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Embedding solenoids

by

Alex Clark (Denton, TX) and Robbert Fokkink (Delft)

Abstract. A generalized solenoid is an inverse limit space with bonding maps that are
(regular) covering maps of closed compact manifolds. We study the embedding properties
of solenoids in linear space and in foliations.

A compact and connected topological space is called a continuum.
A space X is homogeneous if for every x, y ∈ X there exists a homeomor-
phism h: X → X such that h(x) = y. The space is bihomogeneous if for every
x, y ∈ X there exists a homeomorphism that switches x and y, i.e., h(x) = y
and h(y) = x. Settling an old problem of Knaster, K. Kuperberg [12] showed
that there exist continua that are homogeneous but not bihomogeneous.

We show that there exist homogeneous continua in R4 that are not biho-
mogeneous. It is unknown whether there exist such continua in Rk for some
k < 4. The examples we provide are higher-dimensional analogues of the
standard dyadic solenoid. We refer to these spaces as (generalized) solenoids.

First we study embeddings of generalized solenoids in linear space. This
turns out to be related to the study of embeddings of manifolds. Next we
study embeddings of solenoids in foliated bundles. In the final part of our
paper we generalize to higher dimensions a dynamical characterization of
one-dimensional solenoids by Thomas. We also show that a conjecture by
Oversteegen on a possible topological characterization of solenoids turns out
to be related to an old conjecture of Williams on expanding attractors, that
was settled by Farrell and Jones [6].

1. Solenoids

Definition 1. A solenoid is an inverse limit space lim←−(Mn, pn) such
that the factor spaces Mn are closed manifolds and the bonding maps
pn: Mn+1 →Mn are covering maps that are not homeomorphisms.

2000 Mathematics Subject Classification: 37B45, 57N35.
Key words and phrases: attractor, continuum, foliated bundle, isolated minimal set,

polynomial covering map, topological embedding.

[111]



112 A. Clark and R. Fokkink

This generalizes the original definition of P -adic solenoids by van Dantzig
and van der Waerden [5]. Higher-dimensional solenoids were first studied
by McCord and by Schori [14, 20]. Schori [20] has shown that generalized
solenoids need not be topologically homogeneous. McCord [14] has shown
that a generalized solenoid is homogeneous if all compositions of the bond-
ing maps are regular covering maps. In this case, the solenoid is a principal
bundle over a manifold with a structure group that is profinite, i.e., an in-
verse limit of finite groups (such groups are sometimes called Cantor groups).
We have shown that if a solenoid is bihomogeneous, then its structure group
contains an open abelian subgroup [4].

All solenoids under consideration in this paper are homogeneous. The
results in [7] imply that this is equivalent to the condition that they are
principal bundles with profinite structure groups.

The archetype of a solenoid is the dyadic solenoid, defined as the inverse
limit over circles S1 = {z ∈ C : |z| = 1} with bonding map z 7→ z2. It is
an indecomposable continuum as well as a compact group and a hyperbolic
attractor. The dyadic solenoid can be represented as the suspension over
the adding machine. The adding machine can be extended to a homeomor-
phism h: R2 → R2, so the dyadic solenoid embeds as an invariant set of a
flow on a toral domain in R3. Thomas [21] showed that the dyadic solenoid
cannot occur as an isolated minimal set of a flow in R3, but Allaud and
Thomas [2] showed that it can occur as an isolated minimal set of a flow
in R4.

2. Embedding solenoids in euclidean space. We shall say that a
solenoid is orientable if all factor spaces in the inverse limit system are
orientable. Theorem 7 gives a criterion that is both necessary and sufficient
for embedding a solenoid S that fibers over a manifold M into M × R2.

Lemma 2. An orientable n-dimensional solenoid does not embed in an
orientable (n+ 1)-dimensional manifold.

