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Analytic partial orders and oriented graphs
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Alain Louveau (Paris)

Abstract. We prove that there is no maximum element, under Borel reducibility, in
the class of analytic partial orders and in the class of analytic oriented graphs. We also
provide a natural jump operator for these two classes.

This paper is part of the general program of studying Σ11 (analytic)
binary relations on Polish spaces, under the Borel reducibility ordering, and
variants of it.
If R1 and R2 are binary relations on Polish spaces X1 and X2 respec-

tively, a reduction of R1 to R2 is a map f : X1 → X2 such that for all x, y
in X1, xR1y ↔ f(x)R2f(y).
We say that R1 is Borel reducible to R2, or R2 Borel reduces R1, and

write R1 ≤B R2, if there is a Borel reduction of R1 to R2. If there is an
injective Borel reduction, we say that R1 Borel embeds into R2 and write
R1 ⊑B R2.
If C is a class of binary relations on Polish spaces, a relation R is

C-complete if R ∈ C and R Borel reduces all elements of C.
It is known that many natural classes of Σ11 binary relations admit com-

plete elements, e.g. the class of Σ11 equivalence relations, the class of Σ
1
1

quasi-orderings, or the class of Σ11 graphs (see [LR]).
There are also known examples of classes with no complete elements.

H. Friedman proved that this is the case for Borel equivalence relations
(see [FS] and [L1]), and it implies easily that this is also the case for Borel
quasi-orderings. Another example is the class of Gδ quasi-orders, as shown
in Louveau [L2].
In this paper, we will add two more examples of this phenomenon to

the previous list, maybe somewhat more surprising as they are classes of Σ11
objects.
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First, we will consider the case of Σ11 partial orders, i.e. transitive, re-
flexive relations R such that xRy and yRx imply x = y. We will prove:

Theorem 1. The class C of Σ11 partial orders admits no complete ele-
ment. In fact , the Borel partial orders are unbounded in C for the order-
ing ≤B.

This result will be obtained by considering more general binary relations.
If R is a partial order, its strict part <R is defined by x <R y ↔

xRy and x 6= y. It is a strict order, i.e. a transitive irreflexive relation.
And conversely, for each strict order S, the relation xSy or x = y is a par-
tial order admitting S as its strict part. Moreover, if f is a reduction of the
partial order R1 to the partial order R2, then f must reduce equality to
equality, i.e. be injective, and also reduce <R1 to <R2 . And as the converse
also holds, we easily see that

R1 ≤B R2 ↔ <R1 ⊑B <R2 .

Strict orders are a particular case of oriented graphs, those binary rela-
tions R which are antisymmetric, i.e. satisfy xRy → ¬ yRx. And for these
relations, there is another interesting natural ordering, weaker than Borel
reducibility, given by using homomorphisms instead of reductions.

Definition 2. If R1, R2 are binary relations on Polish spaces X1, X2
respectively, a map f : X1 → X2 is a homomorphism from R1 to R2 if for
all x, y in X1,

xR1y → f(x)R2f(y).

We write R1 �B R2 if there is a Borel homomorphism from R1 to R2.

From the above discussion, Theorem 1 is an immediate consequence of
the following

Theorem 3. No Σ11 oriented graph can bound all Borel strict orders
in �B. In particular , the class of Σ

1
1 oriented graphs and the class of Σ

1
1

strict orders admit no complete element (for �B, hence also for ≤B).

In order to prove Theorem 3, we use an “index method”. We first define
for each Σ11 oriented graph R a countable ordinal ind(R) satisfying

R1 �B R2 → ind(R1) ≤ ind(R2).

Then we prove that this index is unbounded on the class of Borel strict
orders. These facts together of course prove Theorem 3.
To define the index, recall from [L1] the notion of potential Borel class:

A binary relation R on a Polish space X is potentially ∆0ξ if there is a finer

Polish topology τ on X such that R is∆0ξ in the square of (X, τ). Note that

if f : X1 → X2 is a Borel map and R is potentially ∆
0
ξ on X2, so is f

−1(R)

on X1. For one can first refine the topology of X2 so that R is ∆
0
ξ , and then
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the topology of X1 to make f continuous with respect to the new Polish
topology of X2.
This leads to the following definition, where Ř denotes the dual of R,

defined by xŘy whenever yRx.

Definition 4. IfR is aΣ11 oriented graph, let ind(R) be the least ordinal
ξ < ω1 such that there exists a potentially ∆

0
ξ set C separating R from Ř,

i.e. satisfying R ⊆ C and C ∩ Ř = ∅.

