Analytic partial orders and oriented graphs

by
Alain Louveau (Paris)

Abstract

We prove that there is no maximum element, under Borel reducibility, in the class of analytic partial orders and in the class of analytic oriented graphs. We also provide a natural jump operator for these two classes.

This paper is part of the general program of studying $\boldsymbol{\Sigma}_{1}^{1}$ (analytic) binary relations on Polish spaces, under the Borel reducibility ordering, and variants of it.

If R_{1} and R_{2} are binary relations on Polish spaces X_{1} and X_{2} respectively, a reduction of R_{1} to R_{2} is a map $f: X_{1} \rightarrow X_{2}$ such that for all x, y in $X_{1}, x R_{1} y \leftrightarrow f(x) R_{2} f(y)$.

We say that R_{1} is Borel reducible to R_{2}, or R_{2} Borel reduces R_{1}, and write $R_{1} \leq_{\mathrm{B}} R_{2}$, if there is a Borel reduction of R_{1} to R_{2}. If there is an injective Borel reduction, we say that R_{1} Borel embeds into R_{2} and write $R_{1} \sqsubseteq_{\mathrm{B}} R_{2}$.

If \mathcal{C} is a class of binary relations on Polish spaces, a relation R is \mathcal{C}-complete if $R \in \mathcal{C}$ and R Borel reduces all elements of \mathcal{C}.

It is known that many natural classes of $\boldsymbol{\Sigma}_{1}^{1}$ binary relations admit complete elements, e.g. the class of $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relations, the class of $\boldsymbol{\Sigma}_{1}^{1}$ quasi-orderings, or the class of $\boldsymbol{\Sigma}_{1}^{1}$ graphs (see [LR]).

There are also known examples of classes with no complete elements. H. Friedman proved that this is the case for Borel equivalence relations (see [FS] and [L1]), and it implies easily that this is also the case for Borel quasi-orderings. Another example is the class of G_{δ} quasi-orders, as shown in Louveau [L2].

In this paper, we will add two more examples of this phenomenon to the previous list, maybe somewhat more surprising as they are classes of $\boldsymbol{\Sigma}_{1}^{1}$ objects.

[^0]First, we will consider the case of $\boldsymbol{\Sigma}_{1}^{1}$ partial orders, i.e. transitive, reflexive relations R such that $x R y$ and $y R x$ imply $x=y$. We will prove:

Theorem 1. The class \mathcal{C} of $\boldsymbol{\Sigma}_{1}^{1}$ partial orders admits no complete element. In fact, the Borel partial orders are unbounded in \mathcal{C} for the order$i n g \leq_{B}$.

This result will be obtained by considering more general binary relations.
If R is a partial order, its strict part $<_{R}$ is defined by $x<_{R} y \leftrightarrow$ $x R y$ and $x \neq y$. It is a strict order, i.e. a transitive irreflexive relation. And conversely, for each strict order S, the relation $x S y$ or $x=y$ is a partial order admitting S as its strict part. Moreover, if f is a reduction of the partial order R_{1} to the partial order R_{2}, then f must reduce equality to equality, i.e. be injective, and also reduce $<_{R_{1}}$ to $<_{R_{2}}$. And as the converse also holds, we easily see that

$$
R_{1} \leq_{\mathrm{B}} R_{2} \leftrightarrow<_{R_{1}} \sqsubseteq_{\mathrm{B}}<_{R_{2}} .
$$

Strict orders are a particular case of oriented graphs, those binary relations R which are antisymmetric, i.e. satisfy $x R y \rightarrow \neg y R x$. And for these relations, there is another interesting natural ordering, weaker than Borel reducibility, given by using homomorphisms instead of reductions.

Definition 2. If R_{1}, R_{2} are binary relations on Polish spaces X_{1}, X_{2} respectively, a map $f: X_{1} \rightarrow X_{2}$ is a homomorphism from R_{1} to R_{2} if for all x, y in X_{1},

$$
x R_{1} y \rightarrow f(x) R_{2} f(y)
$$

We write $R_{1} \preceq_{\mathrm{B}} R_{2}$ if there is a Borel homomorphism from R_{1} to R_{2}.
From the above discussion, Theorem 1 is an immediate consequence of the following

Theorem 3. No $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph can bound all Borel strict orders in \preceq_{B}. In particular, the class of $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs and the class of $\boldsymbol{\Sigma}_{1}^{1}$ strict orders admit no complete element (for \preceq_{B}, hence also for \leq_{B}).

In order to prove Theorem 3, we use an "index method". We first define for each $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph R a countable ordinal ind (R) satisfying

$$
R_{1} \preceq_{\mathrm{B}} R_{2} \rightarrow \operatorname{ind}\left(R_{1}\right) \leq \operatorname{ind}\left(R_{2}\right) .
$$

Then we prove that this index is unbounded on the class of Borel strict orders. These facts together of course prove Theorem 3.