Proof. This cohomology argument is similar to one in [21]. By com-
pactification and by doubling, we may assume that the manifold M is
compact and closed. For an orientable n-dimensional solenoid S, the Čech-
cohomology group with integer coefficients Ȟn(S) is isomorphic to the direct
limit lim−→(Z, p∗ij). The homomorphism p∗ij : Z → Z is given by n 7→ kn with
k equal to the degree of the covering pij : Si → Sj . In particular, Ȟn(S)
is isomorphic to the group of P -adic rationals for some prime sequence P .
Then each x in Ȟn(S) has infinite height, meaning that there is a sequence
of integers ni → ∞ and a sequence of elements xi ∈ Ȟn(S) satisfying
x = nixi. By duality there is an isomorphism Ȟn+1(M,S) ≈ H0(M − S),
and zero is the only element of infinite height in the latter group. In the
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exact sequence

· · · → Ȟn(M)→ Ȟn(S)→ Ȟn+1(M,S)→ · · ·
all elements of Ȟn(S) map to zero in Ȟn+1(M,S) since the homomorphic im-
age of an element of infinite height has infinite height. By exactness Ȟn(M)
must then map onto Ȟn(S), which is impossible since Ȟn(M) is finitely
generated and Ȟn(S) is not.

There exist two-dimensional orientable solenoids that are homogeneous
but not bihomogeneous [4]. It is not possible to embed such solenoids in R3

by Lemma 2, so we study if it is possible to embed them in R4. Our
archetype, the dyadic solenoid, embeds in R3 through an embedding in
S1 × R2. We study if a two-dimensional solenoid, being a bundle over a
surface S, embeds in S ×R2, which in its turn embeds in R4. This problem
has been well studied for finite bundles, i.e., covering spaces.

Definition 3. Suppose that M,N are manifolds. A covering map
p: M → N is called polynomial if there exists a fiber-separating map
f : M → R2 for which f(x) 6= f(y) if p(x) = p(y) and x 6= y.

The name polynomial is derived from the fact that M can be described as
the set of zeroes of a family of polynomials parametrized by N with non-zero
discriminant. For a covering map p: M → N of degree k, the monodromy
action on a fiber induces a characteristic homomorphism χ: π1(N) → Sk,
which is unique up to conjugation. The braid group Bk on k elements
maps homomorphically onto the symmetric group Sk by the forgetful map
bk: Bk → Sk. A proof of the following theorem can be found in the beautiful
little monograph [9].

Theorem 4 (Hansen). A covering p: M → N is polynomial if and only
if the characteristic homomorphism χ: π1(N)→ Sk extends to a homomor-
phism χ̃: π1(N)→ Bk such that bk ◦ χ̃ = χ.

This is a very nice algebraic characterization, but it is hard to verify
by the complexity of the braid group. It is apparently unknown whether
all coverings of orientable surfaces are polynomial. The best result in this
direction is as follows.

Theorem 5 (Petersen, [18]). A regular covering p: M → N of a closed
manifold with free abelian first homology H1(N) is polynomial if the quotient
group π1(N)/π1(M) is solvable.

Here and in what follows, for a covering map of manifolds p: M → N we
identify π1(M) with the subgroup p∗(π1(M)) of π1(N).

It turns out that we need to adapt the definition of polynomial coverings
somewhat to give a necessary and sufficient condition on solenoids that fiber
through the trivial bundle.
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Definition 6. Suppose that Mi are manifolds for i = 0, 1, 2 and that
p2: M2 → M1 and p1: M1 → M0 are covering maps. We say that p1 is
polynomial with respect to p2 if there exists a map f : M2 → R2 such that
such that f(x) 6= f(y) if p2(x) 6= p2(y) and p1 ◦ p2(x) = p1 ◦ p2(y), and we
say that the map f is fiber-separating with respect to 〈p1, p2〉.

Note that we retrieve the definition of polynomial covering if p2 is the
identity. Also note that if p1 is a polynomial covering, then for any covering
p2, it is polynomial with respect to p2. We say that a solenoid p: E → S
factors through the trivial bundle S × R2 if there exists a fiber-separating
map f : E → R2 for which f(x) 6= f(y) if p(x) = p(y) and x 6= y.

