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Dispersing cocycles and mixing flows under functions
by

Klaus Schmidt (Wien)

Abstract. Let T be a measure-preserving and mixing action of a countable abelian
group G on a probability space (X, 8, 1) and A a locally compact second countable abelian
group. A cocycle ¢: G x X — A for T disperses if limg_.o0 ¢(g,) — a(g) = oo in measure
for every map a: G — A. We prove that such a cocycle ¢ does not disperse if and only if
there exists a compact subgroup Ag C A such that the composition foc: G x X — A/Ag
of ¢ with the quotient map 6: A — A/Aq is trivial (i.e. cohomologous to a homomorphism
n:G — A/Ap).

This result extends a number of earlier characterizations of coboundaries and trivial
cocycles by tightness conditions on the distributions of the maps {c(g,-) : ¢ € G} and
has implications for flows under functions: let T' be a measure-preserving ergodic auto-
morphism of a probability space (X,8,u), f: X — R be a nonnegative Borel map with
S fdp =1, and T7 be the flow under the function f with base T'. Our main result implies
that, if T' is mixing and T' is weakly mixing, or if T is ergodic and T7 is mixing, then
the cocycle f: Z x X — R defined by f disperses. The latter statement answers a question
raised by Mariusz Lemanczyk in [7].

1. Dispersion of cocycles

DEFINITION 1.1. Let T:g — T, be a measure-preserving action of a
countable additive abelian group G on a standard probability space (X, 8, ),
and let A be a locally compact second countable additive abelian group with
identity element 0. A Borel map c: G x X — A is a cocycle for T if

c(g, Thz) + c(h,x) = c(g + h,z)

for every g,h € G and z € X. Two cocycles ¢,c’: G x X — A are cohomolo-
gous if there exists a Borel map b: X — A such that

(1.1) c(g,r) = (g,z) + b(Tyx) — b(x)
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for every g € G and p-a.e. x € X. The map b in (1.1) is called a trans-
fer function. If ¢ is cohomologous to the zero cocycle ¢/ = 0 then c is a
coboundary with transfer (or cobounding) function b.

Let ¢:G x X — A be a cocycle. The cocycle ¢ is a homomorphism if
the map ¢(g,-): X — A is constant for every g € G, and c is trivial if it is
cohomologous to a homomorphism.

The cocycle ¢ is bounded (in measure) on a subset H C G if there exists,
for every € > 0, a compact subset C C A with

(1.2) u{z:c(g,x) €eC}) >1—¢

for every g € H.
The cocycle c is translation-bounded on a subset H C G if there exist,
for every € > 0, a map a: H — A and a compact subset C' C A with

(1.3) p({z:clg, ) —alg) €Cl) >1-¢
for every g € H.

If H =G in (1.2) or (1.3) then c is said to be bounded or translation-
bounded, respectively.

Finally, the cocycle ¢ disperses if limg .o ¢(g, ) — a(g) = oo in measure
for every map a: G — A or, equivalently, if

(1.4) lim sup pu({x € X : ¢(g,2) —a € C}) =0
g—ooacA

for every compact set C C A.

It has long been known that a cocycle ¢:G x X — R is a cobound-
ary if and only if it is bounded in the sense of Definition 1.1 (cf. [9, The-
orem 11.8]). More generally, if A is a locally compact second countable
abelian group and ¢:G x X — A a bounded cocycle, then ¢ is cohomolo-
gous to a cocycle taking values in a compact subgroup Ay C A (for exten-
sions of this result with varying degrees of generality see [8, Theorem 5.2],
[10, Theorem 4.7] and [1]). Furthermore, if A = R, then c¢ is trivial if and
only if it is translation-bounded (cf. [8, Theorem 6.2]).

