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Dispersing cocycles and mixing flows under functions

by

Klaus Schmidt (Wien)

Abstract. Let T be a measure-preserving and mixing action of a countable abelian
group G on a probability space (X,S, µ) and A a locally compact second countable abelian
group. A cocycle c:G ×X → A for T disperses if limg→∞ c(g, ·)− α(g) = ∞ in measure
for every map α:G → A. We prove that such a cocycle c does not disperse if and only if
there exists a compact subgroup A0 ⊂ A such that the composition θ ◦ c:G×X → A/A0
of c with the quotient map θ:A→ A/A0 is trivial (i.e. cohomologous to a homomorphism
η:G→ A/A0).

This result extends a number of earlier characterizations of coboundaries and trivial
cocycles by tightness conditions on the distributions of the maps {c(g, ·) : g ∈ G} and
has implications for flows under functions: let T be a measure-preserving ergodic auto-
morphism of a probability space (X,S, µ), f :X → R be a nonnegative Borel map with�
f dµ = 1, and T f be the flow under the function f with base T . Our main result implies

that, if T is mixing and T f is weakly mixing, or if T is ergodic and T f is mixing, then
the cocycle f :Z×X → R defined by f disperses. The latter statement answers a question
raised by Mariusz Lemańczyk in [7].

1. Dispersion of cocycles

Definition 1.1. Let T : g 7→ Tg be a measure-preserving action of a
countable additive abelian groupG on a standard probability space (X, S, µ),
and let A be a locally compact second countable additive abelian group with
identity element 0. A Borel map c:G×X → A is a cocycle for T if

c(g, Thx) + c(h, x) = c(g + h, x)

for every g, h ∈ G and x ∈ X. Two cocycles c, c′:G×X → A are cohomolo-
gous if there exists a Borel map b:X → A such that

c(g, x) = c′(g, x) + b(Tgx)− b(x)(1.1)
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for every g ∈ G and µ-a.e. x ∈ X. The map b in (1.1) is called a trans-
fer function. If c is cohomologous to the zero cocycle c′ ≡ 0 then c is a
coboundary with transfer (or cobounding) function b.

Let c:G × X → A be a cocycle. The cocycle c is a homomorphism if
the map c(g, ·):X → A is constant for every g ∈ G, and c is trivial if it is
cohomologous to a homomorphism.

The cocycle c is bounded (in measure) on a subset H ⊂ G if there exists,
for every ε > 0, a compact subset C ⊂ A with

µ({x : c(g, x) ∈ C}) > 1− ε(1.2)

for every g ∈ H.
The cocycle c is translation-bounded on a subset H ⊂ G if there exist,

for every ε > 0, a map α:H → A and a compact subset C ⊂ A with

µ({x : c(g, x)− α(g) ∈ C}) > 1− ε(1.3)

for every g ∈ H.
If H = G in (1.2) or (1.3) then c is said to be bounded or translation-

bounded , respectively.
Finally, the cocycle c disperses if limg→∞ c(g, ·)− α(g) =∞ in measure

for every map α:G→ A or, equivalently, if

lim
g→∞

sup
a∈A

µ({x ∈ X : c(g, x)− a ∈ C}) = 0(1.4)

for every compact set C ⊂ A.

It has long been known that a cocycle c:G × X → R is a cobound-
ary if and only if it is bounded in the sense of Definition 1.1 (cf. [9, The-
orem 11.8]). More generally, if A is a locally compact second countable
abelian group and c:G × X → A a bounded cocycle, then c is cohomolo-
gous to a cocycle taking values in a compact subgroup A0 ⊂ A (for exten-
sions of this result with varying degrees of generality see [8, Theorem 5.2],
[10, Theorem 4.7] and [1]). Furthermore, if A = R, then c is trivial if and
only if it is translation-bounded (cf. [8, Theorem 6.2]).

More recently it was shown that, if T is mixing, then boundedness (or
translation-boundedness) of a cocycle c:G × X → R on an infinite subset
H ⊂ G also implies triviality. The first published result in this direction
is [1, Theorem 2], where it is proved that, for a mixing action of G = Z,
translation-boundedness of a cocycle c:Z×X → R on some infinite subset
H ⊂ G implies triviality of c, and boundedness of c on H implies that c is
a coboundary. These results can break down for Z-actions which are only
mildly mixing (cf. [1]).

