Analytic partial orders and oriented graphs

by

Alain Louveau (Paris)

Abstract. We prove that there is no maximum element, under Borel reducibility, in the class of analytic partial orders and in the class of analytic oriented graphs. We also provide a natural jump operator for these two classes.

This paper is part of the general program of studying Σ_1^1 (analytic) binary relations on Polish spaces, under the Borel reducibility ordering, and variants of it.

If R_1 and R_2 are binary relations on Polish spaces X_1 and X_2 respectively, a *reduction* of R_1 to R_2 is a map $f: X_1 \to X_2$ such that for all x, y in $X_1, xR_1y \leftrightarrow f(x)R_2f(y)$.

We say that R_1 is Borel reducible to R_2 , or R_2 Borel reduces R_1 , and write $R_1 \leq_{\mathrm{B}} R_2$, if there is a Borel reduction of R_1 to R_2 . If there is an injective Borel reduction, we say that R_1 Borel embeds into R_2 and write $R_1 \subseteq_{\mathrm{B}} R_2$.

If C is a class of binary relations on Polish spaces, a relation R is C-complete if $R \in C$ and R Borel reduces all elements of C.

It is known that many natural classes of Σ_1^1 binary relations admit complete elements, e.g. the class of Σ_1^1 equivalence relations, the class of Σ_1^1 quasi-orderings, or the class of Σ_1^1 graphs (see [LR]).

There are also known examples of classes with no complete elements. H. Friedman proved that this is the case for Borel equivalence relations (see [FS] and [L1]), and it implies easily that this is also the case for Borel quasi-orderings. Another example is the class of G_{δ} quasi-orders, as shown in Louveau [L2].

In this paper, we will add two more examples of this phenomenon to the previous list, maybe somewhat more surprising as they are classes of Σ_1^1 objects.

2000 Mathematics Subject Classification: Primary 03E15, 04A15.

Key words and phrases: analytic partial orders, analytic graphs, Borel reducibility.

First, we will consider the case of Σ_1^1 partial orders, i.e. transitive, reflexive relations R such that xRy and yRx imply x = y. We will prove:

THEOREM 1. The class C of Σ_1^1 partial orders admits no complete element. In fact, the Borel partial orders are unbounded in C for the ordering \leq_{B} .

This result will be obtained by considering more general binary relations.

If R is a partial order, its strict part $<_R$ is defined by $x <_R y \leftrightarrow xRy$ and $x \neq y$. It is a strict order, i.e. a transitive irreflexive relation. And conversely, for each strict order S, the relation xSy or x = y is a partial order admitting S as its strict part. Moreover, if f is a reduction of the partial order R_1 to the partial order R_2 , then f must reduce equality to equality, i.e. be injective, and also reduce $<_{R_1}$ to $<_{R_2}$. And as the converse also holds, we easily see that

$$R_1 \leq_{\mathcal{B}} R_2 \; \leftrightarrow \; <_{R_1} \sqsubseteq_{\mathcal{B}} <_{R_2}.$$

Strict orders are a particular case of *oriented graphs*, those binary relations R which are antisymmetric, i.e. satisfy $xRy \rightarrow \neg yRx$. And for these relations, there is another interesting natural ordering, weaker than Borel reducibility, given by using homomorphisms instead of reductions.

DEFINITION 2. If R_1, R_2 are binary relations on Polish spaces X_1, X_2 respectively, a map $f: X_1 \to X_2$ is a homomorphism from R_1 to R_2 if for all x, y in X_1 ,

$$xR_1y \rightarrow f(x)R_2f(y).$$

We write $R_1 \leq_{\mathrm{B}} R_2$ if there is a Borel homomorphism from R_1 to R_2 .

From the above discussion, Theorem 1 is an immediate consequence of the following

THEOREM 3. No Σ_1^1 oriented graph can bound all Borel strict orders in \leq_{B} . In particular, the class of Σ_1^1 oriented graphs and the class of Σ_1^1 strict orders admit no complete element (for \leq_{B} , hence also for \leq_{B}).

In order to prove Theorem 3, we use an "index method". We first define for each Σ_1^1 oriented graph R a countable ordinal ind(R) satisfying

$$R_1 \preceq_{\mathrm{B}} R_2 \rightarrow \operatorname{ind}(R_1) \leq \operatorname{ind}(R_2).$$

Then we prove that this index is unbounded on the class of Borel strict orders. These facts together of course prove Theorem 3.

