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Some combinatorial principles defined in terms of
elementary submodels
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Sakaé Fuchino (Kasugai) and Stefan Geschke (Berlin)

Abstract. We give an equivalent, but simpler formulation of the axiom SEP, which
was introduced in [9] in order to capture some of the combinatorial behaviour of models
of set theory obtained by adding Cohen reals to a model of CH. Our formulation shows
that many of the consequences of the weak Freese–Nation property of P(ω) studied in [6]
already follow from SEP. We show that it is consistent that SEP holds while P(ω) fails
to have the (ℵ1,ℵ0)-ideal property introduced in [2]. This answers a question addressed
independently by Fuchino and by Kunen. We also consider some natural variants of SEP
and show that certain changes in the definition of SEP do not lead to a different principle,
answering a question of Blass.

1. Introduction. As far as the combinatorial properties of the reals
are concerned, among the best understood models of set theory are Cohen
models, i.e., models of set theory obtained by adding Cohen reals to a model
of CH. In order to get rid of the technical and meta-mathematical difficulties
of forcing, it is worthwhile to isolate the combinatorial features of Cohen
models in the form of easily applicable combinatorial principles.

This has been done by various authors. The work of Juhász, Szent-
miklóssy, and Soukup [10, 11] can be considered as the starting point of
this line of research. The intention of the present article is to clarify the
interrelations between three similar principles that turned up in this con-
text, namely SEP introduced by Juhász and Kunen [9], the (ℵ1,ℵ0)-ideal
property (IDP for short) of Dow and Hart [2] and WFN(P(ω)) from [6].

SEP and IDP are originally defined by the same pattern. The principles
say that for every sufficiently large regular cardinal χ there are many good
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elementary submodels M of the structure (Hχ,∈) such that P(ω) ∩M is
nicely embedded in P(ω). Here Hχ denotes the family of all sets whose
transitive closure is of size < χ. Structures of the form (Hχ,∈) satisfy a
large part of ZFC.

Different notions of good and many elementary submodels and nice em-
beddings lead to different principles. The nice embeddings in the case of
SEP and IDP are sep-embeddings and σ-embeddings, respectively.

Definition 1.1. Let A and B be Boolean algebras with A ≤ B, i.e., A
is a subalgebra of B. For b ∈ B let A�b = {a ∈ A : a ≤ b}. Then A ≤sep B
if and only if for every b ∈ B and every uncountable set T ⊆ A�b there is
a ∈ A�b such that {c ∈ T : c ≤ a} is uncountable. Let A ≤σ B if and only if
for every b ∈ B, A�b has a countable cofinal subset.

Observe that A ≤σ B implies A ≤sep B.
The good elementary submodels will be the same for both SEP and IDP.

Later we show that ≤sep can be replaced by ≤σ in the following definition
of SEP. The real difference between SEP and IDP lies in the interpretation
of many .

Extending the notions defined in [2] and [9], we regard SEP and IDP as
properties of general Boolean algebras, not only of P(ω).

Definition 1.2. For a cardinal χ letMχ be the set of elementary sub-
models M of Hχ such that |M | = ℵ1 and [M ]ℵ0 ∩M is cofinal in [M ]ℵ0 .
For a Boolean algebra A, SEP(A) is the statement “for all sufficiently large
regular χ there are cofinally many M ∈Mχ such that A∩M ≤sep A”. The
axiom SEP introduced in [9] is SEP(P(ω)).

A has the (ℵ1,ℵ0)-ideal property (IDP) if and only if A∩M ≤σ A for all
sufficiently large regular χ and all M ∈ Mχ with A ∈M . We write IDP(A)
if A has the IDP.

As usual, we identify an algebraic structure (A, f1, . . . , fn, R1, . . . , Rm)
with its underlying set A. It should be made clear that by “A ∈ M” we
really mean (A, f1, . . . , fn, R1, . . . , Rm) ∈ M . The role of the cardinal χ is
analyzed in Section 8, where we calculate precisely when a regular cardinal
is “sufficiently large” in the definition of SEP.

Since ≤σ is stronger than ≤sep, for a Boolean algebra A, IDP(A) im-
plies SEP(A). In Section 2 we show that the relation ≤sep in the definition
of SEP can be replaced by ≤σ, i.e., SEP and IDP are very similar. In Sec-
tion 8 we observe that it does not make a difference in the definition of SEP
if we replace “there are cofinally many M ∈ Mχ” by “there is M ∈ Mχ”
or by “there are stationarily many (in [Hχ]ℵ1) M ∈ Mχ”. This shows the
importance of the results of Sections 6 and 7, namely that SEP is really
weaker than IDP.
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If the universe is not very complex, that is, if some very weak version of
the �-principle together with cf([µ]ℵ0) = µ+ holds for all singular cardinals
µ of countable cofinality, or if the Boolean algebras under consideration are
small, then the (ℵ1,ℵ0)-ideal property is equivalent to the weak Freese–
Nation property studied in [7]:

Definition 1.3. A Boolean algebra A has the weak Freese–Nation prop-
erty (WFN) if and only if there is a function f : A → [A]≤ℵ0 such that for
all a, b ∈ A with a ≤ b there is c ∈ f(a)∩ f(b) with a ≤ c ≤ b. In this case f
is called a WFN-function for A. We write WFN(A) for “A has the WFN”.

It is easy to check that if f is a WFN-function for A and B ≤ A is closed
under f , then B ≤σ A. In [7] Fuchino, Koppelberg, and Shelah characterized
the WFN using elementary submodels and σ-embeddings. They showed

Theorem 1.4. A Boolean algebra A has the WFN if and only if
A ∩ M ≤σ A for all sufficiently large χ and all M 4 Hχ with ℵ1 ⊆ M
and A ∈M .

Since ℵ1 ⊆M for all M ∈ Mχ, it is clear that for a Boolean algebra A,
IDP(A) follows from WFN(A). As mentioned above, IDP and WFN are
equivalent in many cases. Some of these cases are captured by the following
lemma, which follows from the results in [8].

Lemma 1.5. If A is a Boolean algebra of size < ℵω or if 0] does not
exist , then IDP(A) holds if and only if WFN(A) does.

The formulation using 0] is chosen here just for simplicity. As mentioned
above, what is really needed is only a certain very weak assumption at
singular cardinals of countable cofinality. On the other hand, it is known
that the lemma does not hold without any such additional assumption (see
[8] or [5]).

In [6] many interesting consequences of WFN(P(ω)) have been found.
Concerning the combinatorics of the reals, a universe satisfying WFN(P(ω))
behaves very similarly to a Cohen model. In particular, the values of the
popular cardinal invariants of the continuum, that is, those studied in [1],
have the same values in a model with WFN(P(ω)) as in a Cohen model with
the same size of the continuum.

Our characterization of SEP in terms of ≤σ rather than ≤sep shows that
the axiom SEP(P(ω)) is sufficient to determine at least some of the smaller
cardinal invariants of the continuum.

Juhász and Kunen have already proved that another consequence of
WFN(P(ω)), the principleCs2(ω2) introduced in [10], follows from the weaker
assumption SEP(P(ω)).
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2. SEP is similar to IDP. As mentioned above, ≤σ implies ≤sep. If the
subalgebras under consideration are of size ≤ ℵ1, then the two relations are
in fact the same.

Lemma 2.1. Let A and B be Boolean algebras with A ≤sep B and
|A| = ℵ1. Then A ≤σ B.

Proof. Let b ∈ B and assume for a contradiction that A�b is not count-
ably generated. Let (aα)α<ω1 enumerate A�b. By recursion on α < ω1 define
a sequence (cα)α<ω1 in A�b such that for all α < ω1, aα ≤ cα and cα is not
in the ideal of A generated by {cβ : β < α}.

Now let T = {cα : α < ω1}. We claim that T is a counterexample to
A ≤sep B. For let a ∈ A�b. Then there is β < ω1 with a = aβ . Thus aβ ≤ cβ.
By the construction of the sequence (cα)α<ω1, there are only countably many
elements of T below cβ. Hence, there are only countably many elements of
T below a, contradicting A ≤sep B.

