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Lipschitz and uniform embeddings into /.,

by

IN. J. Kalton| (Columbia, MO)

Abstract. We show that there is no uniformly continuous selection of the quotient
map @ : loo — foo/co relative to the unit ball. We use this to construct an answer to a
problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a
no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction
from Bx*+ onto Bx.

1. Introduction. It is very well-known that cg is not complemented
in {; an alternate viewpoint is that there is no continuous linear selection
(or right inverse) of the quotient map @ : foo — foo/co. On the other hand,
Aharoni and Lindenstrauss [1] showed that there is a large subspace of
lx/co (isometric to co() where |I| = ¢, the cardinality of the continuum)
on which a Lipschitz selection of Q) exists. It is also known that ¢y is a
Lipschitz retract of £o [15], [4]. This raises the question of whether a global
Lipschitz or at least uniformly continuous selection can be found. In fact,
there are set-theoretic reasons that one cannot find any selection f so that
foQ is weak*-Borel 8], which already means that any formula for such an f
must be rather unpleasant. It is also worth noting that every Banach space
of density character X; linearly and isometrically embeds into ¢o/co [16].

In this note we show that there is no selection f which is uniformly
continuous on the unit ball of £, /co. We show in fact that B, . cannot
be uniformly embedded into ¢o,. We prove this by considering the space
2, = wgn] of all n-subsets {«1,...,a,} of the countable ordinals as a graph
where two subsets are adjacent if they interlace. This is the uncountable
analogue of a similar graph considered in [13] in connection with uniform
embeddings into reflexive spaces. One then shows that if f : (2, — £ is a
map such that ||f(a) — f(8)]| < 1 whenever a and (3 are adjacent then there
is an uncountable subset © of w; so that f(6") has diameter at most one.
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This is very similar to the results of [13] for maps into reflexive spaces on
the countable version of this graph.

Our main application of this result is to answer a problem raised in |4}
p. 183] (see also Problem 10 of |14]). We give an example of a Banach space X
so that there is no Lipschitz retraction of X** onto X ; for a discussion of the
significance of such an example in the extension theory of Lipschitz maps
we refer to [14]. In fact for our example there is no uniformly continuous
retraction of the unit ball Bx++ onto Bx. The space X is a Lindenstrauss
space, i.e. its dual is isometric to an Li-space and its bidual is therefore an
injective Banach space (and in particular a 1-absolute Lipschitz retract).

We also discuss non-separable spaces which can be Lipschitz embedded
into /. For example, it is shown that every Banach space with an uncon-
ditional basis of cardinality at most ¢ Lipschitz embeds into £4.. In the final
section, we also show that £ @ ¢y does not have unique Lipschitz structure
and show indeed that a very wide class of spaces containing ¢y cannot have
unique Lipschitz structure.

2. Notation and preliminaries. All Banach spaces will be real. We
denote by Bx the closed unit ball of a Banach space X and by dBx the
unit sphere. Ix will denote the identity operator on X.

X is called weakly compactly generated (WCG) if there is a weakly com-
pact set W such that | J,, .y nW is dense in X. A Markushevich basis for X is
a biorthogonal system {x;, z} };ic; which is total and fundamental. We shall
say that X is Plichko if it has a Markushevich basis {x;, z} }icr so that the
subset E of X* given by E = {z* : |{i : 2*(z;) # 0}| < R} is a 1-norming
subspace of X*. If F = X* we say that X is weakly Lindelof determined
(WLD). These are not the original definitions of Plichko and WLD spaces
but are equivalent (see Theorems 5.37 and 5.63 of [10] or [23] and [22]). Note
that WCG spaces are WLD and hence also Plichko. X is said to have the
separable complementation property (SCP) if every separable subspace of X
is contained in a complemented separable subspace.

For any Banach space X we write dens X for the smallest cardinality of
a dense subset (the same definition will be used for metric spaces). We write
w*-dens X for the smallest cardinality of a weak*-dense subset of X*.

Let M and M’ be metric spaces. If f : M — M’ is any mapping we
define

Yy (t) = sup{d(f(z), f(a')) : d(z,a") < t}.

[ is said to be Lipschitz (with Lipschitz constant L) if 1(t) < Lt for all ¢.
The function f is uniformly continuous if lim;_o1(t) = 0 and coarsely
continuous if () < oo for all t. If f is injective, then f is a Lipschitz
(respectively uniform, respectively coarse) embedding if f and f~!| F(M) are
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Lipschitz (respectively uniformly continuous, respectively coarsely continu-
ous).

