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Abstract. A structure is called homomorphism-homogeneous if every homomor-
phism between finitely generated substructures of the structure extends to an endomor-
phism of the structure (P. J. Cameron and J. Nešetřil, 2006). In this paper we introduce
oligomorphic transformation monoids in full analogy to oligomorphic permutation groups
and use this notion to propose a solution to a problem, posed by Cameron and Nešetřil
in 2006, to characterize endomorphism monoids of homomorphism-homogeneous relational
structures over finite signatures.

However, the main goal of this paper is to provide more evidence that the concept
of homomorphism-homogeneity is analogous to that of ultrahomogeneity. It turns out
that many results that hold for ultrahomogeneous or ω-categorical structures have their
analogues in the class of countable homomorphism-homogeneous structures, or countable
weakly oligomorphic structures (these are structures whose endomorphism monoids are
oligomorphic). For example, we characterize countable weakly oligomorphic structures in
terms of the Ryll-Nardzewski property with respect to positive formulas; we prove that
for countable weakly oligomorphic structures homomorphism-homogeneity is equivalent
to quantifier elimination for positive formulas; finally, we prove that an ω-categorical
structure is both ultrahomogeneous and homomorphism-homogeneous if and only if it has
quantifier elimination where positive formulas reduce to positive quantifier-free formulas.

1. Introduction. Oligomorphic permutation groups have been intro-
duced in the 1970s by Peter Cameron and have played a major role in un-
derstanding countable structures ever since (see [3]). A permutation group
G ≤ Sym(A) is oligomorphic if for every n ∈ N, the number of orbits in
the action of G on An is finite. In one of its many incarnations, the well
known Ryll-Nardzewski theorem states that the following are equivalent for
a countable structure A (see [3, 5]):

(1) A is ω-categorical (that is, if Th(A) = Th(B) for some countable
structure B over the same signature as A, then A ∼= B);
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(2) A has the Ryll-Nardzewski property (that is, for each n ∈ N there
exist only finitely many R-formulas in variables x1, . . . , xn which are
pairwise inequivalent in A);

(3) Aut(A) is an oligomorphic permutation group.

Oligomorphic permutation groups are closely related to ultrahomoge-
neous structures and quantifier elimination. Recall that a structure A is
ultrahomogeneous if every isomorphism between two finitely generated sub-
structures of A extends to an automorphism of A, and that A has quantifier
elimination if every formula is equivalent in A to a quantifier-free formula.
The following facts are well-known (see [3]):

• if A is an ultrahomogeneous countable structure over a finite relational
signature, then Aut(A) is an oligomorphic permutation group;
• if A is an ω-categorical structure, then A is ultrahomogeneous if and

only if A has quantifier elimination.

In their recent paper [4] Cameron and Nešetřil discuss a generalization
of homogeneity to various types of morphisms between structures, and in
particular introduce the notion of homomorphism-homogeneous structures:

Definition 1.1 (Cameron and Nešetřil [4]). A structure is called homo-
morphism-homogeneous if every homomorphism between finitely generated
substructures of the structure extends to an endomorphism of the struc-
ture.

It was demonstrated in [4] that the notion of homomorphism-homogene-
ity parallels that of ultrahomogeneity in many aspects, although there are
significant differences. For example, every countable chain (L,≤) is homo-
morphism-homogeneous, but not neccesarily ultrahomogeneous.

As for the similarities, assume that A is an infinite set endowed with the
discrete topology. Then AA is endowed with the Tikhonov product topology
where the closure operator X 7→ X has a straightforward algebraic descrip-
tion: for X ⊆ AA we know that f ∈ X if and only if for every nonempty
finite subset B ⊆ A there is a g ∈ X such that f |B = g|B. As usual, we say
that X ⊆ AA is closed if X = X. The following representation theorem was
proved in [4]:

Theorem 1.2 ([4]). Let A be a an infinite set and let M ⊆ AA be a
transformation monoid. The following are equivalent:

(1) M is closed in AA;
(2) M=End(A) for some homomorphism-homogeneous relational struc-

ture A on A.

The paper [4] ends with the following question:
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“It would be interesting to recognise the monoids which are the endomor-
phism monoids [. . . ] of [homomorphism-]homogeneous structures with only
finitely many relations of each arity (these would be the analogue of the
closed oligomorphic permutation groups [. . . ]).”

In this paper we introduce oligomorphic transformation monoids in full
analogy to oligomorphic permutation groups and, inter alia, propose a solu-
tion to the above problem (Theorem 2.7): we show that M is an endomor-
phism monoid of a homomorphism-homogeneous relational structure over
a residually finite relational signature (Definition 2.4) if and only if M is
closed and oligomorphic.

However, the main goal of this paper is to provide even more evidence
that the concept of homomorphism-homogeneity is analogous to that of ul-
trahomogeneity. It turns out that many results that hold for ultrahomoge-
neous or ω-categorical structures have their analogues in the class of count-
able homomorphism-homogeneous structures, or countable structures whose
endomorphism monoids are oligomorphic. Certain results such as the char-
acterization of countable structures whose endomorphism monoids are oligo-
morphic in terms of the Ryll-Nardzewski property (Section 3) can almost
be obtained by syntactically replacing certain notions with their analogues,
as in Table 1.

Table 1. Analogous notions

ultrahomogeneous ↔ homomorphism-homogeneous
structure structure

automorphism group ↔ endomorphism monoid

oligomorphic permutation ↔ oligomorphic transformation
group monoid

quantifier elimination ↔ quantifier elimination
for positive formulas

In Section 2, after an overview of some standard terminology, we intro-
duce oligomorphic transformation monoids, residually finite signatures and
characterize endomorphism monoids of homomorphism-homogeneous rela-
tional structures over residually finite signatures. Section 3 is devoted to
the characterization of countable structures whose endomorphism monoids
are oligomorphic in terms of the Ryll-Nardzewski property. Another char-
acterization of structures whose endomorphism monoids are oligomorphic
can be found in Section 4 where we prove that such structures are defini-
tionally equivalent to homomorphism-homogeneous structures over residu-
ally finite signatures. The paper concludes with Section 5 which describes
homomorphism-homogeneous structures in terms of quantifier elimination.
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We prove that for countable structures whose endomorphism monoids are
oligomorphic, homomorphism-homogeneity is equivalent to quantifier elimi-
nation for positive formulas. At the very end of the paper, under the assump-
tion that the structure is ω-categorical, we prove that the structure is both
ultrahomogeneous and homomorphism-homogeneous if and only if it has
quantifier elimination where positive formulas reduce to positive quantifier-
free formulas.