In this note we prove the following extension of [1, Theorem 2].

Theorem 1.2. Let T be a measure-preserving and mixing action of a
countable abelian group G on a standard probability space (X, S, µ), A a
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locally compact second countable abelian group and c:G×X → A a cocycle
for T . The following conditions are equivalent :

(1) The cocycle c does not disperse (cf. (1.4)).
(2) There exists a compact subgroup A0 ⊂ A such that the composition

θ ◦ c:G ×X → A/A0 of c with the quotient map θ:A → A/A0 is a trivial
cocycle.

For the proof of Theorem 1.2 we need a little bit of notation. Let T be a
continuous action of a countable abelian group G on a compact metrizable
space X and µ be a T -invariant Borel probability measure on X. We denote
by ∆ = {(x, x) : x ∈ X} the diagonal in X ×X and define the “diagonal”
probability measure µ∆ on X ×X by setting

µ∆({(x, x) : x ∈ B}) = µ(B)

for every Borel set B ⊂ X. For every g ∈ G, the “off-diagonal” probability
measure

νg = (Tg × IdX)∗(µ∆)(1.5)

is the self-joining of µ supported on the graph {(Tgx, x) : x ∈ X} of Tg.
Theorem 1.2 is an easy consequence of the following proposition.

Proposition 1.3. Let T be a continuous action of a countable abelian
group G on a compact metrizable space X, µ a T -invariant and weakly
mixing Borel probability measure on X, A a locally compact second countable
abelian group and c:G×X → A a cocycle for T . Suppose that there exists
a sequence (hn : n ≥ 1) in G with the following properties:

(1) limn→∞ νhn = µ× µ in the topology of weak convergence;
(2) There exist an ε > 0, a compact set C ⊂ A and elements αn ∈ A,

n ≥ 1, with

µ({x ∈ X : c(hn, x)− αn ∈ C}) ≥ ε for every n ≥ 1.(1.6)

Then there exists a compact subgroup A0 ⊂ A such that the composition
θ ◦ c:G×X → A/A0 of c with the quotient map θ:A→ A/A0 is trivial.

For the proof of Proposition 1.3 we require an elementary lemma closely
related to [10, Lemma 4.4].

Lemma 1.4. Let T be a measure-preserving and ergodic action of a
countable abelian group G on a standard probability space (X, S, µ), A a
locally compact second countable abelian group and c:G×X → A a cocycle
for T . We define the skew-product action T (c) of G on Y = X×A by setting

T (c)
g (x, a) = (Tgx, c(g, x) + a)

for every g ∈ G and (x, a) ∈ Y .
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If there exists a T (c)-invariant probability measure % on Y with π∗(%) = µ
(where π:Y → X is the first coordinate projection), then c is cohomologous
to a cocycle c′ taking values in some compact subgroup A0 ⊂ A.

Conversely , if c is cohomologous, with transfer function b, to a cocycle
c′:G×X → A0, where A0 ⊂ A is a compact subgroup with normalized Haar
measure λA0 , then the probability measure % on Y , defined by

�
f d% =

���
f(x, a+ b(x)) dλA0(a) dµ(x)

for every bounded Borel map f :Y → R, is T (c)-invariant and π∗(%) = µ.

Proof. Choose a Borel measurable family of probability measures {%x :
x ∈ X} on A such that

�
f d% =

���
f(x, t) d%x(t) d%(x)

for every bounded Borel map f :Y → A. Since % is T (c)-invariant,

%Tgx(B + c(g, x)) = %x(B) for µ-a.e. x ∈ X,
for every Borel set B ⊂ A and every g ∈ G. We fix a nonnegative continuous
map φ:A→ R with compact support such that φ(0) > 0. For every x ∈ X,
the map a 7→

�
φ(a + s) d%x(s) = ψ(x, a) from A to R is continuous, not

everywhere equal to zero, and vanishes at infinity. Furthermore, the resulting
Borel map ψ:X ×A→ R is T (c)-invariant, and for some ε > 0 the Borel set

K = {(x, a) ∈ Y : ψ(x, a) ≥ ε}
is nonempty and again T (c)-invariant. For every x ∈ X, the set