If M is a metric space and E is a subset of M then a retractionr : M — E
is a map such that r(e) = e for e € E.

If M has a base point (labelled 0), we refer to M as a pointed metric
space and we define Lip(M) as the Banach space of all real-valued Lipschitz
maps f: M — R with the usual norm,

1f iy = up{wf?(—fgﬂ

If M = X is a Banach space, the base point is always the origin. The Arens—
Fells space (M) is defined as the closed linear span of the point evaluations
ds(f) = f(s) in Lip(M)*. The map J : s — 0, is then an isometry of M into
E(M). We refer to [24] and [9] for further details (in [9] the terminology
Lipschitz-free space and the notation FM was used). If X is a Banach space
there is a canonical quotient map 3 : A(X) — X and 0 is an isometric
selection for (3, i.e. Bod = Ix.

We will record a result here which is not needed in the sequel but repre-
sents an improvement over Proposition 4.1 of [9].

w2’ € M, d(z,2') > 0}.

THEOREM 2.1. Let M be a pointed metric space and suppose ' C HE(M)
is a bounded mon-separable subset of density character X > Nqo. If X has
uncountable coﬁnalz’ty@ then there is a subset (p;)ier of F with [I| =X so
that (1;)ier s equivalent to the unit vector basis of ¢1(I). In particular any
weakly compact subset of B(M) is separable.

Proof. If G is any subset of M containing 0, for 0 < § < 1, we denote
by GI® the subset of M of all z such that d(z,G) < dd(z,0). We will first
claim that there exists 0 < § < 1 so that, for G as above,

(2.1) if dens(G) < X, then d(u, B(GP)) > § for some p € F.
Indeed, if not, for n € N we may pick G, containing 0 so that
dens(G,,) < N and d(u, BGIM/™) <1/n  for every pu € F.

Let G = |J,, Gy, and assume p € F. We show that p € A(G). If not there

exists f € Lip(M) with flg = 0, || fllLipary = 1 and (u, f) = 6 # 0. By
picking either fi; = max(f,0) or f- = max(—f,0) we can suppose f > 0.
Now define

fu(z) = min(f(z), (d(z, G) = d(z,0)/n)4).
Then || fnlLip(ary < 1+ 1/n. We also have
f(a:)—l/ngfn(:r)gf(a:), .CCEG,

(*) This assumption has been added by the editors.
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and so lim,, . fn(z) = f(x) for x € G. This implies that lim, .o fr = f
weak*. Now since f,,(G!'/™) = 0 we have

1 1
n n
and so (u, f) = 0 contrary to assumption. Thus F' C &(G), contrary to
the fact that G, and hence &(G), has density character < R, while F' does

not @ This establishes (2.1]).

Assuming (2.1]) we construct a maximal family {Gj, u;, fi }icr where:
(i) p;i € F, G; is a countable subset of M and p; € E(G;).
(ii) fi € Lip(M) with f; > 0 and || fillLip(ar) < 4/6%.
(iii) (s, fi)l =1 and (p;, f;) = 0 for i # j.
(iv) supp fi = {fi > 0} C GE].
(v) supp fi Nsupp f; = 0 for i # j.
Let G =J,; Gy; if I is empty we set G = {0}.

We next argue that |I| = R by contradiction. Suppose |I| < Y. Then
dens G < X. Hence there exists u € F so that d(u, B(GP)) > §. Thus
there exists a function g € Lip(M) with |g||Lipar) < 2/0, g(GV) = 0 and
(1, g) > 2. By considering either g4 or g_ we can therefore find h > 0 with
IhllLipeary < 2/8, B(GPT) = 0 and |(u, h)| = 1.

Take a countable set G’ C M so that u € E(G’). Then we define

f(@) = max(sup{h(y) — 40~ %d(z,y) : y € G'},0).
Then || fllLipary < 4672 If - ¢ G'0 then for any y € G’ we have d(z,y) >
dd(x,0). Hence
d(y,0) < d(z,0) +d(z,y) < (67" + 1)d(z,y) < 207" d(z,y).

Then h(y) < 26~ 'd(y,0) < 46~2d(z,y), which implies that supp f C G'I9.

Now we can add (G', u, f) to the collection contradicting maximality.
The conclusion is that |I| = .

