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Strong surjectivity of mappings of some

3-complexes into 3-manifolds

by

Claudemir Aniz (Campo Grande)

Abstract. Let K be a CW -complex of dimension 3 such that H3(K; Z) = 0, and
M a closed manifold of dimension 3 with a base point a ∈ M . We study the problem of
existence of a map f : K → M which is strongly surjective, i.e. such that MR[f, a] 6= 0.
In particular if M = S1 × S2 we show that there is no f : K → S1 × S2 which is strongly
surjective. On the other hand, for M the non-orientable S1-bundle over S2 there exists a
complex K and f : K → M such that MR[f, a] 6= 0.

1. Introduction. Given a map f : K →M between topological spaces,
and a ∈M an arbitrary point, recall that

MR[f, a] = min{#(g−1(a)) | g ∈ [f ]},

where [ ] means homotopy class. We say that a map f : K → M is
strongly surjective if any map homotopic to it is surjective (or, equivalently,
if MR[f, a] 6= 0 for some a ∈ M). One of the main goals of root theory
is to compute MR[f, a], which for a connected manifold M is independent
of a. The Nielsen root theory gives us the Nielsen root number, denoted
by N(f, a), which is a lower bound for MR[f, a] (see [TK, Chapter 5]).
When K and M are compact triangulable manifolds of the same dimension
r ≥ 3, we have N(f, a) = MR[f, a] (see [BR3, Proposition 4]). In [BR1],
making use of obstruction theory, it was proven that if f : K → M is a
map from a finite simplicial complex of dimension r ≥ 3 to a manifold such
that πp(M,M − a) = 0 for all 0 < p < r, then it is possible to find a map
g ∈ [f ] having exactly N(f, a) roots. None of the results above guarantees
that there is a map f : K → M such that MR[f, a] 6= 0. Further, if the
complex K satisfies H3(K; Z) = 0, the Nielsen root number (given in terms
of a local index of Nielsen root classes) is always zero.
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Root theory may be considered as a particular case of coincidence theory
(see [BR3]). Recent works have studied coincidence theory for pairs of maps
(f, g) : K →M , having as domain a simplicial complex K, and as codomain
a manifold M , both of the same dimension. In [G], using obstruction theory,
the index of a coincidence Nielsen class of a pair (f, g) is defined. In [BG1]
and [BG2] Nielsen type numbers are defined for coincidences so that they
are lower bounds and, under certain hypotheses, agree with MC[f, g], i.e. the
minimal number of coincidence points among all maps f ′, g′ homotopic to
f, g, respectively. So the same type of questions studied here can be asked
in coincidence theory.

In this work we assume K is a CW -complex and M a closed manifold,
both of the same dimension r = 3. The main results are (see Theorems 5.7,
5.8, 5.9, 5.11, 5.14 and 5.16):

1. There is no map f : K → M which is strongly surjective if K is a
3-complex with H3(K; Z) = 0 and M is either S1 ×S2, S1 ×S1 ×S1,
or a lens space.

2. There is no map f : K → M which is strongly surjective if K is a 3-
complex and H3(K; Z̃) = 0 and M is either S1×P2 (Pn denotes the n-
dimensional real projective space) or MA =S2 × [0, 1]/(x, 0)∼(−x, 1).

Here H3(K; Z̃) is the cohomology with an arbitrary local coefficient

system Z̃.
3. There exists a strongly surjective map K → MA, where MA is the

3-manifold defined in item 2 above and K is a certain 3-complex with
H3(K; Z) = 0.

The organization of this paper is as follows. In Section 2 we present
some results on group rings. In Section 3 we compute cohomology groups
with local coefficients for certain CW -complexes. These complexes will have
the property that H3(K; Z) = 0, but the cohomology H3(K; Z̃) with local
coefficients is non-trivial. Section 4 contains examples of complexes K con-
structed from a given 2-dimensional complex and such that H3(K; Z) = 0.
In Section 5 the vanishing of the obstruction to deform a map f : K →M to
a root free map is described in terms of solutions of a linear system Px = k
over Z[π1(M)] (see Corollary 5.5).

This work is based on my doctoral thesis, written under the supervision
of Professor Daciberg Lima Gonçalves.

2. Group ring. In this section we will present some results on group
rings that will be used in Section 5. For details see [A].

The symbol Z[G] will mean the group ring of G over the integers Z. The
map ε : Z[G] → Z given by

∑p
i=1 nigi →

∑p
i=1 ni is a ring homomorphism
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called the augmentation map. Its kernel ∆Z(G) = Ker ε is the augmentation

ideal of Z[G]. The ring Z[G] is commutative if the group G is abelian.
If G =

⊕p
i=1 Z, then Z[

⊕p
i=1 Z] = Z[x1, . . . , xp, x

−1
1 , . . . , x−1

p ] is the ring
of Laurent polynomials in p variables. If G = Zp is the cyclic group of order
p, p ≥ 2, then Z[Zp] = Z[x]/(xp − 1).

The results that follow will be used in Section 5.

Lemma 2.1. The ideal ∆Z(
⊕p

i=1 Z) is generated by xi−1 for i = 1, . . . , p.
The ideal ∆Z(Zp) is generated by x− 1.

Lemma 2.2. The kernel of the homomorphism ε : Z[x, x−1] → Z given

by

ε(xj) =

{
−1 if j is odd ,

1 if j is even,

is the ideal generated by the element x+ 1.

Lemma 2.3. Let A be an m×n matrix over Z[
⊕p

i=1 Z] with m ≤ n such

that all m×m minors of the matrix ε(A) = [ε(aij)] are relatively prime. The

system Ax = k has a solution over Z[
⊕p

i=1 Z] if , and only if , the systems

Ax = k(xi − 1) have solutions over Z[
⊕p

i=1 Z] for i = 1, . . . , p.

