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On the cardinality of power homogeneous Hausdorff spaces
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Abstract. We prove that the cardinality of power homogeneous Hausdorff spaces X

is bounded by d(X)πχ(X). This inequality improves many known results and it also solves
a question by J. van Mill. We further introduce ∆-power homogeneity, which leads to a
new proof of van Douwen’s theorem.

1. Introduction. A space X is homogeneous if for every x, y ∈ X

there is a homeomorphism h of X such that h(x) = y. A space X is called
power homogeneous if Xµ is homogeneous for some cardinal number µ. By
πχ(X) and πw(X) we denote the π-character and π-weight respectively. By
d(X), w(X), ψw(X) and c(X) we denote density, weight, pseudo-weight and
cellularity.

In 1978, E. van Douwen proved in [4] that the cardinality of power ho-
mogeneous Hausdorff spaces X is bounded by 2πw(X). Applying results of
Shapirovskĭı [12] and Ismail [6], A. V. Arkhangel′skĭı noted in [1, Theo-
rem 1.5] that the cardinality of homogeneous regular spaces X is bounded
by 2πχ(X)c(X). Since always πχ(X)c(X) ≤ πw(X) and strict inequality is
possible, this result improves van Douwen’s theorem for the class of homo-
geneous spaces. Recently, J. van Mill [8] extended Arkhangel′skĭı’s result
to the class of power homogeneous compacta. In his paper van Mill asks
whether this result can also be proved for power homogeneous spaces with-
out the assumption of compactness (see [8, Remark 2.7]). A partial answer
to this question was provided by A. Bella in [3]. In the present paper we
provide a full positive answer to van Mill’s question (see Corollary 3.5).

In [4] van Douwen studies power homogeneous spaces by looking at the
number of possible ways certain sequences of open sets cluster at points.
This same method was applied by van Mill in [8]. In the present paper we
introduce an entirely different technique which follows from results in [2].
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This new technique has a number of interesting applications. First of all,
we prove that the cardinality of power homogeneous spaces X is bounded
by d(X)πχ(X), which improves van Douwen’s theorem. This bound surfaced
earlier. By the method of proof used by Ismail in [6], some mathematicians
have noted that the cardinality of a homogeneous space X is bounded by
d(X)πχ(X) (see for example [13, Theorem 1.14] and [9, Proposition 2.2.7]).
By results of van Mill in [8] one can easily show that this bound is also valid
for power homogeneous compacta (cf. Proposition 2.3).

The concept of a power homogeneous space is rather new. A close look
at the results in the literature shows that often not all available properties
of a homogeneous power space are used. This leads to a notion which is in-
troduced in Section 2 and which we call ∆-power homogeneity. Every power
homogeneous space is also ∆-power homogeneous. In Section 4 we prove a
reflection theorem for this property and this leads to a very simple and ele-
gant proof of van Douwen’s theorem. The simplicity lies in the fact that in
our proof we only look at “small” powers of the space under consideration.

In the final section of this paper we look at the connection between
∆-power homogeneity and power homogeneity. We do not know whether
these notions are equivalent.

2. Preliminaries. All spaces are assumed to be Hausdorff. All product
spaces in this paper carry the usual product topology. Whenever {Xi : i ∈ I}
is a collection of topological spaces and Y =

∏

{Xi : i ∈ I} is the product
space, then for A ⊆ I by YA we denote the product

∏

{Xi : i ∈ A}. By
πA we denote the natural projection of Y onto YA. If B ⊆ A ⊆ I, then by
πA→B we denote the projection from YA onto YB. If i ∈ I, then we write πi

instead of π{i}. If y ∈ Y then by yA we denote the point πA(y). If Z ⊆ Y ,
then ZA = πA[Z].

Many of the product spaces that we deal with in this paper are of the
form Xµ for some infinite cardinal number µ. In that case we write XA

for (Xµ)A. Furthermore, by π we denote π0, the projection on the first
co-ordinate.

