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Lipschitz and uniform embeddings into `∞
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N. J. Kalton (Columbia, MO)

Abstract. We show that there is no uniformly continuous selection of the quotient
map Q : `∞ → `∞/c0 relative to the unit ball. We use this to construct an answer to a
problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a
no Lipschitz retraction of X∗∗ onto X; in fact there is no uniformly continuous retraction
from BX∗∗ onto BX .

1. Introduction. It is very well-known that c0 is not complemented
in `∞; an alternate viewpoint is that there is no continuous linear selection
(or right inverse) of the quotient map Q : `∞ → `∞/c0. On the other hand,
Aharoni and Lindenstrauss [1] showed that there is a large subspace of
`∞/c0 (isometric to c0(I) where |I| = c, the cardinality of the continuum)
on which a Lipschitz selection of Q exists. It is also known that c0 is a
Lipschitz retract of `∞ [15], [4]. This raises the question of whether a global
Lipschitz or at least uniformly continuous selection can be found. In fact,
there are set-theoretic reasons that one cannot find any selection f so that
f ◦Q is weak∗-Borel [8], which already means that any formula for such an f
must be rather unpleasant. It is also worth noting that every Banach space
of density character ℵ1 linearly and isometrically embeds into `∞/c0 [16].

In this note we show that there is no selection f which is uniformly
continuous on the unit ball of `∞/c0. We show in fact that B`∞/c0 cannot
be uniformly embedded into `∞. We prove this by considering the space
Ωn = ω

[n]
1 of all n-subsets {α1, . . . , αn} of the countable ordinals as a graph

where two subsets are adjacent if they interlace. This is the uncountable
analogue of a similar graph considered in [13] in connection with uniform
embeddings into reflexive spaces. One then shows that if f : Ωn → `∞ is a
map such that ‖f(α)−f(β)‖ ≤ 1 whenever α and β are adjacent then there
is an uncountable subset Θ of ω1 so that f(Θ[n]) has diameter at most one.
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This is very similar to the results of [13] for maps into reflexive spaces on
the countable version of this graph.

Our main application of this result is to answer a problem raised in [4,
p. 183] (see also Problem 10 of [14]). We give an example of a Banach spaceX
so that there is no Lipschitz retraction of X∗∗ onto X; for a discussion of the
significance of such an example in the extension theory of Lipschitz maps
we refer to [14]. In fact for our example there is no uniformly continuous
retraction of the unit ball BX∗∗ onto BX . The space X is a Lindenstrauss
space, i.e. its dual is isometric to an L1-space and its bidual is therefore an
injective Banach space (and in particular a 1-absolute Lipschitz retract).

We also discuss non-separable spaces which can be Lipschitz embedded
into `∞. For example, it is shown that every Banach space with an uncon-
ditional basis of cardinality at most c Lipschitz embeds into `∞. In the final
section, we also show that `∞⊕ c0 does not have unique Lipschitz structure
and show indeed that a very wide class of spaces containing c0 cannot have
unique Lipschitz structure.

2. Notation and preliminaries. All Banach spaces will be real. We
denote by BX the closed unit ball of a Banach space X and by ∂BX the
unit sphere. IX will denote the identity operator on X.

X is called weakly compactly generated (WCG) if there is a weakly com-
pact set W such that

⋃
n∈N nW is dense in X. A Markushevich basis for X is

a biorthogonal system {xi, x∗i }i∈I which is total and fundamental. We shall
say that X is Plichko if it has a Markushevich basis {xi, x∗i }i∈I so that the
subset E of X∗ given by E = {x∗ : |{i : x∗(xi) 6= 0}| ≤ ℵ0} is a 1-norming
subspace of X∗. If E = X∗ we say that X is weakly Lindelöf determined
(WLD). These are not the original definitions of Plichko and WLD spaces
but are equivalent (see Theorems 5.37 and 5.63 of [10] or [23] and [22]). Note
that WCG spaces are WLD and hence also Plichko. X is said to have the
separable complementation property (SCP) if every separable subspace of X
is contained in a complemented separable subspace.

For any Banach space X we write densX for the smallest cardinality of
a dense subset (the same definition will be used for metric spaces). We write
w∗-dens X for the smallest cardinality of a weak∗-dense subset of X∗.

Let M and M ′ be metric spaces. If f : M → M ′ is any mapping we
define

ψf (t) = sup{d(f(x), f(x′)) : d(x, x′) ≤ t}.

f is said to be Lipschitz (with Lipschitz constant L) if ψf (t) ≤ Lt for all t.
The function f is uniformly continuous if limt→0 ψf (t) = 0 and coarsely
continuous if ψf (t) < ∞ for all t. If f is injective, then f is a Lipschitz
(respectively uniform, respectively coarse) embedding if f and f−1|f(M) are
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Lipschitz (respectively uniformly continuous, respectively coarsely continu-
ous).

IfM is a metric space and E is a subset ofM then a retraction r : M → E
is a map such that r(e) = e for e ∈ E.

If M has a base point (labelled 0), we refer to M as a pointed metric
space and we define Lip(M) as the Banach space of all real-valued Lipschitz
maps f : M → R with the usual norm,

‖f‖Lip = sup
{
|f(x)− f(x′)|

d(x, x′)
: x, x′ ∈M, d(x, x′) > 0

}
.