Note that ind(R) is well defined for each Σ11 oriented graph R, because
R and Ř are two disjoint Σ11 sets, hence Borel separable. And the above
remarks imply immediately that the index ind is increasing, i.e. R1 �B R2
implies ind(R1) ≤ ind(R2), for a Borel homomorphism f from R1 to R2 is
also a homomorphism from Ř1 to Ř2 and hence if C is a potentially ∆

0
ξ set

separating R2 from Ř2, then f
−1(C) is a potentially∆0ξ set which separates

R1 from Ř1.
So to get Theorem 3, it is enough to build a family (Rξ) of Borel strict

orders with ind(Rξ) > ξ, at least for ξ a successor ordinal ≥ 2, as we now
proceed to do. First we define the domain Xξ of Rξ as 2

Dξ×ω, where Dξ is
a countable set, defined inductively by

D2 = {0},

Dξ+1 =







ω ×Dξ if ξ ≥ 2 is successor,

{(n, i) : i ∈ Dξn} if ξ is limit and ξn is a sequence of

successors converging to ξ.

Note that the two cases in this definition are the same if we set ξn = ξ
for all n, when ξ is successor. And in both cases we can (and will) view
each α ∈ Xξ+1 as a sequence (αn)n∈ω, with αn ∈ Xξn for all n. With
these conventions, we are now in a position to define inductively the strict
orders Rξ, together with Borel sets Lξ and L

∗
ξ , as follows:

Case ξ = 2. Recall that the equivalence relation E0 is defined on 2
ω by

αE0β ↔ ∀
∗n α(n) = β(n),

where ∀∗ is the quantifier “for all but finitely many”.
We have X2 = 2

ω, and set

R2 = {(α, β) : α 6= β and αE0β and if n is maximum

with α(n) 6= β(n), then α(n) < β(n)},

L2 = {α : αE00}, L∗2 = {α : αE01},

where 0 and 1 are the reals which are identically 0 and 1 respectively.
The order R2 is the strict part of the partial order called ≤0 in Kano-

vei [K]. It orders all E0-classes (except L2 and L
∗
2) in order type Z.
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Inductive case. Using the conventions above, for ξ ≥ 2 we set

Rξ+1 = {(α, β) ∈ X
2
ξ+1 : ∀

∗n αnRξnβn},

Lξ+1 = {α ∈ Xξ+1 : ∀n (αn ∈ Lξn or αn ∈ L
∗
ξn
) and ∀∗n (αn ∈ Lξn)},

L∗ξ+1 = {α ∈ Xξ+1 : ∀n (αn ∈ Lξn or αn ∈ L
∗
ξn
) and ∀∗n (αn ∈ L

∗
ξn
)}.

One easily checks that each Rξ is a Borel strict order. So to get Theorem 3,
it is enough to prove that for all successor ξ ≥ 2, ind(Rξ) > ξ, i.e. that no
potentially∆0ξ set can separate Rξ from Řξ. We will prove this in two steps,

by first proving that there is no separation by a ∆0ξ set, and then dealing
with the possible change of topologies.

For the first step, we use the following lemma, which also explains the
notation for the sets Lξ and L

∗
ξ : the letter L is for Lebesgue (the same idea

was already used in [HKL] for other purposes).

Lemma 5. Let ξ > 1 be successor. There is no ∆0ξ set separating Lξ
from L∗ξ .

Proof. This is a direct consequence of Lebesgue’s classical result about
the generation of Baire class ξ functions by the operation of taking point-
wise limits: For ξ ≥ 1, Baire class ξ functions are the pointwise limits of
sequences of functions of Baire class < ξ, and even of Baire class < λ if
ξ = λ+1 with λ limit. This result is valid for real-valued functions on arbi-
trary Polish spaces, but it is also valid for {0, 1}-valued functions on dim0
Polish spaces, in particular for Borel subsets of 2ω. And there, tracing back
in the inductive definition above, one easily checks that it exactly means
that for any successor ξ ≥ 2 and any ∆0ξ set C ⊆ 2

ω, there is a sequence
(Ci,n)(i,n)∈Dξ×ω of clopen subsets of 2

ω such that

(i) for each α ∈ 2ω, 1{(i,n) :α∈Ci,n} ∈ Lξ ∪ L
∗
ξ ,

(ii) α ∈ C ↔ 1{(i,n) :α∈Ci,n} ∈ L
∗
ξ .