Proof. Let {d1, . . . , dr} be the set of all m × m minors of A. Since
ε(d1), . . . , ε(dr) are relatively prime, there are integers p1, . . . , pr so that
p1d1 + · · ·+prdr ∈ Z[

⊕p
i=1 Z] has augmentation 1. From Lemma 2.1, we can

find q1, . . . , qp ∈ Z[
⊕p

i=1 Z] with

p1d1 + · · · + prdr = q1(x1 − 1) + · · · + qp(xp − 1) + 1.

But this means that the set {d1, . . . , dr, x1 − 1, . . . , xp − 1} is not contained
in any maximal ideal m. Since the systems Ax = kdi have solutions in
Z[

⊕p
i=1 Z] for i = 1, . . . , r, the existence a solution for the systems Ax =

k(xi − 1), i = 1, . . . , p, implies that the system Ax = k also has a solution
([HG, Proposition 1]).

Lemma 2.4. If G = Z×Z2, the kernel of the homomorphism ε̃ : Z[Z×Z2]
→ Z given by ε̃(ykx) = −1 and ε̃(yk) = 1 is generated by x+ 1 and y − 1.

3. Cohomology with local coefficients. In this section we will look
at cohomology with local coefficients. The basic references are [WG] and [A].

For B a path connected topological space, a local coefficient system over
B is determined by a group homomorphism

Ω : π1(B, b0) → Aut(G),

where b0 ∈ B and Aut(G) is the group of automorphisms of an abelian group
G. The following coefficient systems will be used in this work. The bijection
Ω(θ) : π1(B, b0) → π1(B, b0) given by Ω(θ)(α) = θα for θ, α ∈ π1(B, b0),
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extends to an isomorphism of abelian groups

Ω(θ)Z : Z[π1(B, b0)] → Z[π1(B, b0)].

The homomorphism Ω : π1(B, b0) → Aut(Z[π1(B, b0)]) given by Ω(θ) =
Ω(θ)Z is a local coefficient system. Similarly for

Ω(θ) : π1(B, b0) → π1(B, b0)

given by Ω(θ)(α) = θαθ−1.

Let K be a connected CW -complex and p : K̃ → K its universal cover-
ing. Let C(K̃) be the cellular chain complex {Cn(K̃), ∂̃n} of K̃. The group

Π = π1(K, k0) acts on Cn(K̃), and consequently Cn(K̃) becomes a left
Z[Π]-module. If Ω is a local coefficient system on K, the group Π acts on

G, and consequently G becomes a left Z[Π]-module. Let HomΠ(Cn(K̃);G)
be the group of all Z[Π]-homomorphisms. Write

δ̃n : HomΠ(Cn−1(K̃);G) → HomΠ(Cn(K̃);G)

for the homomorphism defined by δ̃n(α) = α ◦ ∂̃n. Thus we have a cochain
complex

{HomΠ(Cn(K̃);G), δ̃n}

and
Hn(K;Ω) = Ker δ̃n+1/Im δ̃n

is the cohomology group of K with local coefficients Ω.

Remark 3.1. If K is finite of dimension r, then Cn(K̃) = 0 for n > r,
and

Hr(K;Ω) = HomΠ(Cr(K̃);G)/Im δ̃r.

We will study the case G = Z in detail. To obtain the cohomology with
trivial coefficients Hn(K; Z), we need only consider the simple coefficient

system Ω : Π → Aut(Z) where Ω(α) = identity for all α ∈ Π.

Definition 3.2. The symbol Z̃ will represent any local coefficient sys-
tem Ω : Π → Aut(Z) on K with Ω surjective.

Suppose that K is a finite CW -complex of dimension r ≥ 1, with n cells
of dimension r − 1 and m cells of dimension r.

Lemma 3.3. The group Hr(K; Z) is finite of odd cardinality if , and only

if , the group Hr(K; Z̃) is finite of odd cardinality.

Proof. The boundary operator ∂̃r : Hr(K̃
r, K̃r−1) → Hr−1(K̃

r−1, K̃r−2)
is given by the matrix

A =



ã11 . . . ã1m

. . . . . . . . .

ãn1 . . . ãnm






Strong surjectivity of mappings of 3-complexes 199

with columns defined by

∂̃r(ẽ
r
i ) = ã1iẽ

r−1
1 + · · · + ãniẽ

r−1
n

for i = 1, . . . ,m. Consider φ ∈ HomΠ(Cr−1(K̃); Z) given by φ(ẽr−1
j ) = kj for

j = 1, . . . , n. The homomorphism δ̃r(φ) ∈ HomΠ(Cr(K̃); Z) has the property

that δ̃r(φ)(ẽr
i ) = φ ◦ ∂̃r(ẽ

r
i ) = φ(ã1iẽ

r−1
1 + · · · + ãniẽ

r−1
n ) = ãi1φ(ẽr−1

1 ) +
· · · + ãniφ(ẽr−1

n ) = ã1ik1 + · · · + ãnikn. Notice that each ãij ∈ Z[Π] is of
the form

∑p
k=1 nkαk, and the action is given by (

∑p
k=1 nkαk)1 = ε(ãij) =∑p

k=1 nk(αk1), where (αk1) is either 1 or −1,


ε(ã11) . . . ε(ãn1)

. . . . . . . . .

ε(ã1m) . . . ε(ãnm)







k1

...

kn


 =




φ ◦ ∂̃r(ẽ
r
1)

...

φ ◦ ∂̃r(ẽ
r
m)


 .

This means that the diagram

HomΠ
(⊕n

i=1 Z[Π]; Z
) δ̃r

//

≈

��

HomΠ
(⊕m

i=1 Z[Π]; Z
)

≈

��⊕n
i=1 Z

ε̄(A)t

//
⊕m

i=1 Z

is commutative. Therefore

Hr(K; Z̃) =
( m⊕

i=1

Z

)
/Im(ε(A)t).

By [BR2, Chapter 3, Proposition 15], the cardinality of Hr(K; Z) is
gcd{ε(d1), . . . , ε(dr)}, where ε(di) are the minors of ε(A)t. If this number
is odd, at least one of the minors is odd. As ε(ãij) ≡ ε(ãij) mod 2, ε(A)t

will also have minors of odd order (see [A]). Again by [BR2, Chapter 3,

Proposition 15], Hr(K; Z̃) has finite and odd cardinality.