Theorem 7. Suppose that M∞ is a solenoid over a base space M0. Then
M∞ factors through M0×R2 if and only if it can be represented as an inverse
limit M∞ = lim←−(Mi, pi) such that pi−1 is polynomial with respect to pi for
all i > 1.

Proof. First suppose that M∞ = lim←−(Mi, pi) and that the covering maps
pi−1 are polynomial with respect to pi for all i. There exist fi: Mi+1 →
R2 that are fiber-separating with respect to 〈pi−1, pi〉 and by compactness,
we may assume that |fi(x)| ≤ 1 for all x ∈ Mi. By compactness of the
fibers, there exist εi > 0 such that |fi(x) − fi(y)| > εi if pi(x) 6= pi(y) and
pi−1 ◦ pi(x) = pi−1 ◦ pi(y). Without loss of generality we may assume that∑∞

i=k+1 εi < ε2
k and that εk < 1 for all k ≥ 1. Define Fi: lim←−(Mi, pi) →

R2 as the composition of the projection onto the ith coordinate and the
map fi. Then the infinite sum F =

∑∞
i=1 εiFi is well defined and we verify

that F : M∞ → R2 is fiber-separating. Indeed, suppose that F (x) = F (y)
for x, y ∈ M∞ that are in the same fiber over M0. These points can be
represented by sequences xi, yi in the inverse limit. Let i be the first index
for which xi−1 6= yi−1. Then |fi(xi) − fi(yi)| > εi while fj(xj) = fj(yj) for
all j < i. By the triangle inequality and by the condition on the εi above,
we see that F (x) 6= F (y). Hence F : M∞ → R2 separates the fibers of π0,
and x 7→ (π0(x), F (x)) yields the desired factorization through M0 × R2.

Conversely, suppose that the solenoid π0: M∞ → M0, which is rep-
resented as an inverse limit lim←−(Mn, pn), admits a fiber-separating map
f : M∞ → R2. By Tietze’s extension theorem, this fiber-separating map
extends to f :

∏
Mi → R2. We fix a base point mn ∈ M∞ ⊂

∏
Mn and de-

fine the embedding en: Mn →
∏
Mn by mapping x ∈Mn onto a sequence xi

which has its tail derived from the base point and its head derived from x.
To be more precise, xn = x and xj = pj ◦ · · · ◦ pn−1(x) if j < n and
xj = mj if j > i. The covering map pji = pj ◦ · · · ◦ pi−1: Mi → Mj is rep-
resented by the composition of ei and πj. We argue by contradiction that
for each j there exists an i > j such that f ◦ ei is fiber-separating with
respect to 〈pj , pji〉. Suppose that for each k > j there exist xk, yk ∈ Mk
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with pjk(ek(xk)) 6= pjk(ek(yk)) while pj ◦ pjk(ek(xk)) = pj ◦ pjk(ek(yk)) and
f(ek(xk)) = f(ek(yk)). By compactness, there exist limit points x∞, y∞,
which are necessarily contained inM∞, such that x∞, y∞ have equal (j−1)th
coordinate and unequal jth coordinate, while f(x∞) = f(y∞). This contra-
dicts the assumption that f is fiber-separating. So there exists an i > j such
that pj is polynomial with respect to pji. By deleting all indices in between
j and i we can construct an inverse limit representation of the solenoid such
that all coverings pi are polynomial with respect to pi+1.

Corollary 8. An orientable two-dimensional solenoid lim←−(Si, pi) em-
beds in R4 if all covering maps are polynomial.

Proof. According to Theorem 7 the solenoid embeds in S0 × R2 . Since
S0×R is homeomorphic to a tubular neighborhood of S0 in R3, the solenoid
embeds in R4.

Our next corollary is the result that we aimed for in the first place.

Corollary 9. There exist homogeneous non-bihomogeneous continua
in R4.