If M = X is a Banach space, the base point is always the origin. The Arens–
Eells space Æ(M) is defined as the closed linear span of the point evaluations
δs(f) = f(s) in Lip(M)∗. The map δ : s 7→ δs is then an isometry of M into
Æ(M). We refer to [24] and [9] for further details (in [9] the terminology
Lipschitz-free space and the notation FM was used). If X is a Banach space
there is a canonical quotient map β : Æ(X) → X and δ is an isometric
selection for β, i.e. β ◦ δ = IX .

We will record a result here which is not needed in the sequel but repre-
sents an improvement over Proposition 4.1 of [9].

Theorem 2.1. Let M be a pointed metric space and suppose F ⊂ Æ(M)
is a bounded non-separable subset of density character ℵ > ℵ0. If ℵ has
uncountable cofinality (1), then there is a subset (µi)i∈I of F with |I| = ℵ so
that (µi)i∈I is equivalent to the unit vector basis of `1(I). In particular any
weakly compact subset of Æ(M) is separable.

Proof. If G is any subset of M containing 0, for 0 < δ < 1, we denote
by G[δ] the subset of M of all x such that d(x,G) ≤ δd(x, 0). We will first
claim that there exists 0 < δ < 1 so that, for G as above,

(2.1) if dens(G) < ℵ, then d(µ,Æ(G[δ])) > δ for some µ ∈ F .

Indeed, if not, for n ∈ N we may pick Gn containing 0 so that

dens(Gn) < ℵ and d(µ,Æ(G[1/n]
n ) ≤ 1/n for every µ ∈ F.

Let G =
⋃
nGn and assume µ ∈ F. We show that µ ∈ Æ(G). If not there

exists f ∈ Lip(M) with f |G = 0, ‖f‖Lip(M) = 1 and 〈µ, f〉 = θ 6= 0. By
picking either f+ = max(f, 0) or f− = max(−f, 0) we can suppose f ≥ 0.
Now define

fn(x) = min(f(x), (d(x,G)− d(x, 0)/n)+).

Then ‖fn‖Lip(M) ≤ 1 + 1/n. We also have

f(x)− 1/n ≤ fn(x) ≤ f(x), x ∈ G,

(1) This assumption has been added by the editors.
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and so limn→∞ fn(x) = f(x) for x ∈ G. This implies that limn→∞ fn = f
weak∗. Now since fn(G[1/n]) = 0 we have

〈µ, fn〉 ≤
1
n

(
1 +

1
n

)
and so 〈µ, f〉 = 0 contrary to assumption. Thus F ⊂ Æ(G), contrary to
the fact that G, and hence Æ(G), has density character < ℵ, while F does
not (2). This establishes (2.1).

Assuming (2.1) we construct a maximal family {Gi, µi, fi}i∈I where:

(i) µi ∈ F , Gi is a countable subset of M and µi ∈ Æ(Gi).
(ii) fi ∈ Lip(M) with fi ≥ 0 and ‖fi‖Lip(M) ≤ 4/δ2.
(iii) |〈µi, fi〉| = 1 and 〈µi, fj〉 = 0 for i 6= j.

(iv) supp fi = {fi > 0} ⊂ G[δ]
i .

(v) supp fi ∩ supp fj = ∅ for i 6= j.

Let G =
⋃
iGi; if I is empty we set G = {0}.

We next argue that |I| = ℵ by contradiction. Suppose |I| < ℵ. Then
densG < ℵ. Hence there exists µ ∈ F so that d(µ,Æ(G[δ])) > δ. Thus
there exists a function g ∈ Lip(M) with ‖g‖Lip(M) ≤ 2/δ, g(G[δ]) = 0 and
〈µ, g〉 > 2. By considering either g+ or g− we can therefore find h ≥ 0 with
‖h‖Lip(M) ≤ 2/δ, h(G[δ]) = 0 and |〈µ, h〉| = 1.

Take a countable set G′ ⊂M so that µ ∈ Æ(G′). Then we define

f(x) = max(sup{h(y)− 4δ−2d(x, y) : y ∈ G′}, 0).

Then ‖f‖Lip(M) ≤ 4δ−2. If x /∈ G′[δ], then for any y ∈ G′ we have d(x, y) >
δd(x, 0). Hence

d(y, 0) ≤ d(x, 0) + d(x, y) ≤ (δ−1 + 1)d(x, y) ≤ 2δ−1d(x, y).

Then h(y) ≤ 2δ−1d(y, 0) ≤ 4δ−2d(x, y), which implies that supp f ⊂ G′[δ].
Now we can add (G′, µ, f) to the collection contradicting maximality.

The conclusion is that |I| = ℵ.
Finally we argue that (µi) is equivalent to the unit vector basis of `1.

Indeed, if A is a finite subset of I and (ai)i∈A are real numbers we define h ∈
Lip(M) by setting h =

∑
i∈A εifi where εiai〈µi, fi〉 = |ai|. Then ‖h‖Lip(M) ≤

8/δ2. Indeed, suppose x ∈ supp fi, y ∈ supp fj where i 6= j. Then

|h(x)− h(y)| ≤ |fi(x)− fi(y)|+ |fj(x)− fj(y)| ≤ 8δ−2d(x, y).