To define the index, recall from [L1] the notion of potential Borel class: A binary relation R on a Polish space X is potentially $\boldsymbol{\Delta}_{\xi}^{0}$ if there is a finer Polish topology τ on X such that R is Δ_{ξ}^{0} in the square of (X, τ). Note that if $f: X_{1} \rightarrow X_{2}$ is a Borel map and R is potentially $\boldsymbol{\Delta}_{\xi}^{0}$ on X_{2}, so is $f^{-1}(R)$ on X_{1}. For one can first refine the topology of X_{2} so that R is Δ_{ξ}^{0}, and then
the topology of X_{1} to make f continuous with respect to the new Polish topology of X_{2}.

This leads to the following definition, where \check{R} denotes the dual of R, defined by $x \check{R} y$ whenever $y R x$.

Definition 4. If R is a $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph, let ind (R) be the least ordinal $\xi<\omega_{1}$ such that there exists a potentially $\boldsymbol{\Delta}_{\xi}^{0}$ set C separating R from \check{R}, i.e. satisfying $R \subseteq C$ and $C \cap \check{R}=\emptyset$.

Note that $\operatorname{ind}(R)$ is well defined for each $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph R, because R and \check{R} are two disjoint $\boldsymbol{\Sigma}_{1}^{1}$ sets, hence Borel separable. And the above remarks imply immediately that the index ind is increasing, i.e. $R_{1} \preceq_{\mathrm{B}} R_{2}$ implies $\operatorname{ind}\left(R_{1}\right) \leq \operatorname{ind}\left(R_{2}\right)$, for a Borel homomorphism f from R_{1} to R_{2} is also a homomorphism from \check{R}_{1} to \check{R}_{2} and hence if C is a potentially $\boldsymbol{\Delta}_{\xi}^{0}$ set separating R_{2} from \check{R}_{2}, then $f^{-1}(C)$ is a potentially $\boldsymbol{\Delta}_{\xi}^{0}$ set which separates R_{1} from \check{R}_{1}.

So to get Theorem 3, it is enough to build a family $\left(R_{\xi}\right)$ of Borel strict orders with $\operatorname{ind}\left(R_{\xi}\right)>\xi$, at least for ξ a successor ordinal ≥ 2, as we now proceed to do. First we define the domain X_{ξ} of R_{ξ} as $2^{D_{\xi} \times \omega}$, where D_{ξ} is a countable set, defined inductively by

$$
\begin{aligned}
D_{2} & =\{0\}, \\
D_{\xi+1} & = \begin{cases}\omega \times D_{\xi} & \text { if } \xi \geq 2 \text { is successor, } \\
\left\{(n, i): i \in D_{\xi_{n}}\right\} & \text { if } \xi \text { is limit and } \xi_{n} \text { is a sequence of } \\
\text { successors converging to } \xi .\end{cases}
\end{aligned}
$$

Note that the two cases in this definition are the same if we set $\xi_{n}=\xi$ for all n, when ξ is successor. And in both cases we can (and will) view each $\alpha \in X_{\xi+1}$ as a sequence $\left(\alpha_{n}\right)_{n \in \omega}$, with $\alpha_{n} \in X_{\xi_{n}}$ for all n. With these conventions, we are now in a position to define inductively the strict orders R_{ξ}, together with Borel sets L_{ξ} and L_{ξ}^{*}, as follows:
$\operatorname{CASE} \xi=2$. Recall that the equivalence relation E_{0} is defined on 2^{ω} by

$$
\alpha E_{0} \beta \leftrightarrow \forall^{*} n \alpha(n)=\beta(n),
$$

where \forall^{*} is the quantifier "for all but finitely many".
We have $X_{2}=2^{\omega}$, and set

$$
\begin{aligned}
& R_{2}=\left\{(\alpha, \beta): \alpha \neq \beta \text { and } \alpha E_{0} \beta \text { and if } n\right. \text { is maximum } \\
&\quad \text { with } \alpha(n) \neq \beta(n), \text { then } \alpha(n)<\beta(n)\}, \\
& L_{2}=\left\{\alpha: \alpha E_{0} \underline{\}}\right\}, \quad L_{2}^{*}=\left\{\alpha: \alpha E_{0} \underline{1}\right\},
\end{aligned}
$$

where $\underline{0}$ and $\underline{1}$ are the reals which are identically 0 and 1 respectively.
The order R_{2} is the strict part of the partial order called \leq_{0} in Kanovei $[\mathrm{K}]$. It orders all E_{0}-classes (except L_{2} and L_{2}^{*}) in order type \mathbb{Z}.