Next we give an example of a 3-complex with H3(K; Z) = 0 and
H3(K;Ω) 6= 0.

Consider the 2-complex K2 = S1 ∨ S2, the bouquet of a circle and a
sphere. Its universal cover K̃2 is the straight line with a 2-sphere attached to
each integer. Since π2(K

2) = π2(K̃
2) = H2(K̃

2) and π2(K
2, x0) = Z[t, t−1],

all maps f : (S2, s0) → (S1 ∨ S2, x0) are of the form f =
∑
αit

i. Let K
be the complex obtained from K2 by attaching one 3-cell via 2t − 1. The
boundary operator

(∗) 0 → H3(K̃
3, K̃2)

∂̃3−→H2(K̃
2, K̃1)
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is given by ∂̃3(y) = (2t − 1)y, and from the proof of the previous lemma,
H3(K; Z) = 0.

Consider the local coefficient system Ω : π1(K) = Z → Aut(Z[t, t−1])
on K, given by

Ω(t)
( p∑

i=1

nit
ki

)
=

p∑

i=1

nit
1+ki .

The next result is proved in [A].

Proposition 3.4. H3(K;Ω) is isomorphic to the subgroup of Q gener-

ated by the elements whose denominators are powers of 2.

Remark 3.5. Observe that in Lemma 3.3, if we have Hr(K; Z) finite, we

cannot guarantee that Hr(K; Z̃) is finite. Consider the following example:
let K be the 3-complex obtained from K2 = S1 ∨ S2 by attaching a 3-cell
by the map t+1. Consider the system Z̃ given by the action t1 = −1, where
t ∈ π1(K) = Z is the generator. It follows from the proof of Lemma 3.3 that

H3(K; Z) = Z2 and H3(K; Z̃) = Z.

Remark 3.6. The hypothesis that Hr(K; Z) = 0 and Hr(K; Z̃) = 0
does not guarantee that Hr(K;Ω) = 0. The complex K obtained from
K2 = S1∨S2 by attaching a 3-cell via the map 2t2−1 satisfiesH3(K; Z) = 0,

H3(K; Z̃) = 0, where Z̃ is the system described in the previous remark, and
H3(K;Ω) 6= 0.

Let K be a finite connected CW -complex of dimension r ≥ 3, M a closed
connected manifold of the same dimension as K that admits a structure
of CW -complex, and M r−1 the (r − 1)-skeleton of M . The obstruction to
deforming a map f : K → M into M r−1 is denoted by ωr(f) and lies in
Hr(K; f∗πr(M,M r−1)).

Theorem 3.7. Let f : K →M be a map such that f(Kr−1) ⊂M r−1 and

ωr(f) = 0. Then there exists a homotopy {ft} of f such that f1(K) ⊂M r−1.

In fact , the homotopy can be chosen to be constant on Kr−2.

The first part of Theorem 3.7 follows from [WG, Chapter VI, Section 6,
Theorem 6.3]. For the second part, i.e. that the homotopy can be taken
relative to Kr−2, we can argue as follows: Because the pair (M,M r−1) is
(r − 1)-connected, we can assume that the homotopy between f and f1

maps Kr−2×I into M r−1. Now by the AHEP (absolute homotopy extension
property; see [H, Chapter VI, Exercise E, p. 197]) the result follows.

Remark 3.8. For any two points x, y ∈ M there exists a homeomor-
phism h : M → M such that h(x) = y and h is homotopic to the identity
map of M . This fact implies that the number MR[f, a] does not depend
on the point a. If M admits a CW -decomposition with only one cell eM
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of dimension r, then for the purpose of calculation of MR[f, a], we may
assume that the point a is in the interior of eM . Since M r−1 is a strong
deformation retract of M − {a}, this means that MR[f, a] = 0 is equiva-
lent to the possibility of deforming f into M r−1. Since f is homotopic to
a cellular map f1 : K → M we may assume that f(Kr−1) ⊂ M r−1. By
Theorem 3.7, f can be deformed into M r−1 if, and only if, the obstruction
class ωr(f) ∈ Hr(K; f∗πr(M,M r−1)) is zero.

4. Complexes with zero top cohomology. For K an r-dimensional
CW -complex with m cells of dimension r, and n cells of dimension r − 1,
we have

Hr(K; Z) =
( m⊕

i=1

Z

)
/Im(ε(A)t).

If n < m, this quotient is infinite (see [BR2, Chapter 3, Proposition 15]).
Hence, in order to have Hr(K; Z) finite we must have m ≤ n. In particular
this is the case when Hr(K; Z) = 0, as m ≤ n is a necessary condition to
construct such complexes. In this case, Hr(K; Z) = 0 if, and only if, the
m×m minors of the matrix ε(A)t are relatively prime.

Definition 4.1. When m = n, we will say that K is square.

Lemma 4.2. If a complex Kr−1 satisfies either Hr−1(K
r−1) = 0 or

πr−1(K
r−1) = 0, then it is not possible to construct a complex K = Kr,

from Kr−1, with Hr(K; Z) = 0.

Proof. The universal covering p : K̃ → K is a cellular map and hence it
induces a homomorphism

p∗ : Hr(K̃
r, K̃r−1) =

m⊕

i=1

Z[Π] → Hr(K
r,Kr−1) =

m⊕

i=1

Z,

which is the augmentation on each summand. The commutative diagram

Hr(K̃
r, K̃r−1)

∂̃r
//

p∗

��

Hr−1(K̃
r−1, K̃r−2)

p∗

��

Hr(K
r,Kr−1)

∂r
// Hr−1(K

r−1,Kr−2)

says that, if ∂r(e
r
i ) = (a1i, . . . , ani), then ∂̃r(ẽ

r
i ) = (ã1i, . . . , ãni), where

ε(ãji) = aji for j = 1, . . . , n and i = 1, . . . ,m. A complex Kr is ob-
tained from Kr−1 by attaching r-cells via maps ϕ : Sr−1 → Kr−1, and
if either Hr−1(K

r−1) = 0 or πr−1(K
r−1) = 0, the induced homomorphism

ϕ∗ : Hr−1(S
r−1) → Hr−1(K

r−1) is zero. Since ∂r is defined in terms of ϕ∗,
we have ∂r = 0. Therefore the matrix ε(A)t is zero.
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In particular Kr−1 cannot be a non-orientable closed manifold. In case
r = 3, K2 is S2, and consequently K3 is simply connected.