Other cases for x, y give better estimates. Hence∥∥∥∑
i∈A

aiµi

∥∥∥ ≥ 1
8
δ2
∑
i∈A
|ai|.

(2) This sentence has been added by the editors. It seems that in this part of the
reasoning the author uses the assumption that ℵ has uncountable cofinality.
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3. A metric Ramsey theorem. We denote by ω1 the first uncountable
ordinal. Let Ωn = ω

[n]
1 where n ≥ 0 denote the collection of all n-subsets

of Ω1 = ω1 = [0, ω1); note that in the case n = 0, Ω0 consists of one
point, namely the empty set ∅. We write a typical element of Ωn in the form
α = {α1, . . . , αn} where α1 < · · · < αn. If n ≥ 1 and A ⊂ Ωn we define
∂A ⊂ ω

[n−1]
1 by {α1, . . . , αn−1} ∈ ∂A if and only if {β : {α1, . . . , αn−1, β} ∈

A} is uncountable. If n = 1 this amounts to the fact that ∅ ∈ ∂A if and only
if A is uncountable. We shall say that A ⊂ Ωn is large if ∅ ∈ ∂nA; otherwise
A is small. We say that A is very large if its complement Ã is small.

It follows from the next lemma that if A is very large it is also large.

Lemma 3.1. Let (Ak)∞k=1 be a sequence of small subsets of Ωn. Then⋃
k≥1Ak is also small.

Proof. It is trivial that ∂
⋃
k Ak =

⋃
k ∂Ak. Iterating gives the result.

Lemma 3.2. If A is a very large subset of Ωn there is an uncountable
subset Θ ⊂ Ω1 so that Θ[n] ⊂ A.

Proof. Let Θ be a maximal subset of Ω1 so that if {α1, . . . , αk} ∈ Θ[k]

with 0 ≤ k ≤ n then {α1, . . . , αk} /∈ ∂n−kÃ; here we write ∂0Ã = Ã. Such a
maximal subset exists by Zorn’s Lemma since ∅ satisfies the conditions. We
show that Θ is uncountable. Assume, on the contrary, that Θ is countable.
For each {α1, . . . , αk} ∈ Θ[k] with 0 ≤ k ≤ n − 1 the set of β such that
{α1, . . . , αk, β} ∈ ∂n−k+1Ã is countable. Let

h{α1, . . . , αk} = sup{β : {α1, . . . , αk, β} ∈ ∂n−k+1Ã}
so that h{α1, . . . , αk} < ω1. Let σ be the supremum of all h{α1, . . . , αk};
since Θ is countable we have σ < ω1. Now σ ≥ supΘ and Θ ∪ {σ+ 1} gives
a contradiction to maximality.

Lemma 3.3. Let f : Ωn → R be any mapping. Then there is an open set
U ⊂ R so that f−1(U) is small and if V is any open set with f−1(V ) small
then V ⊂ U.

Proof. Let U be the set of all open sets V so that f−1(V ) is small. Then
by the Lindelöf theorem and Lemma 3.1, U ∈ U where U =

⋃
{V : V ∈ U}.

We will make Ωn into a graph by declaring α 6= β to be adjacent if either

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ αn ≤ βn
or

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ βn ≤ αn,
i.e. α and β interlace. Then we define d to be the least path metric on Ωn,
which then becomes a metric space. We write α ≺ β if

α1 < · · · < αn < β1 < · · · < βn.

If α ≺ β then d(α, β) = n so that Ωn has diameter n.
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Lemma 3.4. Suppose A and B are large subsets of Ωn. Then there exist
α ∈ A and β ∈ B so that α, β interlace.

Proof. Pick α1 ∈ ∂n−1A and then, since ∂n−1B is uncountable, we may
pick β1 ∈ ∂n−1B with β1 > α1. Continuing we may pick α2 > β1 so
{α1, α2} ∈ ∂n−2A and continue.

Lemma 3.5. Let f : (Ωn, d)→ R be any Lipschitz function with Lipschitz
constant L. Then there exists ξ ∈ R so that {α : |f(α)− ξ| > L/2} is small.

Proof. Let U be the maximal open subset of R so that f−1(U) is small,
given by Lemma 3.3. Let E be its complement, which is necessarily nonempty
and closed. It suffices to show that the diameter of E is at most L. Suppose
s, t ∈ E with s−t > L. Then we can pick ε > 0 so small that s−ε > t+ε+L.
Now the sets f−1(s− ε,∞) and f−1(−∞, t+ ε) are both large. By Lemma
3.4 there exist α, β which are interlacing and so that f(α) > s − ε and
f(β) < t+ ε, which contradicts the definition of the Lipschitz constant.

Theorem 3.6. Let f : (Ωn, d) → `∞ be a Lipschitz map with Lipschitz
constant L. Then there exists ξ ∈ `∞ and an uncountable subset Θ of Ωn
so that

‖f(α)− ξ‖ ≤ L/2, α ∈ Θ[n].