To define the index, recall from [L1] the notion of potential Borel class: A binary relation R on a Polish space X is *potentially* Δ_{ξ}^{0} if there is a finer Polish topology τ on X such that R is Δ_{ξ}^{0} in the square of (X, τ) . Note that if $f: X_1 \to X_2$ is a Borel map and R is potentially Δ_{ξ}^{0} on X_2 , so is $f^{-1}(R)$ on X_1 . For one can first refine the topology of X_2 so that R is Δ_{ξ}^{0} , and then the topology of X_1 to make f continuous with respect to the new Polish topology of X_2 .

This leads to the following definition, where \mathring{R} denotes the dual of R, defined by $x\check{R}y$ whenever yRx.

DEFINITION 4. If R is a Σ_1^1 oriented graph, let $\operatorname{ind}(R)$ be the least ordinal $\xi < \omega_1$ such that there exists a potentially Δ_{ξ}^0 set C separating R from \check{R} , i.e. satisfying $R \subseteq C$ and $C \cap \check{R} = \emptyset$.

Note that $\operatorname{ind}(R)$ is well defined for each Σ_1^1 oriented graph R, because R and \check{R} are two disjoint Σ_1^1 sets, hence Borel separable. And the above remarks imply immediately that the index ind is increasing, i.e. $R_1 \preceq_B R_2$ implies $\operatorname{ind}(R_1) \leq \operatorname{ind}(R_2)$, for a Borel homomorphism f from R_1 to R_2 is also a homomorphism from \check{R}_1 to \check{R}_2 and hence if C is a potentially Δ_{ξ}^0 set separating R_2 from \check{R}_2 , then $f^{-1}(C)$ is a potentially Δ_{ξ}^0 set which separates R_1 from \check{R}_1 .

So to get Theorem 3, it is enough to build a family (R_{ξ}) of Borel strict orders with $\operatorname{ind}(R_{\xi}) > \xi$, at least for ξ a successor ordinal ≥ 2 , as we now proceed to do. First we define the domain X_{ξ} of R_{ξ} as $2^{D_{\xi} \times \omega}$, where D_{ξ} is a countable set, defined inductively by

$$D_{2} = \{0\},$$

$$D_{\xi+1} = \begin{cases} \omega \times D_{\xi} & \text{if } \xi \ge 2 \text{ is successor,} \\ \{(n,i): i \in D_{\xi_{n}}\} & \text{if } \xi \text{ is limit and } \xi_{n} \text{ is a sequence of} \\ & \text{successors converging to } \xi. \end{cases}$$

Note that the two cases in this definition are the same if we set $\xi_n = \xi$ for all n, when ξ is successor. And in both cases we can (and will) view each $\alpha \in X_{\xi+1}$ as a sequence $(\alpha_n)_{n \in \omega}$, with $\alpha_n \in X_{\xi_n}$ for all n. With these conventions, we are now in a position to define inductively the strict orders R_{ξ} , together with Borel sets L_{ξ} and L_{ξ}^* , as follows:

CASE $\xi = 2$. Recall that the equivalence relation E_0 is defined on 2^{ω} by

$$\alpha E_0 \beta \iff \forall^* n \ \alpha(n) = \beta(n),$$

where \forall^* is the quantifier "for all but finitely many".

We have $X_2 = 2^{\omega}$, and set

$$R_{2} = \{(\alpha, \beta) : \alpha \neq \beta \text{ and } \alpha E_{0}\beta \text{ and if } n \text{ is maximum} \\ \text{with } \alpha(n) \neq \beta(n), \text{ then } \alpha(n) < \beta(n)\}, \\ L_{2} = \{\alpha : \alpha E_{0}\underline{0}\}, \quad L_{2}^{*} = \{\alpha : \alpha E_{0}\underline{1}\},$$

where $\underline{0}$ and $\underline{1}$ are the reals which are identically 0 and 1 respectively.

The order R_2 is the strict part of the partial order called \leq_0 in Kanovei [K]. It orders all E_0 -classes (except L_2 and L_2^*) in order type \mathbb{Z} .