Proof. The fundamental group of an orientable surface of genus 2 can
be represented as G = 〈x1, x2, x3, x4 : [x1, x2][x3, x4]〉. The subgroup F ⊂ G
generated by x1 and x3 is free. Let N0 ⊃ N1 ⊃ N2 ⊃ · · · be a descending
chain of normal subgroups of F with finite index and with intersection {e} =⋂
Ni. Define the homomorphism f : G → F by f(x1) = x1, f(x2) = e,

f(x3) = x3, f(x4) = e. Then f−1(Ni) is a normal subgroup of G of finite
index, and the action of G on G/f−1(Ni) is isomorphic to the action of F
on F/Ni. The Ni are free groups since they are subgroups of a free group.
Therefore the action of Ni on Ni/Ni−1 factors through the braid group and
so does the pull back of this action to G. It follows by Hansen’s criterion that
the covering maps that correspond to f−1(Ni) are polynomial. The inverse
limit of the covering maps gives a homogeneous solenoid that embeds in
R4. The profinite completion lim←−F/Ni contains F as a dense subgroup, so
it does not contain an open abelian subgroup. The structure group of the
solenoid is isomorphic to lim←−F/Ni, so it is not bihomogeneous.

Corollary 10. A bihomogeneous orientable two-dimensional solenoid
embeds in R4. More generally , any bihomogeneous solenoid that fibers over
a manifold M0 with free abelian first homology embeds in M0 × R2.

Proof. A bihomogeneous solenoid can be represented as an inverse
limit lim←−(Mi, pi) with an abelian structure group lim←−(π1(M0)/π1(Mi)). By
Petersen’s result, all coverings are polynomial so the solenoid embeds in
M0 × R2. In the orientable two-dimensional case, M0 can be chosen to be
an orientable surface S0.
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This last result is a generalization of a result in [11] on the embedding
of torus-like solenoids.

3. Embedding solenoids in foliated bundles. Solenoids have the
local structure of minimal sets of foliations. Now that we have a criterion
for embedding a solenoid in a trivial R2-bundle, we study whether this em-
bedding extends to a foliation of the bundle that is transverse to the fibers.
Theorem 14 gives a criterion that is both necessary and sufficient for em-
bedding a solenoid S that fibers over a manifold M into a foliated bundle
with total space M × R2.

Definition 11. A foliated bundle consists of a bundle p: E → B and a
foliation F of E transverse to the fibers.

We shall assume that the leaves of F project onto the base space, in
which case the bundle is called flat, and that it is a vector bundle. The
fundamental group of the base space acts on a fiber, as follows. Fix a base
point b ∈ B and let x ∈ Fb be an element of the fiber. A closed path w based
at b lifts to a unique path w̃ in F that has end point x and initial point
in Fb. The holonomy action associates x to the initial point of the path of
w̃ and thus gives a representation π1(B, b) → Homeo(Fb). It is known that
the holonomy action alone allows a reconstruction of the bundle by means
of a suspension [10, II.1.3.1].

For a (connected) manifold M with universal covering space M̃ , we iden-
tify the fundamental group π1(M) with the group of deck transformations
of M̃ , with paths γ acting on the right x 7→ x · γ. For a representation
χ: π1(M) → Homeo(Rk), the suspension Σ(χ) is defined as the quotient
space of M̃ × Rk under the equivalence relation (x, v) ∼ (x · γ, χ(γ)−1v).
The trivial foliation by M̃ × {v} for a fixed v ∈ Rk projects onto a foliation
of the suspension. The holonomy action on the suspension recovers the rep-
resentation χ. So in order to embed a solenoid in a suspension (flat bundle)
we need to extend the holonomy action on the Cantor fiber C to Rk, as
summarized by the following lemma.

Lemma 12. A solenoid M∞ over a manifold M0 embeds as a minimal
set in a flat Rk-bundle over M0 if and only if its holonomy action extends
from C to Rk.