Finally we argue that (u;) is equivalent to the unit vector basis of ¢;.
Indeed, if A is a finite subset of I and (a;);c 4 are real numbers we define h €
Lip(M) by setting h = 37, 4 € fi where €;a;{;, fi) = |ai|. Then |[h||Lipar) <
8/62. Indeed, suppose x € supp fi, y € supp fj where i # j. Then

[h(z) = h(y)| < |fiz) = fiy)l + | fi(2) = f;(y)] < 80 2d(z,y).

Other cases for =,y give better estimates. Hence
1
[Son > S
€A i€A

(?) This sentence has been added by the editors. Tt seems that in this part of the
reasoning the author uses the assumption that N has uncountable cofinality.
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3. A metric Ramsey theorem. We denote by w; the first uncountable
ordinal. Let 2, = wgn] where n > 0 denote the collection of all n-subsets
of 21 = w1 = [0,w;); note that in the case n = 0, {2y consists of one
point, namely the empty set (). We write a typical element of {2, in the form
a = {ay,...,an} where ay < -+ < . If n > 1 and A C (2, we define
0A C wgn_l] by {a1,...,an—1} € A if and only if {5 : {a1,...,an_1,0} €
A} is uncountable. If n = 1 this amounts to the fact that () € A if and only
if A is uncountable. We shall say that A C 2, is large if ) € 9" A; otherwise
A is small. We say that A is very large if its complement A is small.

It follows from the next lemma that if A is very large it is also large.

LEMMA 3.1. Let (Ak)zozl be a sequence of small subsets of §2,. Then
Uks>1 Ak is also small.

Proof. 1t is trivial that 0, Ar = U, OAk. Iterating gives the result. m

LEMMA 3.2. If A is a very large subset of (2, there is an uncountable
subset © C 21 so that O c A.

Proof. Let © be a maximal subset of {21 so that if {a,..., a1} € O]
with 0 < k < n then {a1,...,a} ¢ 0" *A; here we write ?°A = A. Such a
maximal subset exists by Zorn’s Lemma since () satisfies the conditions. We
show that © is uncountable. Assume, on the contrary, that © is countable.
For each {aq,...,ax} € Ol with 0 < k < n — 1 the set of 3 such that
{a1,...,ap, B} € 0" Ft1 4 is countable. Let

h‘{ala SRR Oék;} = Sup{ﬁ : {Oél, SRR O‘kaﬁ} € an—k-‘rl/‘i}
so that h{ay,...,ar} < wi. Let o be the supremum of all h{ay,...,ar};

since O is countable we have o < wi. Now o > sup© and O U {o + 1} gives
a contradiction to maximality. =

LEMMA 3.3. Let f: 2, — R be any mapping. Then there is an open set
U C R so that f~1(U) is small and if V is any open set with f~1 (V') small
then V C U.

Proof. Let U be the set of all open sets V' so that f~1(V) is small. Then
by the Lindelof theorem and Lemmal[3.1, U € U where U = [J{V : V € U}. =

We will make 2, into a graph by declaring o # (3 to be adjacent if either

o <pfr<ar<f <<y < By

or
br<oar <Pa<ay < - < By <y,

i.e. a and ( interlace. Then we define d to be the least path metric on {2,
which then becomes a metric space. We write a < (3 if

o] << ap <P << B
If a < 3 then d(«, 3) = n so that {2, has diameter n.
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LEMMA 3.4. Suppose A and B are large subsets of §2,,. Then there exist
a € A and B € B so that «, 3 interlace.

Proof. Pick oy € 0" 1A and then, since 9"~ B is uncountable, we may
pick 81 € 0" !B with #; > «;. Continuing we may pick as > i so
{a1,az} € 0" 2A and continue. m

LEMMA 3.5. Let f : (£2,,d) — R be any Lipschitz function with Lipschitz
constant L. Then there exists § € R so that {a: |f(a) —&| > L/2} is small.

Proof. Let U be the maximal open subset of R so that f~!(U) is small,
given by Lemma[3.3] Let E be its complement, which is necessarily nonempty
and closed. It suffices to show that the diameter of F is at most L. Suppose
s,t € E with s—t > L. Then we can pick € > 0 so small that s—e > t+e+ L.
Now the sets f~1(s —¢,00) and f~!(—0c0,t + €) are both large. By Lemma
there exist «, 8 which are interlacing and so that f(a) > s — e and
f(B) < t+ €, which contradicts the definition of the Lipschitz constant. m

THEOREM 3.6. Let f : (£2,,d) — l be a Lipschitz map with Lipschitz
constant L. Then there exists & € {oo and an uncountable subset @ of (2,
so that

If(@) =€l <L/2, a6l

Proof. Let f(a) = (fu(®))22,. According to Lemma there exists
&, € Rso that £, 16, — L/2,&, + L/2] is very large. Hence if £ = (£,)°%,
the set of a with | f, () —&,| < L/2 for all n is also very large (using Lemma
. In particular £ € . The proof is completed by Lemma, "

4. Embeddings in /.. Let X be a Banach lattice. We will say that
X has the monotone transfinite sequence property (MTSP) if whenever
(%u)pu<w, is a monotone increasing transfinite sequence, then there exists
x € X such that z, = x eventually.