Inductive case. Using the conventions above, for $\xi \geq 2$ we set

$$
\begin{aligned}
R_{\xi+1} & =\left\{(\alpha, \beta) \in X_{\xi+1}^{2}: \forall^{*} n \alpha_{n} R_{\xi_{n}} \beta_{n}\right\} \\
L_{\xi+1} & =\left\{\alpha \in X_{\xi+1}: \forall n\left(\alpha_{n} \in L_{\xi_{n}} \text { or } \alpha_{n} \in L_{\xi_{n}}^{*}\right) \text { and } \forall^{*} n\left(\alpha_{n} \in L_{\xi_{n}}\right)\right\} \\
L_{\xi+1}^{*} & =\left\{\alpha \in X_{\xi+1}: \forall n\left(\alpha_{n} \in L_{\xi_{n}} \text { or } \alpha_{n} \in L_{\xi_{n}}^{*}\right) \text { and } \forall^{*} n\left(\alpha_{n} \in L_{\xi_{n}}^{*}\right)\right\}
\end{aligned}
$$

One easily checks that each R_{ξ} is a Borel strict order. So to get Theorem 3, it is enough to prove that for all successor $\xi \geq 2, \operatorname{ind}\left(R_{\xi}\right)>\xi$, i.e. that no potentially $\boldsymbol{\Delta}_{\xi}^{0}$ set can separate R_{ξ} from \check{R}_{ξ}. We will prove this in two steps, by first proving that there is no separation by a $\boldsymbol{\Delta}_{\xi}^{0}$ set, and then dealing with the possible change of topologies.

For the first step, we use the following lemma, which also explains the notation for the sets L_{ξ} and L_{ξ}^{*} : the letter L is for Lebesgue (the same idea was already used in [HKL] for other purposes).

Lemma 5. Let $\xi>1$ be successor. There is no $\boldsymbol{\Delta}_{\xi}^{0}$ set separating L_{ξ} from L_{ξ}^{*}.

Proof. This is a direct consequence of Lebesgue's classical result about the generation of Baire class ξ functions by the operation of taking pointwise limits: For $\xi \geq 1$, Baire class ξ functions are the pointwise limits of sequences of functions of Baire class $<\xi$, and even of Baire class $<\lambda$ if $\xi=\lambda+1$ with λ limit. This result is valid for real-valued functions on arbitrary Polish spaces, but it is also valid for $\{0,1\}$-valued functions on $\operatorname{dim} 0$ Polish spaces, in particular for Borel subsets of 2^{ω}. And there, tracing back in the inductive definition above, one easily checks that it exactly means that for any successor $\xi \geq 2$ and any $\boldsymbol{\Delta}_{\xi}^{0}$ set $C \subseteq 2^{\omega}$, there is a sequence $\left(C_{i, n}\right)_{(i, n) \in D_{\xi} \times \omega}$ of clopen subsets of 2^{ω} such that
(i) for each $\alpha \in 2^{\omega}, 1_{\left\{(i, n): \alpha \in C_{i, n}\right\}} \in L_{\xi} \cup L_{\xi}^{*}$,
(ii) $\alpha \in C \leftrightarrow 1_{\left\{(i, n): \alpha \in C_{i, n}\right\}} \in L_{\xi}^{*}$.

But then, as the map $\alpha \mapsto 1_{\left\{(i, n): \alpha \in C_{i, n}\right\}}$ is continuous, we find that if some $\boldsymbol{\Delta}_{\xi}^{0}$ set C were separating L_{ξ}^{*} from L_{ξ}, every $\boldsymbol{\Delta}_{\xi}^{0}$ subset of 2^{ω} would be in the Wadge class of C, which, as $\xi \geq 2$, is a contradiction proving the lemma.

Using this lemma, we get
Proposition 6. For each successor ordinal $\xi \geq 2$, there is a continuous $\operatorname{map} f_{\xi}=\left(f_{\xi}^{0}, f_{\xi}^{1}\right): X_{\xi} \rightarrow X_{\xi} \times X_{\xi}$ satisfying:
(i) if $\alpha \in L_{\xi}$, then $f_{\xi}^{0}(\alpha) R_{\xi} f_{\xi}^{1}(\alpha)$,
(ii) if $\alpha \in L_{\xi}^{*}$, then $f_{\xi}^{1}(\alpha) R_{\xi} f_{\xi}^{0}(\alpha)$.

In particular, R_{ξ} cannot be separated from \check{R}_{ξ} by a $\boldsymbol{\Delta}_{\xi}^{0}$ set.

Proof. The second assertion follows from the first and Lemma 5: any separating Δ_{ξ}^{0} set would yield, by taking the inverse image under f_{ξ}, a Δ_{ξ}^{0} set separating L_{ξ} from L_{ξ}^{*}, contradicting Lemma 5 .

To prove the first assertion, we define f_{ξ} by induction.
For $\xi=2, \beta^{0}=f_{2}^{0}(\alpha)$ and $\beta^{1}=f_{2}^{1}(\alpha)$ are defined by:
(i) for $n=0$,

$$
\beta^{0}(0)=\alpha(0), \quad \beta^{1}(0)=1-\alpha(0)
$$

(ii) for $n>0$,
(0) if $\alpha(n)=\alpha(n-1)$, then $\beta^{0}(n)=\beta^{1}(n)=0$,
(1) if $\alpha(n)<\alpha(n-1)$, then $\beta^{0}(n)=0$ and $\beta^{1}(n)=1$,
(2) if $\alpha(n)>\alpha(n-1)$, then $\beta^{0}(n)=1$ and $\beta^{1}(n)=0$.