Thus, we have

Corollary 2.2. For every Boolean algebra A, SEP(A) holds if and only
if for all sufficiently large regular χ there are cofinally many M ∈ Mχ with
A ∩M ≤σ A.

In the rest of this article we will freely use Corollary 2.2 without referring
to it explicitly.

Using the characterization in Corollary 2.2, it is easily seen that many
interesting consequences of WFN(P(ω)) already follow from SEP(P(ω)). In
the proofs of most of the results in [6] it is only used that under WFN(P(ω)),
for some sufficiently large χ there are cofinally many M ∈ Mχ with
P(ω)∩M ≤σ P(ω). The following theorem collects some of the consequences
of SEP(P(ω)) that follow from the arguments given in [6].

A subset of [ω]ℵ0 is called groupwise dense if it is closed under taking al-
most subsets and non-meager with respect to the topology on [ω]ℵ0 inherited
from 2ω when identifying [ω]ℵ0 with a subset of 2ω.

Theorem 2.3. Assume SEP(P(ω)). Then the following cardinal invari-
ants of the continuum are ℵ1:

(i) non(M), the smallest size of a non-meager subset of R, and
(ii) g, the smallest size of a family of groupwise dense subsets of [ω]ℵ0

with empty intersection.

Moreover , if CH fails, then cov(M), the minimal size of a family of meager
subsets of R covering R, is at least ℵ2.

It was also proved in [6] that WFN(P(ω)) implies that a, the smallest
size of a maximal almost disjoint family in P(ω), is ℵ1. In the proof it is
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sufficient to assume IDP(P(ω)). The situation with a under SEP(P(ω)) is
more subtle and will be discussed in Section 8.

For more information about these cardinal invariants see e.g. [1].

3. SEP(P(ω)) holds in Cohen models. In [5] it was shown that
WFN(P(ω)) can fail in a Cohen model, assuming the consistency of some
very large cardinal. In [8] it was shown that large cardinal assumptions are
necessary for this.

However, SEP(P(ω)) is always true in a Cohen model. We include a proof
of this fact (Theorem 3.1). It follows that WFN(P(ω)) does not follow from
SEP(P(ω)) in ZFC (assuming the consistency of certain large cardinals).
We do not know whether IDP(P(ω)) is always true in a Cohen model.

In Section 7 we shall show, without large cardinal assumptions, that
SEP(P(ω)) does not imply IDP(P(ω)).

Theorem 3.1. Let V be a model of CH and suppose that G is Fn(κ, 2)-
generic over V . Then V [G] |= SEP(P(ω)).

The proof of this theorem relies on the following series of lemmas. The
first lemma was proved in [14].

Lemma 3.2. Let M be a transitive model of set theory and let x ⊆ ω be
a Cohen real over M . Then P(ω) ∩M ≤σ P(ω) ∩M [x].

Lemma 3.3. Let P be a c.c.c. partial order and let M ∈ Mχ be such that

P ∈M . Let G be P -generic over the ground model V . Then M [G] ∈MV [G]
χ .

Proof. Let M and G be as above. Then M [G] 4 Hχ[G] by c.c.c. of P .
Let X ⊆ M [G] be countable. In V [G], there is a countable set C ⊆ M
of P -names such that X ⊆ {ẋG : ẋ ∈ C}. Again by the c.c.c. of P , we
may assume that C ∈ V and C is countable in V . By M ∈ MV

χ , we may
assume C ∈ M . Since M contains a name for G, G ∈ M [G] and thus
X ⊆ {ẋG : ẋ ∈ C} ∈M [G].

Lemma 3.4. Assume CH. Then M ∈ Mχ implies that [M ]≤ℵ0 ⊆M . In
particular , for all M ∈ Mχ, if P ⊆M is a c.c.c. partial order , then every
nice P -name for a subset of ω is contained in M .

Proof. Suppose that x ∈ [M ]ℵ0 . By M ∈ Mχ there is y ∈ [M ]ℵ0 ∩M
such that x ⊆ y. By CH there is a surjection f : ω1 → P(y). By elementarity,
there is such an f in M . Let α < ω1 be such that f(α) = x. Since ω1 ⊆M ,
we have α ∈M and thus x = f(α) ∈M .

Now let P ⊆ M be a c.c.c. partial order. Since P is c.c.c., every nice
P -name for a subset of ω is a countable subset of {ň : n ∈ ω}×P ⊆M . By
the first part of the lemma, every such set is an element of M .
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Lemma 3.5. Let V and G be as in Theorem 3.1. Let χ ∈ V be large
enough and let M ∈ (Mχ)V be such that κ ∈M . Then

P(ω) ∩M [G] = P(ω) ∩ V [G ∩ Fn(κ ∩M, 2)].

Proof. First let x ∈ P(ω)∩M [G]. In M there is a name ẋ for x which is
a nice name for a subset of ω. Since Fn(κ, 2) satisfies the c.c.c., in V there
is a countable set X ⊆ κ such that ẋ is an Fn(X, 2)-name. We can find such
an X in M . Since ℵ0 ⊆ M , X ⊆ M . Therefore ẋ is an Fn(κ ∩M, 2)-name
and thus x ∈ V [G ∩ Fn(κ ∩M, 2)].

For the converse let x ∈ V [G ∩ Fn(κ ∩M, 2)]. Pick a nice Fn(κ ∩M, 2)-
name ẋ for x. Clearly, Fn(κ∩M, 2) ⊆M . Therefore Lemma 3.4 applies, and
we get ẋ ∈M . This shows x ∈M [G].

Proof of Theorem 3.1. We argue in V [G]. Let χ be sufficiently large and
let M ∈ Mχ. It is sufficient to show that there is M ′ ∈ Mχ with M ⊆ M ′

and P(ω) ∩M ′ ≤σ P(ω).
Since Fn(κ, 2) has the c.c.c., in V there is a set X of size ℵ1 of Fn(κ, 2)-

names such that every element of M has a name in X. Let N ∈ MV
χ be

such that X ⊆ N . Clearly, M ⊆ N [G]. By Lemma 3.3, N [G] ∈ Mχ. By
Lemma 3.5, P(ω) ∩ N [G] = P(ω) ∩ V [G ∩ Fn(κ ∩ N, 2)]. Since V [G] is
an Fn(κ \ N, 2)-generic extension over V [G�Fn(κ ∩ N, 2)], it follows from
Lemma 3.2 that P(ω)∩N [G] ≤σ P(ω). This shows that, in V [G], the set of
M ′ ∈ Mχ with P(ω) ∩M ′ ≤σ P(ω) is cofinal in [Hχ]ℵ1 .

4. IDP for partial orders. In [7] the WFN has been defined for partial
orders, not only for Boolean algebras. In this section and the next, we do
the same for SEP and IDP. We have to liberalize our definition of ≤σ.

Definition 4.1. Let P and Q be partial orders with Q ≤ P , i.e., Q ⊆ P
and the orders on Q and P agree on Q. For p ∈ P let Q�p = {q ∈ Q : q ≤ p}
and Q↑p = {q ∈ Q : q ≥ p}. Now Q ≤σ P if and only if for all p ∈ P , Q�p
has a countable cofinal subset and Q↑p has a countable coinitial subset.

It is clear that for Boolean algebras A and B, if A is a subalgebra of B,
then A ≤σ B holds in the Boolean-algebraic sense if and only if A ≤σ B
holds for the partial orders. Now we can extend the notions IDP, SEP, and
WFN to partial orders.

Definition 4.2. For a partial order P :

• SEP(P ) holds if and only if for all sufficiently large regular χ there are
cofinally many M ∈Mχ with P ∩M ≤σ P .
• IDP(P ) holds if and only if P ∩ M ≤σ P for all sufficiently large

regular χ and for all M ∈ Mχ with P ∈M .
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• WFN(P ) holds if and only if P ∩ M ≤σ P for all sufficiently large
regular χ and all M 4 Hχ with ℵ1 ⊆M and P ∈M .

It is easy to check that the extended versions of SEP, IDP, and WFN
agree with the old ones on Boolean algebras. For SEP this relies on Corol-
lary 2.2, for WFN on Theorem 1.4.