We are interested in the case that k = 2. The point remaining is now
to decide when a flat R2-bundle, given by a representation π1(M0)→ R2, is
in fact a trivial bundle, i.e., when the total space is homeomorphic to the
product of the base space and the fiber via a homeomorphism preserving
the fibers of the bundle. The suspension need not be a trivial bundle. The
condition for triviality is as follows (see [10]).
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Lemma 13. Suppose that M is a closed manifold with base point m0
and that χ: π1(M,m0) → Homeo(Rk) is a homomorphism. Then the sus-
pension Σ(χ) is equivalent to a trivial bundle if and only if there exists a
map f : M̃ → Homeo(Rk) such that f(x ·γ) = f(x)◦χ(γ) for all γ ∈ π1(M).

Proof. Identify the deck transformations of the universal covering M̃ →
M with the fundamental group. By definition, the suspension is the quo-
tient space of M̃ × Rk under the equivalence (x, v) ∼ (x · γ, χ(γ)−1(v)) for
γ ∈ π1(M,m0). The suspension is trivial if and only if there exists a map
f : Σ(χ) → Rk which maps each fiber homeomorphically onto Rk. Lift this
map to M̃ ×Rk and by abuse of notation, for x ∈ M̃ let f(x) be the restric-
tion of the lift to the fiber {x}×Rk → Rk. The condition f(x·γ) = f(x)◦χ(γ)
follows as f has to respect the equivalence.

Denote the fundamental group of M by G. The universal covering of
M is a (right) G-space. The space Homeo(Rk) is a right G-space as well
under the action H · g = H ◦ χ(g). So this lemma says that Σ(χ) is trivial
if and only if there exists a G-equivariant map M̃ → Homeo(Rk). We give
a criterion that decides whether the presentation χ induces a trivial bundle
and that does not depend on the universal covering space.

Theorem 14. Suppose that G ⊂ H are groups and that X is a G-space
subject to the following conditions:

(1) H is a topological group that is locally simply connected and has
trivial homotopy groups πk(H) for k ≥ 2.

(2) G = 〈xi : Rj(xi)〉 is finitely presented.
(3) G is the fundamental group of a closed triangulable manifold M and

X is its universal covering space with the monodromy action.

Then there exists a G-equivariant map f : X → H if and only if there ex-
ist paths xtj in H connecting e to xj such that the paths t 7→ Rj(xti) are
contractible for all j.

Proof. We first remark that the condition does not depend on the choice
of the representation of G. Any other choice of generators and relations
〈x′i : R′j(x

′
i)〉 gives rise to a rewriting of x′i in terms of xi and so it gives

paths x′ti in terms of xti. Rewriting a relation R′j(x
′
i) in terms of xi then

gives contractible paths.
To show the necessity of the condition, let f : X → H be a G-equivariant

map. For an element g ∈ G and an element x ∈ X let w be a path from x to
x · g in X. The homotopy class of w is unique as X is simply connected and
therefore so is the homotopy class of the path f(x)−1f(w), which connects
e to g in H. In particular, the homotopy class of this path does not depend
on the choice of w. Since H is locally simply connected, paths that are
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sufficiently close are homotopic. This implies that the homotopy class of
f(x)−1f(w) does not depend on the choice of x either. So for any g ∈ G
we have a unique homotopy class w(g) of paths in H connecting g to e. For
g, h ∈ G we may combine a path from x to x · g with a path from x · g
to x · gh. Without loss of generality, we may assume that f(x) = e, so the
first homotopy class is w(g) and the second is gw(h). The path homotopy
composition of w(g) and gw(h) is homotopic to w(g)w(h), implying that
w(gh) = w(g)w(h). For a generator xi choose a path xti in the class w(xi).
For a relation Rj , by definition the path Rj(xti) is in the class Rj(w(xi)).
Since w preserves multiplication, the class is the trivial one, so Rj(xti) is
homotopic to the constant path. Hence the necessity of the condition.