Remark. Note that by positive formulas we understand formulas that
some authors refer to as positive existential formulas; that is, formulas built
using existential quantification along with positive logical connectives ∧
and ∨; in particular, > and ⊥ are positive formulas.

2. Preliminaries and motivation. Let R = (Ri)i∈I be a relational
signature, and let ri ≥ 1 denote the arity of the relational symbol Ri, i ∈ I.
By Rk we denote the relational signature (Rj)j∈J where J = {i ∈ I :
ri = k}. That is, Rk consists of all k-ary relational symbols from R. For
an R-formula ϕ(x1, . . . , xn), an R-structure A = 〈A, (RAi )i∈I〉 and some
a = (a1, . . . , an) ∈ An, by A |= ϕ[a ] we denote that the formula ϕ is satisfied
in A under the valuation {x1 := a1, . . . , xn := an}. Let ϕA = {a ∈ An :
A |= ϕ[a ]}. A relation ρ ⊆ Ah is definable by a formula in an R-structure A
if there is an R-formula ϕ(x1, . . . , xh) such that ρ = ϕA. We also say that
ϕ defines ρ in A. Formulas ϕ(x1, . . . , xn) and ψ(y1, . . . , yn) are equivalent
in A, in symbols ϕ ≡A ψ, if A |= ∀x (ϕ(x ) ⇔ ψ(x )), or, equivalently, if
ϕA = ψA.

A mapping f : A→ B from an R-structure A = 〈A, (RAi )i∈I〉 into an R-
structure B = 〈B, (RBi )i∈I〉 preserves a formula ϕ(x1, . . . , xk) if the following
holds for every a ∈ Ak: if A |= ϕ[a ] then B |= ϕ[f(a)], where f(a) denotes
the tuple (f(a1), . . . , f(ak)). Clearly, a mapping f is a homomorphism from
A to B if and only if f preserves all positive R-formulas.

A mapping f : A → A preserves a finitary relation ρ ⊆ Ah if f(a) ∈ ρ
for all a ∈ ρ. We also say that ρ is invariant under f . A finitary relation ρ
is invariant under a transformation monoid M if ρ is invariant under every
f ∈ M . If a relation ρ is definable by a formula ϕ in a structure A, then f
preserves ρ if and only if f preserves ϕ.

The set of all endomorphisms of a relational structure A will be denoted
by End(A), and the set of all automorphisms of A by Aut(A).

A transformation monoid M ⊆ AA acts on A in a natural way: we let
am = m(a) for all m ∈ M and all a ∈ A. Analogously, a transformation
monoid M ⊆ AA acts on An if (a1, . . . , an)m = (m(a1), . . . ,m(an)) for all
m ∈ M and all (a1, . . . , an) ∈ An. The set aM = {am : m ∈ M} is called
the trace of a ∈ An under the action of M . For every n ≥ 1 we define an
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equivalence relation ∼M on An by

a ∼M b if and only if aM = bM .

The equivalence classes of ∼M will be referred to as orbits of the action of
M on An, n ≥ 1.

Definition 2.1. A transformation monoid M ⊆ AA is oligomorphic if
for every n ∈ N, there are only finitely many orbits of the action of M on An.

In the case of group actions the notions of trace and orbit coincide. This
is not the case for actions of transformation monoids. However, the following
lemma shows that in the above definition we can use traces instead of orbits.

Lemma 2.2. A transformation monoid M ⊆ AA is oligomorphic if and
only if for every n ∈ N, there are only finitely many traces of the action of M
on An. In particular, if A is finite, every transformation monoid M ⊆ AA

is oligomorphic.

Proof. (⇒) Every trace is a union of some orbits, so if there are k orbits
in the action of M on An then there are at most 2k − 1 traces in the action
of M on An (since every trace is a nonempty set of tuples).

(⇐) Fix a positive integer n and let T = {T1, . . . , Tk} be the set of
traces of the action of M = End(A) on An. For each j ∈ {1, . . . , k}, let
Oj = Tj \

⋃
{T ∈ T : T ( Tj}. Since there are finitely many Oj ’s, it suffices

to show that Oj ’s are the orbits of the action of M on An. Clearly, each Oj
is nonempty (if Tj = aMj then a j ∈ Oj) and O1 ∪ · · · ∪ Ok = An. In order
to complete the proof, it therefore suffices to show that each Oj is an orbit
of the action of M on An.

Take any j ∈ {1, . . . , k} and let a , b ∈ Oj . Since aM is a trace in the
action of M and a ∈ Tj it follows that aM = Tj or aM ( Tj . But aM ( Tj
implies that a /∈ Oj , which is not true. Therefore, aM = Tj . By the same
argument, bM = Tj , so aM = bM . This shows that each Oj is contained in
some orbit of the action of M . Conversely, consider an orbit a/∼M and let
a ∈ Oj . The same argument yields a/∼M ⊆ Oj . This completes the proof
that each Oj is an orbit of the action of M on An.

It is a well-known fact that if A is an ultrahomogeneous structure over
a finite relational signature, then Aut(A) is an oligomorphic permutation
group. One can easily imitate the proof of that fact to show the following.

Proposition 2.3. If A is a homomorphism-homogeneous structure over
a finite relational signature, then End(A) is an oligomorphic transformation
monoid.