Corollary 4.3. The only 2-complex K2 having a cell in each dimension

0, 1, 2 and from which it is possible to construct a 3-complex with H3(K; Z)
= 0 is S1 ∨ S2.

Proof. Observe that K2 is obtained from S1 by attaching a 2-cell via a
map ϕ : S1 → S1 of degree n. We will calculate H2(K

2). We have

0 → H2(K
2,K1)

∂2−→ H1(K
1,K0)

∂1−→ H0(K
0) → 0.

Here ∂2(p) = np and ∂1 = 0. Since H2(K
2) = Ker ∂2, we have H2(K

2) = 0,
when n 6= 0. From the previous lemma it is not possible to constructK = K3

from such a K2 with H3(K; Z) = 0.

Next we will see some examples of 2-complexes from which it is possible
to construct 3-complexes with trivial third cohomology group.

Example 4.4. Let K2 = S1 ∨
∨n

i=1 S
2. Its universal cover K̃2 is the

straight line together with a copy of
∨n

i=1 S
2 attached to each integral

coordinate. Then π2(K
2) = H2(K̃

2) =
⊕n

i=1 Z[t, t−1], and each element
is given by an n-tuple (p1(t), . . . , pn(t)). To get from K2 a complex K
with H3(K; Z) = 0 it is enough to attach m 3-cells, m ≤ n, such that

∂̃3(ẽ
3
i ) = p1i(t)ẽ

2
1 + · · · + pni(t)ẽ

2
n, where the m ×m minors of the matrix

ε(A)t = [ε(pij(t))] are relatively prime.

Example 4.5. Consider K2 = T ∨
∨n

i=1 S
2, where T is the 2-torus. Its

universal cover K̃2 is R2 together with a copy of
∨n

i=1 S
2 attached to each

point (x, y) with integral coordinates (see Figure 1). Contracting R2 to a

point, we can see that π2(K
2) = H2(K̃

2) =
⊕n

i=1 Z[x, y, x−1, y−1]. Therefore
each element of π2(K

2) is represented by an n-tuple (p1(x, y), . . . , pn(x, y))
of Laurent polynomials in two variables. As above, to construct from K2

complexes K with H3(K; Z) = 0, it suffices to attach m 3-cells with m ≤ n
for polynomials such that the matrix ε(A)t = [ε(pij(x, y))] has its m × m
minors relatively prime.

Remark 4.6. Observe that T can be substituted by any compact ori-
entable surface, Sg, of genus g ≥ 1.

To construct a complex of dimension r, we have to attach cells via maps
ϕ : Sr−1 → Kr−1 to a complex of dimension r−1. But these maps represent
elements of πr−1(K

r−1). In the case r = 3, we have a tool to calculate
π2(K

2) for any connected 2-complex. This technique is presented in detail
in [HMS, Chapter 2]. We will describe it as follows.
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(0,0)

(0,0)

(0,0)

(0,0)

(1,1)

(-1,-1)

(0,0)
(0,0)

(0,0)

Fig. 1

All 1-dimensional connected CW -complexes K1 have the homotopy type
of a bouquet

∨n
i=1 S

1. Its fundamental group is

π1

( n∨

i=1

S1
)

= F (x1, . . . , xn) = free group on n generators.

The 2-complexes K2 are obtained from K1 by attaching p cells of dimen-
sion 2, via maps S1 →

∨n
i=1 S

1. But these maps represent elements of
π1(K

1). So, the fundamental group of any connected 2-complex K2 can
be given a presentation 〈x1, . . . , xn | r1, . . . , rp〉, where ri are the relations
defined by the homotopy classes of the attaching maps. Therefore

π1(K
2) = F (x1, . . . , xn)/N(r1, . . . , rp),

where N(r1, . . . , rp) is the smallest normal subgroup generated by r1, . . . , rp.
Denote by

| − | : F (x) = F (x1, . . . , xn) → F (x1, . . . , xn)/N(r1, . . . , rp)

the projection. Let K̃2 be the universal covering of K2. The boundary op-
erator

∂̃2 : H2(K̃
2, K̃1) → H1(K̃

1, K̃0)
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is obtained in the following way: for each xi consider Fox’s derivative

∂

∂xi
: F (x) → ZF (x)

which is the only map satisfying

∂w1w2

∂xi
=
∂w1

∂xi
+ w1

∂w2

∂xi
for all w1, w2 ∈ F (x),

and whose value at xj is δi,j (Kronecker delta). Then we have

∂̃2(ẽ
2
rj

) =
n∑

i=1

∥∥∥∥
∂rj
∂xi

∥∥∥∥ẽ
1
xi

for j = 1, . . . , p.

Here ‖ − ‖: ZF (x) → Zπ1 is the natural extension of the projection | − |.

From the exact sequence

0 → H2(K̃
2)

j∗
−→H2(K̃

2, K̃1)
∂̃2−→H1(K̃

1, K̃0)

we obtain π2(K
2) = H2(K̃

2) = Ker ∂̃2.

Example 4.7. LetK2 be a 2-complex with π1(K
2)=〈x, y | x3, y2, (xy)2〉

(this is a presentation of the dihedral group D3). The homomorphism ∂̃2 :

H2(K̃
2, K̃1) → H1(K̃1, K̃0) is given by the matrix

[
1 + x+ x2 0 1 + xy

0 1 + y x+ y

]
,

and the vectors

[−1 − y,−1 − x− x2, y + xy + x2y]

and

[−1 − y,−1 − x− x2, 1 + x+ x2]

belong to the kernel of ∂̃2, and hence represent elements of π2(K
2). If K is

obtained from K2 by gluing one 3-cell through one of those two maps, then
H3(K,Z) = 0.