To check it works, suppose first $\alpha \in L_{2}$, and let n be smallest with $\alpha(k)=0$ for $k \geq n$. Then, whether $n=0$ or not, we are in case (1) of the definition at n, and in case (0) at all $k>n$. This implies that n is largest with $\beta^{0}(n) \neq \beta^{1}(n)$. As $\beta^{0}(n)<\beta^{1}(n)$, we get $\beta^{0}(n) R_{2} \beta^{1}(n)$ as wanted.

Suppose now $\alpha \in L_{2}^{*}$, and let n be smallest with $\alpha(k)=1$ for $k \geq n$. Then we are in case (2) of the definition at n, and in case (0) at any $k>n$. Again n is largest with $\beta^{0}(n) \neq \beta^{1}(n)$, and as $\beta^{0}(n)>\beta^{1}(n)$, we get $\beta^{1}(n) R_{2} \beta^{0}(n)$ as wanted.

This gives the proposition for $\xi=2$.
The induction step is easy. Using the same conventions as before, for $\alpha=\left(\alpha_{n}\right)_{n \in \omega}$ in X_{ξ}, set $f_{\xi}^{i}(\alpha)=\left(f_{\xi_{n}}^{i}\left(\alpha_{n}\right)\right)_{n \in \omega}$ for $i=0,1$.

By induction we find that if $\alpha \in L_{\xi}$, then for all but finitely many n 's, $\alpha_{n} \in L_{\xi_{n}}$, hence for the same n 's, $f_{\xi_{n}}^{0}\left(\alpha_{n}\right) R_{\xi_{n}} f_{\xi_{n}}^{1}\left(\alpha_{n}\right)$, so $f_{\xi}^{0}(\alpha) R_{\xi} f_{\xi}^{1}(\alpha)$, and similarly with L_{ξ}^{*} and \check{R}_{ξ}. This proves Proposition 6 .

We now get rid of the possible change of topologies. Fix the ordinal ξ. A good pair (D, γ) at level ξ consists of a subset $D \subseteq D_{\xi} \times \omega$ such that for all $i \in D_{\xi}$, the set $D_{i}=\{n:(i, n) \in D\}$ is infinite, together with a map $\gamma:\left(D_{\xi} \times \omega\right)-D \rightarrow 2$.

Such a pair (D, γ) defines a compact set

$$
K_{D, \gamma}=\left\{\alpha \in X_{\xi}:\left.\alpha\right|_{\left(D_{\xi} \times \omega\right)-D}=\gamma\right\},
$$

and a natural homeomorphism $h_{D, \gamma}=h$ of X_{ξ} onto $K_{D, \gamma}$: if for $i \in D_{\xi}, d_{i}$ is the increasing enumeration of D_{i}, define $\beta=h(\alpha)$ by $\beta(i, n)=\alpha\left(i, d_{i}^{-1}(n)\right)$ if $(i, n) \in D$ and $\beta(i, n)=\gamma(i, n)$ otherwise.

Lemma 7. For each successor ordinal $\xi>1$ and good pair (D, γ) at level ξ, the map $h_{D, \gamma}$ is a continuous reduction of R_{ξ} to $\left.R_{\xi}\right|_{K_{D, \gamma}}$.

Proof. We argue by induction. If $\xi=2$, then D is an infinite subset of ω with enumeration d, and given α and β in $X_{2}=2^{\omega}$, the set of integers where $h(\alpha)$ and $h(\beta)$ differ is the d-image of the set of integers where α and
β differ. So we get $\alpha \neq \beta$ if and only if $h(\alpha) \neq h(\beta), \alpha E_{0} \beta$ if and only if $h(\alpha) E_{0} h(\beta)$, and, as d is increasing, the largest n where $h(\alpha)$ and $h(\beta)$ differ, when it exists, is the image under d of the largest n where α and β differ. So finally $\alpha R_{2} \beta$ if and only if $h(\alpha) R_{2} h(\beta)$.

Again the induction step is easy. Fix (D, γ) good at level ξ. Recall that with our conventions, $D_{\xi}=\left\{(n, i): i \in D_{\xi_{n}}\right\}$. So for each n, we get a pair at level ξ_{n} by setting $D_{n}=\left\{(i, k) \in D_{\xi_{n}} \times \omega:((n, i), k) \in D\right\}$ and $\gamma_{n}((i, k))=\gamma((n, i), k)$ for $(i, k) \in D_{n}$. Clearly $\left(D_{n}, \gamma_{n}\right)$ is good at level ξ_{n}, so by induction the corresponding homeomorphism h_{n} is such that for α, β in $X_{\xi_{n}}, \alpha R_{\xi_{n}} \beta$ if and only if $h_{n}(\alpha) R_{\xi_{n}} h_{n}(\beta)$.