THEOREM 4.1. Let X be a Banach lattice with the property that Bx can
be uniformly embedded into l~,. Then X has (MTSP).

Proof. Let us assume X fails (MTSP). Since any transfinite sequence
() p<w, 1s necessarily bounded we may assume it takes values in Bx. Let
0(p) = sup,~,, [|[vo — x,||. Then O(u) is decreasing.

Let f: Bx — {o be a uniform embedding, with inverse g: f(Bx) — Bx.

For each n consider the map f, : £2,, — loo given by f, (o) = f (% > e Tay)-
o <fi<as<- - <a, < B, we have

[fn(a) = fu(B)] =

n

LS ()

J=1

1
< ~llzg, — 2ayll < 2/n.

Hence f,, has Lipschitz constant 1(2/n).
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By Theorem [3.6) we may pick an uncountable subset ©,, of 21 so that
[fn(a) = fa(B)] < 4f(2/n),  a,B €6

1 — 1 —
ﬁzxﬂj - ;Z%j
j=1 j=1

Pick oy < - < ap € O,. If v > 4 > ay then we can find G, > Bh—1 >
-> 1 > v with 8; € 6, for 1 < j < n and then

2y — @l < H Zxﬁj . Zwa]

Hence

< wg(wf(Q/n))7 a, 3 € O.

< Yy(hy(2/n)),

and hence
0(1) < Yg(¥5(2/n)),  p> an.

Applying this for every n, since lim, .o ¥g(¢f(2/n)) = 0 we have that
(1) = 0 eventually, which implies that x, is eventually constant. m

THEOREM 4.2. Let X = lo/co or C[l,wi]. Then Bx cannot be uni-
formly embedded into loo

Proof. Since C[1,w] embeds into ¢ /co it is not really necessary to prove
these separately. However it is easy to observe that both spaces fail (MTSP).
For the case of {o,/co we may, by induction, define a transfinite sequence
of infinite subsets A, C N so that if yu > v we have A, \ A, infinite and
A, C A, modulo finite sets. Let B, be the complement of A, and then
r, = Q(xB,) where Q : lo — co is the quotient map. For the case of
C[1,w1] let 2, = X[1,,)- In either case the result follows from the preceding
Theorem [£.1] =

REMARK. In [17] it is shown that C[1,w;] does not uniformly embed into
a space co([). In [1] it is shown that if |I| = ¢ then ¢o(]) Lipschitz embeds
in £. Therefore Theorem also implies that C[1,w;] does not uniformly
embed into cy(I) for any set I. Note however that there is an injective linear
map T : C[1,w1] — co(I) where |I| = Ry defined by T'f(a) = f(a+1)— f(«a)
for o < wy and T'f(w1) = f(1). Thus there is a countable family of Lipschitz
functions on C[1,w;] which separate the points of C[1,w1].

We now give a slight variation of Theorem [£.2] Let us say that a Banach
lattice X has the countable interpolation property if whenever (z,)7% ; and
(yn )92 are two sequences with x,,, > y, whenever m,n € N then there exists
z € X with o, > 2z > y,, for all m,n € N. If K is a compact Hausdorff space
then C(K) has the countable interpolation property if and only if K is an
F-space [21]; here K is an F-space if the closures of two disjoint open Fj-sets
remain disjoint (see [7]). The space SN \ N is an F-space so the following
result implies Theorem for the case {o/co.
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PROPOSITION 4.3. Let X be a Banach lattice with (MTSP) and the
countable interpolation property. Then X is order-complete. In particular
if K is an F-space such that C(K) has (MTSP), then K is Stonian.