Observe that, if K2 is a 2-complex having n cells of dimension 2 and m
cells of dimension 3 are attached via elements αi = [ã1i, . . . , ãni] ∈ Ker ∂̃2 for

i = 1, . . . ,m, then the boundary operator ∂̃3 : H3(K̃
3, K̃2) → H2(K̃

2, K̃1)
is given by

∂̃3(ẽ
3
i ) = ã1iẽ

2
1 + · · · + ãniẽ

2
n,

where ẽ3
i is the cell that corresponds to the attaching map αi. For a left
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Z[Π]-module A, we have a commutative diagram

HomΠ(
⊕n

i=1 Z[Π];A)
δ̃3

//

≈

��

HomΠ(
⊕m

i=1 Z[Π];A)

≈

��⊕n
i=1A

δ̃3
//
⊕m

i=1A

where for b = [b1, . . . , bn] ∈
⊕n

i=1A, the vector δ̃3(b) ∈
⊕m

i=1A is given by
the product 



ã11 . . . ãn1

...
...

...

ã1m . . . ãnm







b1
...

bn


 .

5. Manifolds with abelian fundamental group. Assume M is a 3-
manifold with a CW -decomposition with only one cell, eM , of dimension 3.
In order to decide if MR[f, a] vanishes, from 3.8 we may assume that f :
K →M is cellular and we must consider ω3(f) ∈ H3(K; f∗π3(M,M2)).

Let q : M̃ → M be the universal covering of M and m0 a base point.
Consider the following local coefficient system on M . For each α ∈ π1(M)

let hα : M̃ → M̃ be the homeomorphism satisfying q ◦hα = q and hα(m0) =
α̃(1), where α̃ is the lift of α beginning at m0. Define αx = (hα)∗(x) for all

x ∈ H3(M̃, M̃2), where (hα)∗ : H3(M̃, M̃2) → H3(M̃, M̃2) is the induced

isomorphism. Call this system R. Notice thatH3(M̃, M̃2) = Z[π], where π =
π1(M), and the action is given by the homomorphism Ω : π → Aut(Z[π])
where Ω(θ)(α) = θα. Now consider f∗R, the local coefficient system over
K induced by f# : π1(K) → π1(M).

Lemma 5.1. The local systems R and π3(M,M2) are isomorphic.

Proof. Consider the commutative diagram

π3(M̃, M̃2)
(hα)π3

//

̺

��

π3(M̃, M̃2)

̺

��

H3(M̃, M̃2)
(hα)∗

// H3(M̃, M̃2)

The Hurewicz homomorphism is a homomorphism between the systems R
and π3(M,M2). Since Hp(M̃, M̃2) = 0 for p < 3 and π1(M̃

2) = 0, the
Hurewicz homomorphism is an isomorphism.

It follows that ω3(f) = 0 if, and only if, ̺∗(ω
3(f)) ∈ H3(K; f∗R) is zero.
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Remark 5.2. To simplify the notation, we will write H3(K; Z[π]) for
the group H3(K; f∗π3(M,M2)). Also we will use the same symbol f# for
its extension (f#)Z : Z[Π] → Z[π].

Theorem 5.3. Assume that ∂̃3 : H3(K̃
3, K̃2) → H2(K̃

2, K̃1) is of the

form

∂̃3(ẽ
3
i ) = ã1iẽ

2
1 + · · · + ãniẽ

2
n

for i = 1, . . . ,m. The homomorphism ψ ∈ HomΠ(
⊕m

i=1 Z[Π]; Z[π]), given

by ψ(ẽ3
i ) = ki for i = 1, . . . ,m belongs to the image of

δ̃3 : HomΠ(C2(K̃); Z[π]) → HomΠ(C3(K̃); Z[π])

if , and only if , the system Px = k has a solution in Z[π], where

P =




f#(ã11) . . . f#(ãn1)
...

...
...

f#(ã1m) . . . f#(ãnm)


 , k = [k1, . . . , km]t.

Proof. ψ ∈ Im δ̃3 if, and only if, there exists φ ∈ HomΠ(
⊕n

i=1 Z[Π]; Z[π])

such that δ̃3(φ) = φ ◦ ∂̃3 = ψ. Notice that φ(ẽ2
j ) = xj for j = 1, . . . , n.

So φ(ã1iẽ
2
1 + · · · + ãniẽ

2
n) = ã1iφ(ẽ2

1) + · · · + ãniφ(ẽ2
n) is also equal to

f#(ã1i)x1 + · · · + f#(ãni)xn for i = 1, . . . ,m with respect to the action
above. Equivalently,




f#(ã11) . . . f#(ãn1)
...

...
...

f#(ã1m) . . . f#(ãnm)







x1

...

xn


 =




k1

...

km


 .

Lemma 5.4. The obstruction class ̺∗(ω
3(f)) is represented by the cochain

f̃∗ : H3(K̃
3, K̃2) → H3(M̃, M̃2).

Proof. Recall that ω3(f) is represented by the cochain c3(f) defined by

c3(f) = f̃π3
◦ ̺−1 : H3(K̃

3, K̃2) → π3(K̃
3, K̃2) → π3(M̃, M̃2).

From the commutative diagram

π3(K̃
3, K̃2)

f̃π3
//

̺

��

π3(M̃, M̃2)

̺

��

H3(K̃
3, K̃2)

f̃∗
// H3(M̃, M̃2)

the cochain representing the class ̺∗(ω
3(f)) is ̺#(c3(f)) = c3(f) ◦̺ = f̃∗.
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Corollary 5.5. The obstruction class ̺∗(ω
3(f)) is zero if , and only if ,

the system Px = k has a solution in Z[π], where k = [f̃∗(ẽ
3
1), . . . , f̃∗(ẽ

3
m)]t,

and P is the matrix given in Theorem 5.3.