INDUCTIVE CASE. Using the conventions above, for $\xi \geq 2$ we set

$$R_{\xi+1} = \{ (\alpha, \beta) \in X_{\xi+1}^2 : \forall^* n \ \alpha_n R_{\xi_n} \beta_n \},$$

$$L_{\xi+1} = \{ \alpha \in X_{\xi+1} : \forall n \ (\alpha_n \in L_{\xi_n} \text{ or } \alpha_n \in L_{\xi_n}^*) \text{ and } \forall^* n \ (\alpha_n \in L_{\xi_n}) \},$$

$$L_{\xi+1}^* = \{ \alpha \in X_{\xi+1} : \forall n \ (\alpha_n \in L_{\xi_n} \text{ or } \alpha_n \in L_{\xi_n}^*) \text{ and } \forall^* n \ (\alpha_n \in L_{\xi_n}^*) \}.$$

One easily checks that each R_{ξ} is a Borel strict order. So to get Theorem 3, it is enough to prove that for all successor $\xi \geq 2$, $\operatorname{ind}(R_{\xi}) > \xi$, i.e. that no potentially Δ_{ξ}^{0} set can separate R_{ξ} from \check{R}_{ξ} . We will prove this in two steps, by first proving that there is no separation by a Δ_{ξ}^{0} set, and then dealing with the possible change of topologies.

For the first step, we use the following lemma, which also explains the notation for the sets L_{ξ} and L_{ξ}^* : the letter L is for Lebesgue (the same idea was already used in [HKL] for other purposes).

LEMMA 5. Let $\xi > 1$ be successor. There is no Δ_{ξ}^{0} set separating L_{ξ} from L_{ξ}^{*} .

Proof. This is a direct consequence of Lebesgue's classical result about the generation of Baire class ξ functions by the operation of taking pointwise limits: For $\xi \geq 1$, Baire class ξ functions are the pointwise limits of sequences of functions of Baire class $< \xi$, and even of Baire class $< \lambda$ if $\xi = \lambda + 1$ with λ limit. This result is valid for real-valued functions on arbitrary Polish spaces, but it is also valid for $\{0, 1\}$ -valued functions on dim 0 Polish spaces, in particular for Borel subsets of 2^{ω} . And there, tracing back in the inductive definition above, one easily checks that it exactly means that for any successor $\xi \geq 2$ and any Δ_{ξ}^{0} set $C \subseteq 2^{\omega}$, there is a sequence $(C_{i,n})_{(i,n)\in D_{\xi}\times\omega}$ of clopen subsets of 2^{ω} such that

- (i) for each $\alpha \in 2^{\omega}$, $1_{\{(i,n): \alpha \in C_{i,n}\}} \in L_{\xi} \cup L_{\xi}^*$,
- (ii) $\alpha \in C \leftrightarrow 1_{\{(i,n): \alpha \in C_{i,n}\}} \in L_{\mathcal{E}}^*$.

But then, as the map $\alpha \mapsto 1_{\{(i,n): \alpha \in C_{i,n}\}}$ is continuous, we find that if some Δ_{ξ}^{0} set C were separating L_{ξ}^{*} from L_{ξ} , every Δ_{ξ}^{0} subset of 2^{ω} would be in the Wadge class of C, which, as $\xi \geq 2$, is a contradiction proving the lemma.

Using this lemma, we get

PROPOSITION 6. For each successor ordinal $\xi \geq 2$, there is a continuous map $f_{\xi} = (f_{\xi}^0, f_{\xi}^1) : X_{\xi} \to X_{\xi} \times X_{\xi}$ satisfying:

- (i) if $\alpha \in L_{\xi}$, then $f_{\xi}^{0}(\alpha)R_{\xi}f_{\xi}^{1}(\alpha)$,
- (ii) if $\alpha \in L_{\xi}^*$, then $f_{\xi}^{1}(\alpha)R_{\xi}f_{\xi}^{0}(\alpha)$.

In particular, R_{ξ} cannot be separated from \check{R}_{ξ} by a Δ^0_{ξ} set.

Proof. The second assertion follows from the first and Lemma 5: any separating Δ_{ξ}^{0} set would yield, by taking the inverse image under f_{ξ} , a Δ_{ξ}^{0} set separating L_{ξ} from L_{ξ}^{*} , contradicting Lemma 5.

To prove the first assertion, we define f_{ξ} by induction. For $\xi = 2$, $\beta^0 = f_2^0(\alpha)$ and $\beta^1 = f_2^1(\alpha)$ are defined by:

(i) for n = 0,

$$\beta^0(0) = \alpha(0), \quad \beta^1(0) = 1 - \alpha(0);$$

(ii) for n > 0,

(0) if
$$\alpha(n) = \alpha(n-1)$$
, then $\beta^0(n) = \beta^1(n) = 0$,
(1) if $\alpha(n) < \alpha(n-1)$, then $\beta^0(n) = 0$ and $\beta^1(n) = 1$,
(2) if $\alpha(n) > \alpha(n-1)$, then $\beta^0(n) = 1$ and $\beta^1(n) = 0$.

