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On the Leibniz–Mycielski axiom in set theory

by

Ali Enayat (Washington, DC)

Abstract. Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski
introduced a set-theoretic axiom, here dubbed the Leibniz–Mycielski axiom LM, which
asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the
ranks of x and y, and a formula ϕ(v), such that (Vα,∈) satisfies ϕ(x) ∧ ¬ϕ(y).

We examine the relationship between LM and some other axioms of set theory. Our
principal results are as follows:

1. In the presence of ZF, the following are equivalent:

(a) LM.
(b) The existence of a parameter free definable class function F such that for all

sets x with at least two elements, ∅ 6= F(x) ( x.
(c) The existence of a parameter free definable injection of the universe into the

class of subsets of ordinals.

2. Con(ZF)⇒ Con(ZFC + ¬LM).
3. [Solovay] Con(ZF)⇒ Con(ZF + LM + ¬AC).

1. Introduction. The principle of the identity of indiscernibles, formu-
lated by Leibniz [L, p. 308], states that no two distinct substances exactly
resemble each other. Leibniz’s principle can be construed as prescribing a
logical relationship between objects and properties: any two distinct objects
must differ in at least one property. A natural interpretation of this prin-
ciple is offered by model theory: fix a model M = (M, . . .) in a language L,
let the “objects” refer to the elements of M , and the “properties” refer to
properties that are L-expressible in M via first order formulas with one free
variable. Under this interpretation, a model M satisfies Leibniz’s principle
iff M has no set of indiscernibles of length 2 or higher in the sense of model
theory, in other words, M contains no pair of distinct elements a and b such
that for every first order formula ϕ(x) of L with precisely one free variable x,

(M, a, b) � ϕ(a)↔ ϕ(b).
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216 A. Enayat

This formulation of Leibniz’s principle cannot be expressed in first order
logic since the classical theorem of Ehrenfeucht and Mostowski [CK, The-
orem 3.3.10] shows that every first order theory with an infinite model has
a model with indiscernibles. However, Mycielski [My-1] has introduced the
following first order axiom in the language of set theory {∈}, here referred
to as the Leibniz–Mycielski axiom LM, which captures the spirit of Leibniz’s
principle for models of set theory (1).

LM: ∀x ∀y [x 6= y → ∃α > max{%(x), %(y)}
Th(Vα,∈, x) 6= Th(Vα,∈, y)].

Here %(x) is the ordinal rank of x, Vα is the αth level of the von Neumann
hierarchy consisting of sets of ordinal rank less than α, and Th(Vα,∈, a)
is the first order theory of the structure (Vα,∈, a), where a is viewed as a
distinguished constant. The following result directly relates LM to the first
order interpretation of Leibniz’s principle.

Theorem 1 (Mycielski [My-1]). A complete extension T of ZF proves
LM iff T has a model with no indiscernibles (2).

In this paper we examine the relationship between LM and other axioms
of set theory within the framework of ZF set theory. In Section 2 we show
that the “logical” axiom LM is equivalent to global forms of the Kinna–
Wagner choice principles [KW].

GKW1: There is a definable (without parameters) map F such that

∀x (|x| > 1→ (∅ 6= F(x) ( x)).

GKW2: There is a definable (without parameters) map G such that

“G injects V into the class of subsets of Ord”.

This characterization shows that LM is a theorem of ZF + V = OD, and
imbues LM with the flavor of a choice principle. In Section 3 we examine
the relationship between LM and the axiom of choice AC. In Theorem 3.1
we use a standard symmetry argument involving Cohen forcing to show
that LM is independent of ZFC. The independence of AC from ZF + LM is
due to Robert Solovay, and is presented here as Theorem 3.3 with his kind
permission. Solovay uses the technology of Jensen’s minimal Π1

2-singletons
[Jn] to show that AC fails, but LM remains true in the symmetric inner
model of the universe obtained by adding countably many mutually generic
Jensen reals to the constructible universe. In conclusion, Section 4 focuses

(1) Mycielski refers to this axiom as A′2 in [My-1], and L in [My-2].
(2) For more on models of set theory without indiscernibles, see [En].
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on variants of LM, and includes a number of open questions. Figure 1.1
summarizes our principal results.

Fig. 1.1. LM among some related axioms of set theory. The arrows indicate provable

implications within ZF.

I am grateful to Jan Mycielski and Robert Solovay for providing kind en-
couragement and critical advice during the course of the preparation of this
paper. I am also indebted to the referee for a thorough reading of this paper,
and for suggesting valuable editorial and mathematical improvements.