Proof. Let A be a subset of X which is bounded above. Let us say that
A has property (P) if for every countable set B with x < y for z € A and
y € B there exists z € X with x <z <y forxz € A, y € B. We claim that
property (P) implies A has a least upper bound (or supremum). If not let y;
be any upper bound. We construct a strictly decreasing transfinite sequence
(Yp) u<w, by transfinite induction. If (y,),<, has been chosen to be strictly
decreasing we pick for each v an upper bound vy, < y, with y,, # y, and
then use (P) to find an upper bound y,, <y, for all v < p. This contradicts
(MTSP) and shows that A has a least upper bound.

Now by the countable interpolation property, countable sets have prop-
erty (P) and hence have a least upper bound. But this implies that every
set A which is bounded above has property (P) and the proof is complete. =

We will now turn to an application of the above results. We will need
the following elementary lemma, which appears first in [12]; we include the
proof for the convenience of the reader.

LEMMA 4.4. Let Y be a Banach space and let Q :' Y — X be a quo-
tient mapping. In order that there exists a uniformly continuous section
f: Bx — Y it is necessary and sufficient that for some 0 < A < 1 there
is a uniformly continuous map ¢ : O0Bx — Y with ||Q(p(x)) — x| < X for
T € 0Bx.

Proof. We may extend ¢ to Bx to be positively homogeneous and ¢
remains uniformly continuous. Define g(z) = x — Q(¢(x)), so that g is also
positively homogeneous. Then ||g(z)|| < A||z|| and so ||g"(x)| < A"||z| for
r € By. Let ¢°(2) = x. Let

@)= olg"(@)).
n=0

The series converges uniformly in x € Bx and so f is uniformly continuous.

Furthermore
x

Qf(x) =Y (9"(x) —g"(z)) = 2. w
n=0
The following theorem answers a question raised in [4, p. 183] (see also
the discussion in [14]).

THEOREM 4.5. There exists a (non-separable) Lindenstrauss space Z
such that there is no uniformly continuous retraction of Bz« onto Bz. In
particular there is no uniformly continuous retraction of Z** onto Z.
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Proof. The space Z is the same example that was given by Benyamini
[3] as an example of a non-separable M-space which is not a C(K)-space.

We start by considering the quotient map @ : oo — {s/co. For each n
we pick a maximal set D, in the interior of By_ /., so that ||z —2'[| > 1/n for
x,2" € Dy, and z # 2/. Then for each n we can define a map h,, : D,, — By__
with Qhy(x) = z for z € D,

Now let Y,, denote £, with the equivalent norm

1
ol = meax( 3 e 1@l )

Then Y, is a Lindenstrauss space; note also that @ : Y,, — f/co remains
a quotient map for the usual norm on ¢ /co. Let Z = ¢y(Y;,), which is also
a Lindenstrauss space. Let us assume that there is a uniformly continuous
retraction of Bz« onto Bz. Then it follows that there is a sequence of
uniformly continuous retractions g, : Y,* — Y}, which is equi-uniformly
continuous, i.e. so that

Vg (1) <9(t), 0<t<2,

where lim;_, ¢ (t) = 0.
Consider the map h,, : D, — Y,,. If x # 2’ € D,, then

2
) = e < max( 2,2 =) < 20 = ]

Hence since By is a l-absolute Lipschitz retract, there is an extension
fn @ Bojey — Byp with Lip(f,) < 2. Now if z € By_ /., there exists
' € Dy, with ||z — 2'|| < 2/n (actually 1/n if z is in the open unit ball).
Thus
1gn(fa(2)) = gn(fa(@))]] < ¥(4/n)
and hence
1Q(gn © fn(x)) — 2| < ¢(4/n) +2/n.

For some choice of n we have )(4/n)+2/n < 1. By Lemmathis means
there is a uniformly continuous section of the quotient map @ : By__ /c, — Ya.
Thus By_ /¢, uniformly embeds into Y;, which is isomorphic to /o and thus
we have contradicted Theorem (4.2l m

REMARK. Note that C[1,w;] isometrically embeds into £ [16]; let F' be
a subspace of {4, /co isometric to C[1,w;]. Let E = Q~(F) and let Zy be the
subspace of Z of all sequences (yn)>2; such that y, € E. Then arguing in
exactly the same way shows that there is no uniformly continuous retraction
of Bzg= onto Bg,. Thus Zj is an example of a Lindenstrauss space with the
properties of Theorem with the additional property that Z is isometric
to £1(I) where |I| = 8.
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5. Banach spaces which Lipschitz embed into /.,

PROPOSITION 5.1. The Arens—Fells space B(ls) of s is linearly iso-
metric to a closed linear subspace of {.

