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C(K) spaces which cannot be uniformly

embedded into c0(Γ )

by

Jan Pelant, Petr Holický and Ondřej F. K. Kalenda (Praha)

Abstract. We give two examples of scattered compact spaces K such that C(K) is
not uniformly homeomorphic to any subset of c0(Γ ) for any set Γ . The first one is [0, ω1]
and hence it has the smallest possible cardinality, the other one has the smallest possible
height ω0 + 1.

Foreword. We present two results of Jan Pelant. He presented them at
seminars in the Mathematical Institute of Czech Academy of Sciences during
the last two years. The example described in Theorem 4.1 below is quite
recent. Unfortunately, Jan Pelant died before the results were prepared for
publication. We decided to reconstruct them using his hand-written notes.

1. Introduction. We give two examples of scattered compact spaces
K such that C(K) is not uniformly homeomorphic to any subset of c0(Γ )
for any set Γ . This contributes to the study of nonlinear embeddings of
(real) Banach spaces into other ones. This investigation is related to the
study of the question which topological (or metric) properties enable one to
reconstruct the linear structure of a Banach space.

The well known Mazur–Ulam theorem says that the existence of an isom-
etry of two Banach spaces implies their linear isometry. On the other hand,
the result of H. Toruńczyk [17] (of M. I. Kadec [10] for separable spaces)
shows that homeomorphism of two infinite-dimensional Banach spaces gives
no information about their linear structure. This is the reason why uniform
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homeomorphisms and Lipschitz homeomorphisms are intensively studied in
this context rather than isometries or topological homeomorphisms. It is still
an open question whether two Lipschitz equivalent separable Banach spaces
are linearly isomorphic. For nonseparable Banach spaces this is not true (see
[2]). There are some positive results for particular separable Banach spaces
(see e.g. [6]). Uniform homeomorphism does not imply linear isomorphism
even for separable spaces by [15]. A positive result in this area asserts that
a Banach space uniformly homeomorphic to ℓ2 is isomorphic to ℓ2 (see [5]).

As a related question the possibility of Lipschitz or uniform embeddings
of one Banach space into another is studied. I. Aharoni [1] proved that any
separable metric space is Lipschitz equivalent to a subset of c0 (in fact,
to a subset of the positive cone of c0). We concentrate our attention on
the possibility of Lipschitz or uniform embeddings of spaces of continuous
functions on a compact space into the space c0(Γ ) for sufficiently large Γ ,
i.e., equivalently, to C(α(Γ )), where α(L) denotes the Aleksandrov one-point
compactification for any locally compact space L, and Γ is endowed with
the discrete topology.

The main results of the present paper are the following two examples.

Theorem 1.1. The space C([0, ω1]) is not uniformly homeomorphic to

any subset of the space c0(Γ ) for any set Γ .

Theorem 1.2. There is a compact space K with K(ω0+1) = ∅ such that

C(K) is not uniformly homeomorphic to any subspace of c0(Γ ) for any set Γ .

The first one gives a compact space K of the smallest possible cardinality
such that C(K) cannot be uniformly embedded into c0(Γ ). Indeed, if K is
countable, then it is metrizable and hence C(K) is separable. Therefore the
above mentioned result of I. Aharoni implies that C(K) can be embedded
into c0 by a Lipschitz homeomorphism.