The requirement that the signature ofA be finite is needed to ensure that
for every n ∈ N there are, up to isomorphism, only finitely many n-element
substructures of A. The same effect can be achieved by countable signatures
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provided that every symbol R ∈ R of large arity is equivalent in a small
substructure of A to a relation symbol of sufficiently small arity. We shall
now present a formal definition and prove the corresponding generalization
of Proposition 2.3.

For each pair of integers m, k such that m ≥ k and each surjective
mapping f : {1, . . . ,m} → {1, . . . , k} fix a right inverse f∗ of f , that is, a
mapping f∗ : {1, . . . , k} → {1, . . . ,m} satisfying f ◦ f∗ = id. For example,
one possibility might be to take f∗(y) = min{x : f(x) = y}.

Definition 2.4. We say that a signature R is residually finite in an
R-structure A if

• Rk is finite for every k ∈ N,
• for every n ∈ N there exists an l > n such that for every m ≥ l, every
k ≤ n, every relation symbol R ∈ Rm and every surjective mapping
f : {1, . . . ,m} → {1, . . . , k} there is a relation symbol Rf ∈ Rk such
that

(RF ) A |= ∀x1 . . . ∀xm
(( ∧

(i,j)∈ker f

xi = xj

)
⇒
(
Rf (xf∗(1), . . . , xf∗(k))⇔ R(x1, . . . , xm)

))
Note that every finite relational signature R is residually finite in every

R-structure. On the other hand, ifR is residually finite in someR-structure,
then R is countable.

Lemma 2.5. Let R be a countable relational signature and let A be an
R-structure such that the signature R is residually finite in A. Then for
every n ∈ N there are, up to isomorphism, only finitely many n-element
substructures of A.

Proof. Let A be anR-structure with universe A such thatR is residually
finite in A. Fix any n ∈ N. Then there exists an l > n such that for every
m ≥ l, every k ≤ n, every relation symbol R ∈ Rm and every surjective
mapping f : {1, . . . ,m} → {1, . . . , k} there is a relation symbol Rf ∈ Rk
such that (RF ) holds. Clearly, R′ =

⋃
j<lRj is finite. Therefore, if we can

show that every n-element substructure of A is uniquely determined by
its R′-reduct, then the fact that R′ is finite implies that there are, up to
isomorphism, only finitely many n-element substructures of A.

We are going to show that every n-element substructure of A is uniquely
determined by its R′-reduct by showing that for every R ∈ R with ar(R) ≥ l
there exists an R′-formula ϕR such that R is equivalent to ϕR in every
n-element substructure of A. The idea is now straightforward: since m =
ar(R) > n, every m-tuple of elements from an n-element set has at most n
distinct entries, so all there is to know about R in an n-element structure
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is already contained in the relation symbols Rf whose arities are at most n.
Formally, take an R ∈ R such that m = ar(R) ≥ l and let

ϕR(x1, . . . , xm) =
n∨
k=1

∨
f∈Sm

k

(
Rf (xf∗(1), . . . , xf∗(k)) ∧

∧
(i,j)∈ker f

xi = xj

)
,

where Smk is the set of all surjective mappings {1, . . . ,m} → {1, . . . , k}. Then
it easily follows from (RF ) that ϕR ≡B R for every n-element substructure
B of A.

Theorem 2.6. Let R be a countable relational signature and let A be a
homomorphism-homogeneous R-structure such that the signature R is resid-
ually finite in A. Then End(A) is an oligomorphic transformation monoid.

Proof. Let M = End(A). Clearly, it suffices to show that for each n,
the number of traces (a1, . . . , an)M where all ai’s are distinct is finite (see
Lemma 2.2).

Let (a1, . . . , an)M and (b1, . . . , bn)M be two distinct traces of End(A)
such that all ai’s are distinct, and all bi’s are distinct. Without loss of
generality we can assume that (b1, . . . , bn)M 6⊆ (a1, . . . , an)M . Let us show
that 〈a1, . . . , an〉A 6∼= 〈b1, . . . , bn〉A, where 〈a1, . . . , an〉A denotes the sub-
structure of A generated by {a1, . . . , an}. Suppose to the contrary that
〈a1, . . . , an〉A ∼= 〈b1, . . . , bn〉A and that f : ai 7→ bi is an isomorphism between
the two substructures. Then, by the homomorphism-homogeneity of A, f
extends to an endomorphism f∗ ∈ M . Then (b1, . . . , bn) ∈ (a1, . . . , an)M ,
whence it follows that (b1, . . . , bn)M ⊆ (a1, . . . , an)M . Contradiction.

Therefore, the number of traces (a1, . . . , an)M of the action of M on An

where all ai’s are distinct is not greater than n! times the number of n-
element nonisomorphic substructures of A, which is finite by Lemma 2.5.

The following theorem characterizes transformation monoids of homo-
morphism-homogeneous relational structures over residually finite signa-
tures providing, thus, an answer to the problem posed in [4] which was
quoted in the Introduction.

Theorem 2.7. Let A be a an infinite set and let M ⊆ AA be a transfor-
mation monoid. The following are equivalent:

(1) M is closed in AA and oligomorphic;
(2) M = End(A) for some homomorphism-homogeneous R-structure A

on A, where R is a countable relational signature which is residually
finite in A.

Proof. (2)⇒(1). Follows from Theorems 1.2 and 2.6.
(1)⇒(2). Since M is oligomorphic, for each n ∈ N there are only finitely

many distinct traces
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aMn,1, aMn,2, . . . , aMn,qn

of the action of M on An. Let S = (Sn,j)n∈N, 1≤j≤qn be a relational signature
such that ar(Sn,j) = n and let A be an S-structure on A where SAn,j = aMn,j
for all n ∈ N and 1 ≤ j ≤ qn.