To check it works, suppose first $\alpha \in L_2$, and let *n* be smallest with $\alpha(k) = 0$ for $k \geq n$. Then, whether n = 0 or not, we are in case (1) of the definition at *n*, and in case (0) at all k > n. This implies that *n* is largest with $\beta^0(n) \neq \beta^1(n)$. As $\beta^0(n) < \beta^1(n)$, we get $\beta^0(n)R_2\beta^1(n)$ as wanted.

Suppose now $\alpha \in L_2^*$, and let *n* be smallest with $\alpha(k) = 1$ for $k \ge n$. Then we are in case (2) of the definition at *n*, and in case (0) at any k > n. Again *n* is largest with $\beta^0(n) \ne \beta^1(n)$, and as $\beta^0(n) > \beta^1(n)$, we get $\beta^1(n)R_2\beta^0(n)$ as wanted.

This gives the proposition for $\xi = 2$.

The induction step is easy. Using the same conventions as before, for $\alpha = (\alpha_n)_{n \in \omega}$ in X_{ξ} , set $f^i_{\xi}(\alpha) = (f^i_{\xi_n}(\alpha_n))_{n \in \omega}$ for i = 0, 1. By induction we find that if $\alpha \in L_{\xi}$, then for all but finitely many *n*'s,

By induction we find that if $\alpha \in L_{\xi}$, then for all but finitely many *n*'s, $\alpha_n \in L_{\xi_n}$, hence for the same *n*'s, $f_{\xi_n}^0(\alpha_n)R_{\xi_n}f_{\xi_n}^1(\alpha_n)$, so $f_{\xi}^0(\alpha)R_{\xi}f_{\xi}^1(\alpha)$, and similarly with L_{ξ}^* and \check{R}_{ξ} . This proves Proposition 6. \blacksquare

We now get rid of the possible change of topologies. Fix the ordinal ξ . A good pair (D, γ) at level ξ consists of a subset $D \subseteq D_{\xi} \times \omega$ such that for all $i \in D_{\xi}$, the set $D_i = \{n : (i, n) \in D\}$ is infinite, together with a map $\gamma : (D_{\xi} \times \omega) - D \to 2$.

Such a pair (D, γ) defines a compact set

$$K_{D,\gamma} = \{ \alpha \in X_{\xi} : \alpha |_{(D_{\xi} \times \omega) - D} = \gamma \},\$$

and a natural homeomorphism $h_{D,\gamma} = h$ of X_{ξ} onto $K_{D,\gamma}$: if for $i \in D_{\xi}$, d_i is the increasing enumeration of D_i , define $\beta = h(\alpha)$ by $\beta(i,n) = \alpha(i, d_i^{-1}(n))$ if $(i,n) \in D$ and $\beta(i,n) = \gamma(i,n)$ otherwise.

LEMMA 7. For each successor ordinal $\xi > 1$ and good pair (D, γ) at level ξ , the map $h_{D,\gamma}$ is a continuous reduction of R_{ξ} to $R_{\xi}|_{K_{D,\gamma}}$.

Proof. We argue by induction. If $\xi = 2$, then D is an infinite subset of ω with enumeration d, and given α and β in $X_2 = 2^{\omega}$, the set of integers where $h(\alpha)$ and $h(\beta)$ differ is the d-image of the set of integers where α and

 β differ. So we get $\alpha \neq \beta$ if and only if $h(\alpha) \neq h(\beta)$, $\alpha E_0\beta$ if and only if $h(\alpha)E_0h(\beta)$, and, as *d* is increasing, the largest *n* where $h(\alpha)$ and $h(\beta)$ differ, when it exists, is the image under *d* of the largest *n* where α and β differ. So finally $\alpha R_2\beta$ if and only if $h(\alpha)R_2h(\beta)$.

Again the induction step is easy. Fix (D, γ) good at level ξ . Recall that with our conventions, $D_{\xi} = \{(n, i) : i \in D_{\xi_n}\}$. So for each n, we get a pair at level ξ_n by setting $D_n = \{(i, k) \in D_{\xi_n} \times \omega : ((n, i), k) \in D\}$ and $\gamma_n((i, k)) = \gamma((n, i), k)$ for $(i, k) \in D_n$. Clearly (D_n, γ_n) is good at level ξ_n , so by induction the corresponding homeomorphism h_n is such that for α, β in $X_{\xi_n}, \alpha R_{\xi_n}\beta$ if and only if $h_n(\alpha)R_{\xi_n}h_n(\beta)$.