2. LM and the Global Kinna–Wagner Principles. Myhill and
Scott [MS] formulated the axiom V = OD in terms of the existence of
a parameter free definable global choice function. In the same spirit, Theo-
rem 2.1 shows that LM can be reformulated in terms of the global Kinna–
Wagner selection principles introduced in Section 1. Recall that the local
Kinna–Wagner principles are the following weaker forms of the axiom of
choice (3), which are known to be equivalent within ZF [KW].

(3) KW1 is often referred to as the Kinna–Wagner selection principle KW.
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KW1: For every family F of sets there is a function f such that

∀x ∈ F (|x| ≥ 2→ ∅ 6= f(x) ( x).

KW2: Every set can be injected into the power set of some ordinal.

Theorem 2.1. Suppose M is a model of ZF. The following are equiva-
lent :

(i) M satisfies GKW1.
(ii) M satisfies GKW2.
(iii) M satisfies LM.

Proof. We shall prove (i)⇒(ii)⇒(iii)⇒(i).
(i)⇒(ii). The classical argument of Kinna and Wagner can readily be

adapted to the global context. Suppose that there is a parameter free defin-
able map F in M such that

M � ∀x (|x| ≥ 2→ ∅ 6= F(x) ( x).

Furthermore, we may assume without loss of generality that F(x) = x when-
ever x is the empty set or a singleton. We now define an auxiliary class
function C(x, t) within M , where x is any set, and t is a transfinite binary
sequence. In what follows t _s denotes the concatenation of t with s, and
@ denotes the “end extension” relation between sequences.

• If |x| < 2, then set C(x, t) = x for all t ∈ ⋃α∈Ord{0, 1}α.
• For |x| ≥ 2, define C(x, t) by recursion on the length of t:

C(x, ∅) = x,

C(x, t_〈0〉) = F(C(x, t)),

C(x, t _〈1〉) = C(x, t) \ F(C(x, t)),

C(x, t) =
⋂

s@t
C(x, s) for t of limit length.

Using Hartogs’s theorem [Jc-2, Section 3] we observe that

∀x ∀y ∈ x ∃α ∈ Ord ∃s ∈ {0, 1}α C(x, s) = {y}.
Given y ∈ x, let α(x, y) be the least ordinal α such that

∃s ∈ {0, 1}α (length(s) = α and C(x, s) = {y}).
It is easy to see that

∀x ∀y ∈ x ∃!s ∈ {0, 1}α(x,y) C(x, s) = {y}.
We can therefore describe an injection

H : V→ Ord×
⋃

α∈Ord

{0, 1}α
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as follows: Given an input y of rank θ, let β = α(Vθ+1, y), and define H(y)
by

H(y) = 〈θ, s〉 if s ∈ {0, 1}β and C(Vθ+1, s) = {y}.
Finally, follow H with a definable injection from Ord×⋃α∈Ord{0, 1}α into
the class of subsets of Ord to obtain the desired G injecting the universe into
the class of subsets of ordinals. This concludes the proof of the implication
(i)⇒(ii).

(ii)⇒(iii). Assume that M is a model of ZF, and that G is a class func-
tion definable without parameters, such that

M � “G injects V into
⋃

α∈Ord

P(α)”.

To see that LM holds in M , suppose a and b are distinct elements of M .
Since G(a) 6= G(b) holds in M , we may assume without loss of generality
that for some β ∈ OrdM ,

M � β ∈ G(a) \ G(b).

By the Myhill–Scott Extended Reflection Theorem [MS, p. 273] there is an
ordinal α such that (1) and (2) below hold in M :

(1) β is first order definable in (Vα,∈).
(2) (β ∈ G(a))Vα and (β 6∈ G(b))Vα .

This makes it evident that Th(Vα,∈, a) 6= Th(Vα,∈, b) holds in M , so (iii)
holds.

(iii)⇒(i). Suppose M satisfies LM. Given a set x with at least two el-
ements, we wish to define, in terms of x alone, a proper nonempty subset
of x. Let αx be the least ordinal such that

∃u ∈ x ∃v ∈ x Th(Vαx ,∈, u) 6= Th(Vαx ,∈, v).

Choose ϕx to be the first order formula of least Gödel number such that

∃u ∈ x ∃v ∈ x Vαx � ϕx(u) ∧ ¬ϕx(v).

Now let F(x) = {y ∈ x : Vαx � ϕx(y)}. Clearly

∅ 6= F(x) ( x.