We show the sufficiency of the condition, which follows from a stan-
dard obstruction argument. The manifold M is finitely triangulable and the
vertices of the triangulation can be contracted to a single point, giving a
CW -decomposition of M with a single vertex and a finite number of 1-cells,
the homotopy classes xi of which generate the fundamental group G. Lift
this CW -decomposition to a decomposition of the universal covering space
X. The preimage of the single vertex is a G-orbit in X, from which we fix
an element v ∈ X that we map to e ∈ H. According to our condition, which
does not depend on the choice of the generators, we can define a map on
the 1-skeleton of our CW -decomposition of X as follows. First extend to the
preimages of the xi starting from v by mapping these to the paths xti ∈ H.
Then extend G-equivariantly. The 2-cells of the decomposition of M corre-
spond to the relations of the fundamental group. Our condition allows an
extension over the 2-skeleton of X since the boundaries of the 2 -skeleton are
mapped to contractible paths. We first extend to the cells that are attached
to v and then extend G-equivariantly. As H has homotopy groups πk(H) = 0
for k ≥ 2, it is possible to extend the map over the higher-dimensional cells.

This result applies to our problem, by the following deep result of Ya-
gasaki, which builds on substantial previous work [25].

Theorem 15. Homeo(R2) is locally simply connected , and the path com-
ponent of the identity has the homotopy type of a circle.

The result we aimed for now follows as a corollary.

Corollary 16. There exists a homogeneous, non-bihomogeneous solen-
oid that embeds as a minimal set of a codimension-2 foliation of S0 × R2,
where S0 is a closed orientable surface of genus 2.

Proof. Take the solenoid of Corollary 9. Its holonomy action factors
through an action of the free group F2 on two elements. The action of
F2 on C extends to R2 since every homeomorphism on a Cantor set can be
extended to an orientation preserving transformation of the plane [16]. The
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action of the fundamental group 〈x1, x2, x3, x4 : [x1, x2][x3, x4]〉 therefore
extends to the plane, with xi acting as the identity for i = 2, 4. The paths
γ2, γ4 in Theorem 14 can therefore be chosen to be constant. So this solenoid
embeds as a minimal set in an R2-bundle over S0 which is equivalent to the
trivial bundle S0 × R2.

Sacksteder [19] has given an example of an exceptional minimal set in a
codimension-1 foliation, which fibers over a surface of genus 2. The construc-
tion has some similarity with the example in our corollary above, though
Sacksteder’s minimal set is not a solenoid.

4. The dynamics of embedding solenoids in bundles. As we shall
see, the following concept is closely related to the occurrence of solenoids in
bundles.

Definition 17. A group action of G on a metric space X is equicontin-
uous if for any ε > 0 there is a corresponding δ > 0 so that for any g ∈ G
we have

d(g · x, g · y) < ε whenever d(x, y) < δ.

If X is compact this notion does not depend on the choice of the metric.
We say that an invariant set of Σ(χ) is equicontinuous if the holonomy action
on a fiber is equicontinuous. This notion does not depend on the choice of
the fiber. The following characterization of solenoids in terms of dynamical
systems has been given by Thomas [21].

Theorem 18. If an equicontinuous flow has a compact one-dimensional
minimal set , then the minimal set is homeomorphic to a solenoid or the
circle.

In the one-dimensional case, the return maps to a fiber (i.e., the holon-
omy maps) can be embedded in a flow on the total space. In the higher-
dimensional case, we cannot expect the holonomy maps on fibers to embed in
a Lie group action on the total space. Nonetheless, Thomas’s dynamic char-
acterization of one-dimensional solenoids does generalize to foliated bundles.

If S is a closed manifold, then as in the previous section Σ(χ) is the
suspension of a homomorphism χ: π1(S, s0) → Homeo(Rk). When I is an
invariant set of Σ(χ) then its intersection with a fiber I0 = p−1(s0) ∩ I
is invariant under the holonomy action, so this induces a homomorphism
χI : π1(S, s0)→ Homeo(I0) with χI(h) = χ(h)|I0. When S is a solenoid and
S → S is a principal bundle map with Cantor fiber, we refer to this as a
principal representation.