Let us look at the partial orders ([κ]≤ℵ0,⊆). Assuming the consistency of
some large cardinal, it was shown in [8] that WFN([ℵω]≤ℵ0) does not follow
from GCH. However, we have

Theorem 4.3. CH implies IDP([κ]≤ℵ0) for every cardinal κ.

Proof. Assume CH and let χ be sufficiently large and regular. Let
M ∈Mχ be such that [κ]≤ℵ0 ∈ M . Then we have κ ∈ M . By Lemma 3.4,
M ∩ [κ]≤ℵ0 = [κ ∩M ]≤ℵ0 .

Thus it remains to show that [κ∩M ]≤ℵ0 ≤σ [κ]≤ℵ0. Suppose x ∈ [κ]≤ℵ0.
If x 6⊆ κ ∩M , then [κ ∩M ]≤ℵ0↑x = ∅. Thus, [κ ∩M ]≤ℵ0↑x is either empty
or has a minimal element, namely x.

[κ∩M ]≤ℵ0�x always has a maximal element, namely x∩M . This finishes
the proof of the theorem.

This theorem can be regarded as a parallel of Theorem 3.1. It follows
that, assuming the consistency of some large cardinal, it is consistent that
there is a partial order that has the IDP, but not the WFN.

5. Complete Boolean algebras satisfying SEP. Just as the WFN,
SEP is hereditary with respect to order retracts. A partial order P is an order
retract of a partial order Q if there are order preserving maps e : P → Q
and f : Q→ P such that f ◦ e = idP . If P and Q are Boolean algebras and
e and f are (Boolean) homomorphisms, then we call P a retract of Q.

Lemma 5.1. Let P and Q be partial orders such that P is an order
retract of Q. Then SEP(Q) implies SEP(P ).

Proof. Let χ be large enough and M 4 Hχ. Suppose M ∩Q ≤σ Q and
P,Q ∈M . We show P ∩M ≤σ P .

Since M knows that P is a retract of Q, M contains order preserving
maps e : P → Q and f : Q → P such that f ◦ e = idP . Let p ∈ P . Since
Q ∩M ≤σ Q, there is a countable set C ⊆ Q ∩M such that C is cofinal in
Q ∩M�e(p).

Claim. f [C] is cofinal in P ∩M�p.
Let q ∈ P ∩M�p. Since e(q) ∈ Q ∩M�e(p), there is c ∈ C such that

e(q) ≤ c ≤ e(p). Now q ≤ f(c) ≤ p, which proves the claim.
By the same argument, P ∩M↑p has a countable coinitial subset. This

implies SEP(P ).
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If P is a complete lattice and P embeds into Q via e, then there is a
map f : Q → P with f ◦ e = idP , namely the map defined by f(q) =
sup{p ∈ P : e(p) ≤ q} for all q ∈ Q. Thus, a complete lattice which embeds
into a partial order Q with SEP(Q) also has the property SEP.

Note that if A is a complete Boolean algebra and A embeds into B in
the Boolean-algebraic sense, then A is a retract of B by Sikorski’s extension
criterion. If A is an infinite complete Boolean algebra, then A has a maximal
antichain of size ℵ0 and P(ω) embeds into A, again by Sikorski’s extension
criterion. Since P(ω) is complete, it is a retract of A.

It follows that SEP(P(ω)) holds if there is any infinite complete Boolean
algebra A with SEP(A). Note that for this it is not necessary to use Sikorski’s
criterion; our statement about complete lattices suffices.

While SEP(P(ω)) is consistent with (but not a theorem of) ZFC,
SEP(P(ω1)) fails. We prove this in a series of lemmas. Together with Lem-
ma 5.1 this will imply that all complete Boolean algebras A with SEP(A)
satisfy the c.c.c. It should be pointed out that the proof of ¬WFN(P(ω1))
given in [7] also works for SEP. However, we believe that our argument is
simpler.

In the following χ always denotes a sufficiently large regular cardinal.

Lemma 5.2. (a) ¬SEP(ω2 + 1).
(b) If SEP(A) holds, then A does not have a chain of order type ω2.

Proof. For (a) note that for each M ∈ Mχ, ω2 ∩ M is an ordinal of
cofinality ℵ1. It follows that for each α ∈ ω2 \ M , (ω2 + 1) ∩ M�α has
uncountable cofinality. In particular, (ω2 + 1) ∩M 6≤σ ω2 + 1.

For (b) let A be a Boolean algebra such that ω2 embeds into A. Clearly,
ω2 + 1 also embeds into A. But ω2 + 1 is a complete lattice. Thus ω2 + 1 is
an order retract of A. Now ¬SEP(A) follows from Lemma 5.1 together with
part (a).

Lemma 5.3. ¬SEP(P(ω1)/[ω1]≤ℵ0).

Proof. By Lemma 5.2, it suffices to show that P(ω1)/[ω1]≤ℵ0 has a chain
of order type ω2.

For f, g ∈ ωω1
1 let f <∗ g if and only if {α < ω1 : f(α) ≥ g(α)} is

countable. If (fγ)γ<ω2 is a <∗-increasing sequence in ωω1
1 , then ({(α, β) ∈

ω1 × ω1 : β ≤ fγ(α)})γ<ω2 gives rise to a strictly increasing sequence in
P(ω1 × ω1)/[ω1 × ω1]≤ℵ0 of order type ω2. It is thus sufficient to construct
a <∗-increasing sequence of order type ω2 in ωω1

1 . But this is easy using
the natural diagonalization argument to get an <∗-upper bound for any set
F ⊆ ωω1

1 of size ≤ ℵ1.

Lemma 5.4. ¬SEP(P(ω1)).
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Proof. Let M ∈ Mχ. Suppose P(ω1) ∩M ≤σ P(ω1). We show that

(P(ω1)/[ω1]≤ℵ0) ∩M ≤σ P(ω1)/[ω1]≤ℵ0 .

This suffices for the lemma since together with Lemma 5.3 it implies that
there are not cofinally many N ∈Mχ with P(ω1)∩N ≤σ P(ω1). Note that
(P(ω1) ∩M)/([ω1]≤ℵ0 ∩M) is essentially the same as (P(ω1)/[ω1]≤ℵ0) ∩M
since M includes a cofinal subset of [ω1]≤ℵ0 , namely the countable ordinals.

Let a ∈ P(ω1). Let C be a cofinal subset of P(ω1) ∩M�a. Let D be the
set of all classes modulo [ω1]≤ℵ0 of elements of C and let a be the class of a
modulo [ω1]≤ℵ0 .

Claim. D is cofinal in ((P(ω1)/[ω1]≤ℵ0) ∩M)�a.

Let b ∈ P(ω1) ∩M be such that b \ a is countable. Let α < ω1 be such
that b \ α ⊆ a. Since α ∈M , b \ α ∈M . Therefore, there is c ∈ C such that
b \ α ⊆ c ⊆ a. The claim clearly follows from this. This finishes the proof of
the lemma.

Let A be a complete Boolean algebra not satisfying the c.c.c. Since A is
complete, A has a maximal antichain of size ℵ1. This antichain gives rise to
an embedding of the algebra of finite-cofinite subsets of ω1 into A. Since A
is complete, this embedding extends to all of P(ω1) by Sikorski’s extension
criterion. Since P(ω1) is complete, it follows that P(ω1) is a retract of A.
Using Lemma 5.1 this gives

Corollary 5.5. Let A be a complete Boolean algebra. If SEP(A) holds,
then A satisfies the c.c.c.

6. An example in ZFC. In this section we show in ZFC that there is
a Boolean algebra A which satisfies SEP(A) but not IDP(A). Our construc-
tion shows some similarities with various constructions of thin-tall Boolean
algebras as, for example, in [3].

Definition 6.1. Let Eℵ2
ℵ1

= {α < ω2 : cf(α) = ℵ1}. For all α ∈ Eℵ2
ℵ1

fix an increasing sequence (δαβ )β<ω1 which is cofinal in α and consists of

successor ordinals. For S ⊆ Eℵ2
ℵ1

let AS be the Boolean algebra defined
as follows: Let AS0 = {0, 1}. Suppose α < ω2 is a limit ordinal and ASβ
has already been defined for all β < α. Let ASα =

⋃
β<αA

S
β . Now suppose

ASα has been defined and α ∈ ω2 \ S. Let ASα+1 = ASα(xα) where xα is
independent over ASα. Suppose that ASα has already been defined and α ∈ S.
Let ASα+1 = ASα(xα) where xα 6∈ ASα, ASα�xα is generated by {xδαβ : β < ω1}
and ASα�−xα is {0}. Finally let AS =

⋃
α<ω2

ASα.