Proof. The vanishing of ̺∗(ω
3(f)) means that the cochain representing

this cohomology class is in the image of δ̃3. Now the result follows from
Lemma 5.4 and Theorem 5.3.

Theorem 5.6. The cochain obstruction f̃∗ : H3(K̃
3, K̃2) → H3(M̃, M̃2)

has the property that the system Px = f̃∗(ẽ
3
i )∂̃M (ẽM ) for i = 1, . . . ,m has

a solution in the Z[π]-module H2(M̃
2, M̃1). Here

∂̃M : H3(M̃, M̃2) → H2(M̃
2, M̃1)

is the boundary homomorphism.

Proof. Since f : K →M is a cellular map, the diagram

H3(K̃
3, K̃2)

∂̃3
//

f̃∗
��

H2(K̃
2, K̃1)

f̃2
∗

��

H3(M̃, M̃2)
∂̃M

// H2(M̃
2, M̃1)

is commutative. Hence

f̃∗(ẽ
3
i )∂̃M (ẽM ) = ∂̃M (f∗(ẽ

3
i )ẽM ) = (∂̃M ◦ f̃∗)(ẽ

3
i )

= (f̃ 2
∗
◦ ∂̃3)(ẽ

3
i ) = f̃ 2

∗
(ã1iẽ

2
1 + · · · + ãniẽ

2
n)

= f̃ 2
∗
(ã1iẽ

2
1) + · · · + f̃ 2

∗
(ãniẽ

2
n)

= f#(ã1i)f̃
2
∗
(ẽ2

1) + · · · + f#(ãni)f̃
2
∗
(ẽ2

n),

that is,



f#(ã11) . . . f#(ãn1)
...

...
...

f#(ã1m) . . . f#(ãnm)







f̃ 2
∗
(ẽ2

1)
...

f̃ 2
∗
(ẽ2

n)


 =




f̃∗(ẽ
3
1)∂̃M (ẽM )

...

f̃∗(ẽ
3
m)∂̃M (ẽM )


 .

Theorem 5.7. Let K be a finite 3-complex. Then there is no map f :
K → S1 × S2 which is strongly surjective if one of the following conditions

holds:

(i) H3(K; Z) = 0,
(ii) H3(K; Z) is finite and H3(K; Z[t, t−1]) torsion free,
(iii) K is square and H3(K; Z) finite.

Proof. Consider S1 × S2 as a CW -complex with 1-skeleton being S1,
2-skeleton beingM2 = S1∨S2, and S1×S2 is obtained fromM2 by attaching
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x0

-1

1

t-1

Fig. 2

a 3-cell via the map t−1 ∈ π2(M
2) = Z[t, t−1]. Geometrically the map t−1

can be regarded as a map from the cylinder which is the boundary of D2×I
(see Fig. 2) into S1 ∨S2. This map restricted to the top disc D2×{1} sends
the boundary of the disc to the point x0 and has degree one. On ∂D2 × I
the map is the composite of the projection ∂D2 × I → I followed by the
maps I → S1 → S1 ∨ S2 where the first map sends {0, 1} → x0 and it is of
degree one. On the bottom disc D2 × {0}, the map sends the boundary of
the disc to the point x0 and has degree −1. The boundary operator

∂̃S1
×S2 : Z[t, t−1] → Z[t, t−1]

is given by ∂̃S1
×S2(b) = (t− 1)b.

(i) We have to show that the system Px = k has a solution in Z[t, t−1],

where ki = f̃∗(ẽ
3
i ) for i = 1, . . . ,m. From Theorem 5.6, we know that Px =

(t−1)k has the vector e = [f̃ 2
∗
(ẽ2

1), . . . , f̃
2
∗
(ẽ2

n)]t as a solution. Let d1, . . . , dr

be all m × m minors of P . The fact that H3(K; Z) = 0 means that the
integers ε(d1), . . . , ε(dr) are relatively prime. From Lemma 2.3 it follows
that Px = k has a solution.

(ii) The fact that H3(K; Z) is finite implies that ε(di) 6= 0 (see [BR2,
Chapter 3, Proposition 15]) for some i = 1, . . . , r. The system Px = dik has
a vector y as a solution. Let q ∈ Z[t, t−1] be such that di − q(t− 1) = ε(di).
Hence P (y − qe) = Py − Pqe = dik − qk(t− 1) = (di − q(t− 1))k = ε(di)k.
This means that the obstruction class ̺∗(ω

3(f)) is a torsion element of
H3(K; Z[t, t−1]). Since this group is torsion free, the obstruction class is
zero.

(iii) If K is square, then P is a square matrix. If H3(K; Z) is finite,
then ε(det(P )) 6= 0, and this forces the vector solution e of the system

Px = k(t− 1) to have the property that ε(f̃ 2
∗
(ẽ2

i )) = 0 for all i = 1, . . . , n.
But this means that e = (t − 1)a, where a = [a1, . . . , an]t is a vector with
coordinates in Z[t, t−1]. Hence Pa = k.

Consider the manifold

MA = S2 × [0, 1]/(x, 0) ∼ (−x, 1).
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To get a CW -decomposition of MA, it is enough to attach a 3-cell to
S1 ∨ S2 via the map t+ 1. The boundary operator

∂̃MA
: Z[t, t−1] → Z[t, t−1]

is given by ∂̃MA
(b) = (t+ 1)b. The fact that H3(K; Z) = 0 is not enough to

guarantee that MR[f, a] = 0 for all f : K →MA.

Theorem 5.8. There exist a 3-complex K with H3(K; Z) = 0 and a

map f : K →MA which is strongly surjective.

Proof. Let K2 = S1 ∨
∨2

i=1 S
2, and K the complex obtained from K2

by attaching a 3-cell via the map (2t2 + 2t, 2t2 + 1). From Example 4.4, we
have H3(K; Z) = 0.

Define f : S1∨
∨2

i=1 S
2 → S1∨S2 on the 2-skeleton ofK to the 2-skeleton

of MA, as:

• f |S1 is the identity map on S1.

• f(e21) = 3t+ 2 and f(e22) = t+ 1.