Theorem 19. If a free G-action on a Cantor set C is minimal and
equicontinuous, then G compactifies to a group homeomorphic to C.
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Proof. The special case of an infinite cyclic G is a key lemma in [21]. For
simplicity of this proof, we shall consider G as acting on the left on C. For a
given g ∈ G, the action by g, x 7→ g.x, determines a homeomorphism of C.
Then the mapping e : G → Homeo(C) with e(g)(x) := g.x is a monomor-
phism by the freeness of the action. By the equicontinuity of the action of G,
e(G) is an equicontinuous subgroup of Homeo(C), which then has compact
closure G in Homeo(C).

Fix an element x ∈ C and define the continuous mapping h : G → C by
h(g) = g(x). Given y ∈ C, the minimality of the action of G yields a sequence
{gi} ⊂ e(G) with gi(x)→ y. For a convergent subsequence {gik} → g in G,
we then have h(g) = g(x) = y, demonstrating that h is onto. Similarly, the
freeness of the action of G can be used to demonstrate that h is one-to-one
and hence a homeomorphism.

Theorem 20. If S is an invariant solenoid in Σ(χ) for which p: S → S
is a principal representation, then S is equicontinuous. Conversely , if S is
an equicontinuous minimal set of Σ(χ) of the same dimension as S, then S
is a solenoid or a closed manifold.

Proof. If p: S → S is a principal representation of the solenoid S, con-
sider the group G of fiber preserving homeomorphisms of S, i.e., G is the
Cantor structure group of the solenoid. The holonomy action gives a nat-
ural embedding χI(π1(S, s0)) → G, thus providing a compactification of
χI(π1(S, s0)) in Homeo(I0). This yields the desired equicontinuity.

Suppose S is an equicontinuous minimal set of Σ(χ) and let [x, s] denote
the equivalence class of an element in M̃ × Rk. The holonomy action on a
fiber

γ : [x, v] 7→ [x · γ, v]

extends to a map S → S. This map has an inverse induced by the inverse
holonomy element, and so the map is a homeomorphism. As in 19, it fol-
lows that this holonomy group compactifies to a Cantor group naturally
homeomorphic to a fiber. Thus S is a principal bundle, hence a solenoid.

Recall that an attractor of a flow φ : X × R → X is a non-empty,
invariant, compact subset A ⊂ X admitting a neighborhood U such that for
any given neighborhood V of A there is a T such that φ(U × [T,∞)) ⊂ V.
In the setting of bundles this definition modifies as follows.

Definition 21. A is an attractor of a suspensionΣ(χ) if for some neigh-
borhood U of A and for some set {g1, . . . , gk} of generators of π1(S, s0) and
for any neighborhood V of A there exists an N so that for all n ≥ N ,

gn.[x, v] = [x · gn, v] = [x, χ(g−n)v] ∈ V
for any given g ∈ {g1, . . . , gk} and any [x, v] ∈ U .
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Thomas [21] showed that a (one-dimensional) solenoid cannot be an
isolated set for a flow on a three-dimensional manifold. Ideally, this should
generalize to the fact that a solenoid cannot be an isolated minimal set in
a codimension-2 foliation. We are only able to obtain the following weaker
result, related to a shape-theoretic result in [8], that a solenoid cannot be
an attractor for any foliation.

Theorem 22. Any attractor A of a suspension Σ(χ) over a closed ori-
entable surface S has the shape of a finite polyhedron.

Proof. The surface S admits a branched covering of branching order 2
of the torus. This allows us to define a flow on S that projects under such
a covering onto a flow on the torus with periodic orbits, with the exception
of two singular points and the orbits leading to and from these fixed points.
One can then construct a finite number of flows {φ1, . . . , φm} on S so that
each point of S is contained in a neighborhood of points having orbits under
one of the flows φi which are periodic with homotopy class from among the
set of generators {x1, . . . , x2k} of π1(S, s0). Consider a nested sequence of
compact neighborhoods Vn → S with Vn ⊂ Int(Vn−1). Then for each n there
is a continuous map fn : Σ(χ) → [0, 1] with f−1

n (0) = Vn. For each n there
are then flows φni generated by the vector fields with vectors given by the
vector fields for φi multiplied by the scalar fn. By the hypothesis that A is
an attractor we can choose T (n, i) > 0 so that

Rn : U × [0, T (n, 1) + · · ·+ T (n,m)]→ Vn

given by

Rn(x, t) = φ
t−(T (n,1)+···+T (n,i−1))
i ◦ φT (n,i−1)

i−1 ◦ · · · ◦ φT (n,1)
1 (x)

for t ∈ [0, T (n, 1) + · · · + T (n, i)) is a strong deformation retraction of U
into Vn. Hence, S must have the shape of the manifold U.