Remark 2.2. (a) Pincus [P] showed that the Kinna–Wagner principles
are equivalent to the following statements SDO (selective dense order prin-
ciple) and SUO (selective unbounded order principle) over ZF:

SDO: ∀F ∃f ∀x ∈ F (x is infinite → f(x) is a dense linear order on x).

SUO: ∀F ∃f ∀x ∈ F (x is infinite → f(x) is a linear order on x

with no first or last element).
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Theorem 2.1 and results of Pincus [P, Theorem 1.5, and the equivalents of
KW on p. 446] together imply that LM is also equivalent to the following
global forms GSDO and GSUO of SDO and SUO:

GSDO: For some parameter free definable class function F,

∀x (x is infinite → F(x) is a dense linear order on x).

GSUO: For some parameter free definable class function F,

∀x (x is infinite→F(x) is a linear order on x with no first or last element).

(b) The usual “back-and-forth” proof of the Cantor–Schröder–Bernstein
theorem [Jc-2, Theorem 7] can be adapted to show that LM is equivalent to
the existence of a definable bijection between the universe and the class of
subsets of ordinals.

(c) In ZFC the universe can be definably injected into the class of subsets
of subsets of ordinals. To define the desired injection H, let Γ : Ord2 → Ord
be Gödel’s canonical pairing function [Jc-2, p. 20] and for every set s let
κs = |trcl({s})|, where trcl(x) is the transitive closure of x. Then define
H(s) to be

{x ⊆ κs : s is the ∈-maximum element

of the Mostowski collapse of Γ−1(x)}.
To see that H(s) 6= ∅, note that any bijection f between the cardinal κs and
trcl({s}) induces a binary relation R ⊆ κ2

s such that (κs, R) ∼= (trcl({s}),∈).
Let r ⊆ κs be the image of R under Γ. Clearly r ∈ H(s).

(d) Consider the following sentences in the language of class theory as-
serting the class forms of the Kinna–Wagner principles:

CKW1: ∃F ∀x (|x| ≥ 2→ ∅ 6= F(x) ( x);

CKW2: ∃G (G injects V into the class of subsets of ordinals).

Similarly, consider the following class form of the Leibniz–Mycielski axiom:

CLM : ∃X ∀x ∀y [x 6= y → ∃α > max{%(x), %(y)}
Th(Vα,∈,X ∩ Vα, x) 6= Th(Vα,∈,X ∩ Vα, y)].

The proof of Theorem 2.1 can be adapted to establish the equivalence of
CKW1, CKW2, and CLM within GB (the Gödel–Bernays system of class
theory without the axiom of choice). Moreover, a forcing argument (similar
to the one used in [F]) shows that every countable model of ZF+KW can be
expanded to a model of GB+CLM. In particular, this shows that GB+CLM
is a conservative extension of ZF + KW relative to sentences of set theory
(i.e., a sentence ϕ in the language of set theory is provable within GB+CLM
iff ϕ is already provable within ZF + KW).
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(e) Let LM(c) denote the parametric version of LM that asserts:

∀x ∀y [x 6= y → ∃α > max{%(x), %(y), c} Th(Vα,∈, c, x) 6= Th(Vα,∈, c, y).

Similarly, let GKW1(c) and GKW2(c) denote the parametric versions of
the global Kinna–Wagner principles involving the parameter c. The proof
of Theorem 2.1 can be uniformly carried out relative to the parameter c to
show the equivalence of LM(c), GKW1(c), and GKW2(c).

We conclude this section with some immediate consequences of Theo-
rem 2.1.

Corollary 2.3. ZF + LM ` KW.

Corollary 2.4 (4). ZF + V = OD ` LM.

Proof. The universe can be globally well-ordered in the presence of
V = OD, so there is a definable injection of the universe into the class
of singletons of ordinals. This corollary can also be derived from Theorem 1,
since every completion of ZF + V = OD has a model all of whose elements
are definable (and such a model cannot contain indiscernibles).

Corollary 2.5. In the presence of ZF + LM there is a parameter free
definable global linear ordering of the universe.

Proof. In light of Theorem 2.1 it suffices to observe that
⋃
α∈Ord{0, 1}α

can be linearly ordered, first by length, then lexicographically.

Corollary 2.6. ZF + LM proves GC<ω (global choice for collections
of finite sets).

Proof. This is a consequence of Corollary 2.5, and the fact that within
ZF every finite linearly ordered set is well-ordered.

Corollary 2.7. ZF + LM proves the existence of a definable set of
real numbers that is not Lebesgue measurable and does not have the Baire
property.