But note that for $\alpha=\left(\alpha_{n}\right)_{n \in \omega}$ in X_{ξ}, one has $h(\alpha)=\left(h_{n}\left(\alpha_{n}\right)\right)_{n \in \omega}$, so that the previous fact implies immediately that $\alpha R_{\xi} \beta$ if and only if $h(\alpha) R_{\xi} h(\beta)$, as desired.

To finish the proof of Theorem 3, we need the following (essentially classical) lemma:

Lemma 8. Let C be a countable set, and H a dense G_{δ} subset of $2^{C \times \omega}$. Then there exists a subset D of $C \times \omega$ with D_{i} infinite for all $i \in C$, and a map $\gamma:(C \times \omega)-D \rightarrow 2$ such that

$$
K_{D, \gamma}=\left\{\alpha \in 2^{C \times \omega}:\left.\alpha\right|_{(C \times \omega)-D}=\gamma\right\}
$$

is a subset of H.
Proof. The pair (D, γ) is constructed by induction. Say that (d, g) is a finite approximation if d and $\operatorname{dom}(g)$ are finite disjoint subsets of $C \times \omega$. It is clearly enough to check that given a finite approximation (d, g), an $i \in C$ and a dense open set $U \subseteq 2^{C \times \omega}$, one can extend (d, g) to some $\left(d^{\prime}, g^{\prime}\right)$ so that $d^{\prime}-d$ meets $\{i\} \times \omega$, and the clopen set $V_{g^{\prime}}=\left\{\alpha \in 2^{C \times \omega}:\left.\alpha\right|_{\operatorname{dom}\left(g^{\prime}\right)}=g^{\prime}\right\}$ is a subset of U. But this is easy: Pick first n with (i, n) outside $d \cup \operatorname{dom}(g)$, and set $d^{\prime}=d \cup\{(i, n)\}$. Enumerate $2^{d^{\prime}}$ as f_{1}, \ldots, f_{N}, and define inductively $g_{0}, g_{1}, \ldots, g_{N}$ so that they all have their domains disjoint from $d^{\prime}, g_{0}=g$ and they extend each other, and for each $k \leq N, V_{f_{k} \cup g_{k}} \subseteq U$. This is possible by the density of U. But then $g^{\prime}=g_{N}$ works.

End of proof of Theorem 3. As said before, we just have to check that for any successor ordinal $\xi \geq 2, \operatorname{ind}\left(R_{\xi}\right)>\xi$. Argue by contradiction, and suppose C is a Borel set separating R_{ξ} from \check{R}_{ξ}, and τ a finer Polish topology on X_{ξ} such that C is Δ_{ξ}^{0} in $\left(X_{\xi}, \tau\right)^{2}$. Fix then a dense G_{δ} subset H of X_{ξ} on which τ and the usual topology coincide. Applying Lemma 8 (with D_{ξ}), we get a good pair (D, γ) at level ξ with $K=K_{D, \gamma} \subseteq H$. But then $C \cap K^{2}$ is Δ_{ξ}^{0}, and by Lemma $7, h_{D, \gamma}^{-1}(C)$ is a Δ_{ξ}^{0} set separating R_{ξ} from \check{R}_{ξ}, contradicting Proposition 6.

Remark. The minimal expected complexity of a strict order R with $\operatorname{ind}(R)>\xi$ is $\boldsymbol{\Sigma}_{\xi}^{0}\left(\boldsymbol{\Pi}_{\xi}^{0}\right.$ is not possible because of the separation property of that class). Our examples are more complicated, except for $\xi=2$ and ξ successor of a limit ordinal. We do not know if $\boldsymbol{\Sigma}_{\xi}^{0}$ is always obtainable.

It is often the case with the index method (see [L1]) that the actual proof of the unboundedness of the index provides a jump operator. This is also the case here, at least in spirit, for we will need a slight variant of the previous proof to get the strongest possible jump result.

If $\left(R_{n}\right)_{n \in \omega}$ is a sequence of $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs on Polish spaces X_{n}, define a $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph $\left(R_{n}\right)^{+}$on $\prod_{n} X_{n}$ by

$$
x\left(R_{n}\right)^{+} y \leftrightarrow \forall^{*} n x_{n} R_{n} y_{n}
$$

The operator + is clearly increasing for the orderings \preceq_{B} and \leq_{B} : if for all $n, R_{n} \preceq_{\mathrm{B}} S_{n}\left(\right.$ resp. $\left.R_{n} \leq_{\mathrm{B}} S_{n}\right)$, one also has $\left(R_{n}\right)^{+} \preceq_{\mathrm{B}}\left(S_{n}\right)^{+}$(resp. $\left.\left(R_{n}\right)^{+} \leq_{\mathrm{B}}\left(S_{n}\right)^{+}\right)$, by combining the witnessing maps.