Let us show that M = End(A). Clearly, M ⊆ End(A). In order to
show that the other inclusion holds, it suffices to show that End(A) ⊆ M
since M is closed. Take any f ∈ End(A) and any B = {a1, . . . , an}. Since
(a1, . . . , an)M is one of the qn traces of the action of M on An and since f ∈
End(A), we find that f preserves (a1, . . . , an)M , that is, (f(a1), . . . , f(an)) ∈
(a1, . . . , an)M . Therefore, there is a g ∈ M such that (f(a1), . . . , f(an)) =
(g(a1), . . . , g(an)). This means that f |B = g|B, which concludes the proof
that f ∈M .

Next, let us show thatA is a homomorphism-homogeneous structure. Let
f : 〈a1, . . . , an〉A → 〈b1, . . . , bn〉A be a homomorphism between two finitely
generated substructures of A. Since (a1, . . . , an)M is an interpretation of
some relational symbol from S in A and since f is a homomorphism from
〈a1, . . . , an〉A to 〈b1, . . . , bn〉A, it follows that f(ρ|{a1,...,an}) ⊆ ρ|{b1,...,bn}. In
particular, (f(a1), . . . , f(an)) ∈ ρ|{b1,...,bn} ⊆ ρ = (a1, . . . , an)M . So, there is
a g ∈M such that (f(a1), . . . , f(an)) = (g(a1), . . . , g(an)). This g is then an
endomorphism of A which extends f .

Finally, let us show that S is residually finite in A. Clearly, Sn is finite
for all n ∈ N. Let us show that for every n ∈ N there exists an l > n such
that for every m ≥ l, every k ≤ n, every relation symbol S ∈ Sm and every
surjective mapping f : {1, . . . ,m} → {1, . . . , k} there is a relation symbol
Sf ∈ Sk such that (RF ) holds. Take any n ∈ N and let l = n+ 1. Now, take
any m ≥ n + 1, any k ≤ n, a relation symbol Sm,i ∈ Sm and a surjective
mapping f : {1, . . . ,m} → {1, . . . , k}. Then (af(1), . . . , af(m))M is a trace of
the action of M on Ak, so (af(1), . . . , af(m))M = aMk,j for some j. Therefore,

in (RF ) we can take Sfm,i to be Sk,j .

If A is finite, then every transformation monoid M ⊆ AA is closed and
oligomorphic, so Theorem 2.7 implies that every transformation monoid on
a finite set is an endomorphism monoid of a homomorphism-homogeneous
structure. A careful analysis of the above proof reveals that more is true:

Theorem 2.8. Let A be a finite set. For every transformation monoid
M ⊆ AA there is a finite relational signature S and a homomorphism-
homogeneous S-structure A on A such that M = End(A).

Proof. Let A be a finite set and |A| = m. For each n ∈ N there are only
finitely many distinct traces

aMn,1, aMn,2, . . . , aMn,qn
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of the action of M on An. Moreover, if n > m, the traces of the action of M
on An are none other than the traces of the action of M on Am with some
entries duplicated. Therefore, it suffices to consider only the traces of the
action of M on An where n ≤ m.

Let S = (Sn,j)1≤n≤m,1≤j≤qn be a finite relational signature such that
ar(Sn,j) = n and let A be an S-structure on A where SAn,j = aMn,j for all
1 ≤ n ≤ m and 1 ≤ j ≤ qn. It is now easy to show that M = End(A) and
that A is a homomorphism-homogeneous structure.

We introduce the notion of weakly oligomorphic structures in analogy to
oligomorphic structures:

Definition 2.9. A relational structure A is weakly oligomorphic if
End(A) is an oligomorphic transformation monoid.

Clearly, every relational structure on a finite universe is weakly oligo-
morphic. The following lemma justifies the terminology:

Lemma 2.10. Every relational structure with oligomorphic automor-
phism group is weakly oligomorphic.

Proof. Let A be an R-structure such that G = Aut(A) is an oligomor-
phic permutation group. Let us show that M = End(A) is an oligomorphic
transformation monoid by showing that for every n ∈ N there are only
finitely many traces of the action of M on An (Lemma 2.2). Fix an n ∈ N.
Clearly, G ⊆ M , so aG ⊆ aM for every a ∈ An. Therefore, every trace of
the action of M on An is a union of some orbits of the action of G on An.
Since there are finitely many orbits in the action of G on An, there can be
only finitely many traces in the action of M on An.

In general, the converse of the above lemma is not true:

Example 2.11. Let N = (N,≤) be the chain of integers. It is easy
to see that every chain is homomorphism-homogeneous (the proof can be
found in [6]). Therefore, N is homomorphism-homogeneous, so End(N ) is
an oligomorphic transformation monoid by Theorem 2.6. On the other hand,
Aut(N ) = {id}, so Aut(N ) is not an oligomorphic permutation group.

3. The Ryll-Nardzewski property. In this section we present a char-
acterization of first order theories of countable weakly oligomorphic struc-
tures in terms of an analogue of the Ryll-Nardzewski property. Let R be
a relational signature and T a first order theory in signature R. Formulas
ϕ(x1, . . . , xn) and ψ(y1, . . . , yn) are equivalent in T , in symbols ϕ ≡T ψ, if
T |= ∀x (ϕ(x ) ⇔ ψ(x )). We say that T has the positive Ryll-Nardzewski
property if for each n ∈ N there exist only finitely many positive R-formulas
in variables x1, . . . , xn which are pairwise inequivalent in T . If A is an R-
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structure, we say that A has the positive Ryll-Nardzewski property if the
first-order theory of A, Th(A), has the positive Ryll-Nardzewski property.

The complete positive n-type of an n-tuple a ∈ An in an R-structure A
is the set of all positive formulas that are satisfied by a in A:

tp+
A(a) = {ϕ(x1, . . . , xn) : ϕ is a positive R-formula and A |= ϕ[a ]}.