But note that for $\alpha = (\alpha_n)_{n \in \omega}$ in X_{ξ} , one has $h(\alpha) = (h_n(\alpha_n))_{n \in \omega}$, so that the previous fact implies immediately that $\alpha R_{\xi}\beta$ if and only if $h(\alpha)R_{\xi}h(\beta)$, as desired.

To finish the proof of Theorem 3, we need the following (essentially classical) lemma:

LEMMA 8. Let C be a countable set, and H a dense G_{δ} subset of $2^{C \times \omega}$. Then there exists a subset D of $C \times \omega$ with D_i infinite for all $i \in C$, and a map $\gamma : (C \times \omega) - D \to 2$ such that

$$K_{D,\gamma} = \{ \alpha \in 2^{C \times \omega} : \alpha |_{(C \times \omega) - D} = \gamma \}$$

is a subset of H.

Proof. The pair (D, γ) is constructed by induction. Say that (d, g) is a finite approximation if d and dom(g) are finite disjoint subsets of $C \times \omega$. It is clearly enough to check that given a finite approximation (d, g), an $i \in C$ and a dense open set $U \subseteq 2^{C \times \omega}$, one can extend (d, g) to some (d', g') so that d' - d meets $\{i\} \times \omega$, and the clopen set $V_{g'} = \{\alpha \in 2^{C \times \omega} : \alpha |_{\text{dom}(g')} = g'\}$ is a subset of U. But this is easy: Pick first n with (i, n) outside $d \cup \text{dom}(g)$, and set $d' = d \cup \{(i, n)\}$. Enumerate $2^{d'}$ as f_1, \ldots, f_N , and define inductively g_0, g_1, \ldots, g_N so that they all have their domains disjoint from $d', g_0 = g$ and they extend each other, and for each $k \leq N$, $V_{f_k \cup g_k} \subseteq U$. This is possible by the density of U. But then $g' = g_N$ works.

End of proof of Theorem 3. As said before, we just have to check that for any successor ordinal $\xi \geq 2$, $\operatorname{ind}(R_{\xi}) > \xi$. Argue by contradiction, and suppose C is a Borel set separating R_{ξ} from \check{R}_{ξ} , and τ a finer Polish topology on X_{ξ} such that C is Δ_{ξ}^{0} in $(X_{\xi}, \tau)^{2}$. Fix then a dense G_{δ} subset H of X_{ξ} on which τ and the usual topology coincide. Applying Lemma 8 (with D_{ξ}), we get a good pair (D, γ) at level ξ with $K = K_{D,\gamma} \subseteq H$. But then $C \cap K^{2}$ is Δ_{ξ}^{0} , and by Lemma 7, $h_{D,\gamma}^{-1}(C)$ is a Δ_{ξ}^{0} set separating R_{ξ} from \check{R}_{ξ} , contradicting Proposition 6. \blacksquare REMARK. The minimal expected complexity of a strict order R with $\operatorname{ind}(R) > \xi$ is Σ_{ξ}^{0} (Π_{ξ}^{0} is not possible because of the separation property of that class). Our examples are more complicated, except for $\xi = 2$ and ξ successor of a limit ordinal. We do not know if Σ_{ξ}^{0} is always obtainable.

It is often the case with the index method (see [L1]) that the actual proof of the unboundedness of the index provides a jump operator. This is also the case here, at least in spirit, for we will need a slight variant of the previous proof to get the strongest possible jump result.

If $(R_n)_{n \in \omega}$ is a sequence of Σ_1^1 oriented graphs on Polish spaces X_n , define a Σ_1^1 oriented graph $(R_n)^+$ on $\prod_n X_n$ by

$$x(R_n)^+ y \leftrightarrow \forall^* n \ x_n R_n y_n.$$

The operator + is clearly increasing for the orderings $\leq_{\rm B}$ and $\leq_{\rm B}$: if for all $n, R_n \leq_{\rm B} S_n$ (resp. $R_n \leq_{\rm B} S_n$), one also has $(R_n)^+ \leq_{\rm B} (S_n)^+$ (resp. $(R_n)^+ \leq_{\rm B} (S_n)^+$), by combining the witnessing maps.