Whenever x ∈ X, by x we denote the element of Xµ which is equal
to x on all co-ordinates. By ∆(X,µ) we denote the diagonal in Xµ, thus
∆(X,µ) = {x : x ∈ X}. We will call a space XA ∆-homogeneous if for all
points x, z ∈ ∆(X,A) there is a homeomorphism of XA mapping x onto z.
We will call a space ∆-power homogeneous if for some cardinal number µ,
the space Xµ is ∆-homogeneous. Clearly, every power homogeneous space
is ∆-power homogeneous. Furthermore, if Xµ is ∆-homogeneous and λ ≥ µ

then Xλ is ∆-homogeneous.
The set of all autohomeomorphisms of a space X is denoted by Aut(X)

and we let tpe(x,X) = {h(x) : h ∈ Aut(X)} be the type of x in X.
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As a warm-up exercise we prove the following proposition, from which
it follows that the cardinality of homogeneous spaces X is bounded by
d(X)πχ(X). This was noted independently by de la Vega [13, Theorem 1.14]
and the author [9, Proposition 2.2.7]. Its simple proof plays a major part in
the proof of Theorem 3.4.

Proposition 2.1. Suppose A is some type in X. Then |A| ≤ d(X)πχ(X).

Proof. Let A = tpe(x,X). For every y ∈ A we may fix a homeomorphism
hy : X → X such that hy(x) = y. We fix a dense set D in X with |D| = d(X)
and a local π-base U at x in X with |U| ≤ πχ(X).

We define a map H : A → DU as follows. Fix some well-ordering on D,
and for y ∈ A and U ∈ U let

H(y)(U) = min{d ∈ D : d ∈ hy[U ]}.

Since D is dense this is well-defined. We leave it to the reader to verify
that H is injective. This is similar to the second half of the proof of Theo-
rem 3.4.

The following result was proved in [2, Corollary 2.3]. In Section 3 we will
apply this result for the special case when Y = Xµ, I = µ and i = 0.

Proposition 2.2. Let Y =
∏

{Xi : i ∈ I} and suppose that h : Y → Y

is a homeomorphism. Suppose further that for some i ∈ I, πχ(Xi) ≤ κ.

Let Z be a subset of Y with |Z| ≤ κ. Then there is a set of co-ordinates

A ∈ [I]≤κ such that for all y ∈ Z,

hπ−1
A (yA) ⊆ π−1

i (h(y)i).

The following theorem follows from Theorem 3.4 below. For complete-
ness’ sake we show here that it also follows from van Mill’s inequality
in [8].

Proposition 2.3. If X is compact and power homogeneous, then |X| ≤
d(X)πχ(X).

Proof. Since X is compact, w(X) = ψw(X) (cf. [7, 3.11]). Since X is
also power homogeneous, it follows that |X| ≤ w(X)πχ(X) (see [8, Theorem
2.5]). So it suffices to show that ψw(X) ≤ d(X)πχ(X).

If D is any dense set and πχ(X) = κ, then it is easily verified that the
collection given by

{X \ E : E ∈ [D]≤κ}

is a pseudo-base for X. Since |[D]≤κ| = |D|κ, it follows that ψw(X) ≤
d(X)πχ(X).
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3. The cardinality of power homogeneous Hausdorff spaces. In
this section we fix some space X, a cardinal number µ and a point p ∈
∆(X,µ). We further assume that U is a local π-base at π(p) in X. Whenever
A ⊆ µ, then by U(A) we denote the collection

{

π−1
A→B

[

∏

b∈B

Ub

]

: B ∈ [A]<ω, ∀b ∈ B (Ub ∈ U)
}

.

Then U(A) is a local π-base at pA in XA and |U(A)| ≤ |A| · |U|. Furthermore
if A =

⋃

n<ω An where {An : n < ω} is some increasing sequence of subsets
of µ, then

U(A) =
⋃

n<ω

π−1
A→An

U(An),

where π−1
A→B U(B) denotes the collection {π−1

A→B[U ] : U ∈ U(B)}. The fol-
lowing theorem follows from Theorem 2.2 and a recursive construction.

Theorem 3.1. Let D be a dense subset of X, and h : Xµ → Xµ a

homeomorphism. If πχ(X) ≤ κ, |U| ≤ κ and B ∈ [µ]≤κ, then there is a set

A ∈ [µ]≤κ such that B ⊆ A and for all U ∈ U(A) there is some e ∈ Xµ

satisfying :

(1) πh(e) = d ∈ D and e ∈ π−1
A [U ],

(2) hπ−1
A (eA) is contained in π−1(d).