We say that an R-structure A realizes a set Φ(x ) of positive formulas if
there exists an n-tuple a ∈ An such that Φ ⊆ tp+

A(a). A complete positive
type of a complete theory T is a complete positive type of a tuple of some
model of T . The set of all complete positive n-types of a theory T will be
denoted by S+

n (T ).
A set Φ(x ) of formulas is principal with respect to T if there is a formula

ψ(x ) ∈ Φ(x ) such that T |= ∀x (ψ(x ) ⇒
∧
Φ(x )). We then say that Φ is

generated by ψ. A first-order formula χ(x ) is a characteristic formula for
a set Φ(x ) of positive formulas with respect to T if T |= ∀x (χ(x ) ⇔∧
Φ(x )∧

∧
Φ¬(x )), where Φ¬(x ) = {¬ψ(x ) : ψ(x ) is a positive formula and

ψ(x ) /∈ Φ(x )}.

Lemma 3.1. Let T be a first-order theory and let χ(x) be a characteristic
formula for a set of positive formulas Φ(x) with respect to T . Then for an
arbitrary model A of T and an arbitrary tuple a of elements of A, A |= χ[a]
if and only if tp+

A(a) = Φ.

A set Φ of positive formulas is principal (resp. has a characteristic for-
mula) in an R-structure A if it is principal (resp. has a characteristic for-
mula) with respect to Th(A).

Let A and B be R-structures. Since homomorphisms preserve posi-
tive formulas, for every k ∈ N, every a ∈ Ak and every homomorphism
f : A → B we have tp+

A(a) ⊆ tp+
B (f(a)). Consequently, if a ∈ Ak and

b ∈ Bk are k-tuples such that f(a) = b and g(b) = a for some homo-
morphisms f : A → B and g : B → A then tp+

A(a) = tp+
B (b). The con-

verse holds under additional assumptions (note that (a , c) is shorthand for
(a1, . . . , an, c), where a = (a1, . . . , an)):

Lemma 3.2. Let A and B be countable R-structures such that every
complete positive type in A is principal and every complete positive type in
B is principal.

(1) If a ∈ An, b ∈ Bn and tp+
A(a) ⊆ tp+

B (b), then for every c ∈ A there
exists a d ∈ B such that tp+

A(a, c) ⊆ tp+
B (b, d).

(2) Let a ∈ An and b ∈ Bn satisfy tp+
A(a) ⊆ tp+

B (b). Then there exists
a homomorphism f : A → B such that f(a) = b.

Proof. (1) As tp+
A(a , c) is a complete positive type in A, it is principal

by assumption so it is generated by a formula θ(x , y) ∈ tp+
A(a , c). Clearly,
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A |= θ[a , c], whence A |= (∃y θ(x , y))[a ]. Therefore,

∃y θ(x , y) ∈ tp+
A(a) ⊆ tp+

B (b),

so B |= (∃y θ(x , y))[b]. Then there is a d ∈ B such that B |= θ[b, d]. Let
us show that tp+

A(a , c) ⊆ tp+
B (b, d). Take any ϕ(x , y) ∈ tp+

A(a , c). Since
θ(x , y) generates tp+

A(a , c), we have that A |= ∀x , y (θ(x , y) ⇒ ϕ(x , y)).
Since B |= θ[b, d], we have B |= ϕ[b, d] and thus ϕ ∈ tp+

B (b, d).
(2) Let an+1, an+2, . . . be the list of all the elements of A that do not ap-

pear in a . We know from (1) that there is a sequence bn+1, bn+2, . . . ∈ B such
that for each k∈N we have tp+

A(a , an+1, . . . , an+k) ⊆ tp+
B (b, bn+1, . . . , bn+k).

Therefore, the mapping f : A → B defined by f(a) = b and f(ai) = bi for
all i > n is a homomorphism from A to B which takes a to b.

Corollary 3.3. Let A be a countable R-structure such that every com-
plete positive type in A is principal. Let M = End(A) and let a, b ∈ An be
n-tuples on A. Then a ∼M b if and only if tp+

A(a) = tp+
A(b).

Proof. The conclusion follows directly from Lemma 3.2. It just suffices
to note that aM = bM if and only if there exist f, g ∈M such that f(a) = b
and g(b) = a .

Lemma 3.4. Let A be a weakly oligomorphic R-structure. Then:

(1) A realizes only finitely many complete positive n-types for each n∈N.
(2) A has the positive Ryll-Nardzewski property.
(3) Every complete positive type in A is principal.

Proof. (1) Fix a positive integer n and let O = {O1, . . . , Ok} be the set
of orbits of the action of M = End(A) on An. Clearly, if a and b belong
to the same orbit Oj then there exist f, g ∈ M such that f(a) = b and
f(b) = a , so tp+

A(a) = tp+
A(b). Therefore, for each j all the tuples in Oj

realize the same complete positive n-type and hence A realizes only finitely
many complete positive n-types for each n ∈ N.

(2) Let us show that A has the positive Ryll-Nardzewski property. Take
any n ∈ N and assume that A realizes k complete positive n-types, say,
Φ1, . . . , Φk. It is easy to see that if ϕ(x1, . . . , xn) and ψ(x1, . . . , xn) are posi-
tive formulas, then ϕ ≡A ψ if and only if for every complete positive n-type
Φi(x1, . . . , xn) in A, either {ϕ,ψ} ⊆ Φi or {ϕ,ψ} ∩ Φi = ∅. Therefore, there
are at most 2k positive formulas in variables x1, . . . , xn which are pairwise
inequivalent in A.

(3) Finally, let us show that every complete positive type in A is princi-
pal. Fix an n ∈ N and let Φ(x1, . . . , xn) be a complete positive n-type in A.
Since A has the positive Ryll-Nardzewski property, there are only finitely
many positiveR-formulas in variables x1, . . . , xn which are pairwise inequiv-
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alent in A, say, θ1, . . . , θk. Let {θ1, . . . , θk} ∩ Φ = {θ1, . . . , θs}, s ≤ k. Then
Φ is generated by θ1 ∧ · · · ∧ θs ∈ Φ.

Theorem 3.5. Let T be a complete theory over a signature R and as-
sume that T has infinite models. The following are equivalent:

(1) Every countable model of T is weakly oligomorphic.
(2) There exists a countable model of T which is weakly oligomorphic.
(3) T has the positive Ryll-Nardzewski property.
(4) For every n ≥ 1, every type in S+

n (T ) has a characteristic formula.
(5) For every n ≥ 1, S+

n (T ) is finite.