If for all n, $R_n = R$, write R^+ instead of $(R_n)^+$. This defines a \leq - and \leq_{B} -increasing operator, which clearly satisfies $R \leq_{\mathrm{B}} R^+$ for all Σ_1^1 oriented graphs R.

The next result is a direct consequence of the proof of the unboundedness of the index. It shows that for complicated enough Σ_1^1 oriented graphs, + is in fact a jump operator.

COROLLARY 9. Let R be a Σ_1^1 oriented graph with $R_2 \preceq_{\mathrm{B}} R$. Then $R^+ \not\preceq_{\mathrm{B}} R$.

Proof. Assume not, and let R be a counterexample. Then from $R^+ \preceq_{\mathrm{B}} R$ and the fact that + is \preceq_{B} -increasing, one sees easily by induction that for all countable successor ordinals $\xi \geq 2$, $R_{\xi} \preceq_{\mathrm{B}} R$, contradicting (the proof of) Theorem 3.

The condition $R_2 \leq_{\mathrm{B}} R$ in the previous corollary is not optimal, and may look a bit unnatural. We now show that at least in the context of Σ_1^1 strict orders, it provides the optimal result. Then we will see how to change the arguments to get the optimal result for arbitrary Σ_1^1 oriented graphs.

First, let us consider the particular case of Σ_1^1 strict orders. Recall from Kanovei [K] that a partial order R is Borel linearizable if it admits an extension which is a Borel linear order. We will use the following result from [L3]:

THEOREM 10. The following are equivalent, for a Σ_1^1 partial order R:

- (i) R is not Borel linearizable,
- (ii) $R_2 \preceq_{\mathrm{B}} <_R$,
- (iii) $\operatorname{ind}(<_R) > 2.$

COROLLARY 11. Let R be a Σ_1^1 strict order which admits finite chains of arbitrary cardinality. Then $R^+ \not\preceq_B R$.

Proof. By Corollary 9, it is enough to check that any possible counterexample R satisfies $R_2 \leq_{\mathbf{B}} R$. By the assumption on R, we have for each $n \in \omega$ an increasing R-chain $(x_n^i)_{i \leq n}$. We then use the following

FACT. One can build in ω^{ω} an ω_1 -sequence $(f_{\xi})_{\xi < \omega_1}$ such that for all n, $f_{\xi}(n) \leq n$, and $\eta < \xi$ implies $\forall^* n \ f_{\eta}(n) < f_{\xi}(n)$.

Granted this fact, the sequence $((x_n^{f_{\xi}(n)})_{n \in \omega})_{\xi < \omega_1}$ is then an increasing R^+ -chain. But it is a result of Harrington, Marker and Shelah [HMS] that in any Borel linear order there is no uncountable chain. This implies that R^+ is not Borel linearizable, and, by Theorem 10, $R_2 \leq_{\mathrm{B}} R^+$. So if $R^+ \leq_{\mathrm{B}} R$, we get $R_2 \leq_{\mathrm{B}} R$, and Corollary 9 applies, as wanted.

So it remains to construct the sequence $(f_{\xi})_{\xi < \omega_1}$ as above. Consider the subset A of ω^{ω} consisting of those functions f satisfying $f(n) \leq n$ for all n, and $n - f(n) \to \infty$ with n. It is clearly enough to prove that for any sequence $(g_k)_{k \in \omega}$ in A, there is f in A with $\forall k \forall^* n \ g_k(n) < f(n)$, as one can then by using it build the ω_1 sequence in A by induction on the countable ordinals. As A is closed under finite pointwise suprema, we may assume the sequence g_k is increasing. Let then n_k be least with $n - g_k(n) > k$ for all $n > n_k$, and let f(n) be 0 for $n < n_0$, and $g_k(n) + 1$ for $n_k \leq n < n_{k+1}$. One easily checks that f works.

REMARK. Corollary 11 is indeed optimal, for if R is such that all Rchains have size $\leq k < \omega$, then $R^+ \preceq_B R$. To see this, note first that if R has this property, then so does R^+ . Moreover, it is not hard to show by induction on k that if R on X is a Σ_1^1 strict order with no k + 1-chain, then $R \preceq_B (k, <)$. This is clear if k = 1. For k + 1, consider the Σ_1^1 set $A \subseteq X$ of all points which are the maximum element of a k + 1-chain in R. By the hypothesis, A is a subset of the Π_1^1 set C of all R-maximal points. By separation, there is a Borel set B with $A \subseteq B \subseteq C$. On the complement of B, there are no k + 1-chains in R, so there is by induction a Borel homomorphism into (k, <). Sending the points of B to k then gives the desired Borel homomorphism.