But then, as the map α 7→ 1{(i,n) :α∈Ci,n} is continuous, we find that if
some ∆0ξ set C were separating L

∗
ξ from Lξ, every ∆

0
ξ subset of 2

ω would
be in the Wadge class of C, which, as ξ ≥ 2, is a contradiction proving the
lemma.

Using this lemma, we get

Proposition 6. For each successor ordinal ξ ≥ 2, there is a continuous
map fξ = (f

0
ξ , f

1
ξ ) : Xξ → Xξ ×Xξ satisfying :

(i) if α ∈ Lξ, then f
0
ξ (α)Rξf

1
ξ (α),

(ii) if α ∈ L∗ξ , then f
1
ξ (α)Rξf

0
ξ (α).

In particular , Rξ cannot be separated from Řξ by a ∆
0
ξ set.
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Proof. The second assertion follows from the first and Lemma 5: any
separating ∆0ξ set would yield, by taking the inverse image under fξ, a ∆

0
ξ

set separating Lξ from L
∗
ξ , contradicting Lemma 5.

To prove the first assertion, we define fξ by induction.
For ξ = 2, β0 = f02 (α) and β

1 = f12 (α) are defined by:

(i) for n = 0,
β0(0) = α(0), β1(0) = 1− α(0);

(ii) for n > 0,

(0) if α(n) = α(n− 1), then β0(n) = β1(n) = 0,
(1) if α(n) < α(n− 1), then β0(n) = 0 and β1(n) = 1,
(2) if α(n) > α(n− 1), then β0(n) = 1 and β1(n) = 0.

To check it works, suppose first α ∈ L2, and let n be smallest with α(k) = 0
for k ≥ n. Then, whether n = 0 or not, we are in case (1) of the definition
at n, and in case (0) at all k > n. This implies that n is largest with
β0(n) 6= β1(n). As β0(n) < β1(n), we get β0(n)R2β

1(n) as wanted.
Suppose now α ∈ L∗2, and let n be smallest with α(k) = 1 for k ≥ n. Then

we are in case (2) of the definition at n, and in case (0) at any k > n. Again
n is largest with β0(n) 6= β1(n), and as β0(n) > β1(n), we get β1(n)R2β

0(n)
as wanted.
This gives the proposition for ξ = 2.
The induction step is easy. Using the same conventions as before, for

α = (αn)n∈ω in Xξ, set f
i
ξ(α) = (f

i
ξn
(αn))n∈ω for i = 0, 1.

By induction we find that if α ∈ Lξ, then for all but finitely many n’s,
αn ∈ Lξn , hence for the same n’s, f

0
ξn
(αn)Rξnf

1
ξn
(αn), so f

0
ξ (α)Rξf

1
ξ (α),

and similarly with L∗ξ and Řξ. This proves Proposition 6.

We now get rid of the possible change of topologies. Fix the ordinal ξ.
A good pair (D, γ) at level ξ consists of a subset D ⊆ Dξ × ω such that for
all i ∈ Dξ, the set Di = {n : (i, n) ∈ D} is infinite, together with a map
γ : (Dξ × ω)−D → 2.
Such a pair (D, γ) defines a compact set

KD,γ = {α ∈ Xξ : α|(Dξ×ω)−D = γ},

and a natural homeomorphism hD,γ = h of Xξ ontoKD,γ : if for i ∈ Dξ, di is
the increasing enumeration of Di, define β = h(α) by β(i, n) = α(i, d

−1
i (n))

if (i, n) ∈ D and β(i, n) = γ(i, n) otherwise.

Lemma 7. For each successor ordinal ξ > 1 and good pair (D, γ) at
level ξ, the map hD,γ is a continuous reduction of Rξ to Rξ|KD,γ .

Proof. We argue by induction. If ξ = 2, then D is an infinite subset
of ω with enumeration d, and given α and β in X2 = 2

ω, the set of integers
where h(α) and h(β) differ is the d-image of the set of integers where α and
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β differ. So we get α 6= β if and only if h(α) 6= h(β), αE0β if and only
if h(α)E0h(β), and, as d is increasing, the largest n where h(α) and h(β)
differ, when it exists, is the image under d of the largest n where α and β
differ. So finally αR2β if and only if h(α)R2h(β).

Again the induction step is easy. Fix (D, γ) good at level ξ. Recall that
with our conventions, Dξ = {(n, i) : i ∈ Dξn}. So for each n, we get a
pair at level ξn by setting Dn = {(i, k) ∈ Dξn × ω : ((n, i), k) ∈ D} and
γn((i, k)) = γ((n, i), k) for (i, k) ∈ Dn. Clearly (Dn, γn) is good at level ξn,
so by induction the corresponding homeomorphism hn is such that for α, β
in Xξn , αRξnβ if and only if hn(α)Rξnhn(β).