More recently it was shown that, if 7' is mixing, then boundedness (or
translation-boundedness) of a cocycle ¢:G x X — R on an infinite subset
H C G also implies triviality. The first published result in this direction
is [1, Theorem 2], where it is proved that, for a mixing action of G = Z,
translation-boundedness of a cocycle ¢: Z x X — R on some infinite subset
H C G implies triviality of ¢, and boundedness of ¢ on H implies that c is
a coboundary. These results can break down for Z-actions which are only
mildly mixing (cf. [1]).

In this note we prove the following extension of [1, Theorem 2].

THEOREM 1.2. Let T be a measure-preserving and mixing action of a
countable abelian group G on a standard probability space (X,8,u), A a



Dispersing cocycles 193

locally compact second countable abelian group and c¢:G x X — A a cocycle
for T'. The following conditions are equivalent:

(1) The cocycle ¢ does not disperse (cf. (1.4)).

(2) There exists a compact subgroup Ay C A such that the composition
foc:Gx X — A/Ag of ¢ with the quotient map 0: A — A/Ag is a trivial
cocycle.

For the proof of Theorem 1.2 we need a little bit of notation. Let T" be a
continuous action of a countable abelian group G on a compact metrizable
space X and p be a T-invariant Borel probability measure on X. We denote
by A ={(x,z) : x € X} the diagonal in X x X and define the “diagonal”
probability measure pa on X x X by setting

pal{(z,2) : x € B}) = u(B)
for every Borel set B C X. For every g € G, the “off-diagonal” probability
measure

(1.5) vg = (Tg x Idx)«(pa)

is the self-joining of u supported on the graph {(Tyz,z) : x € X} of Tj,.
Theorem 1.2 is an easy consequence of the following proposition.

PROPOSITION 1.3. Let T be a continuous action of a countable abelian
group G on a compact metrizable space X, p a T-invariant and weakly
mixing Borel probability measure on X, A a locally compact second countable
abelian group and c¢:G x X — A a cocycle for T. Suppose that there exists
a sequence (hy, :n > 1) in G with the following properties:

(1) limy,— 0o v, = p X w in the topology of weak convergence;

(2) There exist an € > 0, a compact set C C A and elements «,, € A,
n > 1, with
(1.6) p{z € X :c(hp,x) —a, € C}) >¢e  for every n > 1.

Then there exists a compact subgroup Ag C A such that the composition
Qoc:Gx X — AJ/Ay of ¢ with the quotient map 0: A — A/Ag is trivial.

For the proof of Proposition 1.3 we require an elementary lemma closely
related to [10, Lemma 4.4].

LEMMA 1.4. Let T be a measure-preserving and ergodic action of a
countable abelian group G on a standard probability space (X,8,u), A a
locally compact second countable abelian group and c:G x X — A a cocycle
for T. We define the skew-product action T'9) of G on'Y = X x A by setting

Tg(C) (ZE, CL) = (Tgxa C(gv .’L’) + (I)

for every g € G and (z,a) €Y.
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If there exists a T'©) -invariant probability measure o on'Y with m(0) = 1
(where m:Y — X is the first coordinate projection), then c is cohomologous
to a cocycle ¢ taking values in some compact subgroup Ay C A.

Conversely, if ¢ is cohomologous, with transfer function b, to a cocycle
d:Gx X — Ay, where Ag C A is a compact subgroup with normalized Haar
measure Aa,, then the probability measure o on Y, defined by

[£do= ([ £(a+ b)) dray(a) du(a)
for every bounded Borel map f:Y — R, is T -invariant and m(0) = 1.