Kx = {a ∈ A : (x, a) ∈ K}
and the subgroup

Ax = {a ∈ A : a+Kx = Kx}
are both compact, and the ergodicity of T and the T (c)-invariance of K
imply that there exists a compact subgroup A0 ⊂ A with Ax = A0 for µ-a.e.
x ∈ X. By using one of the standard selection theorems (cf. e.g. Kunugui’s
theorem in [5]–[6]) we can choose a Borel map b:X → A with b(x) ∈ Kx for
µ-a.e. x ∈ X and conclude that c(g, x) + b(x)− b(Tgx) ∈ A0 for every g ∈ G
and µ-a.e. x ∈ X.

The final statement of the lemma is obvious.

Proof of Proposition 1.3. Let T : g 7→ Tg × Tg denote the diagonal action
of G on X = X ×X, and let c:G×X → A be the cocycle

c(g, (x1, x2)) = c(g, x1)− c(g, x2)

for T . The cocycle equation (2.1) yields

c(g, Thnx)− c(g, x) = c(hn, Tgx)− c(hn, x)(1.7)
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for every g ∈ G and n ≥ 1. For every n ≥ 1 we define bn:X → A by
bn(x1, x2) = c(hn, x2)− αn and conclude from (1.7) that

c(g, (x1, x2)) = bn ◦ T g(x1, x2)− bn(x1, x2)

for every g ∈ G and (x1, x2) ∈ (Thn × IdX)(∆), i.e. c is a coboundary with
cobounding function bn with respect to the T -invariant measure νn = νhn .
We denote by %n the probability measure on Y = X × A with

%n({(Thnx, x, bn(Thnx, x)) : x ∈ B}) = µ(B)

for every Borel set B ⊂ X and observe as in Lemma 1.4 that %n is the
unique T (c)-invariant probability measure supported on the graph of bn with
π∗(%n) = νn, where π:X × A→ X is the projection map. If

An = {x ∈ X : bn(x) ∈ C},
where C ⊂ A is the compact set appearing in (1.6), then

%n(X × C) = νn(T−1
h An ×An) = µ(An) ≥ ε(1.8)

for every n ≥ 1.
By going over to a subsequence of (hn), if necessary, we may take it

that the sequence of probability measures (%n) converges vaguely to a finite
measure % on Y , i.e. limn→∞

�
f d%n =

�
f d% for every continuous function

f :Y → A with compact support. According to (1.8),

%(X × C) ≥ lim sup
n→∞

%n(X × C) ≥ ε,

which implies that % is nonzero. We set ν = π∗(%) and claim that

ν(B) ≤ (µ× µ)(B)(1.9)

for every Borel set B ⊂ X.
Indeed, let f :X → A be a continuous function, U ⊂ A an open neigh-

bourhood of the identity with compact closure, (Dm : m ≥ 1) a sequence
of compact subsets of A with Dm+1 ⊃ Dm + U for every m ≥ 1 and⋃
m≥1Dm = A, and let, for every m ≥ 1, φm:A → A be a continuous

map with φm(a) = 1 for a ∈ Dm and φm(a) = 0 for a 6∈ Dm + U . We set
fm(x1, x2, a) = f(x1, x2)φm(a) and observe that

�
fm d% = lim

n→∞

�
fm d%n ≤ lim

n→∞

�
f dνn =

�
f d(µ× µ).

By letting m→∞ we obtain
�
f dν = sup

m≥1

�
fm d% ≤

�
f d(µ× µ).

As f was arbitrary, this proves (1.9).
Since each of the probability measures %n is invariant under the skew-

product action

T (c)
g (x1, x2, a) = (Tgx1, Tgx2, c(g, (x1, x2)) + a)
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of G on Y , the same (1) is true for %, and hence the measure ν on X
is invariant under T . From (1.9) and the ergodicity of µ × µ it is clear
that (1/ν(X))ν = ν ′ is a T -invariant probability measure on X which is
absolutely continuous with respect to, and hence equal to, µ× µ, and that
the probability measure %′ = (1/%(Y ))% = (1/ν(X))% on Y is invariant
under T (c) and satisfies π∗(%′) = µ× µ.