The fact that C([0, ω1]) cannot be uniformly embedded onto a linear

subspace of any c0(Γ ) also follows from [7, Theorem 5.6(i)]. (Indeed, suppose
that Φ is such a uniform embedding. Set Xα = {f ∈ C([0, ω1]) : f(γ) = 0
for γ > α} for α < ω1. It is easy to see that there is a separable Banach
space Sα ⊃ Xα such that Φ(Sα) is linear. By [7, Theorem 5.6(i)] the Szlenk
index of Sα is at most ω0. However, it is not difficult to observe that the
Szlenk index of Sα is at least the height of [0, α] which is greater than ω0

for α < ω1 sufficiently large.)
The second theorem gives an example of a scattered compact space K

with minimal height such that C(K) cannot be uniformly embedded into
c0(Γ ). Recall that the height of a scattered compact space is the smallest
ordinal α such that the Cantor–Bendixson derivative K(α) is empty. Indeed,
by [4, Theorem 3] the space C(K) is Lipschitz equivalent to some c0(Γ )
whenever K(ω0) = ∅ (i.e., whenever K is a scattered compact with finite
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height). (In fact, by a result of Godefroy [9, Theorem 6.3] the height of K
is finite whenever C(K) is uniformly homeomorphic to some c0(Γ ).)

The second example is also minimal in the following sense. The con-
struction is motivated by the result of W. Marciszewski [11] who showed
that C(K) is linearly isomorphic to some c0(Γ ) if and only if K is hom-
eomorphic to a subset of [Λ]≤n for a set Λ and some n ∈ N. Here [Λ]≤n

denotes the set of all subsets of Λ of cardinality at most n. We consider this
set endowed with the natural topology inherited from {0, 1}Λ (identifying
each set with its characteristic function). The example is the one-point com-
pactification of the topological sum of [Λ]≤n, n ∈ N, for a sufficiently large
set Λ. Note also that this space is an Eberlein compact space, hence C(K)
is weakly compactly generated, and thus it admits an injective continuous
linear mapping into some c0(Γ ).

2. Uniform Stone property. The basic tool for the study of uniform
embeddings in this paper is a property of uniform covers of metric spaces
(uniform Stone property) which is a modification of paracompactness. It
turns out that a metric space can be uniformly embedded into some c0(Γ ) if
and only if it has the uniform Stone property ([13], see Theorem 2.1 below).
The classical Stone theorem asserts that any open cover of a metric space
has a locally finite open refinement. It is natural to ask whether the following
uniform version is true. Does every uniform cover of a metric space have a
locally finite uniform refinement? Recall that a cover C of a metric space
M is uniform if there is r > 0 such that the family {B(x, r) : x ∈ M}
refines C. We then say that C is r-uniform. The question was answered in
the negative by E. V. Shchepin [16] and J. Pelant [12]. This led to the
question which spaces do have this property. Some equivalent conditions, in
particular the existence of uniform embeddings into c0(Γ ), are stated in the
following theorem.

Theorem 2.1. Let (M, ̺) be a metric space. The following assertions

are equivalent.

(1) Any uniform cover of M has a locally finite uniform refinement.

(2) Any uniform cover of M has a point-finite uniform refinement.

(3) The metric uniformity of the space (M, ̺) has a basis of uniform

covers consisting of point-finite covers.

(4) M is uniformly homeomorphic to a subset of c0(Γ ) for a set Γ .

The equivalence (2)⇔(3) follows from the definition of a basis of uniform
covers. The equivalence (3)⇔(4) is contained in [13, Corollary 2.4]. The
implication (1)⇒(2) is trivial, and its converse is easy; its proof may be
found in [8, Lemma 3 in Chapter VII].
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3. Proof of Theorem 1.1. Let us consider

M = {f ∈ C([0, ω1]) : f(0) = 1, f(ω1) = 0, f nonincreasing}

as a metric subspace of C([0, ω1]). We are going to show that M cannot be
uniformly embedded into c0(Γ ). Due to Theorem 2.1 the latter is equivalent
to the fact that M does not have the uniform Stone property.

For ι < ω1 we set

Tι = {f ∈ M : f(ι + 1) < 1}.

Then T = {Tι : ι < ω1} is clearly an open cover of M . Let us show it is
uniform. For any f ∈ M there is ι < ω1 such that f = 0 on (ι, ω1]. Then
clearly BM (f, 1) ⊂ Tι.