But note that for α = (αn)n∈ω in Xξ, one has h(α) = (hn(αn))n∈ω,
so that the previous fact implies immediately that αRξβ if and only if
h(α)Rξh(β), as desired.

To finish the proof of Theorem 3, we need the following (essentially
classical) lemma:

Lemma 8. Let C be a countable set , and H a dense Gδ subset of 2
C×ω.

Then there exists a subset D of C × ω with Di infinite for all i ∈ C, and a
map γ : (C × ω)−D → 2 such that

KD,γ = {α ∈ 2
C×ω : α|(C×ω)−D = γ}

is a subset of H.

Proof. The pair (D, γ) is constructed by induction. Say that (d, g) is a
finite approximation if d and dom(g) are finite disjoint subsets of C × ω. It
is clearly enough to check that given a finite approximation (d, g), an i ∈ C
and a dense open set U ⊆ 2C×ω, one can extend (d, g) to some (d′, g′) so that
d′ − d meets {i} × ω, and the clopen set Vg′ = {α ∈ 2

C×ω : α|dom(g′) = g
′}

is a subset of U . But this is easy: Pick first n with (i, n) outside d∪dom(g),
and set d′ = d∪{(i, n)}. Enumerate 2d

′

as f1, . . . , fN , and define inductively
g0, g1, . . . , gN so that they all have their domains disjoint from d

′, g0 = g and
they extend each other, and for each k ≤ N , Vfk∪gk ⊆ U . This is possible
by the density of U . But then g′ = gN works.

End of proof of Theorem 3. As said before, we just have to check that
for any successor ordinal ξ ≥ 2, ind(Rξ) > ξ. Argue by contradiction, and
suppose C is a Borel set separating Rξ from Řξ, and τ a finer Polish topology
on Xξ such that C is∆

0
ξ in (Xξ, τ)

2. Fix then a dense Gδ subset H of Xξ on
which τ and the usual topology coincide. Applying Lemma 8 (with Dξ), we
get a good pair (D, γ) at level ξ withK = KD,γ ⊆ H. But then C∩K

2 is∆0ξ ,

and by Lemma 7, h−1D,γ(C) is a ∆
0
ξ set separating Rξ from Řξ, contradicting

Proposition 6.
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Remark. The minimal expected complexity of a strict order R with
ind(R) > ξ is Σ0ξ (Π

0
ξ is not possible because of the separation property

of that class). Our examples are more complicated, except for ξ = 2 and ξ
successor of a limit ordinal. We do not know if Σ0ξ is always obtainable.

It is often the case with the index method (see [L1]) that the actual
proof of the unboundedness of the index provides a jump operator. This is
also the case here, at least in spirit, for we will need a slight variant of the
previous proof to get the strongest possible jump result.

If (Rn)n∈ω is a sequence of Σ
1
1 oriented graphs on Polish spaces Xn,

define a Σ11 oriented graph (Rn)
+ on

∏

nXn by

x(Rn)
+y ↔ ∀∗n xnRnyn.

The operator + is clearly increasing for the orderings �B and ≤B: if for
all n, Rn �B Sn (resp. Rn ≤B Sn), one also has (Rn)

+ �B (Sn)
+ (resp.

(Rn)
+ ≤B (Sn)

+), by combining the witnessing maps.

If for all n, Rn = R, write R
+ instead of (Rn)

+. This defines a �- and
≤B-increasing operator, which clearly satisfies R ≤B R

+ for all Σ11 oriented
graphs R.

The next result is a direct consequence of the proof of the unboundedness
of the index. It shows that for complicated enough Σ11 oriented graphs, + is
in fact a jump operator.

Corollary 9. Let R be a Σ11 oriented graph with R2 �B R. Then
R+ 6�B R.

Proof. Assume not, and let R be a counterexample. Then from R+ �B R
and the fact that + is �B-increasing, one sees easily by induction that for
all countable successor ordinals ξ ≥ 2, Rξ �B R, contradicting (the proof
of) Theorem 3.

The condition R2 �B R in the previous corollary is not optimal, and may
look a bit unnatural. We now show that at least in the context of Σ11 strict
orders, it provides the optimal result. Then we will see how to change the
arguments to get the optimal result for arbitrary Σ11 oriented graphs.