Proof. (1)⇒(2). Trivial.
(2)⇒(3). Let A be a countable model of T which is weakly oligomorphic.

Then A has the positive Ryll-Nardzewski property by Lemma 3.4. On the
other hand, T = Th(A) since T is complete. Therefore, T has the positive
Ryll-Nardzewski property.

(3)⇒(4). Fix an n ∈ N and let Φ(x1, . . . , xn) be a complete positive n-
type of T . Since T has the positive Ryll-Nardzevski property, there are only
finitely many positive R-formulas in variables x1, . . . , xn which are pairwise
inequivalent in T , say, θ1, . . . , θk. Let {θ1, . . . , θk} ∩ Φ = {θ1, . . . , θs}, s ≤ k.
Then θ1 ∧ · · · ∧ θs ∧ ¬θs+1 ∧ · · · ∧ ¬θk is a characteristic formula of Φ.

(4)⇒(5). Take any n ∈ N, let S+
n (T ) = {Φi(x ) : i ∈ I} and let χi(x )

be a characteristic formula for Φi(x ), i ∈ I. Let c be an n-tuple of new
constants. Then T ∪ {¬χi(c) : i ∈ I} is not consistent. Due to compact-
ness of first-order logic, there is a finite set {i1, . . . , im} ⊆ I such that T ∪
{¬χi1(c), . . . ,¬χim(c)} is not consistent. Therefore, T |= χi1(c)∨· · ·∨χim(c)
since T is complete, so T |= ∀x (χi1(x ) ∨ · · · ∨ χim(x )). Hence, for every
model A of T and every n-tuple a ∈ An, A |= (χi1 ∨ · · · ∨χim)[a ]. Since χij
are characteristic formulas of complete positive types, Lemma 3.1 implies
that S+

n (T ) ⊆ {Φi1 , . . . , Φim}.
(5)⇒(1). Let A be a countable model of T . Since S+

n (T ) is finite for
every n ≥ 1, A realizes only finitely many complete positive n-types for
every n ≥ 1, so A has the Ryll-Nardzewski property. It follows, using the
same argument as in the proof of Lemma 3.4(3), that every complete positive
type in A is principal.

4. Representations by homomorphism-homogeneous structures.
We have seen in Theorem 2.6 that homomorphism-homogeneous structures
over residually finite signatures have oligomorphic transformation monoids.
Although a countable structure with an oligomorphic transformation monoid
need not be homomorphism-homogeneous (we treat this problem in more
detail in Section 5), we prove that such a structure is always definitionally
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equivalent to a homomorphism-homogeneous structure over a residually fi-
nite signature.

Let R = (Ri)i∈I and S = (Sj)j∈J be relational signatures, let A be an
R-structure, and let B be an S-structure, both over the same universe A.
A positive translation of A into the signature of B is a mapping (−)τ from
{Ri : i ∈ I} to the set of all positive S-formulas such that:

• for all i ∈ I, Rτi = Rτi (x1, . . . , xri);
• for every i ∈ I and every a ∈ Ari , A |= Ri[a ] if and only if B |= Rτi [a ].

We say that A and B over the same universe A are positively definitionally
equivalent if there exists a positive translation of A into the signature of B,
and a positive translation of B into the signature of A.

Lemma 4.1. Let A be a countable weakly oligomorphic R-structure on A,
and let F be a set of positive R-formulas such that

• x = y ∈ F for all variables x and y;
• if ϕ,ψ ∈ F then ϕ ∧ ψ ∈ F and ϕ ∨ ψ ∈ F ;
• if g : {a1, . . . , ah} → {b1, . . . , bh} defined by g(ai) = bi, 1 ≤ i ≤ h,

cannot be extended to an endomorphism of A, where a1, . . . , ah are
distinct elements of A and b1, . . . , bh are arbitrary elements of A, then
there is a formula ψ(x1, . . . , xh) ∈ F such that A |= ψ[a1, . . . , ah] and
A 6|= ψ[b1, . . . , bh].

Then for every h ≥ 1 and every relation ρ ⊆ Ah, ρ can be defined in A by a
formula from F if and only if ρ is invariant under End(A).

Proof. (⇒) Let P be a positive formula from F which defines ρ in A.
Since every endomorphism of A preserves every positive R-formula, it fol-
lows that ρ is invariant under End(A).

(⇐) Let M = End(A) and let Q be the set of all finitary relations on A
that are definable in A by positive formulas from F . Let us first show that
every trace in the action of M on Ah lies in Q.

Let a = (a1, . . . , ah) and assume, for a start, that all the entries of a are
distinct. Consider

γ =
⋂
{η ∈ Q : ar(η) = h and a ∈ η}.

According to Lemma 3.4, for each n ∈ N, there exist only finitely many
positive R-formulas in variables x1, . . . , xn which are pairwise inequivalent
in A. Therefore, there are finitely many h-ary relations η1, . . . , ηs ∈ Q that
contain a . Each ηi is definable inA by a positive formulaHi(x1, . . . , xh) ∈ F ,
1 ≤ i ≤ s, so

Σ(x1, . . . , xh) = H1(x1, . . . , xh) ∧ · · · ∧Hs(x1, . . . , xh)
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is a positive formula from F that defines γ in A. We are going to show that
aM ∈ Q by provading that aM = γ.

Let us first show that aM ⊆ γ. Take any η ∈ Q such that a ∈ η and
let H(x1, . . . , xh) be a positive formula from F that defines η in A. Since
every f ∈M preserves H, it follows that f(a) ∈ η for all f ∈M . Therefore,
aM ⊆η whenever a ∈η ∈ Q, so aM ⊆

⋂
{η ∈ Q : ar(η) = h and a ∈ η} = γ.