Proof (5). This is a consequence of putting Corollary 2.6 together with
a classical argument of Sierpiński ([Si], [Jc-1, Problem 11]) that establishes,
within ZF + AC2 (axiom of choice for pairs), the existence of a set of real
numbers that is neither Lebesgue measurable, nor has the Baire property.

3. Independence results. In what follows, we use the blanket assump-
tion that ZF is consistent so as to avoid having to state our theorems in the
awkward conditional form “If ZF has a model then . . . ”. Moreover , since
our independence results can all be established via forcing over a model of

(4) This result was first established by Mycielski [My-1, Theorem 4].
(5) This proof is due to Mycielski, and simplifies earlier arguments of Solovay and the

author.
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ZF + V = L using partial orders of cardinality at most ℵ1, we further as-
sume that ℵL

2 is countable. This will guarantee in all cases considered here
that the generic object exists outright within V. It is well known that our
assumption comes at no cost at the consistency level.

We wish to examine the relationship between the axiom of choice and
LM within ZF. Of course ZFC + LM is consistent because the constructible
universe L already satisfies LM (thanks to Corollary 2.3). Theorem 2.1 leads
one to surmise that within ZFC one cannot establish LM. The next result
confirms this expectation.

Theorem 3.1. There is a model of ZFC in which LM fails.

Proof. Let P = Fn(ω, 2) ∈ L be Cohen’s notion of forcing for adding a
generic real. Forcing with P2 produces a generic filter G = G1 × G2, where
G1 and G2 are mutually P-generic. Thanks to the equivalence of LM with
GKW2 (established in Theorem 2.1), the failure of LM follows immediately
from the existence of indiscernible elements a1 and a2 in L[G] such that:

(1) For all unary formulas ϕ(x, θ), where θ is an ordinal parameter,

L[G] � ϕ(a1, θ)↔ ϕ(a2, θ).

The candidates for the indiscernibles are a1 = P(ω)L[G1] and a2 = P(ω)L[G2].
By mutual genericity of G1 and G2, a1 6= a2. To prove (1), we shall prove
the following stronger assertion:

(1∗) For all binary formulas ϕ(x, y, θ), where θ is an ordinal parameter,

L[G] � ϕ(a1, a2, θ)↔ ϕ(a2, a1, θ).

For i ∈ {1, 2} let πi be the canonical P2-term for ai. The automorphism
〈p, q〉 7→f 〈q, p〉 of P2 induces a permutation f of order 2 on P-names. Clearly,

(2) f transposes π1 and π2.

To see that (1∗) holds, suppose L[G] � ϕ(a1, a2, θ). Then for some p1 ∈ G1

and p2 ∈ G2, 〈p1, p2〉 
 ϕ(π1, π2). Hence by (2) and the symmetry lemma
(as in [Jc, Lemma 19.10] or [K, Lemma 7.13(c)]),

(3) 〈p2, p1〉 
 ϕ(π2, π1).

Without loss of generality, p1 and p2 have the same domain. It follows
from a standard argument that there is an automorphism h of P of finite
support that transposes p1 and p2. Let H1 and H2 be the images of G1

and G2 respectively under h and let H = H1 × H2. Note that p1 ∈ H2

and p2 ∈ H1. Clearly L[H] = L[G] since Hi and Gi differ only by finitely
many elements. Also, thanks to the symmetry lemma,H is P2-generic. Hence
L[G] � ϕ(a2, a1, θ) by (3).
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Remark 3.2. (a) Since forcing with Cohen’s partial order P is equivalent
to forcing with P2, the above argument shows that LM fails if a Cohen real
is generically added to any universe of set theory.

(b) A symmetry argument similar to the one used in the proof of Theo-
rem 3.1 shows that LM also fails in Cohen’s model N of the negation of AC
obtained by adjoining a countably infinite set S of mutually generic Cohen
reals to M without adding an enumeration of S itself [Jc-2, Ex. 1, p. 203].
This model was intensively studied by Halpern and Lévy ([HL], [Jc-1, Chap-
ter 5]) who proved that (1) N satisfies the Boolean Prime Ideal theorem,
and (2) there is a global injection of the universe into the class of subsets of
ordinals that is definable in N from the parameter S. Note that (2) imme-
diately implies that KW holds in N. The failure of LM in N indicates that
there is no parameter free definable injection of the universe into the class of
subsets of ordinals in N . Hence N is a model of ∃c LM(c), but not a model
of LM.