First, let us consider the particular case of Σ11 strict orders. Recall from
Kanovei [K] that a partial order R is Borel linearizable if it admits an
extension which is a Borel linear order. We will use the following result from
[L3]:

Theorem 10. The following are equivalent , for a Σ11 partial order R:

(i) R is not Borel linearizable,

(ii) R2 �B <R,
(iii) ind(<R) > 2.
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Corollary 11. Let R be a Σ11 strict order which admits finite chains
of arbitrary cardinality. Then R+ 6�B R.

Proof. By Corollary 9, it is enough to check that any possible counterex-
ample R satisfies R2 �B R. By the assumption on R, we have for each n ∈ ω
an increasing R-chain (xin)i≤n. We then use the following

Fact. One can build in ωω an ω1-sequence (fξ)ξ<ω1 such that for all n,
fξ(n) ≤ n, and η < ξ implies ∀

∗n fη(n) < fξ(n).

Granted this fact, the sequence ((x
fξ(n)
n )n∈ω)ξ<ω1 is then an increasing

R+-chain. But it is a result of Harrington, Marker and Shelah [HMS] that in
any Borel linear order there is no uncountable chain. This implies that R+

is not Borel linearizable, and, by Theorem 10, R2 �B R
+. So if R+ �B R,

we get R2 �B R, and Corollary 9 applies, as wanted.
So it remains to construct the sequence (fξ)ξ<ω1 as above. Consider the

subset A of ωω consisting of those functions f satisfying f(n) ≤ n for all n,
and n−f(n)→∞ with n. It is clearly enough to prove that for any sequence
(gk)k∈ω in A, there is f in A with ∀k ∀

∗n gk(n) < f(n), as one can then by
using it build the ω1 sequence in A by induction on the countable ordinals.
As A is closed under finite pointwise suprema, we may assume the sequence
gk is increasing. Let then nk be least with n − gk(n) > k for all n > nk,
and let f(n) be 0 for n < n0, and gk(n) + 1 for nk ≤ n < nk+1. One easily
checks that f works.

Remark. Corollary 11 is indeed optimal, for if R is such that all R-
chains have size ≤ k < ω, then R+ �B R. To see this, note first that if
R has this property, then so does R+. Moreover, it is not hard to show by
induction on k that if R on X is a Σ11 strict order with no k + 1-chain,
then R �B (k,<). This is clear if k = 1. For k + 1, consider the Σ

1
1 set

A ⊆ X of all points which are the maximum element of a k + 1-chain
in R. By the hypothesis, A is a subset of the Π11 set C of all R-maximal
points. By separation, there is a Borel set B with A ⊆ B ⊆ C. On the
complement of B, there are no k + 1-chains in R, so there is by induction
a Borel homomorphism into (k,<). Sending the points of B to k then gives
the desired Borel homomorphism.
Finally, if k is the least upper bound to the cardinality of R-chains, we

deduce by the preceding facts that R+ �B (k,<) �B R, as desired.
In some cases, one can even have R+ ≤B R, for example if X = {0, 1, 2}

with 0R1, as witnessed by sending the sequences which are eventually i, for
i = 0, 1, to i, and the other sequences to 2.

We now briefly indicate how to adapt the previous arguments to get the
following result, which subsumes both Corollaries 9 and 11 and is valid for
arbitrary Σ11 oriented graphs:



Analytic partial orders and oriented graphs 241

Theorem 12. Let R be a Σ11 oriented graph on a Polish space X. As-
sume that (∗) for all k ∈ ω, there is a sequence (xki )i≤k in X with x

k
iRx

k
i+1

for all i < k. Then R+ 6�B R.

Proof. We first introduce an oriented graph G2—which replaces R2. It
is defined on the space X ′2 of all infinite co-infinite subsets of ω by

AG2B ↔ A△B is finite & card(B −A) = card(A−B) + 1.

We can then define inductively (as we did for the Rξ’s) graphs Gξ, for
successor ξ ≥ 2, by setting for successor ξ, Gξ+1 = G

+
ξ , and for limit λ, with

(λn) an increasing sequence of successor ordinals converging to it, Gλ+1 =
(Gλn)

+
n . We can of course view G2 as defined on X2 = 2

ω, and hence Gξ as
defined on Xξ.
We now argue as in Corollary 11. First we check that if R is a Σ11

oriented graph which satisfies condition (∗), then G2 �B R
+. To see this,

let (xki )i<k be a witness for (∗), and define, for A an infinite co-infinite
subset of ω, iA(k) = card(A ∩ k) and f(A) = (x

k
iA(k)
)k∈ω. Then if AG2B

and n = sup(A△ B) + 1, one sees for k ≥ n that iB(k) = iA(k) + 1, hence
xkiA(k)Rx

k
iB(k)
. So f(A)R+f(B), and f is a Borel homomorphism from G2

to R+.