Proof. Let f(α) = (fn(α))∞n=1. According to Lemma 3.5 there exists
ξn ∈ R so that f−1

n [ξn − L/2, ξn + L/2] is very large. Hence if ξ = (ξn)∞n=1,
the set of α with |fn(α)−ξn| ≤ L/2 for all n is also very large (using Lemma
3.1). In particular ξ ∈ `∞. The proof is completed by Lemma 3.2.

4. Embeddings in `∞. Let X be a Banach lattice. We will say that
X has the monotone transfinite sequence property (MTSP) if whenever
(xµ)µ<ω1 is a monotone increasing transfinite sequence, then there exists
x ∈ X such that xµ = x eventually.

Theorem 4.1. Let X be a Banach lattice with the property that BX can
be uniformly embedded into `∞. Then X has (MTSP).

Proof. Let us assume X fails (MTSP). Since any transfinite sequence
(xµ)µ<ω1 is necessarily bounded we may assume it takes values in BX . Let
θ(µ) = supσ>µ ‖xσ − xµ‖. Then θ(µ) is decreasing.

Let f :BX→ `∞ be a uniform embedding, with inverse g : f(BX)→BX .

For each n consider the mapfn :Ωn→ `∞ given byfn(α) =f
(

1
n

∑n
j=1xαj

)
.

If α1 < β1 < α2 < · · · < αn < βn we have

‖fn(α)− fn(β)‖ =
∥∥∥∥ 1
n

n∑
j=1

(xβj − xαj )
∥∥∥∥ ≤ 1

n
‖xβn − xα1‖ ≤ 2/n.

Hence fn has Lipschitz constant ψf (2/n).
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By Theorem 3.6 we may pick an uncountable subset Θn of Ω1 so that

‖fn(α)− fn(β)‖ ≤ ψf (2/n), α, β ∈ Θn.
Hence ∥∥∥∥ 1

n

n∑
j=1

xβj −
1
n

n∑
j=1

xαj

∥∥∥∥ ≤ ψg(ψf (2/n)), α, β ∈ Θn.

Pick α1 < · · · < αn ∈ Θn. If ν > µ > αn then we can find βn > βn−1 >
· · · > β1 > ν with βj ∈ Θn for 1 ≤ j ≤ n and then

‖xν − xµ‖ ≤
∥∥∥∥ 1
n

n∑
j=1

xβj −
1
n

n∑
j=1

xαj

∥∥∥∥ ≤ ψg(ψf (2/n)),

and hence
θ(µ) ≤ ψg(ψf (2/n)), µ > αn.

Applying this for every n, since limn→∞ ψg(ψf (2/n)) = 0 we have that
θ(µ) = 0 eventually, which implies that xµ is eventually constant.

Theorem 4.2. Let X = `∞/c0 or C[1, ω1]. Then BX cannot be uni-
formly embedded into `∞.

Proof. Since C[1, ω1] embeds into `∞/c0 it is not really necessary to prove
these separately. However it is easy to observe that both spaces fail (MTSP).
For the case of `∞/c0 we may, by induction, define a transfinite sequence
of infinite subsets Aµ ⊂ N so that if µ > ν we have Aν \ Aµ infinite and
Aµ ⊂ Aν modulo finite sets. Let Bµ be the complement of Aµ and then
xµ = Q(χBµ) where Q : `∞ → c0 is the quotient map. For the case of
C[1, ω1] let xµ = χ[1,µ]. In either case the result follows from the preceding
Theorem 4.1.

Remark. In [17] it is shown that C[1, ω1] does not uniformly embed into
a space c0(I). In [1] it is shown that if |I| = c then c0(I) Lipschitz embeds
in `∞. Therefore Theorem 4.2 also implies that C[1, ω1] does not uniformly
embed into c0(I) for any set I. Note however that there is an injective linear
map T : C[1, ω1]→ c0(I) where |I| = ℵ1 defined by Tf(α) = f(α+1)−f(α)
for α < ω1 and Tf(ω1) = f(1). Thus there is a countable family of Lipschitz
functions on C[1, ω1] which separate the points of C[1, ω1].

We now give a slight variation of Theorem 4.2. Let us say that a Banach
lattice X has the countable interpolation property if whenever (xn)∞n=1 and
(yn)∞n=1 are two sequences with xm ≥ yn whenever m,n ∈ N then there exists
z ∈ X with xm ≥ z ≥ yn for all m,n ∈ N. If K is a compact Hausdorff space
then C(K) has the countable interpolation property if and only if K is an
F-space [21]; here K is an F-space if the closures of two disjoint open Fσ-sets
remain disjoint (see [7]). The space βN \ N is an F-space so the following
result implies Theorem 4.2 for the case `∞/c0.
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Proposition 4.3. Let X be a Banach lattice with (MTSP) and the
countable interpolation property. Then X is order-complete. In particular
if K is an F -space such that C(K) has (MTSP), then K is Stonian.

Proof. Let A be a subset of X which is bounded above. Let us say that
A has property (P) if for every countable set B with x ≤ y for x ∈ A and
y ∈ B there exists z ∈ X with x ≤ z ≤ y for x ∈ A, y ∈ B. We claim that
property (P) implies A has a least upper bound (or supremum). If not let y1

be any upper bound. We construct a strictly decreasing transfinite sequence
(yµ)µ<ω1 by transfinite induction. If (yν)ν<µ has been chosen to be strictly
decreasing we pick for each ν an upper bound y′ν ≤ yν with y′ν 6= yν and
then use (P) to find an upper bound yµ ≤ y′ν for all ν < µ. This contradicts
(MTSP) and shows that A has a least upper bound.