Proof. Choose a Borel measurable family of probability measures {o, :
x € X} on A such that

V£ do=\\f(x,t) do.(t) do(x)
for every bounded Borel map f:Y — A. Since o is T (©)_invariant,

o1,e(B +c(g,2)) = 0.(B)  for p-a.e. z € X,

for every Borel set B C A and every g € G. We fix a nonnegative continuous
map ¢: A — R with compact support such that ¢(0) > 0. For every z € X,
the map a — {¢(a + s) do,(s) = ¢(z,a) from A to R is continuous, not
everywhere equal to zero, and vanishes at infinity. Furthermore, the resulting
Borel map ¢: X x A — R is T(9-invariant, and for some ¢ > 0 the Borel set

K ={(z,a) €Y :¢Y(z,a) > e}
is nonempty and again 7(%-invariant. For every z € X, the set
K,={a€A:(z,a) € K}
and the subgroup
Ay ={acA:a+ K, = K;}

are both compact, and the ergodicity of T and the T(9-invariance of K
imply that there exists a compact subgroup Ag C A with A, = A for p-a.e.
x € X. By using one of the standard selection theorems (cf. e.g. Kunugui’s
theorem in [5]-[6]) we can choose a Borel map b: X — A with b(z) € K, for
p-a.e. x € X and conclude that c(g, ) +b(x) — b(Tyx) € Ap for every g € G
and p-a.e. z € X.

The final statement of the lemma is obvious. =

Proof of Proposition 1.3. Let T: g+ Ty x Ty denote the diagonal action
of Gon X =X x X, and let ¢: G x X — A be the cocycle

(g, (z1,22)) = c(g, 1) — c(g, 2)
for T. The cocycle equation (2.1) yields
(1.7) c(g, Thnx) —c(g,x) = c(hy, Tg'f) — c(hp, )
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for every ¢ € G and n > 1. For every n > 1 we define b: X — A by
bn(x1,x2) = c(hp,x2) — ay and conclude from (1.7) that

E(gv (%1,.’1}2)) = bn © Tg($17x2) - bn(xl,qu)
for every g € G and (x1,22) € (T}, x Idx)(4), i.e. ¢ is a coboundary with

cobounding function b,, with respect to the T—invaEiant measure v, = U, .
We denote by o, the probability measure on ¥ = X x A with

on({(Th, . 2,ba(Th,2,2)) : z € BY) = u(B)
for every Borel set B C X and observe as in Lemma 1.4 that g, is the

unique T(©-invariant probability measure supported on the graph of b, with
Tx(0n) = Vn, where m: X x A — X is the projection map. If

A, ={x € X :b,(x) € C},
where C' C A is the compact set appearing in (1.6), then
(1.8) on(X x C) = Vn(Th_lAn X Ap) = u(Ap) > ¢

for every n > 1.

By going over to a subsequence of (h,), if necessary, we may take it
that the sequence of probability measures (o,) converges vaguely to a finite
measure g on Y, i.e. lim, . S fdon, = S f do for every continuous function
f:Y — A with compact support. According to (1.8),

o(X x C) > limsup g, (X x C) > &,
n—oo

which implies that o is nonzero. We set v = m,(p) and claim that

(1.9) V(B) < (1 x 1)(B)
for every Borel set B C X.

Indeed, let f: X — A be a continuous function, i/ C A an open neigh-
bourhood of the identity with compact closure, (D,, : m > 1) a sequence
of compact subsets of A with D,,»1 D Dy, + U for every m > 1 and
Uys1 Dm = A, and let, for every m > 1, ¢ A — A be a continuous
map with ¢, (a) = 1 for a € D, and ¢,,(a) = 0 for a & D,, +U. We set
fm(x1,22,0) = f(21,22)dm(a) and observe that

{fmdo= lim | frdon < lim { fdvy ={fd(uxp).
By letting m — oo we obtain

\fdv= smgrigfmdgggfd(uxu)-

As f was arbitrary, this proves (1.9).
Since each of the probability measures g,, is invariant under the skew-
product action

T (21,22, a) = (Tyz1, Tyz2, (g, (z1,22)) + a)
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of G on Y, the same (!) is true for o, and hence the measure v on X
is invariant under T. From (1.9) and the ergodicity of u x p it is clear
that (1/v(X))v = v/ is a T-invariant probability measure on X which is
absolutely continuous with respect to, and hence equal to, p X u, and that
the probability measure o' = (1/0(Y))o = (1/v(X))e on Y is invariant
under T(®) and satisfies . (o') = p X p.