If for all $n, R_{n}=R$, write R^{+}instead of $\left(R_{n}\right)^{+}$. This defines a \preceq - and \leq_{B}-increasing operator, which clearly satisfies $R \leq_{\mathrm{B}} R^{+}$for all $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs R.

The next result is a direct consequence of the proof of the unboundedness of the index. It shows that for complicated enough $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs, + is in fact a jump operator.

Corollary 9. Let R be a $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph with $R_{2} \preceq_{\mathrm{B}} R$. Then $R^{+} \varliminf_{\mathrm{B}} R$.

Proof. Assume not, and let R be a counterexample. Then from $R^{+} \preceq_{\mathrm{B}} R$ and the fact that + is \preceq_{B}-increasing, one sees easily by induction that for all countable successor ordinals $\xi \geq 2, R_{\xi} \preceq_{\mathrm{B}} R$, contradicting (the proof of) Theorem 3.

The condition $R_{2} \preceq_{\mathrm{B}} R$ in the previous corollary is not optimal, and may look a bit unnatural. We now show that at least in the context of $\boldsymbol{\Sigma}_{1}^{1}$ strict orders, it provides the optimal result. Then we will see how to change the arguments to get the optimal result for arbitrary $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs.

First, let us consider the particular case of $\boldsymbol{\Sigma}_{1}^{1}$ strict orders. Recall from Kanovei $[\mathrm{K}]$ that a partial order R is Borel linearizable if it admits an extension which is a Borel linear order. We will use the following result from [L3]:

TheOrem 10. The following are equivalent, for a $\boldsymbol{\Sigma}_{1}^{1}$ partial order R :
(i) R is not Borel linearizable,
(ii) $R_{2} \preceq_{\mathrm{B}}<_{R}$,
(iii) $\operatorname{ind}\left(<_{R}\right)>2$.

Corollary 11. Let R be a $\boldsymbol{\Sigma}_{1}^{1}$ strict order which admits finite chains of arbitrary cardinality. Then $R^{+} \varliminf_{\mathrm{B}} R$.

Proof. By Corollary 9, it is enough to check that any possible counterexample R satisfies $R_{2} \preceq_{\mathrm{B}} R$. By the assumption on R, we have for each $n \in \omega$ an increasing R-chain $\left(x_{n}^{i}\right)_{i \leq n}$. We then use the following

FAct. One can build in ω^{ω} an ω_{1}-sequence $\left(f_{\xi}\right)_{\xi<\omega_{1}}$ such that for all n, $f_{\xi}(n) \leq n$, and $\eta<\xi$ implies $\forall^{*} n f_{\eta}(n)<f_{\xi}(n)$.

Granted this fact, the sequence $\left(\left(x_{n}^{f_{\xi}(n)}\right)_{n \in \omega}\right)_{\xi<\omega_{1}}$ is then an increasing R^{+}-chain. But it is a result of Harrington, Marker and Shelah [HMS] that in any Borel linear order there is no uncountable chain. This implies that R^{+} is not Borel linearizable, and, by Theorem 10, $R_{2} \preceq_{\mathrm{B}} R^{+}$. So if $R^{+} \preceq_{\mathrm{B}} R$, we get $R_{2} \preceq_{\mathrm{B}} R$, and Corollary 9 applies, as wanted.

So it remains to construct the sequence $\left(f_{\xi}\right)_{\xi<\omega_{1}}$ as above. Consider the subset A of ω^{ω} consisting of those functions f satisfying $f(n) \leq n$ for all n, and $n-f(n) \rightarrow \infty$ with n. It is clearly enough to prove that for any sequence $\left(g_{k}\right)_{k \in \omega}$ in A, there is f in A with $\forall k \forall^{*} n g_{k}(n)<f(n)$, as one can then by using it build the ω_{1} sequence in A by induction on the countable ordinals. As A is closed under finite pointwise suprema, we may assume the sequence g_{k} is increasing. Let then n_{k} be least with $n-g_{k}(n)>k$ for all $n>n_{k}$, and let $f(n)$ be 0 for $n<n_{0}$, and $g_{k}(n)+1$ for $n_{k} \leq n<n_{k+1}$. One easily checks that f works.

REmark. Corollary 11 is indeed optimal, for if R is such that all R chains have size $\leq k<\omega$, then $R^{+} \preceq_{\mathrm{B}} R$. To see this, note first that if R has this property, then so does R^{+}. Moreover, it is not hard to show by induction on k that if R on X is a $\boldsymbol{\Sigma}_{1}^{1}$ strict order with no $k+1$-chain, then $R \preceq_{\mathrm{B}}(k,<)$. This is clear if $k=1$. For $k+1$, consider the $\boldsymbol{\Sigma}_{1}^{1}$ set $A \subseteq X$ of all points which are the maximum element of a $k+1$-chain in R. By the hypothesis, A is a subset of the Π_{1}^{1} set C of all R-maximal points. By separation, there is a Borel set B with $A \subseteq B \subseteq C$. On the complement of B, there are no $k+1$-chains in R, so there is by induction a Borel homomorphism into $(k,<)$. Sending the points of B to k then gives the desired Borel homomorphism.