(c) Easton [Ea] constructed a model of ZFC in which a definable class of
pairs has no definable choice function. In light of Corollary 2.4, this provides
an alternative proof of Theorem 3.1. Indeed, using Remark 2.2(e) it is easy
to see that ∀c ¬LM(c) holds in Easton’s model.

Theorem 3.3 (Solovay). There is a model of ZF in which LM holds but
AC fails.

Proof. Roughly speaking, the model is obtained by mixing a construction
of Jensen [Jn] with Cohen’s model mentioned in Remark 3.2(b). Jensen
constructed a c.c.c. poset P of size ℵ1 in L that adds a real which is a
Π1

2-singleton of minimal constructibility degree. To first approximation, P
is built by marrying Sacks forcing to Jensen’s construction of a Suslin tree
in L. Jensen showed (6):

(1) There is a P-name for a subset x of ω such that for any generic G,
L[G] = L[xG] [and there is a uniform definition of G from xG].
Because of this, we speak of P-generic reals. They are reals of the
form xG for a generic G.

(2) There is a Π1
2-formula A(·) such that the following conditions (a)

and (b) are equivalent for any real y:

(a) A(y).
(b) y is P-generic over L.

(3) For any n distinct P-generic reals x1, . . . , xn the tuple 〈x1, . . . , xn〉 is
Pn-generic.

(6) N.B. (1) and (2) hold for Cohen forcing; (3) is the key property.
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Let Q be the poset that adds a countable sequence of P-generic reals via
the usual finite support product. More precisely, P has an initial condition
1P which “gives no information” and Q will consist of functions h : ω → P
such that for all but finitely many n, h(n) = 1P. We put the obvious order
on Q: h1 ≤ h2 iff for all n, h1(n) ≤ h2(n).

Let N = L[G], where G is Q-generic over L. Also let ai = xGi , where
Gi is the image of G under the projection that maps h to h(i). Finally, let
S = {ai : i ∈ ω}, and T = S ∪ω. Our desired model N1 is L(T ). A standard
symmetry argument (as in [Jc-2, Lemma 19.12]) shows that the axiom of
choice fails in N1. The verification of LM in N1 is more difficult and relies
on the following preliminary lemmas.

Lemma 3.3.1. N1 � {x ⊆ ω : A(x)} = S.

Proof. Suppose towards a contradiction that Lemma 3.3.1 is false.
Clearly every element of N1 is ordinal definable [in N1] from S and some
finite subset of S. Let y be a real such that y ∈ N1, A(y) holds and y 6∈ S.
Pick an OD-definition of y from S and a0, . . . , an. Pick a condition q ∈ Q
that forces that this definition gives a real that satisfies A(·) but is not in S.
By increasing n if necessary, we may assume that q’s nontrivial components
only refer to ai’s with i ≤ n.

We write the OD definition above as y = D(S). D will also reference
names for a0, . . . , an as well as the name for some ordinal, but we suppress
this from our notation. We can write Q up to isomorphism as the product

Q ∼= Pn+1 ×Q,
where the factor Pn+1 adds {a0, . . . , an}, and the second Q adjoins

〈am : m ≥ n+ 1〉.
We write M1 = L[a0, . . . , an]. Our first goal is to show that y ∈ M1. Of
course N is a generic extension of M1 via forcing with Q. Let H1 be a
generic filter on Q that adjoins the sequence 〈am : m ≥ n+ 1〉.

We now describe a Q-name ẙ [with respect to the ground model M1].
ẙ will have the following properties:

(1) valH1(ẙ) = y.
(2) Let K be any M1-generic filter over Q. Then valK(ẙ) is computed

as follows:

(a) Let 〈bi : i ∈ ω〉 be the sequence of reals adjoined by K.
(b) Let S∗ = {a0, . . . , an} ∪ {bi : i ∈ ω}.
(c) Let T ∗ = S∗ ∪ ω.
(d) valK(ẙ) will be D(S∗) as computed in L(T ∗). Note that the

various parameters appearing in D that we have suppressed from
our notation all lie in M1, and so are available for this definition.
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The following are evident:

• There is a Q-name with property (2).
• Property (2) implies property (1).