Proof. For each m € N we may pick a countable collection of functions
{frn}32, in Lip(¢7) with || foun||nip(em) < 1 and such that
il m(em) = sup (u, fmn)s 1 € B(LR).
n

Now for each finite subset J = {ki,...,kn} C N we define the natural
quotient Q : log — L3 by Q6 = (&;)7L;. We consider the countable
family & of Lipschitz functions ¢ = ¢, of the form

(PJ,n(g) = fmn(Q§)-

Clearly [[¢JnllLipe) < 1 for all J and n.
Now suppose i € H(ls), with u # 0, has finite support &i,...,&, € oo
and let F' be the linear span of {1,...,&,. Then ||ul| g ) = |1l &)
Given € > 0 we can find a finite subset J of N, with |.J| = m, say, so that

1QJEN > (1 —e)l&ll, E€F.
Hence if £ = Z;‘:l aj5£j7

n
H Z ajéQJﬁj
=1
Thus we can find n so that

(s gn) > (1= )llull mes)-

B (1= lpll e

Thus the map
p= (s ©50)) an
defines an isometry of E({ ) into ¢ (S) where S is a countable set. m
LEMMA 5.2. In order that a Banach space X Lipschitz embeds into Lo

it is necessary and sufficient that there is a Lipschitz function g : X — Lo
with the property that

lg(u) =g@)l[ =1, Jlu—v]f > 1.
Proof. Let Q4+ denote the set of positive rationals and define G : X —
loo(Qy x N) by G(z)(q,n) = ¢ g(qx),. Clearly G has Lipschitz constant
at most Lip(g). If u,v € X we have

1G(u) = Gv)|| = Stggflllg(tu) — g(tv)]-
If u#wvlet t = |u—v||~! and we have
1G(u) = G(o)]| = [lu— vl
Thus G is a Lipschitz embedding.
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THEOREM 5.3. Let X be a Banach space. Then the following conditions
on X are equivalent:

(i) X wuniformly embeds into L.
(ii) X coarsely embeds into £.
(iii) X Lipschitz embeds into lo.
iv) A(X) linearly embeds into l.
) There is a subspace Z of s and a linear surjection Q : Z — X
which admits a Lipschitz selection p: X — Z.
(vi) There is a subspace Z of s and a linear surjection Q : Z — X
which admits a uniformly continuous selection ¢ : X — Z.
(vii) There is a subspace Z of s and a linear surjection Q : Z — X
which admits a coarsely continuous selection p : X — Z.

Proof. (i) or (ii) = (iii). Let f: X — f be either a coarse embedding
or a uniform embedding. Then, in either case, we may find 0 < a,b,c < oo
such that

|z —yll <a = [[f(z) - fly)l <b
and

1f(@) = fWl <50 = |z —yll <c

Pick a maximal subset S of X such that ||x—y|| > aifz,y € S and = # y.
Then f|g has Lipschitz constant bounded by supss,w(d)/d < 2b/a. Since
l+ is a 1-absolute Lipschitz retract we may find a function h : X — fo, with
Lipschitz constant at most 2b/a and h|g = f|s. Now assume ||lu—v|| > c¢+2a,
Then there exist 2,y € S with ||z — u]|, ||y — v|| < a and hence ||z — y|| > ¢.
Thus | f(z) — f(y)|| > 5b. Also [[a(x) — f(u)]| < 2band [|h(y) — f(v)]| < 20.
Hence ||h(u) — h(v)|| > b. If we let g(x) = b~ 1h((a + 2¢)z) then g satisfies
the hypotheses of Lemma and so (iii) is proved.

(iii) = (iv). B(X) linearly embeds into /E({); then use Proposition[5.1]

(iv) = (v). Take Z = E(X) (cf. |9]).

(v) = (vi) and (vii) is trivial. Clearly (vi) = (i) and (vii) = (ii). =

Let |I| = ¢. Then ¢;(I) linearly isometrically embeds into ¢s,. On the
other hand ¢o(I) 2-Lipschitz embeds into ¢, by the result of [1]. The fol-
lowing theorem shows that we also have a Lipschitz embedding for spaces
such as ¢,(I) where 1 < p < oo.

THEOREM 5.4. Let X be a Banach space with a 1l-unconditional basis
(e:)icr where |I| < c. Then X 2-Lipschitz embeds in {.