Finally, if k is the least upper bound to the cardinality of R-chains, we deduce by the preceding facts that $R^{+} \preceq_{\mathrm{B}}(k,<) \preceq_{\mathrm{B}} R$, as desired.

In some cases, one can even have $R^{+} \leq_{\mathrm{B}} R$, for example if $X=\{0,1,2\}$ with $0 R 1$, as witnessed by sending the sequences which are eventually i, for $i=0,1$, to i, and the other sequences to 2 .

We now briefly indicate how to adapt the previous arguments to get the following result, which subsumes both Corollaries 9 and 11 and is valid for arbitrary $\boldsymbol{\Sigma}_{1}^{1}$ oriented graphs:

Theorem 12. Let R be a $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph on a Polish space X. Assume that $(*)$ for all $k \in \omega$, there is a sequence $\left(x_{i}^{k}\right)_{i \leq k}$ in X with $x_{i}^{k} R x_{i+1}^{k}$ for all $i<k$. Then $R^{+} \not \varliminf_{\mathrm{B}} R$.

Proof. We first introduce an oriented graph G_{2}-which replaces R_{2}. It is defined on the space X_{2}^{\prime} of all infinite co-infinite subsets of ω by

$$
A G_{2} B \leftrightarrow A \triangle B \text { is finite } \& \operatorname{card}(B-A)=\operatorname{card}(A-B)+1
$$

We can then define inductively (as we did for the R_{ξ} 's) graphs G_{ξ}, for successor $\xi \geq 2$, by setting for successor $\xi, G_{\xi+1}=G_{\xi}^{+}$, and for limit λ, with $\left(\lambda_{n}\right)$ an increasing sequence of successor ordinals converging to it, $G_{\lambda+1}=$ $\left(G_{\lambda_{n}}\right)_{n}^{+}$. We can of course view G_{2} as defined on $X_{2}=2^{\omega}$, and hence G_{ξ} as defined on X_{ξ}.

We now argue as in Corollary 11. First we check that if R is a $\boldsymbol{\Sigma}_{1}^{1}$ oriented graph which satisfies condition (*), then $G_{2} \preceq_{\mathrm{B}} R^{+}$. To see this, let $\left(x_{i}^{k}\right)_{i<k}$ be a witness for $(*)$, and define, for A an infinite co-infinite subset of $\omega, i_{A}(k)=\operatorname{card}(A \cap k)$ and $f(A)=\left(x_{i_{A}(k)}^{k}\right)_{k \in \omega}$. Then if $A G_{2} B$ and $n=\sup (A \triangle B)+1$, one sees for $k \geq n$ that $i_{\mathrm{B}}(k)=i_{A}(k)+1$, hence $x_{i_{A}(k)}^{k} R x_{i_{\mathrm{B}}(k)}^{k}$. So $f(A) R^{+} f(B)$, and f is a Borel homomorphism from G_{2} to R^{+}.

The second step of the proof is then immediate, by induction on ξ : If R satisfies (*) and $R^{+} \preceq_{\mathrm{B}} R$, then for all $\xi, G_{\xi} \preceq_{\mathrm{B}} R$.

So it remains to show that this is impossible, by proving that for all successor $\xi \geq 2$, $\operatorname{ind}\left(G_{\xi}\right)>\xi$. The proof of this last fact is entirely analogous to the proof we gave for R_{ξ}. We just have to prove the statements analogous to Proposition 6 and Lemma 7. The analog of Lemma 7 is obvious, with the same proof, using the particular form of G_{ξ}. For the analog of Proposition 6, it comes down to proving that there is a continuous map $f: 2^{\omega} \rightarrow 2^{\omega} \times 2^{\omega}$ sending L_{0} to G_{2} and L_{1} to \check{G}_{2}. To do this, one can use the determinacy of the following usual separation game: players I and II play $\alpha \in 2^{\omega}$ and $(\beta, \gamma) \in 2^{\omega} \times 2^{\omega}$ respectively (bit by bit), and player II wins if $\alpha \in L_{0}$ implies $\beta G_{2} \gamma$, and $\alpha \in L_{1}$ implies $\gamma G_{2} \beta$. This game is clearly Borel, hence determined, and a winning strategy for player II provides the wanted map f. So it is enough to check that player I does not have a winning strategy. But otherwise, we get a continuous map $g: 2^{\omega} \times 2^{\omega} \rightarrow 2^{\omega}$ which satisfies $g\left(2^{\omega} \times 2^{\omega}\right) \subseteq L_{0} \cup L_{1}, G_{2} \subseteq g^{-1}\left(L_{1}\right)=g^{-1}\left(2^{\omega}-L_{0}\right)$, and $\check{G}_{2} \subseteq g^{-1}\left(L_{0}\right)=g^{-1}\left(2^{\omega}-L_{1}\right)$, by the definition of the game. Now clearly G_{2} and \check{G}_{2} are both dense in $\left(X_{2}^{\prime}\right)^{2}$, so $g^{-1}\left(L_{0}\right)$ and $g^{-1}\left(L_{1}\right)$ are disjoint dense G_{δ} in it, a clear contradiction. Putting everything together, this proves Theorem 12.