We claim that T has no point-finite uniform refinement, which shows that
M does not have the uniform Stone property. Suppose the contrary: let P
be a point-finite refinement of T and δ > 0 be such that {BM (f, δ) : f ∈ M}
refines P. We choose a mapping ι : P → [0, ω1) satisfying P ⊂ Tι(P ) and an
n ∈ N such that 1/n < δ. If γn ≤ γn−1 ≤ · · · ≤ γ1 < ω1, we define

fγn,...,γ1
= χ[0,γn] +

n−1∑

k=1

k

n
χ(γk+1,γk].

Then clearly fγn,...,γ1
∈ M . We define

σ(γn, . . . , γ1) = {ι(P ) : P ∈ P & BM (fγn,...,γ1
, δ) ⊂ P}.

We also define τ(γn, . . . , γm) ∈ [0, ω1] for nonincreasing sequences of n −
m+1 countable ordinals, where m = 1, . . . , n+1, by the following inductive
procedure:

τ(γn, . . . , γ1) = minσ(γn, . . . , γ1),

τ(γn, . . . , γm+1) = lim inf
γ→ω1

τ(γn, . . . , γm+1, γ) for m ∈ {1, . . . , n}.

By convention, τ(γn, . . . , γn+1) = τ(∅) and τ(γn, . . . , γn+1, γ) = τ(γ).

Note also that

(1) lim inf
γ→ω1

τ(γn, . . . , γm+1, γ) = sup
ι∈[0,ω1)

min{τ(γn, . . . , γm+1, γ) : γ > ι},

as the values are ordinals.

If γn ≤ γn−1 ≤ · · · ≤ γ1 < ω1, then τ(γn, . . . , γ1) < ω1 by our definition.

We claim that τ(∅) = ω1. Indeed, suppose that τ(∅) < ω1. As τ(∅) =
lim infγ→ω1

τ(γ), using (1) we find γn > τ(∅) with τ(γn) ≤ τ(∅). Repeat-
ing this argument, we get γn−1 > γn with τ(γn, γn−1) ≤ τ(∅). Continuing
inductively we get γn < · · · < γ1 with ι = τ(γn, . . . , γ1) ≤ τ(∅) < γn.
So ι ∈ σ(γn, . . . , γ1), and therefore fγn,...,γ1

∈ Tι, i.e. fγn,...,γ1
(ι + 1) < 1.

However, γn > ι implies that fγn,...,γ1
(ι + 1) = 1, a contradiction.
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Let j ∈ {0, . . . , n} be minimal such that there are γn ≤ · · · ≤ γj+1 < ω1

with τ(γn, . . . , γj+1) = ω1, and let γn, . . . , γj+1 be a choice of such ordinals.
Due to our previous observation, such a j exists and it is positive.

As τ(γn, . . . , γj+1) = lim infγ→ω1
τ(γn, . . . , γj+1, γ) = ω1, we can find

countable ordinals γk
j > γj+1, k ∈ N, such that

τ(γn, . . . , γj+1, γ
1
j ) < τ(γn, . . . , γj+1, γ

2
j ) < · · ·

and we set γj = sup{γk
j : k ∈ N}.

We proceed inductively for m = j, . . . , 1 to choose sequences of ordinals
γk

m as follows. Let γm, γk
m, k ∈ N, be already found for some m ∈ {j, . . . , 2}

such that

τ(γn, . . . , γj+1, γ
1
j , . . . , γ1

m) < τ(γn, . . . , γj+1, γ
2
j , . . . , γ2

m) < · · · .