By Lemma 1.4 there exists a compact subgroup Ag C A such that f#o¢c
is a coboundary, where 6: A — A" = A/A, is the quotient map.

In order to simplify notation a little we set @ = oG x X — A’
and ¢ = 0oc:G x X — A'. In the notation of [8, (6.1) and Theorem
6.2(4)] we have proved that j.(¢') =0, i.e. ¢ € I3(A’) in the notation of [8,
(7.5)]. As p is weakly mixing, the triple diagonal action 7' x T' x T of G on
(X x X x X, pux pxp)is ergodic, and [8, Corollary 7.2] shows that I'x(A’) =
I'h(A’) in the notation of [8, (7.3)—(7.5)]. Hence ¢’ is a homomorphism in the
terminology of [8] or is trivial in our terminology. m

Proof of Theorem 1.2. We assume without loss in generality that X is a
compact metric space and that the G-action T' on X is continuous (cf. [11]).

If (1.4) is violated, then there exist an € > 0, a compact set C' C A, an
infinite subset H C G, and elements «j, € A, h € H, with

p{z e X :e(h,x) —ap e C}) > ¢

for every h € H. We can thus choose a sequence (h,) in H with lim, . hy,
= oo which satisfies the conditions of Proposition 1.3. Hence there exists a
compact subgroup Ay C A such that the composition foc: G x X — A/Ay
of ¢ with the quotient map §: A — A/Ap is trivial. This proves that (1)=(2),
and the reverse implication (2)=-(1) is obvious. =

2. Mixing flows under functions. In order to apply Theorem 1.2
(or, more precisely, Proposition 1.3) to mixing properties of flows under
functions we let T' be a measure-preserving automorphism of a standard
probability space (X, 8, ) and f: X — R a Borel map with { fdu =1 and
f(x) > 0 for every x € X. For every n € Z and = € X we set

SIS f(TR) if >0,
0 ifn=20,
—f(—n,T"z) ifn<O.

(2.1) f(n,z) =

(1) In order to see this, consider the ring R of all Borel sets B CY with the property
that TE,C) (B) has compact closure and boundary measure Q(@(T§C>B))_: 0 for every g € G.

By assumption, o(B) = lim,—co 0n(B) = limy— 00 0n (TéE)B) = g(TéC)B)_fo_r every g € G
and B € R. Since R generates the Borel field of Y this proves that o is T(®)_invariant.
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The resulting map f:Z x X — R is a cocycle for T (or for the Z-action
n+— T" on (X,8,u)). We define an equivalence relation R/ on X x R by
saying that

(z,t) ~ (T"x,t — £(n,x))

for every (z,t) € X xT and n € Z. The “vertical” flow Sy: (z,t') — (x,t+1),
(z,t') € X x R, t € R, preserves this equivalence relation and thus induces
a flow t — S’tf on the space (X x R)gs of equivalence classes of R'. The
set

X' ={(z,t):zeX,0<t< f(z)}

intersects each equivalence class of Rf in exactly one point and may thus be
identified with (X x R)ps. We denote by 8/ the Borel field of X/ ¢ X x R,
write A for the Lebesgue measure on R, pf for the restriction to X/ ¢ X xR
of the product measure p x A, and T7 for the measure-preserving flow in-
duced by S on the probability space (X7, 87, uf). This flow is usually called
the flow under the function f with base T.

Several authors have studied conditions on f for a given ergodic base T
which determine whether the flow 7/ is mixing (cf. e.g. [3], [4], [2], [7] and the
references listed there). In [7] the author proves the following result under
the additional hypothesis that 7" is an irrational rotation on X = R/Z, and
asks whether Corollary 2.1 (under hypothesis (2)) holds for more general
classes of ergodic automorphisms ([7, Remarque 2]).