Now by the countable interpolation property, countable sets have prop-
erty (P) and hence have a least upper bound. But this implies that every
set A which is bounded above has property (P) and the proof is complete.

We will now turn to an application of the above results. We will need
the following elementary lemma, which appears first in [12]; we include the
proof for the convenience of the reader.

Lemma 4.4. Let Y be a Banach space and let Q : Y → X be a quo-
tient mapping. In order that there exists a uniformly continuous section
f : BX → Y it is necessary and sufficient that for some 0 < λ < 1 there
is a uniformly continuous map φ : ∂BX → Y with ‖Q(φ(x)) − x‖ ≤ λ for
x ∈ ∂BX .

Proof. We may extend φ to BX to be positively homogeneous and φ
remains uniformly continuous. Define g(x) = x−Q(φ(x)), so that g is also
positively homogeneous. Then ‖g(x)‖ ≤ λ‖x‖ and so ‖gn(x)‖ ≤ λn‖x‖ for
x ∈ BX . Let g0(x) = x. Let

f(x) =
∞∑
n=0

φ(gn(x)).

The series converges uniformly in x ∈ BX and so f is uniformly continuous.
Furthermore

Qf(x) =
∞∑
n=0

(gn(x)− gn+1(x)) = x.

The following theorem answers a question raised in [4, p. 183] (see also
the discussion in [14]).

Theorem 4.5. There exists a (non-separable) Lindenstrauss space Z
such that there is no uniformly continuous retraction of BZ∗∗ onto BZ . In
particular there is no uniformly continuous retraction of Z∗∗ onto Z.
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Proof. The space Z is the same example that was given by Benyamini
[3] as an example of a non-separable M-space which is not a C(K)-space.

We start by considering the quotient map Q : `∞ → `∞/c0. For each n
we pick a maximal set Dn in the interior of B`∞/c0 so that ‖x−x′‖ ≥ 1/n for
x, x′ ∈ Dn and x 6= x′. Then for each n we can define a map hn : Dn → B`∞
with Qhn(x) = x for x ∈ Dn.

Now let Yn denote `∞ with the equivalent norm

‖y‖Yn = max
(

1
n
‖y‖`∞ , ‖Qy‖`∞/c0

)
.

Then Yn is a Lindenstrauss space; note also that Q : Yn → `∞/c0 remains
a quotient map for the usual norm on `∞/c0. Let Z = c0(Yn), which is also
a Lindenstrauss space. Let us assume that there is a uniformly continuous
retraction of BZ∗∗ onto BZ . Then it follows that there is a sequence of
uniformly continuous retractions gn : Y ∗∗n → Yn which is equi-uniformly
continuous, i.e. so that

ψgn(t) ≤ ψ(t), 0 < t ≤ 2,

where limt→0 ψ(t) = 0.
Consider the map hn : Dn → Yn. If x 6= x′ ∈ Dn then

‖hn(x)− hn(x′)‖ ≤ max
(

2
n
, ‖x− x′‖

)
≤ 2‖x− x′‖.

Hence since BY ∗∗n is a 1-absolute Lipschitz retract, there is an extension
fn : B`∞/c0 → BY ∗∗n with Lip(fn) ≤ 2. Now if x ∈ B`∞/c0 there exists
x′ ∈ Dn with ‖x − x′‖ < 2/n (actually 1/n if x is in the open unit ball).
Thus

‖gn(fn(x))− gn(fn(x′))‖ ≤ ψ(4/n)

and hence
‖Q(gn ◦ fn(x))− x‖ ≤ ψ(4/n) + 2/n.

For some choice of n we have ψ(4/n)+2/n < 1. By Lemma 4.4 this means
there is a uniformly continuous section of the quotient map Q : B`∞/c0 → Yn.
Thus B`∞/c0 uniformly embeds into Yn which is isomorphic to `∞ and thus
we have contradicted Theorem 4.2.

Remark. Note that C[1, ω1] isometrically embeds into `∞ [16]; let F be
a subspace of `∞/c0 isometric to C[1, ω1]. Let E = Q−1(F ) and let Z0 be the
subspace of Z of all sequences (yn)∞n=1 such that yn ∈ E. Then arguing in
exactly the same way shows that there is no uniformly continuous retraction
of BZ∗∗0 onto BZ0 . Thus Z0 is an example of a Lindenstrauss space with the
properties of Theorem 4.5 with the additional property that Z∗0 is isometric
to `1(I) where |I| = ℵ1.
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5. Banach spaces which Lipschitz embed into `∞

Proposition 5.1. The Arens–Eells space Æ(`∞) of `∞ is linearly iso-
metric to a closed linear subspace of `∞.

Proof. For each m ∈ N we may pick a countable collection of functions
{fmn}∞n=1 in Lip(`m∞) with ‖fmn‖Lip(`m∞) ≤ 1 and such that

‖µ‖Æ(`m∞) = sup
n
〈µ, fmn〉, µ ∈ Æ(`m∞).