Since (2t2 + 2t)(3t+ 2) + (2t2 + 1)(t+ 1) = k · (t+ 1), f extends to K.

Note that f̃∗(ẽ
3) = k(t) = 8t2 + 4t+ 1, so k(−1) = 5. This shows that k is

not of the form (2t2 + 2t)a+ (2t2 + 1)b. Therefore all elements of this form,
when t = −1, are integers divisible by 3.

Let f# : π1(K) → π1(MA) = Z and Z̃ be the local coefficient system
over K, given by the action of π1(K) on Z: for α ∈ π1(K),

α1 =

{
1 if f#(α) = tk with k even,

−1 if f#(α) = tk with k odd.

Theorem 5.9. Let K be a finite 3-complex. There is no map f : K →
MA which is strongly surjective if one of the following conditions holds:

(i) H3(K; Z̃) = 0,

(ii) H3(K; Z̃) is finite and H3(K; Z[t, t−1]) torsion free,

(iii) K is square and H3(K; Z̃) finite.

Proof. (i) As before we have to show that the system Px = k has a

solution, where k = [f̃∗(ẽ
3
1), . . . , f̃∗(ẽ

3
m)]t. From Theorem 5.6, we know that

the system Px = k(t + 1) has the vector e = [f̃ 2
∗
(ẽ2

1), . . . , f̃
2
∗
(ẽ2

n)]t as a

solution. From the proof of Lemma 3.3, the fact that H3(K; Z̃) = 0 implies
that the m × m minors of P have the property that ε(d1), . . . , ε(dr) are
relatively prime. From Lemma 2.2, there exist integers p1, . . . , pr and q ∈
Z[t, t−1] such that p1d1+ · · ·+prdr−q(t+1) = 1. Since the system Px = dik
has a solution for i = 1, . . . , r, and no maximal ideal m can contain the set
{d1, . . . , dr, t+1}, by [HG, Proposition 1] the system Px = k has a solution.
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(ii) When H3(K; Z̃) is finite, it follows that ε(di) 6= 0 for some i =
1, . . . , r. Let q ∈ Z[t, t−1] be such that di − q(t + 1) = ε(di), and y be the
vector solution of the equation Px = dik. Then P (y − qe) = Py − Pqe =
dik−q(t+1)k = (di−q(t+1))k = ε(di)k, which means that the obstruction
class ̺∗(ω

3(f)) is a torsion element. Since H3(K; Z[t, t−1]) is torsion free,
̺∗(ω

3(f)) = 0.

(iii) When P is a square matrix and H3(K; Z̃) is finite, we have ε(det(P ))

6= 0, which forces ε(f̃ 2
∗
(ẽ2

1)) = 0, . . . , ε(f̃ 2
∗
(ẽ2

n)) = 0, or equivalently, e =
a(t+ 1) and Pa = k.

Remark 5.10. As a consequence of Lemma 3.3, the assumption that
H3(K; Z̃) is finite in (ii) and (iii) may be replaced by H3(K; Z) being finite
of odd cardinality.

Let n and p be relatively prime positive integers. The symbol L(n, p)
denotes the lens space. In [M, Chapter 4], it is proved that M = L(n, p)
has a cellular decomposition with a cell in each dimension 0, 1, 2, 3, and its
2-skeleton is M2. Since the universal cover of L(n, p) is S3, the sequence

0 → H3(M̃
3, M̃2)

∂̃3−→H2(M̃
2, M̃1)

∂̃2−→H1(M̃
1, M̃0)

∂̃1−→H0(M̃
0) → 0

gives the homology of the sphere, and therefore Im ∂̃3 = Ker ∂̃2. But the
operator ∂̃2 : Z[Zn] → Z[Zn] is given by the Fox derivative, that is, ∂̃2(ẽ

2) =
1 + x+ · · ·+ xn−1, and its kernel is the ideal generated by x− 1. Therefore
∂̃3(ẽ

3) = x− 1.

Theorem 5.11. Let K be a finite 3-complex. There is no map f : K →
M = L(n, p) which is strongly surjective if one of the following conditions

holds:

(i) H3(K; Z) = 0,
(ii) H3(K; Z) is finite and H3(K; Z[Zn]) torsion free.

Proof. (i) The proof is similar to the proof of Theorem 5.9(i). The system
Px = k(x − 1) has a solution and we want to know if Px = k has a
solution. HoweverH3(K; Z) = 0 implies that the integers ε(d1), . . . , ε(dr) are
relatively prime and so the set {d1, . . . , dr, x−1} cannot belong to a maximal
ideal m. From [HG, Proposition 1] the system Px = k has a solution.

(ii) The obstruction class is a torsion element of H3(K; Z[Zn]). Therefore
it must be zero.

Remark 5.12. In case H3(K; Z) is finite and K is square, it is not
possible to guarantee that the system has a solution. As before we will have
e = a(x− 1). However, this implies that the system

Px = k + [p1, . . . , pn]t(1 + x+ · · · + xn−1)

has a solution for some vector [p1, . . . , pn]t with integer coordinates.
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Corollary 5.13. If f : MA → P3 has f# : π1(MA) → π1(P
3) surjec-

tive, then f is strongly surjective.

Proof. We know that MA is obtained by attaching a 3-cell via the map
t+1 to the bouquet S1∨S2, and thatH3(MA; Z) = Z2. Since f# is surjective,
f#(t) = x and we have

H3(MA; Z[Z2]) = Z[Z2]/(x+ 1) = Z.

From Theorem 5.11 it follows that MR[f, a] = 0.

Consider the manifold S1×P2. Its CW -decomposition is obtained in the
following way: Its 1-skeleton is K1 =

∨2
i=1 S

1
i , a bouquet of two circles, the

2-skeletonK2 is the union of a torus T with a projective space P2, and its uni-
versal cover K̃2 is the infinite cylinder R×S1, where a sphere S2 is attached
to each {n} × S1 for any integer n. The covering map p : K̃2 → K2 is the
projection map S2 → P2 on each S2, and the map g(z, t) = (z2, t) on R×S1

(see Figure 3). Finally, S1×P2 is obtained from K2 by attaching a 3-cell via

the map p|D2 × [0, 1] : D2 × [0, 1] → K2. The boundary operator ∂̃S1×P2 :

Z[Z × Z2] → Z[Z × Z2] ⊕ Z[Z × Z2] is given by ∂̃S1
×P2(b) = b(x+ 1, y − 1).