By Lemma 1.4 there exists a compact subgroup A0 ⊂ A such that θ ◦ c
is a coboundary, where θ:A→ A′ = A/A0 is the quotient map.

In order to simplify notation a little we set c′ = θ ◦ c:G × X → A′

and c′ = θ ◦ c:G × X → A′. In the notation of [8, (6.1) and Theorem
6.2(4)] we have proved that j∗(c′) = 0, i.e. c′ ∈ Γ2(A′) in the notation of [8,
(7.5)]. As µ is weakly mixing, the triple diagonal action T × T × T of G on
(X×X×X,µ×µ×µ) is ergodic, and [8, Corollary 7.2] shows that Γ2(A′) =
Γ0(A′) in the notation of [8, (7.3)–(7.5)]. Hence c′ is a homomorphism in the
terminology of [8] or is trivial in our terminology.

Proof of Theorem 1.2. We assume without loss in generality that X is a
compact metric space and that the G-action T on X is continuous (cf. [11]).

If (1.4) is violated, then there exist an ε > 0, a compact set C ⊂ A, an
infinite subset H ⊂ G, and elements αh ∈ A, h ∈ H, with

µ({x ∈ X : c(h, x)− αh ∈ C}) ≥ ε
for every h ∈ H. We can thus choose a sequence (hn) in H with limn→∞ hn
= ∞ which satisfies the conditions of Proposition 1.3. Hence there exists a
compact subgroup A0 ⊂ A such that the composition θ ◦ c:G×X → A/A0
of c with the quotient map θ:A→ A/A0 is trivial. This proves that (1)⇒(2),
and the reverse implication (2)⇒(1) is obvious.

2. Mixing flows under functions. In order to apply Theorem 1.2
(or, more precisely, Proposition 1.3) to mixing properties of flows under
functions we let T be a measure-preserving automorphism of a standard
probability space (X, S, µ) and f :X → R a Borel map with

�
f dµ = 1 and

f(x) > 0 for every x ∈ X. For every n ∈ Z and x ∈ X we set

f(n, x) =





∑n−1
k=0 f(T kx) if n > 0,

0 if n = 0,
−f(−n, Tnx) if n < 0.

(2.1)

(1) In order to see this, consider the ring R of all Borel sets B ⊂ Y with the property
that T (c)

g (B) has compact closure and boundary measure %(∂(T (c)
g B)) = 0 for every g ∈ G.

By assumption, %(B) = limn→∞ %n(B) = limn→∞ %n(T (c)
g B) = %(T (c)

g B) for every g ∈ G
and B ∈ R. Since R generates the Borel field of Y this proves that % is T (c)-invariant.
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The resulting map f :Z × X → R is a cocycle for T (or for the Z-action
n 7→ Tn on (X, S, µ)). We define an equivalence relation Rf on X × R by
saying that

(x, t) ∼ (Tnx, t− f(n, x))

for every (x, t) ∈ X×T and n ∈ Z. The “vertical” flow St: (x, t′) 7→ (x, t+t′),
(x, t′) ∈ X × R, t ∈ R, preserves this equivalence relation and thus induces
a flow t 7→ Sft on the space (X × R)Rf of equivalence classes of Rf . The
set

Xf = {(x, t) : x ∈ X, 0 ≤ t < f(x)}
intersects each equivalence class of Rf in exactly one point and may thus be
identified with (X ×R)Rf . We denote by Sf the Borel field of Xf ⊂ X ×R,
write λ for the Lebesgue measure on R, µf for the restriction to Xf ⊂ X×R
of the product measure µ × λ, and T f for the measure-preserving flow in-
duced by Sf on the probability space (Xf , Sf , µf ). This flow is usually called
the flow under the function f with base T .

Several authors have studied conditions on f for a given ergodic base T
which determine whether the flow T f is mixing (cf. e.g. [3], [4], [2], [7] and the
references listed there). In [7] the author proves the following result under
the additional hypothesis that T is an irrational rotation on X = R/Z, and
asks whether Corollary 2.1 (under hypothesis (2)) holds for more general
classes of ergodic automorphisms ([7, Remarque 2]).