Fix a sufficiently large regular cardinal χ. Recall that for every M ∈ Mχ,
ω1 ⊆M , and thus M ∩ ω2 ∈ ω2.
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Lemma 6.2. Let X ⊆ Hχ be of size ℵ1. Then CX = {M ∩ ω2 :
M ∈ Mχ ∧ X ⊆ M} includes an ℵ1-club of ω2, that is, an unbounded
set which is closed under limits of subsets of cofinality ℵ1.

Proof. By recursion, we define an increasing sequence (Mα)α<ω2 inMχ

such that

(i) X ⊆M0,
(ii) for all α < ω2, α ∈Mα, and

(iii) if α < ω2 is a limit ordinal of cofinality ℵ1, then Mα =
⋃
β<αMβ .

This construction can be carried out since Mχ is cofinal in [Hχ]ℵ1 and
closed under unions of chains of length ω1. Let C = {ω2 ∩Mα : α < ω2}.
Then C is unbounded in ω2 by (ii) and closed under limits of subsets of
cofinality ℵ1 by (iii). By (i), C ⊆ CX .

From Lemma 6.2 we get

Lemma 6.3. Let S be a stationary subset of ω2 such that S ⊆ Eℵ2
ℵ1

.
Then for cofinally many M ∈Mχ we have ω2 ∩M ∈ S.

Proof. Let X ∈ [Hχ]ℵ1 . By Lemma 6.2, the set CX includes an ℵ1-club
C of ω2. Let C be the closure of C, i.e., C together with all limit points
of C. Then C is club in ω2 and C = C ∩ Eℵ2

ℵ1
. Since S is stationary and a

subset of Eℵ2
ℵ1

, C ∩S = C ∩S is non-empty, and thus there is M ∈ Mχ such
that X ⊆M and M ∩ ω2 ∈ S.

Using Lemma 6.3, we can show that for a suitably chosen set S, the
Boolean algebra AS constructed above satisfies SEP but not IDP.

Theorem 6.4. There is a Boolean algebra A with SEP(A) but not
IDP(A).

Proof. Fix two disjoint stationary subsets S0 and S1 of ω2 with S0∪S1 =
Eℵ2
ℵ1

. Let A = AS1 .

Claim 1. SEP(A).

Let M ∈ Mχ be such that α = M ∩ ω2 ∈ S0 and A ∈ M . Then
A∩M = AS1

α . Since α 6∈ S1 and by the construction of AS1 , AS1
α ≤σ A. This

proves the claim since there are cofinally many M ∈ Mχ with M ∩ ω2 ∈ S0
and A ∈M by Lemma 6.3.

Claim 2. ¬ IDP(A).

By Lemma 6.3, there is M ∈ Mχ such that α = M∩ω2 ∈ S1 and A ∈M .
As above, A ∩M = AS1

α . By the construction of AS1 , AS1
α 6≤σ A. In other

words, M witnesses the failure of IDP(A).
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7. SEP(P(ω)) does not imply IDP(P(ω)). In this section we use the
idea of the proof of Theorem 6.4 to construct a model of set theory where
SEP(P(ω)) holds while IDP(P(ω)) fails. Our forcing construction is related
to Shelah’s oracle chain condition forcing [13] and to the innocuous forcing
iterations introduced by Just [12]. In particular, the proof of Lemma 7.3
given below relies on the fact that certain tails of our forcing iteration are
what is called harmless in [12].

Theorem 7.1. It is consistent that SEP(P(ω)) holds but IDP(P(ω))
fails.

Proof. Suppose the ground model V satisfies CH and let S0 and S1 be
as in the proof of Theorem 6.4. For each α ∈ Eℵ2

ℵ1
let (δαβ )β<ω1 be as in

Definition 6.1.
Our strategy is to perform a finite support iteration of c.c.c. forcings over

V of length ω2 where we add only Cohen reals most of the time. However, at
stage α ∈ S1 we add a new subset xα of ω such that the Cohen reals added
at the stages δαβ , β < ω1, are almost contained in xα. Note that we consider
the Cohen reals to be subsets of ω. This construction should be viewed as
the forcing version of the construction in the proof of Theorem 6.4.

We now define the iteration (Pα, Qα)α<ω2 . The underlying sets of the
Qα’s will be absolute, but not the orders. Thus we will not define each Qα

as a Pα-name but as the underlying set of Qα in V , also named Qα, together
with a Pα-name ≤̇α for the order on Qα.

For all α 6∈ S1 let Qα be Cohen forcing, i.e., Fn(ω, 2). Let ≤̇α be the
canonical name for the usual order on Fn(ω, 2), i.e., reverse inclusion. For
α ∈ S1 and β < ω1 let ẋδαβ be a Pδαβ+1-name for the Cohen real added
by Qδαβ . Set

Qα = {(f, F ) : f ∈ <ω2, F ∈ [{δαβ : β ∈ ω1}]<ℵ0}
and let ≤̇α be a name for a relation ≤ on Qα such that (f, F ) ≤ (f ′, F ′) if
and only if f ′ ⊆ f , F ′ ⊆ F , and for all δ ∈ F ′, if n ∈ ẋδ ∩ dom(f \ f ′), then
f(n) = 1.

As usual, for each α < ω2 let Pα be the finite support iteration of the
Qβ, β < α, where each Qα = (Qα, ≤̇α) is considered as a Pα-name for the
appropriate partial order. Let P be the direct limit of the Pα, α < ω2. For
convenience, by the absoluteness of the elements of the Qα’s, we may assume
that the elements of each Pα and of P are elements of

∏
β<ω2

Qβ with finite
support. For each condition p ∈ P let supt(p) be its support.

Note that P is c.c.c. since the Qα’s are σ-centered. Let G be P -generic
over V . For α < ω2 let Gα = G ∩ Pα.

The easier part of the proof of the theorem is to show that in V [G],
IDP(P(ω)) fails. To see this, we need



244 S. Fuchino and S. Geschke

Lemma 7.2. For α ∈ S1, V [G] |= P(ω) ∩ V [Gα] 6≤σ P(ω).

Proof. We argue in V [G]. Let α ∈ S1. Note that P(ω)∩ V [Gα] ≤σ P(ω)
if and only if (P(ω) ∩ V [Gα])/fin ≤σ P(ω)/fin.

For y ∈ P(ω) let y be the equivalence class of y modulo fin. Let x be the
subset of ω generically added by Qα.

Claim. (P(ω) ∩ V [Gα])/fin�x is generated by the classes modulo fin
of the Cohen reals {xδαβ : β < ω1} added by the Qδαβ ’s. In particular ,
(P(ω) ∩ V [Gα])/fin 6≤σ P(ω)/fin.

It follows from the construction of Qα that for all β < ω1, xδαβ ≤ x. Let
a ∈ P(ω) ∩ V [Gα]. Suppose that a is not almost included in the union of a
finite subset of {x

δβα
: β < ω1}. Then for every n ∈ ω the set of conditions

in Qα which force that there is m ≥ n such that m ∈ a but m 6∈ x is easily
seen to be dense in Qα. It follows that a is not almost included in x. This
shows the claim and finishes the proof of Lemma 7.2.

By Lemma 6.3, in V there is M ∈ Mχ containing P such that α =
M ∩ ω2 ∈ S1. Now M [G] ∩ ω2 = α since P is c.c.c. If ẋ ∈ M is a P -name
for a subset of ω, then M also contains a nice P -name ẏ for the same
subset of ω. By c.c.c., ẏ only uses countably many conditions from P . These
conditions are already contained in Pβ for some β < α. Since V satisfies CH
and since Pβ ∈ M (and thus Pβ ⊆ M), ẏ ∈ M by Lemma 3.4. It follows
that P(ω) ∩M [G] = P(ω) ∩ V [Gα]. Therefore, M [G] shows that P(ω) does
not satisfy IDP in V [G].