COROLLARY 2.1. Let T be a measure-preserving automorphism of a
standard probability space (X,8, 1), f: X — R be a Borel map with § f dp=1
and f(x) > 0 for every x € X, and T be the flow under f with base T
on the probability space (Xf,Sf,uf). Suppose that either of the following
conditions is satisfied:

(1) T is mizing and T7 is weakly mizing;
(2) T7 is mizing.

Then the cocycle £:7 x X — R in (2.1) disperses in the sense of (1.4).

Proof. If T is mixing, then Theorem 1.2 with G = Z and A = R shows
that the cocycle f either disperses or is trivial, in which case the flow T7 is
not weakly mixing.

In order to prove dispersion of f under hypothesis (2) we may replace
f by a cohomologous function f’ = f +boT — b such that b: X — R is
measurable and f’ is bounded above and below by positive constants; this
will affect neither the hypotheses nor the conclusions of the corollary. We
assume therefore without loss of generality that there exist positive constants
c1 < ¢g such that ¢; < f(x) < ¢y for every x € X.
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Define a map F: X7 — R by

F(z,s)=1/f(z)
for every € X and s € [0, f(2)) and consider the cocycle c:R x X/ — R
given by
{ F(T!2)ds ift >0,
0 if t =0,
—e(~t,T/2) ift<o0.
For every positive ¢t we denote by d(t, z) the number of intersections of the
set {(2,0): 2 € X} C X/ with the trajectory {Tz: 0 < s < t}. Then

(2.2) c(t, z) =

(2.3) le(t,z) —d(t,2)| <2 and |t —£(d(t, (z,5)),x)| < 2e
for every t > 0 and z = (z,s) € X/, and
(2.4) \e(t,z)dp! (2) =t

for every t € R.

Suppose that (1.4) is not satisfied, i.e. that there exist an ¢ > 0, a
constant L > 0, an increasing sequence (m,) of positive integers, and a
sequence (t,) in R with

(2.5) p({x e X : |f(mp,z) —t,| < L}) > ¢
for every n > 1. According to (2.3) and (2.5),
W ({(z,5) € X7 2 |£(d(tn, (,5)), 2) = £(mn, 2)| < L+ 2¢2}) > ere,

hence
L+2
,uf<{z e X |d(tn, 2) —my| < + 02}> > cie,
C1

and the first inequality in (2.3) implies that

L+2
(2.6) Hf<{z e X7 1 e(tn, 2) — mn| < + o +2}> > cie

C1

for every n > 1. Since p/ is mixing and lim,,_,o t, = 0o by (2.5), limy, 00 14,
= uf x puf | where vy, is the off-diagonal measure (1.5) with p and g replaced
by uf and t,.

We choose a countable dense subgroup G C R which contains the se-
quence (t,). Since G is dense in R and uf x p/ is ergodic under the diagonal
R-action T7 x T/ on X7 x X/, the measure pu/ x puf is also ergodic under the
restriction of T x T to G, which implies that pf is weakly mixing under
the restriction of 7/ to G. According to (2.6) and Proposition 1.3 there exist
a homomorphism 7: G — R and a Borel map b: X/ — R such that

(2.7) c(t, z) = n(t) + b(T 2) — b(z)
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for every t € G and pf-a.e. z € Xf. From (2.4) we know that n(t) = ¢
for every t € G, and the continuity of the map t +— ¢(t,-) from R into
LY(X7,87, uf) in (2.2) guarantees that (2.7) holds for every t € R.

We re-trace our steps and conclude from (2.7) and (2.3) that the cocycle
f':7Z x X — R, defined by

f'(n,) =£f(n,") —n, nelZ,
is bounded in p-measure. By [9, Theorem 11.8], [8, Theorem 5.2] or [10,
Theorem 4.7] there exists a Borel map b: X — R with f(x) = 14+b6(Tz)—b(x)

for p-a.e. x € X, which implies that T is not even weakly mixing. This
contradiction resulting from (2.5) proves the corollary. m
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