Proof. We will consider the case when I = R, i.e. the basis is indexed
by R. Let (ef)ier denote the biorthogonal functionals. If x € X we write
x(t) = ef(x). Suppose a, b, c € Q™ for some n € N. We write a = (ay1,...,an)
and so on; we denote by —a the sequence (—ayq,...,—a,). We then define
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a subset U(a,b,c) C R™ by (t1,...,t,) € Ula,b,c) if b; < t; < ¢; for
j=1...,n,t1 <---<t, and

n
*
H Z U] x
Jj=1

Note that the set U(a, b, ¢) can be empty.
For t € R we write t; = max(¢,0) and t— = t; — t. We next define
fape: X = Rby fope=0if U(a,b,c) is empty and otherwise

n
Fapel(z) = sup { S (aje(t))s : (tr,- - o) € Ulash, c)}.
j=1
It follows from the definition that each f, . is Lipschitz with constant at
most one and f,5.(0) = 0.
Suppose z,y € X and € > 0. Then we may find a finite subset {t1,...,t,}
of R with ¢; < --- < t, so that

o Settren | <el6 =S uttes

7j=1
Then pick a1,...,a, € Q so that || 327 ajef | <1 and

< €/6.

Z aj(x(ty) = y(t;)) > |z =yl — /3.

Finally pick b;, ¢j rationals such that by <t <c1 <bs <to <--- <t < cp.
It is clear that

fane(@) =Y (aja(t;)+| < ¢/6

j=1
and
‘f—a b,c Z ‘ < 6/6
7j=1
Thus
fa,b,C(x>_ abc Za] ‘ <€/3
Similarly
fa,b,c(y) - abc Za]y ’ < 6/3.
Hence

fa,b,c($) - fa,b,c(y) - f—a,b,c(x) + f—a,b,c(y) > ”l’ - y” — €
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and either .
’fa,b,c(w) - fa,b,c(y)’ > 5(”1’ - y” - 6)

Fanel®) = Fape)] > (e — gl — ).

This shows that the map F(2) = (fapb,c(%))(ap,e)el, (@r)? defines a 2-Lip-
schitz embedding of X into /.. =

REMARK. The constant 2 is optimal for c¢g(R). Indeed suppose F' :
co(R) — L satisfies F/(0) = 0 and

|z —yll <[[F(z) = Fy)l < AMlle —yll, 2,y € co(R),

where A\ < 2. We may define the sets Ay = {n : |F(et)n—F(—e)n| > A}. It is
then clear that the sets {A; : t € R} are disjoint and non-empty, producing
a contradiction. It would, however, be interesting to know the best constant
for an embedding of ¢,(I) where 1 < p < 0.

We also note that we do not know whether every reflexive space (or even
WCG space) of density character ¢ (or even 8;) can be Lipschitz embedded
into £.

6. Applications of pull-back constructions. Our final section is
inspired by a result of Cabello Sanchez and Castillo [5]. We will need a
preliminary lemma:

LEMMA 6.1. Let 0 — X — Y] — Z1 — 0 be a short exact sequence of
Banach spaces and suppose there is a Lipschitz selection ¢ : Z1 — Y1 of the
quotient map Y1 — Zy. Let T : Z — Z1 be a bounded linear operator and let
0—X —=Y — Z — 0 be the short exact sequence obtained by the pull-back
construction. Then there is a Lipschitz selection ¢ : Z — Y of the quotient
map Y — Z. Thus'Y s Lipschitz isomorphic to X & Z.

Proof. We have the following commutative diagram:

0 X Yy - 71 0
IX‘ T T
0 - X ~-Y -7 -0

We may define a map 0 : Z — Y, which is a selection for the quotient
Y — Z and such that T o @ = ¢ o T. We must show that 6 is Lipschitz.
Assume ¢ is Lipschitz with constant L. If 21,20 € Z we may determine
y1,92 € Y with [[y1 — y2| < 2[l21 — 22| and Qzy1 = 21, Qzy2 = x2 where
Qz is the quotient map. Then 0(z;) —y; € X and 0(2;) —y; = (Tz;) — Ty,
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for j = 1,2. Thus
10(21) = 0(z2)|| < 221 — 22l +116(21) — 51 — 0(22) + w2
<221 — 22 + llo(Tz1) — e(Tz2)[| + T (y1 — 2|
< QTN+ LITIDI21 — 22 =
REMARK. The same proof works for uniformly continuous selections.
A simpler proof works for push-outs.