We now describe a group of automorphisms of Q. Consider the group G
of permutations of ω that have finite support. In an obvious way this group
acts on Q. This action lifts to Q-names, and hence to an action on equiv-
alence classes of Q-names [two Q-names are equivalent if they are forced
to be equal by every condition]. It is evident that the equivalence class
of ẙ is fixed by this automorphism group. Moreover, the only elements of
the Boolean algebra B = r.o.(Q) which are fixed by all automorphisms of
B induced by elements of G are 0B and 1B. To see this, let U ∈ B be a
regular nonempty downward closed proper subset of Q. Choose q ∈ U
and q 6∈ U such that {x ∈ Q : x ≤ q} and U are disjoint, and let n
be large enough so that for all i ≥ n, q(i) = q(i) = 1P. Let f permute
I = {0, . . . , 2n − 1} by shifting up the first n elements of I by n, and

shifting down the remaining n elements of I by n, and let f̂ be the au-
tomorphism of Q induced by f . Consider the condition r ∈ Q defined as
follows:

r(i) =





q(i) for 0 ≤ i ≤ n− 1,

q(i− n) for n ≤ i ≤ 2n− 1,

1P for i ≥ 2n.

Since r ∈ U and f̂(r) 6∈ U, U is not fixed by f̂ .
It follows from a standard argument (as in [Jc-2, Theorem 59]) that there

is an element of the ground model M1 such that the value of ẙ is forced by
every condition to be this element. Hence y ∈M1.

At this point it is easy to derive a contradiction. The elements a0, . . . ,
an, y are all distinct and all are P-generic over L. So 〈a0, . . . , an, y〉 is Pn+1-
generic over L. So y is P-generic over M1. It is evident from Jensen’s explicit
description of P that if y is P-generic over M1 then y 6∈M1. (Lemma 3.3.1)

What have we gained from Lemma 3.3.1? We now know that S is OD in
N1 and that every element of N1 is OD from some finite subset of the ai’s
[this uses the fact that there is a canonical ordering of S induced from the
usual canonical ordering of P(ω)].

Lemma 3.3.2. Let x ∈ N1 and suppose that F1, F2 are finite subsets of
S such that x is OD from F1 and OD from F2. Then x is OD from F1 ∩F2.

Before proving Lemma 3.3.2 we note the following corollary:

• For every x ∈ N1, there is a unique smallest subset F ⊆ S such that x
is OD from F [F is called the support of x].
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Proof of Lemma 3.3.2. Suppose not, and fix counterexamples x, F1, and
F2. Let F = F1∩F2, and let D1(F1) and D2(F2) be two different definitions
of x from ordinal parameters. Let q denote a condition in G such that

q 
 D1(F1) = D2(F2).

We may suppose that every ai referenced in q appears in one of F1 and
F2 by suitably increasing F1 and F2. We may do so while maintaining the
equation F = F1 ∩ F2. By applying the symmetry group G we may suppose
that F = {a0, . . . , an}. But now familiar symmetry arguments (as in [Jc-1,
Theorem 5.21]) using G show that x can be ordinal-defined from F as follows:
Find elements b0, . . . , bs among S \ F such that q is true of

{a0, . . . , an, b0, . . . , bs}.
If F ∗1 is the analogue of F1 for this new subset of S, then x = D1(F ∗1 ).
By existentially quantifying the bi’s, this yields an OD definition of x from
merely a0, . . . , an. (Lemma 3.3.2)

Thanks to Lemma 3.3.2, it is easy to describe a map G in N1 that
injects the universe into the class (S<ω× OD terms) whose definition uses
only the parameter S. By Lemma 3.3.1, however, the parameter S can be
eliminated from the description of G. Therefore by composing G with a
definable injection from (S<ω× OD terms) into the class of sets of ordinals,
we obtain the desired parameter free definable injection of the universe into
the class of sets of ordinals. Hence by Theorem 2.1, LM holds in N1.
(Theorem 3.3)

4. Further results and open questions

4.1. A uniform equivalent form of LM. In this section we present a
result of Solovay on “universal formulas” that answers a question of the
author by implying that the following apparently stronger form LM∗ of LM
is not only consistent with ZF, but is indeed equivalent to LM itself:

LM∗: There is a formula ϕ(x) such that for each pair of distinct sets a
and b, there exists an ordinal α exceeding the ranks of a and b such that
(Vα,∈) satisfies ϕ(a) ∧ ¬ϕ(b).

Theorem 4.1.1 (Solovay) There is a formula ϕ(x) in the language of
set theory that has precisely the one indicated free variable such that ZF
proves: if α is an ordinal and ψ(x) is a formula of the language of set theory
with one free variable x, then there is an ordinal β > α such that for any
x ∈ Vβ ,

[Vβ � ϕ(x)] iff [x ∈ Vα and Vα � ψ(x)].