For a map f : K → S1 × P2, consider the system Z̃ given by the action
of π1(K) on Z defined by

α1 =

{
−1 if f#(α) = ykx,

1 if f#(α) = yk.

x

y

Fig. 3
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Theorem 5.14. Let K be a finite 3-complex. There is no map f : K →
S1 × P2 which is strongly surjective if one of the following conditions holds:

(i) H3(K; Z̃) = 0,

(ii) H3(K; Z̃) is finite and H3(K; Z[Z × Z2]) is torsion free.

Proof. (i) Since S1 × P2 has two cells in dimension 2, f̃ 2
∗
(ẽ2

i ) = (ci, di)
for i = 1, . . . , n, and ci, di ∈ Z[Z × Z2]. By Theorem 5.6 the systems Px =
k(x+1) and Px = k(y−1) have as solutions the vectors c = [c1, . . . , cn]t and
d = [d1, . . . , dn]t, respectively. From the proof of Lemma 3.3, the assumption

H3(K; Z̃) = 0 means that them×mminors d1, . . . , dr of P have the property
that the integers ε̃(d1), . . . , ε̃(dr) are relatively prime. From Lemma 2.4,
there exist integers p1, . . . , pr and elements q1, q2 ∈ Z[Z × Z2] such that

p1d1 + · · · + prdr − q1(x+ 1) − q2(y − 1) = 1.

This means that a maximal ideal m of Z[Z × Z2] cannot contain the set
{d1, . . . , dr, x+ 1, y− 1}. From [HG, Proposition 1], the system Px = k has
a solution.

(ii) Since H3(K; Z̃) is finite, some minors di have ε̃(di) 6= 0. Similar to
the previous proof, we can show that Px = kε̃(di) has a solution.

Remark 5.15. By Lemma 3.3, the hypothesis that H3(K; Z̃) is finite in
(ii) of the above theorem may be replaced by H3(K; Z) being finite of odd
cardinality.

Next we will consider the torus of dimension three, T 3 = S1 × S1 × S1.
The three-dimensional torus is obtained from the unit cube by identify-
ing the opposite faces (see Figure 4). A CW -decomposition of T is ob-
tained in the following way: Its 1-skeleton K1 =

∨3
i S

1
i is the bouquet of

three circles, and the 2-skeleton K2 has three 2-cells attached via the maps

y
y

x

x

z

z

y

z

x

Fig. 4
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xyx−1y−1, zxz−1x−1, yzy−1z−1. Notice that K2 is the union of three tori
T[x,y], T[z,x], and T[y,z], and its universal cover is the subspace of R3 given by

the union K̃2 = (R×R×Z)∪ (R×Z×R)∪ (Z×R×R). The covering map

p : K̃2 → K2 is the usual map corresponding to the 2-dimensional torus,
when restricted to each plane. To get T 3, it is enough to attach a 3-cell to
K2 by the quotient map restricted to the boundary of a cube, where the
boundary is inside K̃2.

The boundary operator

∂̃T 3 : Z[x, y, z, x−1, y−1, z−1] →
3⊕

i=1

Z[x, y, z, x−1, y−1, z−1]

is given by ∂̃T 3(b) = b(x − 1, y − 1, z − 1). The elements x − 1, y − 1, z − 1
are all irreducible in Z[x, y, z], so the ideals generated by them are prime. It
follows they are also prime ideals of Z[x, y, x, x−1, y−1, z−1].

Theorem 5.16. Let K be a finite 3-complex. There is no map f : K →
T 3 which is strongly surjective if one of the following conditions holds:

(i) H3(K; Z) = 0,
(ii) H3(K; Z) is finite and H3(K; Z[Z × Z × Z]) torsion free,
(iii) H3(K; Z) is finite and K square.

Proof. (i) Since T 3 has three cells of dimension 2, f̃2
∗
(ẽ2

i ) = (bi, ci, di) for
i = 1, . . . , n and bi, ci, di ∈ Z[Z × Z × Z]. From Theorem 5.6, the systems
Px = k(x−1), Px = k(y−1), Px = k(z−1) have solutions b = [b1, . . . , bn]t,
c = [c1, . . . , cn]t, d = [d1, . . . , dn]t, respectively. As before, the hypothesis
H3(K; Z) = 0 implies that the minors d1, . . . , dr have augmentations rel-
atively prime. From Lemma 2.3, it follows that the system Px = k has a
solution.

(ii) The proof is analogous to the proof of the preceding theorem.

(iii) Since P is a square matrix, we can apply Cramer’s rule for the
system Pb = k(x− 1). Therefore

det(P )bi

= det




f#(ã11) . . . f#(ã1,i−1) k1(x− 1) f#(ã1,i+1) f#(ãn1)
...

...
...

f#(ã1n) . . . f#(ãn,i−1) kn(x− 1) f#(ãn,i+1) f#(ãnn)




= (x− 1) det




f#(ã11) . . . f#(ã1,i−1) k1 f#(ã1,i+1) f#(ãn1)
...

...
...

f#(ã1n) . . . f#(ãn,i−1) kn f#(ãn,i+1) f#(ãnn)


 .
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This means that det(P )bi belongs to the ideal generated by x− 1. The fact
that H3(K; Z) is finite implies that the augmentation of det(P ) is not zero.
Since every element of (x−1) has augmentation zero, det(P ) /∈ (x−1), hence
bi ∈ (x−1), therefore (x−1) is prime. It follows that b = [q1, . . . , qn]t(x−1),
where qi ∈ Z[Z × Z × Z]. Then Pq = k for q = [q1, . . . , qn]t.
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