Assume now that aM ( γ, take any b = (b1, . . . , bh) ∈ γ \aM and define
a mapping g : {a1, . . . , ah} → {b1, . . . , bh} by g(ai) = bi, 1 ≤ i ≤ h. Since
b /∈ aM it follows that g cannot be extended to an endomorphism of A.
Then, according to the assumptions about F , there is a positive formula
Ψ(x1, . . . , xh) ∈ F such that A |= Ψ [a ] and A 6|= Ψ [b]. Consider now the
following positive R-formula:

∆(x1, . . . , xh) = Σ(x1, . . . , xh) ∧ Ψ(x1, . . . , xh).

Let δ = ∆A. From A |= Ψ [a ] and A |= Σ[a ] it follows that A |= ∆[a ].
Therefore, a ∈ δ and δ ∈ Q, so the definition of γ ensures that γ ⊆ δ. Since
b ∈ γ ⊆ δ, we see that A |= ∆[b], so A |= Ψ [b]. Contradiction. Hence, Σ
defines aM in A.

As the next step, let a = (a1, . . . , ah) where not all the entries of a
are distinct. Let kera = {(i, j) : ai = aj} and let q = |{1, . . . , h}/kera |
denote the number of equivalence classes of kera . Let {1, . . . , h}/kera =
{S1, . . . , Sq}, and let g : {1, . . . , q} → {1, . . . , h} be a mapping satisfying
g(i) ∈ Si, 1 ≤ i ≤ q. Then c = (ag(1), . . . , ag(q)) is a tuple with distinct
entries, so by the argument above, cM can be defined in A by a positive
formula from F , say by Θ(x1, . . . , xq) ∈ F . Then it is easy to see that the
following positive formula belongs to F and defines aM in A:

Σ(x1, . . . , xh) = Θ(xg(1), . . . , xg(q)) ∧
∧

(i,j)∈kera

xi = xj .

Finally, let ρ ⊆ Ah be a relation on A with h ≥ 1, and assume that ρ is
invariant under M . For every r ∈ ρ let Σr (x1, . . . , xh) be a positive formula
from F that defines rM in A. Since ρ is invariant under M , it follows that
ρ =

⋃
{rM : r ∈ ρ}. Therefore,

P (x1, . . . , xh) =
∨
r∈ρ

Σr (x1, . . . , xh)

is a possibly infinitary positive formula that defines ρ inA. Since for each n ∈
N there exist only finitely many positive R-formulas in variables x1, . . . , xn
which are pairwise inequivalent in A, there exist r1, . . . , rk ∈ ρ such that∨

r∈ρ
Σr (x ) ≡A Σr1(x ) ∨ · · · ∨Σrk

(x ).
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Therefore, Σr1(x ) ∨ · · · ∨Σrk
(x ) is a positive formula from F that defines

ρ in A.

Let L∞ω(R) denote the set of all infinitary R-formulas where conjunc-
tions and disjunctions are allowed over arbitrarily large sets of formulas, and
let L+

∞ω(R) denote the positive fragment of L∞ω(R). Note that formulas
from L∞ω(R) may have infinite length, but they are required to have finite
depth: they can be constructed from atomic formulas in finitely many steps
involving quantification, negation and infinitary conjunction and disjunc-
tion.

Theorem 4.2. Let A be a countable weakly oligomorphic R-structure
on A.

(1) For every h ≥ 1 and every relation ρ ⊆ Ah, ρ can be defined in A by
a positive R-formula if and only if ρ is invariant under End(A).

(2) For every formula λ(x) ∈ L+
∞ω(R) there exists a positive R-formula

ϕ(x) such that λ(x) ≡A ϕ(x) (that is, L+
∞ω(R) has the same expres-

sive power in A as the set of all positive R-formulas).

Proof. (1) Let F be the set of all positive R-formulas and let us show
that it meets the requirements from Lemma 4.1. The first two items are
trivially satisfied. As for the third item, let g : {a1, . . . , ah} → {b1, . . . , bh}
be a mapping defined by g(ai) = bi, 1 ≤ i ≤ h, and assume that g cannot
be extended to an endomorphism of A. Since every complete positive type
in A is principal (Lemma 3.4), Lemma 3.2 implies that tp+

A(a1, . . . , ah) 6⊆
tp+
A(b1, . . . , bh). Therefore, there is a positive formula ψ(x1, . . . , xh) such

that A |= ψ[a1, . . . , ah] and A 6|= ψ[b1, . . . , bh].
(2) Clearly, it suffices to show that for every nonempty set Φ(x ) of posi-

tive formulas there exist positive formulas ϕ(x ) and ψ(x ) such that ϕ(x ) ≡A∧
Φ(x ) and ψ(x ) ≡A

∨
Φ(x ). Let ρ = (

∧
Φ(x ))A and σ = (

∨
Φ(x ))A. It

is easy to see that both ρ and σ are invariant under End(A), so, by (1)
both ρ and σ can be defined in A by positive formulas, say, ϕ(x ) and ψ(x ),
respectively. Then ϕ(x ) ≡A

∧
Φ(x ) and ψ(x ) ≡A

∨
Φ(x ).

Note that the claim (1) in the above theorem is analogous to [2, Theo-
rem 5]. See also [1].

As a direct consequence of Theorem 4.2 we obtain an analogue of the
fact that two ω-categorical relational structures over the same universe are
definitionally equivalent if and only if their automorphism groups coincide:

Corollary 4.3. Let ΩA be a class of all weakly oligomorphic relational
structures of all signatures on a countable universe A. Then A1,A2 ∈ ΩA
are positively definitionally equivalent if and only if End(A1) = End(A2).
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The following two corollaries are converses of Theorems 2.6 and 2.8,
respectively.

Corollary 4.4. Let A be a countable weakly oligomorphic relational
structure with universe A. Then A is positively definitionally equivalent to
a homomorphism-homogeneous structure A∗ with universe A and over a
countable relational signature which is residually finite in A∗.