Now for each finite subset J = {k1, . . . , km} ⊂ N we define the natural
quotient QJ : `∞ → `m∞ by Qξ = (ξkj )

m
j=1. We consider the countable

family Φ of Lipschitz functions ϕ = ϕJ,n of the form

ϕJ,n(ξ) = fmn(QJξ).

Clearly ‖ϕJ,n‖Lip(`∞) ≤ 1 for all J and n.
Now suppose µ ∈ Æ(`∞), with µ 6= 0, has finite support ξ1, . . . , ξn ∈ `∞

and let F be the linear span of ξ1, . . . , ξn. Then ‖µ‖Æ(`∞) = ‖µ‖Æ(F ).
Given ε > 0 we can find a finite subset J of N, with |J | = m, say, so that

‖QJξ‖ > (1− ε)‖ξ‖, ξ ∈ F.
Hence if ξ =

∑n
j=1 ajδξj ,∥∥∥ n∑

j=1

ajδQJξj

∥∥∥
Æ(`m∞)

> (1− ε)‖µ‖Æ(`∞).

Thus we can find n so that

〈µ, ϕJ,n〉 > (1− ε)‖µ‖Æ(`∞).

Thus the map
µ 7→ (〈µ, ϕJ,n〉)J,n

defines an isometry of Æ(`∞) into `∞(S) where S is a countable set.

Lemma 5.2. In order that a Banach space X Lipschitz embeds into `∞
it is necessary and sufficient that there is a Lipschitz function g : X → `∞
with the property that

‖g(u)− g(v)‖ ≥ 1, ‖u− v‖ ≥ 1.

Proof. Let Q+ denote the set of positive rationals and define G : X →
`∞(Q+ × N) by G(x)(q, n) = q−1g(qx)n. Clearly G has Lipschitz constant
at most Lip(g). If u, v ∈ X we have

‖G(u)−G(v)‖ = sup
t>0

t−1‖g(tu)− g(tv)‖.

If u 6= v let t = ‖u− v‖−1 and we have

‖G(u)−G(v)‖ ≥ ‖u− v‖.
Thus G is a Lipschitz embedding.
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Theorem 5.3. Let X be a Banach space. Then the following conditions
on X are equivalent:

(i) X uniformly embeds into `∞.
(ii) X coarsely embeds into `∞.
(iii) X Lipschitz embeds into `∞.
(iv) Æ(X) linearly embeds into `∞.
(v) There is a subspace Z of `∞ and a linear surjection Q : Z → X

which admits a Lipschitz selection ϕ : X → Z.
(vi) There is a subspace Z of `∞ and a linear surjection Q : Z → X

which admits a uniformly continuous selection ϕ : X → Z.
(vii) There is a subspace Z of `∞ and a linear surjection Q : Z → X

which admits a coarsely continuous selection ϕ : X → Z.

Proof. (i) or (ii) ⇒ (iii). Let f : X → `∞ be either a coarse embedding
or a uniform embedding. Then, in either case, we may find 0 < a, b, c < ∞
such that

‖x− y‖ ≤ a ⇒ ‖f(x)− f(y)‖ ≤ b
and

‖f(x)− f(y)‖ ≤ 5b ⇒ ‖x− y‖ ≤ c.
Pick a maximal subset S of X such that ‖x−y‖ ≥ a if x, y ∈ S and x 6= y.

Then f |S has Lipschitz constant bounded by supδ≥a ω(δ)/δ ≤ 2b/a. Since
`∞ is a 1-absolute Lipschitz retract we may find a function h : X → `∞ with
Lipschitz constant at most 2b/a and h|S = f |S . Now assume ‖u−v‖ ≥ c+2a,
Then there exist x, y ∈ S with ‖x− u‖, ‖y − v‖ < a and hence ‖x− y‖ > c.
Thus ‖f(x)− f(y)‖ > 5b. Also ‖h(x)− f(u)‖ < 2b and ‖h(y)− f(v)‖ < 2b.
Hence ‖h(u) − h(v)‖ > b. If we let g(x) = b−1h((a + 2c)x) then g satisfies
the hypotheses of Lemma 5.2 and so (iii) is proved.

(iii)⇒ (iv). Æ(X) linearly embeds into Æ(`∞); then use Proposition 5.1.
(iv) ⇒ (v). Take Z = Æ(X) (cf. [9]).
(v) ⇒ (vi) and (vii) is trivial. Clearly (vi) ⇒ (i) and (vii) ⇒ (ii).

Let |I| = c. Then `1(I) linearly isometrically embeds into `∞. On the
other hand c0(I) 2-Lipschitz embeds into `∞ by the result of [1]. The fol-
lowing theorem shows that we also have a Lipschitz embedding for spaces
such as `p(I) where 1 < p <∞.

Theorem 5.4. Let X be a Banach space with a 1-unconditional basis
(ei)i∈I where |I| ≤ c. Then X 2-Lipschitz embeds in `∞.