5. Oversteegen’s conjecture. Hagopian has characterized one-dimen-
sional solenoids as the homogeneous indecomposable continua containing
only arcs as proper subcontinua. There is another characterization of one-
dimensional solenoids.

Theorem 23 (Aarts et al., [1]). Denote the Cantor set by C. A topolog-
ical space X is homeomorphic to a one-dimensional solenoid if and only if
X is a homogeneous continuum which has an open basis of sets that are
homeomorphic to C × (0, 1).

Oversteegen has conjectured that this result generalizes to higher-dimen-
sional solenoids [7], provided that the solenoid is homogeneous.

Conjecture 24. Suppose that an n-dimensional continuum X is ho-
mogeneous. Then X is homeomorphic to a solenoid if and only if X has a
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basis of compact sets that are homeomorphic to C × Dn, the product of a
Cantor set and an n-dimensional disk.

Spaces that have a local product structure C×Dn often occur in fibrations
over manifolds, as subsets that are transverse to the fiber. In this situation
the conjecture is true.

Theorem 25. Suppose that X is a homogeneous continuum and that
p: X →M is a fibration over a closed manifold with zero-dimensional fiber
and unique path lifting. Then X is homeomorphic to a solenoid or a mani-
fold.

Proof. Endow M with a Riemannian metric d and cover M by a finite
family of convex open sets U . Endow X with a metric d̃ and let ε > 0 be
such that if d̃(x, y) < ε then p(x) and p(y) are contained in an element
of U . There exists an Effros δ for this ε, i.e., if d̃(x, y) < δ then there is a
homeomorphism h: X → X such that h(x) = y and d̃(idX , h) < ε.

Let G be the group of fiber preserving homeomorphisms of X. Since p has
unique path lifting, an evaluation map of G into a fiber is injective. Hence
G is a zero-dimensional group. Fix a fiber F = p−1(m) ⊂M . Suppose that
x, y ∈ F and that d̃(x, y) < δ. Since U is a convex cover and by the choice
of δ, there exists a homeomorphism such that h(x) = y and p◦h is homotopic
to the identity. Since p is a fibration, h is homotopic to a homeomorphism
h̃ ∈ G that necessarily maps x to y. So G · x is an open subset of F , which
decomposes as a finite union of disjoint sets F = G ·x1∪· · ·∪G ·xk. So each
G ·x is compact, which implies that G is compact and zero-dimensional, and
so is either a finite group or homeomorphic to the Cantor set. The quotient
space X/G is a finite covering space of M . The mapping X → X/G is
a principal bundle over a manifold with either a finite structure group or a
Cantor structure group, hence it is either a manifold or a solenoid.

Corollary 26. Suppose that X is a homogeneous continuum with a
local product structure C × Dn and that p: X → M is a fibration over a
closed n-dimensional manifold. Then X is homeomorphic to a solenoid.

So Oversteegen’s conjecture comes down to the problem of whether a ho-
mogeneous space with a local product structure C ×Dn fibers over a mani-
fold. This is very similar to an old conjecture of Williams, that an expanding
attractor fibers over a manifold. Williams’s conjecture was eventually dis-
proved by Farrell and Jones [6].

6. Remark. Hansen [9] has shown that a covering space over an n-
dimensional manifold M factors through M × Rn+1 (see also [18]). This is
an embedding in the stable range which has been studied quite extensively
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in a general setting even beyond metric spaces [22]. If f : X → Y is a map-
ping with a k-dimensional fiber and dimY = n, then f factors through the
projection of Y × Rn+2k+1 onto the first coordinate.
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