Proof. Let M = End(A). According to Theorem 2.7, there is a homo-
morphism-homogeneous structure A∗ with universe A and over a countable
relational signature which is residually finite in A∗ such that M = End(A∗).
The structures A and A∗ are positively definitionally equivalent by Corol-
lary 4.3.

Corollary 4.5. Let A be a finite relational structure with universe A.
Then A is positively definitionally equivalent to a homomorphism-homogene-
ous structure A∗ with universe A and over a finite relational signature.

Proof. Let M = End(A). According to Theorem 2.8, there is a homo-
morphism-homogeneous structure A∗ with universe A and over a finite re-
lational signature such that M = End(A∗). The structures A and A∗ are
positively definitionally equivalent by Corollary 4.3.

5. Quantifier elimination. We say that an R-structure A has quan-
tifier elimination (QE) if for every formula ϕ there exists a quantifier-free
formula ϕ0 such that ϕ ≡A ϕ0. An R-structure A has quantifier elimination
for positive formulas (QEPF) if for every positive formula ϕ there exists a
quantifier-free positive formula ϕ0 such that ϕ ≡A ϕ0.

Let A be an R-structure and let a ∈ An. The complete positive quanti-
fier-free type of a in A is the set of positive quantifier-free formulas that are
satisfied by a in A:

tp0
A(a) = {ϕ(x1, . . . , xn) : ϕ is a positive quantifier-free R-formula

and A |= ϕ[a ]}.
Lemma 5.1. Let A be a countable structure on a universe A.

(1) If A is homomorphism-homogeneous, then for every n ∈ N and every
a, b ∈ An, if tp0

A(a) ⊆ tp0
A(b) then tp+

A(a) ⊆ tp+
A(b).

(2) Assume that every complete positive type in A is principal and that
for every n ∈ N and every a, b ∈ An the inclusion tp0

A(a) ⊆ tp0
A(b)

implies tp+
A(a) ⊆ tp+

A(b). Then A is homomorphism-homogeneous.
(3) Assume that A has QEPF and that every complete positive type in
A is principal. Then A is homomorphism-homogeneous.

Proof. Note, first, that if A is finite then it is weakly oligomorphic, so
every complete positive type in A is principal by Lemma 3.4.
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(1) Obvious.
(2) Let f be a homomorphism from 〈a1, . . . , ah〉A to 〈b1, . . . , bh〉A. Then

tp0
A(a) ⊆ tp0

A(b). The assumption now yields tp+
A(a) ⊆ tp+

A(b), whence
there is an endomorphism f∗ of A such that f∗(a) = b (Lemma 3.2).

(3) Since A has QEPF, it is easy to see that for every n ≥ 1 and ev-
ery a , b ∈ An the inclusion tp0

A(a) ⊆ tp0
A(b) implies tp+

A(a) ⊆ tp+
A(b).

Therefore, A is homomorphism-homogeneous according to (2).

Theorem 5.2. Let A be a countable weakly oligomorphic homomor-
phism-homogeneous R-structure on A. Then for every h ≥ 1 and every
ρ ⊆ Ah, ρ can be defined in A by a positive quantifier-free R-formula if and
only if ρ is invariant under End(A).

Proof. Let F be the set of all positive quantifier-free R-formulas and
let us show that it meets the requirements from Lemma 4.1. The first two
items are trivially satisfied. As for the third item, let g : {a1, . . . , ah} →
{b1, . . . , bh} be a mapping defined by g(ai) = bi, 1 ≤ i ≤ h, and assume
that g cannot be extended to an endomorphism of A. The structure A is
homomorphism-homogeneous, so g cannot be a local homomorphism from
〈a1, . . . , ah〉A to 〈b1, . . . , bh〉A. Therefore, tp0

A(a) 6⊆ tp0
A(b). In other words,

there is a positive quantifier-free formula ψ(x1, . . . , xh) such that A |= ψ[a ]
and A 6|= ψ[b].

Theorem 5.3. Let A be a countable R-structure such that R is residu-
ally finite in A. Then A is homomorphism-homogeneous if and only if A is
weakly oligomorphic and has QEPF.

Proof. (⇒) According to Theorem 2.6, End(A) is an oligomorphic trans-
formation monoid, and Theorems 5.2 and 4.2 ensure that A has QEPF.

(⇐) Since A is weakly oligomorphic, Lemma 3.4 ensures that every
complete positive n-type in A is principal. Therefore, A is homomorphism-
homogeneous by Lemma 5.1 since A has QEPF.

Theorem 5.4. Let A be a countable weakly oligomorphic structure. Then
A is homomorphism-homogeneous if and only if A has QEPF.

In particular, if A is a finite structure, then A is homomorphism-homo-
geneous if and only if A has QEPF.

Proof. (⇒) Directly from Theorems 5.2 and 4.2.
(⇐) Since A is weakly oligomorphic, Lemma 3.4 ensures that every

complete positive n-type in A is principal. Therefore, A is homomorphism-
homogeneous by Lemma 5.1 since A has QEPF.

As for the final part of the theorem, note that if A is finite then it is
trivially weakly oligomorphic.
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We say that a structureA has quantifier elimination that respects positive
formulas (QERPF) if A has both QE and QEPF, or equivalently, if A has
quantifier elimination where every positive formula reduces to a positive
quantifier-free formula.

Corollary 5.5. Let A be an ω-categorical structure. Then A is both
ultrahomogeneous and homomorphism-homogeneous if and only if A has
QERPF.

In particular, if A is a finite structure, then A is both ultrahomogeneous
and homomorphism-homogeneous if and only if A has QERPF.

Proof. Note, first, that A is oligomorphic, so Lemma 2.10 shows that A
is weakly oligomorphic. Since A is ω-categorical, we know that A is ultra-
homogeneous if and only if A has quantifier elimination (QE). On the other
hand, since A is weakly oligomorphic we know that A is homomorphism-
homogeneous if and only if A has QEPF. Therefore, A is both ultrahomoge-
neous and homomorphism-homogeneous if and only if A has both QE and
QEPF, which is equivalent to the requirement that A has QERPF.
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