To see that SEP(P(ω)) holds in V [G] we need

Lemma 7.3. If α < ω2 and α 6∈ S1, then V [G] |= P(ω)∩V [Gα] ≤σ P(ω).

Proof. By Lemma 3.2, it is sufficient to show that for α ∈ ω2 \ S1 every
real in V [G] \ V [Gα] is contained in a Cohen extension of V [Gα].

Let α ∈ ω2 \ S1. Let x ∈ P(ω), but x 6∈ V [Gα]. Then there is a P -name
ẋ ∈ V for x. By c.c.c., we may assume that ẋ uses only countably many
conditions from P . Our plan is to find Pẋ ⊆ P such that

(1) Pα ⊆ Pẋ and Pα is completely embedded in Pẋ,
(2) ẋ is a Pẋ-name,
(3) Pẋ is completely embedded in P , and
(4) the quotient Pẋ : Gα is equivalent to Fn(ω, 2).

This suffices for the lemma. For suppose Pẋ is as above. It is not hard to
see that (3) implies that Pẋ : Gα is completely embedded in P : Gα. Note
that by (1), it is reasonable to consider Pẋ : Gα. By (2), ẋ can be regarded
as a Pẋ : Gα-name. Thus by (4), x is contained in a Cohen extension of
V [Gα] and the lemma follows.
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It remains to construct Pẋ and to show that it has the required proper-
ties. For a condition p ∈ P let

supt(p) = supt(p) ∪
⋃
{F : ∃β ∈ supt(p) ∩ S1 ∃f (p(β) = (f, F ))}.

Let
X = α ∪

⋃
{supt(p) : ẋ uses the condition p}

and Pẋ = {p ∈ P : supt(p) ⊆ X}.
Claim. Pẋ has properties (1)–(4).

(1) Pα ⊆ Pẋ follows from the definitions. Pẋ can be viewed as finite
support iteration which has Pα as an initial segment. Thus Pα is completely
embedded in Pẋ.

(2) It follows from the definitions that ẋ is a Pẋ-name.
(3) We have to show the following:

(i) ∀p, q ∈ Pẋ (p ⊥Pẋ q ⇒ p ⊥P q),
(ii) ∀p ∈ P ∃q ∈ Pẋ ∀r ∈ Pẋ (r ≤ q ⇒ r 6⊥P p).

For (i) observe that for all p, q ∈ P with p 6⊥P q there is r ∈ P such
that r ≤ p, q and supt(r) ⊆ supt(p) ∪ supt(q). Therefore, if p, q ∈ Pẋ are
compatible in P , then they are in Pẋ.

(ii) is what really requires work. Let p ∈ P . Let q′ ∈ Pẋ be the condition
with support supt(p)∩X such that for all β ∈ (supt(p)∩X)\S1, q′(β) = p(β)
and for all β ∈ supt(p) ∩ X ∩ S1, q′(β) = (f, F ∩ X) where f and F are
such that p(β) = (f, F ). This q′ does not yet work for q in (ii). We have to
extend it a little.

Let q be the condition with the same support as q′ such that q(β) =
q′(β) for all β ∈ supt(q′) \ S1. Now fix β ∈ supt(q′) ∩ S1. Let f and F be
such that q′(β) = (f, F ) Let m ∈ ω be such that for all γ ∈ supt(p) \ S1,
dom(p(γ)) ⊆ m. Let g ∈ 2<ω be such that m ⊆ dom(g), f ⊆ g, and g(n) = 1
for all n ∈ dom(g) \ dom(f). Now set q(β) = (g, F ).

Subclaim. q works for (ii).

Let r ∈ Pẋ be such that r ≤ q. We have to construct a common extension
s ∈ P of p and r. As above, we build an approximation s′ of s first. For
β ∈ S1 with p(β) = (f, F ) and r(β) = (f ′, F ′) let s′(β) = (f ∪ f ′, F ∪ F ′).
Note that f ∪ f ′ is a function since by the definition of q and by r ≤ q,
we even have f ⊆ f ′ whenever β ∈ supt(r). Note that this definition makes
sense if β 6∈ supt(r)∩ supt(p) since the largest element of Qβ is simply (∅, ∅)
(for β ∈ S1).

For β ∈ ω2 \ S1 let s′(β) = p(β) ∪ r(β). Again, p(β) ∪ r(β) is a function
since for β ∈ supt(r), p(β) ⊆ r(β) by r ≤ q and the definition of q. It is easy
to see that s′ extends r.
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It may happen that s′ 6≤ p. However, we can extend s′ to a condition
s ≤ p by adding some Cohen conditions (deciding more of the Cohen reals
involved). Let s(β) = s′(β) for all β ∈ S1. For β ∈ S1 we have to make sure
that s�β forces s(β) to be below p(β).

For all β ∈ S1 let fβ, Fβ, f ′β, and F ′β be such that s(β) = (fβ, Fβ) and
p(β) = (f ′β, F

′
β). Then for all β ∈ S1 we have f ′β ⊆ fβ and F ′β ⊆ Fβ . For all

δ ∈ F ′β we want to have δ ∈ supt(s) and s(δ) 
 ∀n ∈ dom(fβ) \ dom(f ′β)
(fβ(n) ≥ ẋδ(n)). This can be accomplished. Just let z be a sufficiently
long finite sequence of zeros and put s(δ) = s′(δ)_z for every δ ∈ ⋃{Fβ :
β ∈ supt(s′) ∩ S1}. Note that there are only finitely many δ’s to be con-
sidered. For every β ∈ ω2 for which s(β) has not yet been defined let
s(β) = s′(β).

It is straightforward to check that s is a common extension of r and p.
This completes the proof of the subclaim and thus shows that Pẋ is com-
pletely embedded in P .

(4) Note that any two elements of Pẋ that agree on [α, ω2) are equivalent
in Pẋ : Gα, i.e., they will be identified in the completion of Pẋ : Gα. But
since {δβγ : γ ∈ ω1} ∩ α is countable for all β ∈ [α, ω2) ∩ S1 and X \ α
is countable, there are only countably many possibilities for p�[α, ω2) for
p ∈ Pẋ. Therefore, the completion of Pẋ : Gα has a countable dense subset.
Since below each element of Pẋ : Gα there are two incompatible elements
(in Pẋ : Gα), Pẋ : Gα is equivalent to Fn(ω, 2). This finishes the proof of the
claim and of the lemma.

Since there are cofinally many M ∈ (Mχ)V with M ∩ ω2 ∈ S0 by
Lemma 6.3, the set {M [G] : M ∈ Mχ ∧ M ∩ ω2 ∈ S0} is cofinal in
(Mχ)V [G]. As above, for all M ∈ (Mχ)V , α = M [G] ∩ ω2 = M ∩ ω2
and P(ω) ∩M [G] = P(ω) ∩ V [Gα]. Now it follows from Lemma 7.3 that
SEP(P(ω)) holds in V [G]. This finishes the proof of the theorem.

8. Variants of SEP. It is tempting to define a new class of partial
orders by replacing “cofinally many M ∈ Hχ” in the definition of SEP by
“stationarily many M ∈ Hχ”. However, the class of partial orders with this
modified notion of SEP coincides with the class of partial orders with the
original SEP. Also, one arrives at the same notion if “there are cofinally
many M ∈ Hχ” is weakened to “there is M ∈ Hχ”.

For a partial order P and a regular cardinal χ such that P ∈ Hχ let

M(P, χ) = {M ∈ Mχ : P ∈M ∧ P ∩M ≤σ P}.

Theorem 8.1. Let P be any partial order. Then the following are
equivalent for κ = max(|trcl(P )|,ℵ1):
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(1) SEP(P ).
(2) There is a regular cardinal χ > κ such that M(P, χ) is stationary

in [Hχ]ℵ1.
(3) For every regular cardinal χ > κ, M(P, χ) is stationary in [Hχ]ℵ1 .
(4) There is a regular cardinal χ > 2κ such that M(P, χ) is non-empty.
(5) For every regular cardinal χ > 2κ, M(P, χ) is non-empty.