As

τ(γn, . . . , γj+1, γ
k+1
j , . . . , γk+1

m ) = lim inf
γ→ω1

τ(γn, . . . , γj+1, γ
k+1
j , . . . , γk+1

m , γ)

> τ(γn, . . . , γj+1, γ
k
j , . . . , γk

m),

the complement of the set

Sk+1 = {γ ∈ (γm, ω1) : τ(γn, . . . , γj+1, γ
k+1
j , . . . , γk+1

m , γ)

> τ(γn, . . . , γj+1, γ
k
j , . . . , γk

m)}

is countable for k ∈ N.
Using (1) we see that the set

Tk = {γ ∈ (γm, ω1) : τ(γn, . . . , γj+1, γ
k
j , . . . , γk

m, γ)

≤ τ(γn, . . . , γj+1, γ
k
j , . . . , γk

m)}

does not have a countable upper bound for k ∈ N.
We choose a γ1

m−1 ∈ T1 and γk
m−1 ∈ Tk ∩ Sk for k ≥ 2. We put γm−1 =

sup{γk
m−1 : k ∈ N}. In this way we get

τ(γn, . . . , γj+1, γ
1
j , . . . , γ1

m−1) < τ(γn, . . . , γj+1, γ
2
j , . . . , γ2

m−1) < · · · .

Summarizing, the ordinals γk
m, k ∈ N, m ∈ {j, . . . , 1}, satisfy

(2) γ1
j , γ2

j , . . . ≤ γj < γ1
j−1, γ

2
j−1, . . . ≤ γj−1 < · · · ≤ γ2 < γ1

1 , γ2
1 , . . . ≤ γ1

and

(3) τ(γn, . . . , γj+1, γ
1
j , . . . , γ1

1) < τ(γn, . . . , γj+1, γ
2
j , . . . , γ2

1) < · · · .

We define gk = fγn,...,γj+1,γk
j
,...,γk

1
for k ∈ N and g = fγn,...,γj+1,γj ,...,γ1

. By

(2) it is easy to check that ‖gk − g‖ ≤ 1/n < δ for each k ∈ N. Therefore
g ∈

⋂
k∈N

BM (gk, δ). We claim that
⋃

k∈N
σ(γn, . . . , γj+1, γ

k
j , . . . , γk

1 ) is finite.
Indeed, if ι = ι(P ) belongs to this union, then BM (gk, δ) ⊂ P for some k ∈ N.
Hence g ∈ P , and there are only finitely many such P ’s as P is point-finite.
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By (3) the ordinals

τ(γn, . . . , γj+1, γ
k
j , . . . , γk

1 ) = minσ(γn, . . . , γj+1, γ
k
j , . . . , γk

1 ), k ∈ N,

are pairwise distinct, and therefore
⋃

k∈N
σ(γn, . . . , γj+1, γ

k
j , . . . , γk

1 ) is infi-
nite. This contradiction completes the proof.

4. Proof of Theorem 1.2. For a set Λ we denote by [Λ]n the set of all
subsets of Λ of cardinality n, and by [Λ]≤n those of cardinality at most n. We
consider these sets endowed with the natural topology inherited from {0, 1}Λ

(identifying each set with its characteristic function). The topological sum
of topological spaces Kn, n ∈ N, is denoted by

⊕
n∈N

Kn. The symbol α
is used to denote the Aleksandrov one-point compactification as mentioned
above.

Theorem 1.2 is an immediate consequence of the following theorem.

Theorem 4.1. If Λ is a set of sufficiently large cardinality, then the

space C(K), where K = α(
⊕

n∈N
[Λ]≤n), cannot be uniformly embedded into

any c0(Γ ).

Before proving this theorem, we need some preparatory observations.

Lemma 4.2. Let M be a metric space, S be a subset of M , and ε and δ
be positive numbers. Suppose that the cover of M by ε/2-balls admits a δ-
uniform point-finite refinement. Then the cover of S by ε-balls also admits

such a refinement.

Proof. Let P be a point-finite δ-uniform refinement of the cover of M
by ε/2-balls. The family PS = {P ∩S : P ∈ P} is clearly a point-finite cover
of S. As P is δ-uniform, so obviously is PS . Further, if P ∩ S ∈ PS , then
there is x ∈ M with P ∩ S ⊂ B(x, ε/2). Choose y ∈ P ∩ S. Then clearly
B(x, ε/2) ⊂ B(y, ε), hence P ∩ S ⊂ B(y, ε), which completes the proof.

