e′ because [e]e′ is not a point by (20).
It follows by Lemma 2.1 that e′e ⊂ e′q′ ⊂ F (eq). But eq is an arc, being
contained in the union de∪ dq of arcs dq (cf. (21) and (22)) and de (cf. (17)
and (18)). Since F (eq) is arcwise connected because F is induced by f , it
follows that ee′ is an arc, which contradicts (20).

This proves Theorem 3.3 and completes the proof of the Main Theorem.
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