It will be convenient to give some preliminary definitions before present-
ing the proof. Let us say that an ordinal is special if it is a limit ordinal but
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not a limit of limit ordinals. Let α be special and βα be the largest limit
ordinal less than α. Then α = βα + ω. Let η(α) be the order type of the
set of special ordinals less than α. Note that η(α) < α since η(α) ≤ βα. For
any ordinal γ, there is a unique special ordinal α such that η(α) = γ. An
ordinal α unpacks to the pair of ordinals β, γ if α corresponds to the pair
〈β, γ〉 via the bijection of Ord with Ord2 explicitly constructed by Gödel
(as in [Jc-2, p. 20]). Note that it follows that β and γ are ≤ α.

Proof of Theorem 4.1.1. The desired formula ϕ(x) asserts (1) through (4)
below.

(1) There is no largest ordinal.
(2) There is an ordinal γ such that every limit ordinal is less than γ.

Hence we can meaningfully define α to be the order type of the set
of special ordinals.

(3) Let α unpack to the pair of ordinals α0 and α1. Then α1 is an
integer and is the Gödel number of a formula χ(v0) having the one
free variable v0 (v0 is the first free variable).

(4) x ∈ Vα0 and Vα0 � ψ[v0/x].

4.2. LM relative to other logics. Since the formulation of LM involves
the first order theories of models of the form (Vα,∈, a), it is natural to probe
axioms of the form LML, where L is some extension of first order logic Lω,ω
(such as second order logic, or some flavor of infinitary logics).

LML: For each pair of distinct sets x and y, there exists an ordinal α
exceeding the ranks of x and y, and a formula ϕ(v) in the logic L such that
(Vα,∈) satisfies ϕ(x) ∧ ¬ϕ(y).

Of course in order to formulate LML, we need to assume the following
definability condition (∗) on satisfiability of L-formulae, which is satisfied
by practically all “reasonable” logics (such as all brands of infinitary logic,
as well as logics with the quantifier “there exist κ many”, where κ is a
prescribed definable cardinal):

(∗) {(α,ϕ(x), a) : ϕ(x) is a unary L-formula

and (Vα,∈, a) � ϕ(a)} is definable.

The proof of (iii)⇒(i) of Theorem 2.1 shows that if (1) L is a logic
satisfying (∗) and (2) the formulas of L are ordinal definable (and therefore
can be definably well-ordered), then

ZF ` LML → GKW1.

Combined with Theorem 2.1, this shows:

Proposition 4.2.1. If L is a logic extending first order logic satisfying
(∗) whose formulas are in OD, then ZF ` LML ↔ LM.
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Hence for many logics, such as second order logic, nth order logic, or even
(L∞,∞)HOD (full infinitary logic in the sense of HOD), LML is equivalent
to LM over ZF. However, if some formulas of L lie outside of OD, then
LML might be weaker than LM. For example, if r is a Cohen real over L,
then LM fails in L(r) (see Remark 3.2(a)) but L(r) satisfies LML with
L = (Lω1, ω)L(r), because LM(r) holds in L(r).

4.3. From Weak LM to LM. Another axiom related to LM is the Weak
Leibniz–Mycielski axiom WLM in which the role of unary formulas is re-
placed by binary formulas:

WLM: For each pair of distinct sets x and y, there exists an ordinal α
exceeding the ranks of x and y, and a formula ϕ(u, v), such that (Vα,∈)
satisfies ¬(ϕ(x, y)↔ ϕ(y, x)).

Similar to LM, WLM can also be reformulated as a choice principle, as
shown in Theorem 4.3.1 below.

Theorem 4.3.1. Suppose M is a model of ZF. The following are equiv-
alent.

(i) For some parameter free definable function F, M � “ F is a choice
function on the class of pairs”.

(ii) M �WLM.

Proof. We first establish (i)⇒(ii). Suppose M thinks that F is a choice
function on the class of pairs, where F is defined by some parameter free
formula in M . Given a pair {x, y} of distinct objects in M , by the reflection
theorem there is some ordinal α of M such that x and y are in V M

α and

M � (F is a choice function on the class of pairs)Vα .

Therefore, if ϕ(u, v) is the formula u = F({u, v}), then

M � ¬(ϕ(x, y)↔ ϕ(y, x))Vα .

For (ii)⇒(i), suppose that M satisfies WLM. Given a pair z = {x, y} of
distinct objects x and y, let αz be the first ordinal exceeding the ranks of x
and y such that

(♣) For some formula ϕ(u, v), Vαz satisfies ¬(ϕ(x, y)↔ ϕ(y, x)).