Lemma 4.3. If the cardinal κ is sufficiently large, then for every set L,
every n ∈ N, and every mapping σ : [[0, κ)]n → L, either

(a) there are pairwise disjoint wk ∈ [[0, κ)]n such that σ is constant on

{wk : k ∈ N}, or

(b) there is u ∈ [[0, κ)]n−1 such that {σ(u ∪ {e}) : e ∈ [0, κ) \ u} is

infinite.

Proof. It follows in a straightforward way from Baumgartner’s theorem
[3, Theorem 1] that there is a cardinal number κ0 such that whenever L, n
and σ are as in the statement of the lemma, and κ ≥ κ0, then there is an
uncountable set A ⊂ [0, κ) and ∆ ⊂ {1, . . . , n} such that
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∀{a1 < · · · < an} ∈ [A]n ∀{b1 < · · · < bn} ∈ [A]n :

σ({a1, . . . , an}) = σ({b1, . . . , bn}) ⇔ ∀i ∈ ∆ : ai = bi.

If ∆ = ∅, then σ is constant on [A]n and hence (a) is satisfied.

Suppose now that ∆ 6= ∅. As A is uncountable, we can find a1 < · · · < an

where ai ∈ A such that all the sets [0, a1)∩A, (a1, a2)∩A, . . . , (an, κ)∩A are
infinite. Pick i ∈ ∆ and set u = {a1, . . . , an}\{ai}. Then u clearly witnesses
that (b) is satisfied.

From now on, we use Λ for a fixed set of cardinality κ from Lemma 4.3.
Let n ∈ N. Given w ∈ [Λ]n we define a function fw ∈ C([Λ]≤n) by fw(s) =
card(s ∩ w)/n. Consider the metric subspace Mn = {fw : w ∈ [Λ]n} of
C([Λ]≤n).

Lemma 4.4. Let n ∈ N and let

Tn = {Tn
A : A a clopen subset of [Λ]≤n},

where

Tn
A = {f ∈ Mn : f−1({1}) ⊂ A ⊂ f−1((0, 1])}.

Then

(a) Tn is an ε-uniform cover of Mn for every ε ∈ (0, 1/2).
(b) sup{δ > 0 : there exists a point-finite δ-uniform refinement P of Tn}

≤ 1/n.

Proof. (a) Choose an ε ∈ (0, 1/2). Given f ∈ Mn, we define A1 = {s ∈
[Λ]≤n : f(s) ≥ 1 − ε} and A0 = {s ∈ [Λ]≤n : f(s) ≤ ε}. Clearly, A1 and A0

are disjoint compact subsets of [Λ]≤n. As the range of f is a finite subset of
[0, 1], the set A = f−1([1/2, 1]) is a clopen set such that A1 ⊂ A ⊂ [Λ]≤n\A0.
By a straightforward calculation we see that B(f, ε) ⊂ Tn

A.

(b) Suppose that P is a point-finite refinement of Tn and that {B(f, δ) :
f ∈ Mn} refines P for some δ > 1/n. For every P ∈ P we choose a clopen
subset A(P ) ⊂ [Λ]≤n such that P ⊂ Tn

A(P ). Given w ∈ [Λ]n we define the

family of sets σ(w) = {A(P ) : B(fw, δ) ⊂ P, P ∈ P}. As P is a point-finite
δ-uniform cover of Mn, each σ(w) is finite and nonempty.

By Lemma 4.3 one of the following possibilities holds.

(A) There are pairwise disjoint wk ∈ [Λ]n with σ(w1) = σ(w2) = · · · .
(B) There is a u ∈ [Λ]n−1 and singletons v1, v2, . . . in Λ\u such that the

families σ(u ∪ {vk}), k ∈ N, are pairwise distinct.