Proof. We will consider the case when I = R, i.e. the basis is indexed
by R. Let (e∗t )t∈R denote the biorthogonal functionals. If x ∈ X we write
x(t) = e∗t (x). Suppose a, b, c ∈ Qn for some n ∈ N. We write a = (a1, . . . , an)
and so on; we denote by −a the sequence (−a1, . . . ,−an). We then define
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a subset U(a, b, c) ⊂ Rn by (t1, . . . , tn) ∈ U(a, b, c) if bj < tj < cj for
j = 1, . . . , n, t1 < · · · < tn and∥∥∥ n∑

j=1

aje
∗
tj

∥∥∥
X∗
≤ 1.

Note that the set U(a, b, c) can be empty.
For t ∈ R we write t+ = max(t, 0) and t− = t+ − t. We next define

fa,b,c : X → R by fa,b,c ≡ 0 if U(a, b, c) is empty and otherwise

fa,b,c(x) = sup
{ n∑
j=1

(ajx(tj))+ : (t1, . . . , tn) ∈ U(a, b, c)
}
.

It follows from the definition that each fa,b,c is Lipschitz with constant at
most one and fa,b,c(0) = 0.

Suppose x, y ∈ X and ε > 0. Then we may find a finite subset {t1, . . . , tn}
of R with t1 < · · · < tn so that∥∥∥x− n∑

j=1

x(tj)etj
∥∥∥ < ε/6,

∥∥∥y − n∑
j=1

y(tj)etj
∥∥∥ < ε/6.

Then pick a1, . . . , an ∈ Q so that ‖
∑n

j=1 aje
∗
tj‖ ≤ 1 and

n∑
j=1

aj(x(tj)− y(tj)) > ‖x− y‖ − ε/3.

Finally pick bj , cj rationals such that b1 < t1 < c1 < b2 < t2 < · · · < tn < cn.
It is clear that ∣∣∣fa,b,c(x)−

n∑
j=1

(ajx(tj))+

∣∣∣ < ε/6

and ∣∣∣f−a,b,c(x)−
n∑
j=1

(ajx(tj))−
∣∣∣ < ε/6.

Thus ∣∣∣fa,b,c(x)− f−a,b,c(x)−
n∑
j=1

ajx(tj)
∣∣∣ < ε/3.

Similarly ∣∣∣fa,b,c(y)− f−a,b,c(y)−
n∑
j=1

ajy(tj)
∣∣∣ < ε/3.

Hence

fa,b,c(x)− fa,b,c(y)− f−a,b,c(x) + f−a,b,c(y) > ‖x− y‖ − ε
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and either

|fa,b,c(x)− fa,b,c(y)| > 1
2

(‖x− y‖ − ε)

or

|f−a,b,c(x)− f−a,b,c(y)| > 1
2

(‖x− y‖ − ε).

This shows that the map F (x) = (fa,b,c(x))(a,b,c)∈
S
n(Qn)3 defines a 2-Lip-

schitz embedding of X into `∞.

Remark. The constant 2 is optimal for c0(R). Indeed suppose F :
c0(R)→ `∞ satisfies F (0) = 0 and

‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤ λ‖x− y‖, x, y ∈ c0(R),

where λ < 2. We may define the sets At = {n : |F (et)n−F (−et)n| > λ}. It is
then clear that the sets {At : t ∈ R} are disjoint and non-empty, producing
a contradiction. It would, however, be interesting to know the best constant
for an embedding of `p(I) where 1 < p <∞.

We also note that we do not know whether every reflexive space (or even
WCG space) of density character c (or even ℵ1) can be Lipschitz embedded
into `∞.

6. Applications of pull-back constructions. Our final section is
inspired by a result of Cabello Sánchez and Castillo [5]. We will need a
preliminary lemma:

Lemma 6.1. Let 0 → X → Y1 → Z1 → 0 be a short exact sequence of
Banach spaces and suppose there is a Lipschitz selection ϕ : Z1 → Y1 of the
quotient map Y1 → Z1. Let T : Z → Z1 be a bounded linear operator and let
0→ X → Y → Z → 0 be the short exact sequence obtained by the pull-back
construction. Then there is a Lipschitz selection ψ : Z → Y of the quotient
map Y → Z. Thus Y is Lipschitz isomorphic to X ⊕ Z.

Proof. We have the following commutative diagram:

0 X Y1 Z1 0

0 X Y Z 0

- - - -

- -

6
IX

-

6
T̃

6
T

-

We may define a map θ : Z → Y , which is a selection for the quotient
Y → Z and such that T̃ ◦ θ = ϕ ◦ T. We must show that θ is Lipschitz.
Assume ϕ is Lipschitz with constant L. If z1, z2 ∈ Z we may determine
y1, y2 ∈ Y with ‖y1 − y2‖ ≤ 2‖x1 − x2‖ and QZy1 = z1, QZy2 = x2 where
QZ is the quotient map. Then θ(zj)−yj ∈ X and θ(zj)−yj = ϕ(Tzj)− T̃ yj
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for j = 1, 2. Thus

‖θ(z1)− θ(z2)‖ ≤ 2‖z1 − z2‖+ ‖θ(z1)− y1 − θ(z2) + y2‖
≤ 2‖z1 − z2‖+ ‖ϕ(Tz1)− ϕ(Tz2)‖+ ‖T̃ (y1 − y2)‖
≤ (2 + ‖T̃‖+ L‖T‖)‖z1 − z2‖.