Let ϕz(u, v) be the formula of least Gödel number witnessing (♣), and define
F by

F({x, y}) =

{
x if Vα satisfies ϕz(x, y),

y if Vα satisfies ϕz(y, x).

The following list enumerates some interesting axioms intermediate be-
tween WLM and V = OD. Each axiom on the list except for WLM implies
the axiom preceding it within ZF. More specifically, V = OD → LM was
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established in Corollary 2.3; LM→ GDO can be proved by combining The-
orem 2.1 with a result of Pincus on canonically imposing dense linear orders
on infinite families of subsets of ordinals [P, Theorem 1.5]; GDO → DO is
trivial; GO → GC<ω is a consequence of the fact that finite linear orders
are well-ordered, and GC<ω →WLM follows from Theorem 4.3.1.

1. WLM.
2. GC<ω (parameter free definable global choice function on the class of

finite sets).
3. GO (parameter free definable global linear ordering).
4. GDO (parameter free definable global dense ordering).
5. LM.
6. V = OD.

All of the axioms (1) through (6) are independent of ZFC since the proof
of Theorem 3.1 and part (a) of Remark 3.2 together show that if r is a Co-
hen real over L then WLM fails in L(r). Indeed, Theorem 4.3.1 shows that
the statement ∀c ¬WLM(c) holds in Easton’s model of ZFC mentioned in
part (c) of Remark 3.2. It is known (7) that the local versions of the above
axioms form a proper hierarchy within ZF. This motivates the following
conjecture.

Conjecture 4.3.2. None of the following implications reverse in ZF,
or even in ZFC (N.B. Theorem 3.3 shows that (ZF + LM) 9 V = OD).

V = OD→ LM→ GDO→ GO→ GC<ω →WLM.

Question 4.3.3. Does LM hold in the model N of the proof of Theorem
3.3?

Since V 6= OD holds in N , a positive answer to Question 4.5 would
establish (ZFC + LM) 9 V = OD. The author had hoped that the model
L(r) obtained by adding a Sacks real r to L would demonstrate the inde-
pendence of V = OD from ZFC + LM, but Solovay has recently shown that
LM fails in L(r).

Question 4.3.4. Is there a model of ZF + LM in which |P(ω) ∩ OD|
= ℵ0?

4.4. The Leibniz–Gödel axioms. In this section we introduce “construct-
ible” variants of LM and WLM in which the role of the von Neumann
hierarchy of Vα’s is replaced by models of the form Lα(a), where a is a
transitive set.

(7) [Je-1] contains the classical proofs of AC2 9 AC<ω, AC<ω 9 O, O 9 KW, and
KW 9 AC. More recently, González [G] has established O 9 DO over ZF, and Pincus [P]
has established O 9 DO, and DO 9 KW over ZF + The Boolean Prime Ideal Theorem.
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The Leibniz–Gödel axiom (LG): For each pair of distinct sets x and y,
there exists an ordinal α exceeding the ranks of x and y, and a formula
ϕ(u, v), such that (Lα(a),∈) satisfies ϕ(x)∧¬ϕ(y), where a is the transitive
closure of {x, y}.

The Weak Leibniz–Gödel axiom (WLG): For each pair of distinct sets
x and y, there exists an ordinal α exceeding the ranks of x and y, and a
formula ϕ(u, v), such that (Lα(a),∈) satisfies ¬(ϕ(x, y)↔ ϕ(y, x)), where a
is the transitive closure of {x, y}.

It is easy to see that V = L implies LG. However, LG is weaker than
V = L since LG also holds in the model L(s), where s is a Jensen Π1

2-
singleton, since s is a definable and minimal real in L(s). Moreover, it is
easy to see that ZF ` LG→WLG, but it is not clear how to establish that
WLG is provably weaker than LG within ZFC. Furthermore, even though a
routine argument shows that ZF `WLG→WLM, it is unclear whether LM
and LG are related within ZFC. These considerations lead to the following
questions:

Question 4.4.1. Is there a model of ZFC + LM in which LG fails?

Question 4.4.2. Is there a model of ZFC + LG in which LM fails?

Question 4.4.3. Is there a model of ZFC + WLG in which LG fails?

References

[CK] C. C. Chang and H. J. Keisler, Model Theory , North-Holland, Amsterdam, 1973.
[Ea] W. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139–178.
[En] A. Enayat, Leibnizian models of set theory , J. Symbolic Logic, to appear.
[F] U. Felgner, Comparisons of the axioms of local and universal choice, Fund. Math.

71 (1971), 43–62.
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