Suppose that (A) holds true. Then limk→∞ wk = ∅ ∈ [Λ]≤n. We may
choose an A ∈ σ(w1) =

⋂
k∈N

σ(wk). As fwk
(wk) = 1 the sets wk belong to A.

Since limk→∞ wk = ∅ and A is closed, ∅ ∈ A. As A ∈ σ(w1), B(fw1
, δ) ⊂ Tn

A.
In particular, fw1

(∅) > 0, which contradicts the definition of fwk
.
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Suppose that (B) occurs. We define gk = fu∪{vk}. As the sets σ(u∪{vk})
are pairwise distinct, the family

⋃
k∈N

σ(u ∪ {vk}) is infinite. For every A ∈⋃
k∈N

σ(u ∪ {vk}) there is a P ∈ P with A = A(P ) and B(gk, δ) ⊂ P . Note

that

|gk(s) − gk′(s)| =
|card(s ∩ (u ∪ {vk})) − card(s ∩ (u ∪ {vk′})|

n

=
|card(s ∩ {vk}) − card(s ∩ {vk′})|

n
≤

1

n
.

Hence g1 ∈ P . However, there are only finitely many such P ’s, which con-
tradicts the observation that

⋃
k∈N

σ(u ∪ {vk}) is infinite.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. Suppose that X = C(α(
⊕

n∈N
[Λ]≤n)) can be

uniformly embedded into c0(Γ ). By Theorem 2.1, X has the uniform Stone
property. Let δ > 0 be such that the cover of X by 1/8-balls has a point-
finite δ-uniform refinement. Note that each Xn = C([Λ]≤n), and so also
each Mn, is isometric to a subset of X. Hence, by Lemma 4.2, the cover
of Mn by 1/4-balls admits a point-finite δ-uniform refinement. Thus, by
Lemma 4.4(a), Tn has a point-finite δ-uniform refinement and therefore δ ≤
1/n by Lemma 4.4(b). As n ∈ N is arbitrary, this is a contradiction.

5. Final remarks and open problems. The following problem is
open.

Question 1. Is there a compact space K such that K(ω0+1) = ∅, the

cardinality of K is ω1, and C(K) is not uniformly homeomorphic to any

subset of c0(Γ )?

By the results mentioned in the introduction it is the best one can expect.
Note that the space [0, ω1] from Theorem 1.1 has cardinality ω1 but its height
is ω1 + 1. On the other hand, the space K from Theorem 1.2 (Theorem 4.1)
has the smallest possible height ω0 + 1 but its cardinality is quite large due
to the use of Baumgartner’s theorem. However, we do not know the answer
to the following question.

Question 2. Let K = α(
⊕

n∈N
[[0, ω1)]

≤n). Is C(K) uniformly homeo-

morphic to a subset of c0(Γ )?

A negative answer to this question would yield a positive answer to the
first one. As the only place where the largeness of the cardinality of Λ is
used is Lemma 4.3, a negative answer to the previous question would follow
from a positive answer to the following one.
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Question 3. Let Λ be an uncountable set , n ∈ N, L an arbitrary set

and σ : [Λ]n → L a mapping. Must one of the following conditions hold?

(a) There are pairwise disjoint wk ∈ [Λ]n such that σ is constant on

{wk : k ∈ N}.
(b) There is u ∈ [Λ]n−1 such that {σ(u ∪ {e}) : e ∈ Λ \ u} is infinite.

Our proof of Lemma 4.3 uses Baumgartner’s theorem, which requires
a large cardinality (see [3, Corollary 2 and following remarks]). However,
it seems that we do not use the whole strength of Baumgartner’s theorem.
This suggests the question whether the result can be proved in an elementary
way. It is not hard to prove that the answer is positive for n = 2. But we do
not know how to attack the general case.
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