Clearly, (1) follows from (3) and implies (4). The remaining part of The-
orem 8.1 is a special case of the following lemma, which has nothing to do
with σ-embeddings. For a set A, a family F ⊆ P(A), and a regular cardinal
χ with A,F ∈ Hχ let

M(A,F , χ) = {M ∈Mχ : A,F ∈M ∧A ∩M ∈ F}.
For a partial order P , M(P, χ) is simplyM(P, {Q ⊆ P : Q ≤σ P}, χ).

Lemma 8.2. Let A be a set and F ⊆ P(A). Then the following are
equivalent for κ = max(|trcl(A)|,ℵ1):

(1) There is a regular cardinal χ ≥ κ+ such that M(A,F , χ) is station-
ary in [Hχ]ℵ1 .

(2) For every regular cardinal χ ≥ κ+, M(A,F , χ) is stationary
in [Hχ]ℵ1.

(3) There is a regular cardinal χ > 2κ such that M(A,F , χ) is non-
empty.

(4) For every regular cardinal χ > 2κ, M(A,F , χ) is non-empty.

The reason for considering κ+ and 2κ in the formulation of this lemma
is that κ+ is the least cardinal χ > ℵ1 with A ∈ Hχ and the size of Hκ+

is 2κ. The proof of Lemma 8.2 uses two arguments: one for stepping up in
cardinality and one for stepping down. We start with decreasing cardinals.
Fix A, F , and κ as in Lemma 8.2.

Lemma 8.3. Let χ, µ > κ be regular cardinals with 2<χ < µ. If
M(A,F , µ) is non-empty , then M(A,F , χ) is stationary in [Hχ]ℵ1.

Proof. Suppose that M(A,F , χ) is not stationary in [Hχ]ℵ1 . We may
assume that χ > κ is minimal with this property. Let M ∈M(A,F , µ).

Since |Hχ|ℵ1 = 2<χ < µ, we have [Hχ]ℵ1 ,M(A,F , χ) ∈ Hµ and χ is
definable in Hµ with the parameters A and F . Therefore, χ ∈ M and M
knows that M(A,F , χ) is not stationary in [Hχ]ℵ1 .

It follows that M contains a club C of [Hχ]ℵ1 which is disjoint from
M(A,F , χ). By elementarity, M ∩ Hχ ⊆

⋃
(C ∩ M). Since ℵ1 ⊆ M ,⋃

(C ∩M) ⊆M ∩Hχ. Since M ∩ [M ]ℵ0 is cofinal in [M ]ℵ0 , C ∩M is count-
ably directed. It follows that

⋃
(M ∩ C) is the union of an increasing chain

of length ω1 of elements of C. Therefore, M ∩ Hχ =
⋃

(C ∩M) ∈ C. It is
easily checked that M ∩Hχ ∈ Mχ.
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Since A ⊆ Hχ, A∩M∩Hχ = A∩M ∈ F . Thus, M∩Hχ ∈ C∩M(A,F , χ),
contradicting the choice of C.

Lemma 8.4. For all regular cardinals χ, µ> κ with χ<µ, if M(A,F , χ)
is stationary in [Hχ]ℵ1 , then M(A,F , µ) is non-empty.

Proof. We use a refined Skolem hull operator to find M̃ ∈ Mµ with
A,F ∈ M̃ and M̃ ∩ A ∈ F . Fix a well-ordering @ on Hµ. For α < ω1
let skα denote the Skolem hull operator on Hµ with respect to the built-in
Skolem functions of the structure (Hµ,∈,@, A,F , skβ)β<α where A and F
are considered as constants. For X ⊆ Hχ let

sk∗(X) =
⋃
{skα(Y ) : Y ∈ X ∧ |Y | ≤ ℵ0 ∧ α < ω1}.

Claim. Let X ∈ [Hµ]ℵ1 be such that X ∩ [X]≤ℵ0 is cofinal in [X]≤ℵ0.
Then

(i) X ⊆ sk∗(X) and A,F ∈ sk∗(X),
(ii) |sk∗(X)| = ℵ1,

(iii) [sk∗(X)]≤ℵ0 ∩ sk∗(X) is cofinal in [sk∗(X)]≤ℵ0 , and
(iv) sk∗(X) 4 Hµ.

Moreover ,

(v) for all X,Y ⊆ Hµ with X ⊆ Y , sk∗(X) ⊆ sk∗(Y ) and
(vi) if (Xα)α<δ is an increasing sequence of subsets of Hµ and X =⋃

α<δXα, then sk∗(X) =
⋃
α<δ sk∗(Xα).

For (i) let x ∈ X. By our assumptions on X, there is Y ∈ X ∩ [X]≤ℵ0

such that {x} ⊆ Y . Now x ∈ Y ⊆ sk0(Y ) and thus x ∈ sk∗(X). This shows
X ⊆ sk∗(X). Next, A,F ∈ sk∗(X) since A,F ∈ sk0(Y ) for every countable
element Y of X.

Statement (ii) follows from the fact that for every countable set Y ⊆ Hµ
and every α < ω1, skα(Y ) is again countable.

For (iii) let Y be a countable subset of sk∗(X). For every n ∈ ω fix
αn < ω1 and a countable set Yn ∈ X such that Y ⊆ ⋃n∈ω skαn(Yn). By our
assumptions on X, there is Z ∈ X ∩ [X]≤ℵ0 such that {Yn : n ∈ ω} ⊆ Z.
Let β = supn∈ω(αn + 1). Now for every n ∈ ω, skαn(Yn) ∈ skβ(Z) by the
choice of skβ . Since skβ(Z) is an elementary submodel of Hµ and since the
skαn(Yn) are countable, for every n ∈ ω we also have skαn(Yn) ⊆ skβ(Z). It
follows that Y ⊆ skβ(Z). Clearly, skβ(Z) is a countable subset of sk∗(X).
We are done with the proof of (iii) if we can show skβ(Z) ∈ sk∗(X). But
this is easy. Just let Z ′ ∈ X ∩ [X]≤ℵ0 be such that Z ∈ Z ′. Now skβ(Z) ∈
skβ+1(Z ′) ⊆ sk∗(X).

For (iv) it suffices to show that for all finite subsets F of sk∗(X) there is
an elementary submodel M of Hµ such that F ⊆ M ⊆ sk∗(X). Let F be a
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finite subset of sk∗(X). As before, there are β < ω1 and Z ∈ X∩[X]≤ℵ0 such
that F ⊆ skβ(Z). By the definition of sk∗, skβ(Z) ⊆ sk∗(X). And skβ(Z) is
an elementary submodel of Hµ.

Statements (v) and (vi) follow immediately from the definition of sk∗.
This finishes the proof of the claim.

Now consider the set

C = {M ∈ [Hχ]ℵ1 : sk∗(M) ∩Hχ = M}.
From the properties of sk∗ it follows that C is club in [Hχ]ℵ1 . Since

M(X,F , χ) is stationary, there is M ∈ C ∩M(X,F , χ). Let M̃ = sk∗(M).
By the properties of sk∗, M̃ ∈ Mχ and A,F ∈ M̃ . Moreover, M̃ ∩ X =
M ∩X ∈ F . In other words, M̃ ∈M(X,F , µ).

Proof of Lemma 8.2. We start from (3). Suppose there is a regular car-
dinal χ > 2κ such that M(X,F , χ) is non-empty. Then, by Lemma 8.3,
M(X,F , κ+) is stationary in [Hκ+ ]ℵ1 . This implies (1).

Now suppose that (1) holds. Then there is a regular cardinal χ > κ such
thatM(X,F , χ) is stationary in [Hχ]ℵ1 . By Lemma 8.4, there are arbitrarily
large regular cardinals µ such thatM(X,F , µ) is non-empty. By Lemma 8.3,
this implies that M(X,F , µ) is stationary for every regular µ > κ, i.e., (2)
holds. The implications (2)⇒(4) and (4)⇒(3) are trivial.

At the moment, we do not know whether a = ℵ1 follows from SEP(P(ω)).
However, we can show that a variant of SEP(P(ω)) which is called
SEP+−(P(ω)) here (see below) implies a = ℵ1.