To end up this paper, let us come back to our original motivation, i.e. the unboundedness property of $\boldsymbol{\Sigma}_{1}^{1}$ partial orders under \leq_{B} (Theorem 1),
and discuss how this result can be generalized to other types of quasi-orders besides partial orders.

If R is a $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order on a Polish space X, denote by \equiv_{R} the associated (necessarily $\boldsymbol{\Sigma}_{1}^{1}$) equivalence relation, defined by $\equiv_{R}=R \cap \check{R}$. And if E is a given $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation on X, let \mathcal{C}_{E} be the class of $\boldsymbol{\Sigma}_{1}^{1}$ quasi-orders R on X with $\equiv_{R}=E$. So partial orders correspond to the case of equality, on say $X=2^{\omega}$. And Theorem 1 says that when E is equality, \mathcal{C}_{E} admits no complete element. What is the situation for other E 's?

First, it is proved in Louveau-Rosendal [LR] that if E is a complete $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation, one has $E=\equiv_{R}$ for some complete $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order R, which is a fortiori complete in \mathcal{C}_{E}. So this gives an example of a $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation E for which there exists a complete element in \mathcal{C}_{E}. Also, the same is true at the other extreme, if E has only countably many classes, for then \mathcal{C}_{E} corresponds (up to Borel bi-reducibility) to countable partial orders, and it is well known that there exists a complete countable partial order.

Here we have:
Corollary 13. Let E be a Borel equivalence relation on some Polish space X, with uncountably many classes. Then \mathcal{C}_{E} has no complete element, and in fact the Borel elements in \mathcal{C}_{E} are unbounded in \mathcal{C}_{E}.

Proof. Suppose, towards a contradiction, that some $R \in \mathcal{C}_{E}$ Borel reduces all Borel elements in \mathcal{C}_{E}. Consider the strict order $<_{R}=R-E$, which is $\boldsymbol{\Sigma}_{1}^{1}$ as E is Borel. We get the desired contradiction by proving that $<_{R}$ Borel reduces all Borel strict orders on 2^{ω}, contradicting Theorem 3. So let S be a Borel strict order on 2^{ω}. By our assumption and Silver's theorem, there is a one-to-one continuous map $f: 2^{\omega} \rightarrow X$ which reduces equality to E. Define then S^{\prime} on X by
$x S^{\prime} y \leftrightarrow x E y$ or $\exists \alpha \in 2^{\omega} \exists \beta \in 2^{\omega}(f(\alpha) E x$ and $f(\beta) E y$ and $\alpha S \beta)$.
It is easy to check that S^{\prime} is a quasi-order with $\equiv_{S^{\prime}}=E$, and that S^{\prime} is Borel (for the α, β in the definition are unique, when they exist). Moreover, f is a witness that $S \leq_{\mathrm{B}} S^{\prime}$, and as $S^{\prime} \in \mathcal{C}_{E}$, also $S^{\prime} \leq_{\mathrm{B}} R$, hence we get the desired contradiction.

We do not know whether there is a complete element in \mathcal{C}_{E} when E is a Σ_{1}^{1} equivalence relation which is neither complete nor Borel.

References

[FS] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), 894-914.
[HMS] L. Harrington, D. Marker and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), 293-302
[HKL] G. Hjorth, A. S. Kechris and A. Louveau, Borel equivalence relations induced by actions of the symmetric group, Ann. Pure Appl. Logic 92 (1998), 63-112.
[K] V. Kanovei, When a partial Borel order is linearizable, Fund. Math. 155 (1998), 301-309.
[L1] A. Louveau, On the reducibility order between Borel equivalence relations, Stud. Logic Found. Math. 134 (1994), 151-155.
[L2] -, Closed orders and their vicinity, in preparation.
[L3] -, Some dichotomy results for analytic graphs, in preparation.
[LR] A. Louveau and C. Rosendal, Complete analytic equivalence relations, Trans. Amer. Math. Soc. 357 (2005), 4839-4866.

Institut de Mathématiques de Jussieu
Analyse Fonctionnelle, boîte 186
Université Paris 6
4 Place Jussieu
F-75252 Paris Cedex 05, France
E-mail: louveau@ccr.jussieu.fr

Received 2 June 2005;
in revised form 4 July 2006

[^0]: 2000 Mathematics Subject Classification: Primary 03E15, 04A15.
 Key words and phrases: analytic partial orders, analytic graphs, Borel reducibility.