We now follow the argument of Cabello Sanchez and Castillo [5]. We start
with the short exact sequence constructed by Johnson and Lindenstrauss [11]
and later used by Aharoni and Lindenstrauss [1] as a counterexample to the
Lipschitz isomorphism problem for non-separable Banach spaces:

0—coy— JLoo — co(I) — 0

where |I]| = ¢, Y embeds in {, and there is a 2-Lipschitz selection of the quo-
tient map of Y onto ¢o(I). If we consider the inclusion map T : lo(1) — co(1)
and perform the pull-back construction we obtain a short exact sequence

0—co— JLy — £a(I) — 0.

Here JLs denotes another Johnson-Lindenstrauss space first constructed
in [11], as an example in the theory of WCG spaces. JLs is a not a WCG
space and no non-separable subspace of J Lo linearly embeds /.. An imme-
diate conclusion, using Theorem and Lemma [6.1] is:

PROPOSITION 6.2. JLg is Lipschitz isomorphic to co @ f2(I) and Lip-
schitz embeds into £.

Continuing we note (following [5]) that there is a quotient map S : o, —
l5(I) (first proved by Rosenthal [19], see also [10, p. 141]). Performing the
pull-back operation again we obtain the commutative diagram

0 - Co >~ JLoo - co(I) - 0
Iey T T

0 - Co -~ JL, - Ly(I) - 0
Ie, S S

0 Co cc loo -0

PROPOSITION 6.3. The Banach space CC is linearly isomorphic to a
closed linear subspace of s and Lipschitz isomorphic to Lo ® co. However
it is not linearly isomorphic to Loo ® co.
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Proof. CC'is isomorphic to a subspace of ¢, because J L, embeds into
l+ and C'C'is a subspace of J Ly, ® L. The fact that it is not isomorphic to
ls @ o is shown in [5], but we include the details. Thus JLg is a quotient
of CC but every operator from (o to JLy is weakly compact ([20]); but
since JLs is not WCG it cannot be a quotient of £, ® ¢y. However CC' is
Lipschitz isomorphic to £, & cg by an application of Lemma "

REMARK. This proposition shows that ¢, ® ¢y does not have unique Lip-
schitz structure. Other examples of C(K)-spaces with non-unique Lipschitz
structure have been given in [1], [6] and [2]. We do not know if CC' (which
is an L-space) is linearly isomorphic to any C(K)-space.

We do not know, however, if £, has unique Lipschitz structure.

We conclude by showing that Proposition [6.2 can be generalized consid-
erably:

THEOREM 6.4. Let X be a Plichko space containing a subspace iso-
morphic to ¢y and a non-separable subspace Xy with Ng < w*-dens Xy <
dens Xg < ¢. Then X fails to have unique Lipschitz structure.

In particular if X is a non-separable WLD space containing a subspace
isomorphic to cy then X fails to have unique Lipschitz structure.

Proof. If X is Plichko, then X has the separable complementation prop-
erty |18] and so every copy of ¢y in X is complemented. In particular X is
linearly isomorphic to X & c¢g.

Let (z;,27)jes be a Markushevich basis for X. Then there is a subset
Ip € J with Xy < |I| < ¢ such that Xo C [zi]icr,- Let I D Ip be a set with
|I| = c. Define the map T : X — ¢o(I) by Tz(i) = z}(x) for i € I and
Tx(i) =0 forie I\ .

We now construct the pull-back from the Johnson—Lindenstrauss se-
quence 0 — ¢y — J Lo — co(I) — 0 as before:

0 = Co > J L > co(l) — 0
Ieq T T
0 - €0 - 7 - X ~ 0

We claim that the pull-back sequence cannot split. Indeed, if ¢y is com-
plemented in Z it follows there exists a bounded operator S : X — JL
so that QS = T where Q : JLo — c¢o(I) is the quotient map. The linear
functionals (z7);er, separate the points of X( and so T'|x, is injective: hence
S is injective and thus w*-dens Xy = N, which gives a contradiction. Hence
Z fails (SCP) and is not linearly isomorphic to X. However Z is Lipschitz
isomorphic to X @ ¢y and hence to X using Lemma [6.1



68 N. J. Kalton

If X is WLD we may take Xy to be any subspace with dens Xg = N;.
Then Xy is also WLD and hence (see [10, p. 181]) dens Xy = w*-dens Xy
=N;. =

REMARK. Thus, for example X = ¢y @Y, where Y is any non-separable
reflexive space, fails to have unique Lipschitz structure. The theorem also ap-
plies to C[1,w;] which is a Plichko space since dens C[1, w;|=w*- dens C[1, w1 ]
= N;. Thus C[1,w;] fails to have unique Lipschitz structure.
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