In the following let χ always denote a regular cardinal.

Definition 8.5.

M@χ = {M : M 4 Hχ, |M | = ℵ1, and there is a well-ordering @ on M

of order type ω1 such that for every a ∈M , @ ∩ (M@a)2 ∈M}
where M@a = {x ∈M : x @ a}.

Definition 8.6. Let P be a partial order.

(1) SEP+(P ) if {M ∈M@χ : P ∩M ≤σ P} is cofinal in [Hχ]ℵ1 for every
sufficiently large χ.

(2) SEP+−(P ) if {M ∈ M@χ : P ∩M ≤σ P} is non-empty for a suffi-
ciently large χ.

For A, F , χ as in the definition of M(A,F , χ), let

M@(A,F , χ) = {M ∈M@χ : A,F ∈M ∧ A ∩M ∈ F}.
Then it is easy to see that Lemma 8.3 with M@(A,F , χ) in place of
M(A,F , χ) also holds. As in the proof of Lemma 8.2, we obtain the fol-
lowing equivalence:
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SEP+(P )

⇔ {M ∈ M@χ : P ∩M ≤σ P} is stationary for every sufficiently large χ

⇔ {M ∈ M@χ : P ∩M ≤σ P} is non-empty for every sufficiently large χ.

Lemma 8.7. M@χ ⊆Mχ.

Proof. Suppose that M ∈ M@χ and @ is a well-ordering of M as in the
definition of M@χ . For X ∈ [M ]ℵ0 let x ∈ M be such that X ⊆ M@x. Then
|M@x| ≤ ℵ0 and M@x ∈M . This shows that [M ]ℵ0 ∩M is cofinal in [M ]ℵ0 .
Hence M ∈ Mχ.

Lemma 8.8. Suppose that M ∈ M@χ . Then M is internally approachable
in the sense of [4], i.e.,

(∗) M is the union of a continuously increasing chain of countable ele-
mentary submodels (Mα)α<ω1 of M such that (Mβ)β≤α ∈ Mα+1 for
all α < ω1.

Proof. Suppose that M ∈ M@χ and @ is a well-ordering of M as in the
definition of M@χ .

Let xα ∈M , α < ω1 be defined inductively such that

(0) M@xα is an elementary submodel of (M,∈,@).
(1) If α is a limit ordinal then xα is the limit of xβ, β < α.
(2) If α is a successor, say α = β+ 1, then xα is minimal with respect to
@ such that xβ @ xα, @ ∩ (M@xβ )2 ∈M@xα and (0).

Note that, in (2), the construction is possible since @ ∩ (M@xβ )2 ∈ M by
the definition of M ∈ M@χ . By (0) and since (xβ)β≤α is definable in M

with the parameter @∩ (M@xα)2 we have (xβ)β≤α ∈M@xα+1 . It follows that
(M@xβ )β≤α ∈ M@xα+1 . Also M =

⋃
α<ω1

M@xα since @ has order type ω1.
Thus (M@xα)α<ω1 is a sequence as required in (∗).

The property (∗) in Lemma 8.8 almost characterizes elements of M@χ :

Lemma 8.9. Let <∗ be a well-ordering of Hχ of order type |Hχ|. If
(Mα)α<ω1 is a continuously increasing sequence of countable elementary
submodels of (Hχ,∈, <∗) such that (Mβ)β≤α ∈ Mα+1 for all α < ω1, then
M =

⋃
α<ω1

Mα is an element of M@χ .

Proof. For each x ∈ M , let αx = min{α < ω1 : x ∈ Mα+1}. Let @ be
the linear ordering on M defined by

x @ y ⇔ αx < αy ∨ (αx = αy ∧ x <∗ y).

Clearly @ is a well-ordering on M . Moreover, @ has order type ω1 since
every initial segment of M with respect to @ is countable and M itself is
uncountable.
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Let x ∈M . We show that @∩(M@x)2 ∈M . Let α∗ = αx+2. In Mα∗ , @∩
(M@x)2 is definable from <∗ ∩ (Mαx+1)2 and (Mβ)β≤αx+1. By elementarity
and since <∗ ∩ (Mαx+1)2 and (Mβ)β≤αx+1 are elements of Mα∗ , it follows
that @ ∩ (M@x)2 ∈Mα∗ ⊆M .

By Lemmas 8.8 and 8.9, there are club many M 4 Hχ of size ℵ1 such
that M ∈ M@χ if and only if M is internally approachable—namely those
M with M 4 (Hχ,∈, <∗) for some fixed <∗ as above.

Lemma 8.10. M@χ is stationary in [Hχ]ℵ1.

Proof. Suppose that C ⊆ [Hχ]ℵ1 is closed unbounded. We show that
M@χ ∩ C 6= ∅.

Let <∗ be a well-ordering of Hχ of order type |Hχ|. Let (Mα)α<ω1

be a continuously increasing chain of countable elementary submodels of
(Hχ, C,∈, <∗) such that (Mβ)β≤α ∈Mα+1 for all α<ω1. Let M =

⋃
α<ω1

Mα.
Then M ∈ M@χ by Lemma 8.9. Since ω1 ⊆ M , we have N ⊆ M for all
N ∈ C∩M . By elementarity C∩M is a directed system and M =

⋃
(C∩M).

Since |M | = ℵ1, it follows that M ∈ C.
Lemma 8.11. For a partial order P :

(1) IDP(P ) implies SEP+(P ),
(2) SEP+(P ) implies SEP+−(P ),
(3) SEP+−(P ) implies SEP(P ),

that is,

WFN(P )⇒ IDP(P )⇒ SEP+(P )⇒ SEP+−(P )⇒ SEP(P ).

Proof. (1) follows from Lemma 8.7. (2) is clear from definitions. (3) fol-
lows from Theorem 8.1.

Theorem 8.12. Assume SEP+−(P(ω)). Then a = ℵ1.

Proof. Let χ be sufficiently large and M ∗ ∈ M@χ be such that P(ω) ∩
M∗ ≤σ P(ω). Since |M∗| = ℵ1, it is enough to show that there is a MAD
family ⊆M∗.

Let@ be a well-ordering ofM ∗ as in the definition ofM@χ . By Lemma 8.8,
there is an increasing sequence (Mα)α<ω1 of countable elementary submodels
of M∗ such that

⋃
α<ω1

Mα = M and (Mβ)β≤α ∈Mα+1 for all α < ω1.
Let (aα)α<ω1 be such that

(1) {an : n ∈ ω} is a partition of ω with (an)n∈ω ∈M0;
(2) For α ≥ ω, aα ∈ [ω]ℵ0 ∩Mα+1 is minimal (with respect to @) with

the following properties:

(i) aα is almost disjoint from each aβ, β < α.
(ii) ∀x∈ [ω]ℵ0∩Mα (∀u∈ [α]<ℵ0 (|x\⋃β∈u aβ|= ℵ0)→ |aα∩x|= ℵ0).
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Notice that in Hχ the sequence (aβ)β<α is definable from the parameters
(an)n<ω, (Mβ)β<α, and @ ∩ Mα. Since these parameters are elements of
Mα+1, we have (aβ)β<α ∈Mα+1.

By (1) and (2)(i), {aβ : β < ω1} is pairwise almost disjoint. To show that
it is maximal, suppose that it were not. Then there is some b ∈ [ω]ℵ0 such
that b is almost disjoint from all the aα’s. Let {bn : n ∈ ω} ⊆ P(ω) ∩M∗
be a countable set generating (P(ω) ∩M ∗)↑b. Let α∗ < ω1 be such that
{bn : n ∈ ω} ⊆ Mα∗ . Since aα∗ and b are almost disjoint there is n∗ ∈ ω
such that |bn∗ ∩ aα∗ | < ℵ0. By (2)(ii), there is a u ∈ [α]<ℵ0 such that
|bn∗ \

⋃
β∈u aβ | < ℵ0. As b ⊆ bn∗ , it follows that |b \⋃β∈u aβ| < ℵ0. But this

is a contradiction to the choice of b.