The second step of the proof is then immediate, by induction on ξ: If R
satisfies (∗) and R+ �B R, then for all ξ, Gξ �B R.
So it remains to show that this is impossible, by proving that for all

successor ξ ≥ 2, ind(Gξ) > ξ. The proof of this last fact is entirely anal-
ogous to the proof we gave for Rξ. We just have to prove the statements
analogous to Proposition 6 and Lemma 7. The analog of Lemma 7 is obvi-
ous, with the same proof, using the particular form of Gξ. For the analog
of Proposition 6, it comes down to proving that there is a continuous map
f : 2ω → 2ω × 2ω sending L0 to G2 and L1 to Ǧ2. To do this, one can
use the determinacy of the following usual separation game: players I and
II play α ∈ 2ω and (β, γ) ∈ 2ω × 2ω respectively (bit by bit), and player II
wins if α ∈ L0 implies βG2γ, and α ∈ L1 implies γG2β. This game is clearly
Borel, hence determined, and a winning strategy for player II provides the
wanted map f . So it is enough to check that player I does not have a win-
ning strategy. But otherwise, we get a continuous map g : 2ω × 2ω → 2ω

which satisfies g(2ω × 2ω) ⊆ L0 ∪ L1, G2 ⊆ g
−1(L1) = g

−1(2ω − L0), and
Ǧ2 ⊆ g

−1(L0) = g
−1(2ω − L1), by the definition of the game. Now clearly

G2 and Ǧ2 are both dense in (X
′
2)
2, so g−1(L0) and g

−1(L1) are disjoint
dense Gδ in it, a clear contradiction. Putting everything together, this proves
Theorem 12.

To end up this paper, let us come back to our original motivation, i.e.
the unboundedness property of Σ11 partial orders under ≤B (Theorem 1),
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and discuss how this result can be generalized to other types of quasi-orders
besides partial orders.

If R is aΣ11 quasi-order on a Polish spaceX, denote by ≡R the associated
(necessarily Σ11) equivalence relation, defined by ≡R = R∩ Ř. And if E is a
given Σ11 equivalence relation on X, let CE be the class of Σ

1
1 quasi-orders

R on X with ≡R = E. So partial orders correspond to the case of equality,
on say X = 2ω. And Theorem 1 says that when E is equality, CE admits no
complete element. What is the situation for other E’s?

First, it is proved in Louveau–Rosendal [LR] that if E is a complete Σ11
equivalence relation, one has E =≡R for some complete Σ

1
1 quasi-order R,

which is a fortiori complete in CE . So this gives an example of a Σ
1
1 equiv-

alence relation E for which there exists a complete element in CE . Also, the
same is true at the other extreme, if E has only countably many classes,
for then CE corresponds (up to Borel bi-reducibility) to countable partial
orders, and it is well known that there exists a complete countable partial
order.

Here we have:

Corollary 13. Let E be a Borel equivalence relation on some Polish
space X, with uncountably many classes. Then CE has no complete element ,
and in fact the Borel elements in CE are unbounded in CE.

Proof. Suppose, towards a contradiction, that some R ∈ CE Borel re-
duces all Borel elements in CE . Consider the strict order <R= R−E, which
is Σ11 as E is Borel. We get the desired contradiction by proving that <R
Borel reduces all Borel strict orders on 2ω, contradicting Theorem 3. So let
S be a Borel strict order on 2ω. By our assumption and Silver’s theorem,
there is a one-to-one continuous map f : 2ω → X which reduces equality to
E. Define then S′ on X by

xS′y ↔ xEy or ∃α ∈ 2ω ∃β ∈ 2ω (f(α)Ex and f(β)Ey and αSβ).

It is easy to check that S′ is a quasi-order with ≡S′ = E, and that S
′ is

Borel (for the α, β in the definition are unique, when they exist). Moreover,
f is a witness that S ≤B S

′, and as S′ ∈ CE , also S
′ ≤B R, hence we get

the desired contradiction.

We do not know whether there is a complete element in CE when E is a
Σ11 equivalence relation which is neither complete nor Borel.
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Institut de Mathématiques de Jussieu
Analyse Fonctionnelle, bôıte 186
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