Finally, if k is the least upper bound to the cardinality of R-chains, we deduce by the preceding facts that $R^+ \leq_{\rm B} (k, <) \leq_{\rm B} R$, as desired.

In some cases, one can even have $R^+ \leq_{\mathrm{B}} R$, for example if $X = \{0, 1, 2\}$ with 0R1, as witnessed by sending the sequences which are eventually *i*, for i = 0, 1, to *i*, and the other sequences to 2.

We now briefly indicate how to adapt the previous arguments to get the following result, which subsumes both Corollaries 9 and 11 and is valid for arbitrary Σ_1^1 oriented graphs:

THEOREM 12. Let R be a Σ_1^1 oriented graph on a Polish space X. Assume that (*) for all $k \in \omega$, there is a sequence $(x_i^k)_{i \leq k}$ in X with $x_i^k R x_{i+1}^k$ for all i < k. Then $R^+ \not\preceq_B R$.

Proof. We first introduce an oriented graph G_2 —which replaces R_2 . It is defined on the space X'_2 of all infinite co-infinite subsets of ω by

 $AG_2B \leftrightarrow A \bigtriangleup B$ is finite & card(B - A) =card(A - B) + 1.

We can then define inductively (as we did for the R_{ξ} 's) graphs G_{ξ} , for successor $\xi \geq 2$, by setting for successor ξ , $G_{\xi+1} = G_{\xi}^+$, and for limit λ , with (λ_n) an increasing sequence of successor ordinals converging to it, $G_{\lambda+1} =$ $(G_{\lambda_n})_n^+$. We can of course view G_2 as defined on $X_2 = 2^{\omega}$, and hence G_{ξ} as defined on X_{ξ} .

We now argue as in Corollary 11. First we check that if R is a Σ_1^1 oriented graph which satisfies condition (*), then $G_2 \preceq_B R^+$. To see this, let $(x_i^k)_{i < k}$ be a witness for (*), and define, for A an infinite co-infinite subset of ω , $i_A(k) = \operatorname{card}(A \cap k)$ and $f(A) = (x_{i_A(k)}^k)_{k \in \omega}$. Then if AG_2B and $n = \sup(A \triangle B) + 1$, one sees for $k \ge n$ that $i_B(k) = i_A(k) + 1$, hence $x_{i_A(k)}^k Rx_{i_B(k)}^k$. So $f(A)R^+f(B)$, and f is a Borel homomorphism from G_2 to R^+ .

The second step of the proof is then immediate, by induction on ξ : If R satisfies (*) and $R^+ \leq_{\mathrm{B}} R$, then for all $\xi, G_{\xi} \leq_{\mathrm{B}} R$.

So it remains to show that this is impossible, by proving that for all successor $\xi > 2$, $\operatorname{ind}(G_{\xi}) > \xi$. The proof of this last fact is entirely analogous to the proof we gave for R_{ξ} . We just have to prove the statements analogous to Proposition 6 and Lemma 7. The analog of Lemma 7 is obvious, with the same proof, using the particular form of G_{ξ} . For the analog of Proposition 6, it comes down to proving that there is a continuous map $f: 2^{\omega} \to 2^{\omega} \times 2^{\omega}$ sending L_0 to G_2 and L_1 to \check{G}_2 . To do this, one can use the determinacy of the following usual separation game: players I and II play $\alpha \in 2^{\omega}$ and $(\beta, \gamma) \in 2^{\omega} \times 2^{\omega}$ respectively (bit by bit), and player II wins if $\alpha \in L_0$ implies $\beta G_2 \gamma$, and $\alpha \in L_1$ implies $\gamma G_2 \beta$. This game is clearly Borel, hence determined, and a winning strategy for player II provides the wanted map f. So it is enough to check that player I does not have a winning strategy. But otherwise, we get a continuous map $g: 2^{\omega} \times 2^{\omega} \to 2^{\omega}$ which satisfies $g(2^{\omega} \times 2^{\omega}) \subseteq L_0 \cup L_1$, $G_2 \subseteq g^{-1}(L_1) = g^{-1}(2^{\omega} - L_0)$, and $\tilde{G}_2 \subseteq g^{-1}(L_0) = g^{-1}(2^{\omega} - L_1)$, by the definition of the game. Now clearly G_2 and \check{G}_2 are both dense in $(X'_2)^2$, so $g^{-1}(L_0)$ and $g^{-1}(L_1)$ are disjoint dense G_{δ} in it, a clear contradiction. Putting everything together, this proves Theorem 12. \blacksquare

To end up this paper, let us come back to our original motivation, i.e. the unboundedness property of Σ_1^1 partial orders under $\leq_{\rm B}$ (Theorem 1),

and discuss how this result can be generalized to other types of quasi-orders besides partial orders.