Corollary 2.1. Let T be a measure-preserving automorphism of a
standard probability space (X, S, µ), f :X→R be a Borel map with

�
f dµ= 1

and f(x) > 0 for every x ∈ X, and T f be the flow under f with base T
on the probability space (Xf , Sf , µf ). Suppose that either of the following
conditions is satisfied :

(1) T is mixing and T f is weakly mixing ;
(2) T f is mixing.

Then the cocycle f :Z×X → R in (2.1) disperses in the sense of (1.4).

Proof. If T is mixing, then Theorem 1.2 with G = Z and A = R shows
that the cocycle f either disperses or is trivial, in which case the flow T f is
not weakly mixing.

In order to prove dispersion of f under hypothesis (2) we may replace
f by a cohomologous function f ′ = f + b ◦ T − b such that b:X → R is
measurable and f ′ is bounded above and below by positive constants; this
will affect neither the hypotheses nor the conclusions of the corollary. We
assume therefore without loss of generality that there exist positive constants
c1 < c2 such that c1 ≤ f(x) ≤ c2 for every x ∈ X.
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Define a map F :Xf → R by

F (x, s) = 1/f(x)

for every x ∈ X and s ∈ [0, f(x)) and consider the cocycle c:R ×Xf → R
given by

c(t, z) =





� t
0 F (T fs z) ds if t > 0,

0 if t = 0,
−c(−t, T ft z) if t < 0.

(2.2)

For every positive t we denote by d(t, z) the number of intersections of the
set {(x, 0) : x ∈ X} ⊂ Xf with the trajectory {T fs z : 0 ≤ s < t}. Then

|c(t, z)− d(t, z)| ≤ 2 and |t− f(d(t, (x, s)), x)| ≤ 2c2(2.3)

for every t ≥ 0 and z = (x, s) ∈ Xf , and
�
c(t, z) dµf(z) = t(2.4)

for every t ∈ R.
Suppose that (1.4) is not satisfied, i.e. that there exist an ε > 0, a

constant L > 0, an increasing sequence (mn) of positive integers, and a
sequence (tn) in R with

µ({x ∈ X : |f(mn, x)− tn| ≤ L}) ≥ ε(2.5)

for every n ≥ 1. According to (2.3) and (2.5),

µf ({(x, s) ∈ Xf : |f(d(tn, (x, s)), x)− f(mn, x)| ≤ L+ 2c2}) ≥ c1ε,

hence

µf
({

z ∈ Xf : |d(tn, z)−mn| ≤
L+ 2c2

c1

})
≥ c1ε,

and the first inequality in (2.3) implies that

µf
({

z ∈ Xf : |c(tn, z)−mn| ≤
L+ 2c2

c1
+ 2
})
≥ c1ε(2.6)

for every n ≥ 1. Since µf is mixing and limn→∞ tn =∞ by (2.5), limn→∞ νtn
= µf ×µf , where νtn is the off-diagonal measure (1.5) with µ and g replaced
by µf and tn.

We choose a countable dense subgroup G ⊂ R which contains the se-
quence (tn). Since G is dense in R and µf ×µf is ergodic under the diagonal
R-action T f×T f on Xf×Xf , the measure µf×µf is also ergodic under the
restriction of T f × T f to G, which implies that µf is weakly mixing under
the restriction of T f to G. According to (2.6) and Proposition 1.3 there exist
a homomorphism η:G→ R and a Borel map b:Xf → R such that

c(t, z) = η(t) + b(T ft z)− b(z)(2.7)
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for every t ∈ G and µf -a.e. z ∈ Xf . From (2.4) we know that η(t) = t
for every t ∈ G, and the continuity of the map t 7→ c(t, ·) from R into
L1(Xf , Sf , µf ) in (2.2) guarantees that (2.7) holds for every t ∈ R.

We re-trace our steps and conclude from (2.7) and (2.3) that the cocycle
f ′:Z×X → R, defined by

f ′(n, ·) = f(n, ·)− n, n ∈ Z,
is bounded in µ-measure. By [9, Theorem 11.8], [8, Theorem 5.2] or [10,
Theorem 4.7] there exists a Borel map b:X → R with f(x) = 1+b(Tx)−b(x)
for µ-a.e. x ∈ X, which implies that T f is not even weakly mixing. This
contradiction resulting from (2.5) proves the corollary.
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