Remark. The same proof works for uniformly continuous selections.
A simpler proof works for push-outs.

We now follow the argument of Cabello Sánchez and Castillo [5]. We start
with the short exact sequence constructed by Johnson and Lindenstrauss [11]
and later used by Aharoni and Lindenstrauss [1] as a counterexample to the
Lipschitz isomorphism problem for non-separable Banach spaces:

0→ c0 → JL∞ → c0(I)→ 0

where |I| = c, Y embeds in `∞ and there is a 2-Lipschitz selection of the quo-
tient map of Y onto c0(I). If we consider the inclusion map T : `2(I)→ c0(I)
and perform the pull-back construction we obtain a short exact sequence

0→ c0 → JL2 → `2(I)→ 0.

Here JL2 denotes another Johnson–Lindenstrauss space first constructed
in [11], as an example in the theory of WCG spaces. JL2 is a not a WCG
space and no non-separable subspace of JL2 linearly embeds `∞. An imme-
diate conclusion, using Theorem 5.4 and Lemma 6.1, is:

Proposition 6.2. JL2 is Lipschitz isomorphic to c0 ⊕ `2(I) and Lip-
schitz embeds into `∞.

Continuing we note (following [5]) that there is a quotient map S : `∞ →
`2(I) (first proved by Rosenthal [19], see also [10, p. 141]). Performing the
pull-back operation again we obtain the commutative diagram

0 c0 JL∞ c0(I) 0

0 c0 JL2 `2(I) 0

0 c0 CC `∞ 0

- - - -

-

6

Ic0

-

6

T̃

-

6

T

-

-

6

Ic0

-

6

S̃

-

6

S

-

Proposition 6.3. The Banach space CC is linearly isomorphic to a
closed linear subspace of `∞ and Lipschitz isomorphic to `∞ ⊕ c0. However
it is not linearly isomorphic to `∞ ⊕ c0.
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Proof. CC is isomorphic to a subspace of `∞ because JL∞ embeds into
`∞ and CC is a subspace of JL∞⊕ `∞. The fact that it is not isomorphic to
`∞ ⊕ c0 is shown in [5], but we include the details. Thus JL2 is a quotient
of CC but every operator from `∞ to JL2 is weakly compact ([20]); but
since JL2 is not WCG it cannot be a quotient of `∞ ⊕ c0. However CC is
Lipschitz isomorphic to `∞ ⊕ c0 by an application of Lemma 6.1.

Remark. This proposition shows that `∞⊕c0 does not have unique Lip-
schitz structure. Other examples of C(K)-spaces with non-unique Lipschitz
structure have been given in [1], [6] and [2]. We do not know if CC (which
is an L∞-space) is linearly isomorphic to any C(K)-space.

We do not know, however, if `∞ has unique Lipschitz structure.
We conclude by showing that Proposition 6.2 can be generalized consid-

erably:

Theorem 6.4. Let X be a Plichko space containing a subspace iso-
morphic to c0 and a non-separable subspace X0 with ℵ0 < w∗- densX0 ≤
densX0 ≤ c. Then X fails to have unique Lipschitz structure.

In particular if X is a non-separable WLD space containing a subspace
isomorphic to c0 then X fails to have unique Lipschitz structure.

Proof. If X is Plichko, then X has the separable complementation prop-
erty [18] and so every copy of c0 in X is complemented. In particular X is
linearly isomorphic to X ⊕ c0.

Let (xj , x∗j )j∈J be a Markushevich basis for X. Then there is a subset
I0 ⊂ J with ℵ0 < |I| ≤ c such that X0 ⊂ [xi]i∈I0 . Let I ⊃ I0 be a set with
|I| = c. Define the map T : X → c0(I) by Tx(i) = x∗i (x) for i ∈ I0 and
Tx(i) = 0 for i ∈ I \ I0.

We now construct the pull-back from the Johnson–Lindenstrauss se-
quence 0→ c0 → JL∞ → c0(I)→ 0 as before:

0 c0 JL∞ c0(I) 0

0 c0 Z X 0

- - - -

-

6

Ic0

-

6

T̃

-

6

T

-

We claim that the pull-back sequence cannot split. Indeed, if c0 is com-
plemented in Z it follows there exists a bounded operator S : X → JL∞
so that QS = T where Q : JL∞ → c0(I) is the quotient map. The linear
functionals (x∗i )i∈I0 separate the points of X0 and so T |X0 is injective: hence
S is injective and thus w∗-dens X0 = ℵ0, which gives a contradiction. Hence
Z fails (SCP) and is not linearly isomorphic to X. However Z is Lipschitz
isomorphic to X ⊕ c0 and hence to X using Lemma 6.1.
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If X is WLD we may take X0 to be any subspace with densX0 = ℵ1.
Then X0 is also WLD and hence (see [10, p. 181]) densX0 = w∗- densX0

= ℵ1.

Remark. Thus, for example X = c0⊕Y , where Y is any non-separable
reflexive space, fails to have unique Lipschitz structure. The theorem also ap-
plies to C[1, ω1] which is a Plichko space since dens C[1, ω1]=w∗- dens C[1, ω1]
= ℵ1. Thus C[1, ω1] fails to have unique Lipschitz structure.
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