If R is a Σ_1^1 quasi-order on a Polish space X, denote by \equiv_R the associated (necessarily Σ_1^1) equivalence relation, defined by $\equiv_R = R \cap \mathring{R}$. And if E is a given Σ_1^1 equivalence relation on X, let \mathcal{C}_E be the class of Σ_1^1 quasi-orders R on X with $\equiv_R = E$. So partial orders correspond to the case of equality, on say $X = 2^{\omega}$. And Theorem 1 says that when E is equality, \mathcal{C}_E admits no complete element. What is the situation for other E's?

First, it is proved in Louveau–Rosendal [LR] that if E is a complete Σ_1^1 equivalence relation, one has $E = \equiv_R$ for some complete Σ_1^1 quasi-order R, which is a fortiori complete in \mathcal{C}_E . So this gives an example of a Σ_1^1 equivalence relation E for which there exists a complete element in \mathcal{C}_E . Also, the same is true at the other extreme, if E has only countably many classes, for then \mathcal{C}_E corresponds (up to Borel bi-reducibility) to countable partial orders, and it is well known that there exists a complete countable partial order.

Here we have:

COROLLARY 13. Let E be a Borel equivalence relation on some Polish space X, with uncountably many classes. Then C_E has no complete element, and in fact the Borel elements in C_E are unbounded in C_E .

Proof. Suppose, towards a contradiction, that some $R \in C_E$ Borel reduces all Borel elements in \mathcal{C}_E . Consider the strict order $\langle_R = R - E$, which is Σ_1^1 as E is Borel. We get the desired contradiction by proving that \langle_R Borel reduces all Borel strict orders on 2^{ω} , contradicting Theorem 3. So let S be a Borel strict order on 2^{ω} . By our assumption and Silver's theorem, there is a one-to-one continuous map $f: 2^{\omega} \to X$ which reduces equality to E. Define then S' on X by

$$xS'y \leftrightarrow xEy \text{ or } \exists \alpha \in 2^{\omega} \ \exists \beta \in 2^{\omega} \ (f(\alpha)Ex \text{ and } f(\beta)Ey \text{ and } \alpha S\beta).$$

It is easy to check that S' is a quasi-order with $\equiv_{S'} = E$, and that S' is Borel (for the α, β in the definition are unique, when they exist). Moreover, f is a witness that $S \leq_{\mathrm{B}} S'$, and as $S' \in \mathcal{C}_E$, also $S' \leq_{\mathrm{B}} R$, hence we get the desired contradiction.

We do not know whether there is a complete element in C_E when E is a Σ_1^1 equivalence relation which is neither complete nor Borel.

References

[FS] H. Friedman and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symbolic Logic 54 (1989), 894–914.

- [HMS] L. Harrington, D. Marker and S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988), 293–302
- [HKL] G. Hjorth, A. S. Kechris and A. Louveau, Borel equivalence relations induced by actions of the symmetric group, Ann. Pure Appl. Logic 92 (1998), 63–112.
- [K] V. Kanovei, When a partial Borel order is linearizable, Fund. Math. 155 (1998), 301–309.
- [L1] A. Louveau, On the reducibility order between Borel equivalence relations, Stud. Logic Found. Math. 134 (1994), 151–155.
- [L2] —, Closed orders and their vicinity, in preparation.
- [L3] —, Some dichotomy results for analytic graphs, in preparation.
- [LR] A. Louveau and C. Rosendal, Complete analytic equivalence relations, Trans. Amer. Math. Soc. 357 (2005), 4839–4866.

Institut de Mathématiques de Jussieu Analyse Fonctionnelle, boîte 186 Université Paris 6 4 Place Jussieu F-75252 Paris Cedex 05, France E-mail: louveau@ccr.jussieu.fr

> Received 2 June 2005; in revised form 4 July 2006