Irreversibility of the implications in Lemma 8.11 cannot be proved in
ZFC:

Lemma 8.13. Assume CH. Then Mχ = M@χ . In particular , for every
partial order P , SEP(P ) if and only if SEP+(P ).

Proof. M@χ ⊆Mχ by Lemma 8.7. To showMχ ⊆M@χ , supposeM ∈Mχ.
Then by Lemma 3.4, [M ]ℵ0 ⊆ M . Let @ be an arbitrary well-ordering of
M of order type ω1. Then, for every x ∈ M , M@x and @ ∩ (M@x)2 are
countable subsets of M and hence, by CH, elements of M . This shows that
M ∈M@χ .

Even under ¬CH, SEP and SEP+ can be equivalent for partial orders
with an “ℵ2-version” of IDP.

Let us say that a partial order P has the ℵ2-IDP if for any sufficiently
large χ and M 4 Hχ, if |M | = ℵ2, P ∈M and [M ]ℵ1 ∩M is cofinal in [M ]ℵ1

then P ∩M ≤ℵ2 P where P ≤ℵ2 Q is defined just as in Definition 4.1 with
“countable” there replaced by “of cardinality < ℵ2”.

Note that every partial order of cardinality ≤ ℵ2 has the ℵ2-IDP.

Theorem 8.14. Assume 2ω1. For any partial order P with the ℵ2-IDP,
SEP(P ) if and only if SEP+(P ).

For the proof of Theorem 8.14 we use the fact that the class of partial
orders with SEP is closed under ≤σ-suborders.

Lemma 8.15. For partial orders P and Q, if SEP(P ) and Q ≤σ P then
SEP(Q).

Proof. Fix a sufficiently large regular χ. It is enough to show that, for
every M 4 Hχ with P,Q ∈ M , if P ∩M ≤σ P then Q ∩M ≤σ Q. To see
this, let x0 ∈ Q and we show that Q∩M�x0 has a countable cofinal subset.
(That Q ∩M↑x0 has a countable coinitial subset can be proved similarly.)
By P ∩M ≤σ P there is a countable set X ⊆ (P ∩M)�x0 such that X is
cofinal in (P ∩M)�x0. By M |= Q ≤σ P and elementarity, for every x ∈ X
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we can find Xx ∈M such that M |= “Xx is cofinal in Q�x ”. Then Xx ⊆M
and Xx is a countable cofinal subset of (Q ∩M)�x. Letting Y =

⋃
x∈X Xx,

we have Y ⊆ (Q∩M)�x0 and Y is countable. Moreover, Y is a cofinal subset
of (Q∩M)�x0: If y ∈ (Q∩M)�x0, then in particular y ∈ (P ∩M)�x0. Hence
there is x ∈ X such that y ≤ x. Since M |= y ∈ Q�x, there is x′ ∈ Xx ⊆ Y
such that y ≤ x′.

Note that the proof above actually shows that each of the variants of SEP
considered above (and also IDP and WFN) is closed under ≤σ-suborders.

Proof of Theorem 8.14. If |P | < ℵ2, then the assertion of the theorem
is trivial. Hence we may assume |P | ≥ ℵ2. If SEP+(P ) then SEP(P ) by
Lemma 8.11(2). So we assume SEP(P ) and prove SEP+(P ).

Let χ be sufficiently large and let X be an arbitrary element of [Hχ]ℵ1 .
We show that there is M ∈ M@χ such that X ⊆M and P ∩M ≤σ P .

Fix a well-ordering <∗ of Hχ of order type |Hχ|. Let C = {Cα :
α ∈ Lim(ω2)} be a 2ω1-sequence.

Let (Mα)α<ω2 and (aα,γ)α<ω2, γ<ω1 be sequences defined inductively so
that they satisfy the following conditions:

(0) (Mα)α<ω2 is a continuously increasing sequence of elementary sub-
models of (Hχ,∈, <∗) of cardinality ℵ1.

(1) ω1, X ⊆M0, P , C ∈M0.
(2) For all α < ω2, (aα,γ)γ<ω1 is an enumeration of Mα.
(3) For all β < ω2 we have (Mα)α≤β, <∗ ∩ (

⋃
α≤βMα)2, (aα,γ)α≤β, γ<ω1

∈Mβ+1.
(4) For all α < ω2, P ∩Mα+1 ≤σ P .

Let M =
⋃
α<ω2

Mα. Then P ∩M ≤ℵ2 P by the ℵ2-IDP of P . From (4) it
follows that P ∩M ≤σ P . Hence by Lemma 8.15, SEP(P ∩M). It follows
from Lemma 6.3 that there is α∗ ∈ Eω2

ω1
such that P ∩Mα∗ ≤σ P ∩M ≤σ P .

Since X ⊆ Mα∗ by (1), the proof is complete if we can show the follow-
ing:

Claim. Mα∗ ∈ M@χ .

Let C = Cα∗ . Then C is a cofinal subset of α∗ of order type ω1. Let
(ξα)α<ω1 be strictly increasing enumeration of C. For each limit ordinal
α < ω1 there is β < α∗ such that ξα ∈ Mβ . Since Cξα = {ξγ : γ < α}
by coherence and since Cξα ∈ Mβ , we have {ξγ : γ < α} ∈ Mβ ⊆ Mα∗ .
Hence

(∗) {ξγ : γ < α} ∈Mα∗ for all α < ω1.

Let ϕ : ω1 → ω1 × ω1, α 7→ (ϕ0(α), ϕ1(α)), be a surjection such that
ϕ ∈M0.
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We now define a continuously increasing sequence (Nα)α<ω1 of countable
elementary submodels of Mα∗ such that

(5) aξϕ0(α),ϕ1(α), (Nβ)β≤α ∈ Nα+1 for all α < ω1.

(6) Nα+1 is the countable elementary submodel of Mα∗ with Nα+1 ∈Mα∗

which is minimal with respect to <∗ satisfying (5).

That this construction is possible can be seen as follows: By (∗) and since
the predicate “Nα 4Mα∗” can be replaced by “Nα 4Mη” for a sufficiently
large ordinal η < α∗, each initial segment of (Nα)α<ω1 is definable in Hχ
with parameters in Mα∗ and hence is an element of Mα∗ .

By (5),
⋃
α<ω1

Nα = Mα∗ and (Nβ)β≤α ∈ Nα+1 for all α < ω1. From
Lemma 8.9 it follows that Mα∗ ∈ M@χ . This finishes the proof of the claim
and hence of the theorem.

Corollary 8.16. Suppose that 2ω1 holds and P(ω) has the ℵ2-IDP
(in particular this is the case if 2ℵ0 = ℵ2). Then SEP(P(ω)) implies
a = ℵ1.

Proof. Under the assumptions, if SEP(P(ω)) then we have SEP+(P(ω))
by Theorem 8.14. Hence a = ℵ1 by Theorem 8.12.

9. Conclusion. As we have mentioned in the introduction, large car-
dinals are necessary to construct a Boolean algebra A with the IDP but
without the WFN. In this sense, IDP and WFN are pretty much the
same and it is not surprising that all the interesting set-theoretic con-
sequences of WFN(P(ω)) that have been discovered so far already fol-
low from IDP(P(ω)). Looking at the proofs of the known consequences of
WFN(P(ω)) or IDP(P(ω)), it turns out that most of the time SEP(P(ω))
is enough to derive these consequences. An exception could be the equality
a = ℵ1, which is not known to follow from SEP(P(ω)), but which follows
from IDP(P(ω)). The natural open question is whether SEP(P(ω)) + a > ℵ1

is consistent.
One nice feature of SEP(P(ω)) is that it holds in Cohen models. This

does not have to be true for WFN(P(ω)) (assuming large cardinals). We do
not know about IDP(P(ω)). As it turns out, SEP(P(ω)) is relatively robust
under slight changes of the definition. It does not matter whether we demand
the existence of a single elementary submodel of Hχ with certain properties,
or of stationarily many, or of cofinally many. Therefore it is interesting to
know that the strongest variant of SEP along these lines, IDP, is strictly
stronger than SEP. In some sense, we get the best possible result here.
There is (in ZFC) a Boolean algebra with SEP but without IDP and it is
consistent that P(ω) itself is an example.
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