Proof. We may construct an increasing sequence {An : n < ω} ⊆ [µ]≤κ

where A0 = B, such that for all U ∈ U(An) there is some e ∈ Xµ satisfying

(1) πh(e) = d ∈ D and e ∈ π−1
An

[U ],

(2) hπ−1
An+1

(eAn+1) is contained in π−1(d).

For (1), this follows from the fact that D is dense in X, so that πhπ−1
An

[U ]
∩D 6= ∅. For (2), we just apply Theorem 2.2; given An we may find An+1

such that (2) is satisfied since |U(An)| ≤ κ.

We set A =
⋃

n<ω An. Then the conditions in the theorem are satisfied

since U(A) =
⋃

n<ω π
−1
A→An+1

U(An+1).

Whenever A and B are subsets of µ such that |A| = |B| and |µ \ A| =
|µ \ B|, then there is a natural homeomorphism of Xµ that realizes a co-
ordinate change from A to B. We denote this homeomorphism by gA→B. It
is defined as follows. Let g : µ→ µ be a bijection such that g[A] = B. Then
gA→B : Xµ → Xµ is defined co-ordinatewise for β < µ:

gA→B(x)β = xα
def
⇐⇒ g(α) = β.

The following is a simple lemma concerning the homeomorphism gA→B.
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Lemma 3.2. Suppose A and B are subsets of µ with |A| = |B| and

|µ \A| = |µ \B|. Then

(1) (gA→B[π−1
A [U ]])B ∈ U(B) if and only if U ∈ U(A),

(2) for all Y ⊆ Xµ,

gA→B[π−1
A [YA]

]

= π−1
B [(gA→B[Y ])B].

Using a co-ordinate change, we can control the set A which is provided
by Theorem 3.1. We make this precise in the following corollary.

Corollary 3.3. Let πχ(X) ≤ κ, |U| ≤ κ and let µ ≥ κ. Suppose that

Xµ is ∆-homogeneous and D is a dense subset of X. Then for every q ∈
∆(X,µ) there is a homeomorphism hq : Xµ → Xµ satisfying the following

conditions:

(1) hq(p) = q,
(2) for all U ∈ U(κ) there is some e ∈ Xµ satisfying :

(a) πhq(e) = d ∈ D and e ∈ π−1
κ [U ],

(b) hqπ
−1
κ (eκ) is contained in π−1(d).

Proof. Since Xµ is ∆-homogeneous, there is a homeomorphism h of Xµ

with h(p) = q. We apply Theorem 3.1 with B = κ to obtain A ∈ [µ]≤κ with
the given properties. Since B ⊆ A, we have |A| = κ. There are two cases to
consider. First of all, if κ = µ, then A = κ and conditions (2a) and (2b) are
valid for h.

Next assume that κ < µ. Then |A| = κ and |µ \ A| = µ = |µ \ κ|. There-
fore we may apply the co-ordinate change gκ→A. We let hq = h◦gκ→A. Since
gκ→A(p) = p, we have hq(p) = q. By Lemma 3.2 conditions (2a) and (2b)
are valid for hq since they are valid for h when κ is replaced by A.

Theorem 3.4. Suppose X is ∆-power homogeneous. Then |X| ≤
d(X)πχ(X).

Proof. Let κ = πχ(X). We may assume that Xµ is ∆-homogeneous
where µ ≥ κ. Let D be some dense subset of X with |D| = d(X). For every
q ∈ ∆(X,µ) we fix a homeomorphism hq as in the previous corollary. Since
πχ(X) = κ, we may assume that the size of the local π-base U is equal to κ.
Then U(κ) is a local π-base at pκ in Xκ of size equal to κ.

Fix some well-ordering of Xµ. We define a map H : ∆(X,µ) → DU(κ)

as follows. Whenever q ∈ ∆(X,µ) and U ∈ U(κ) then H(q)(U) = πhq(e)
where

e = min{x ∈ Xµ : x satisfies conditions (2a) and (2b) of Corollary 3.3}.

Note that in particular H(q)(U) ∈ D so H is well-defined. We will show
that H is injective, which will complete the proof. So suppose q, r ∈ ∆(X,µ)
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where q 6= r. In X, we may fix disjoint open neighbourhoods Vq and Vr of
π(q) and π(r) respectively. The set V given by

πκh
−1
q π−1[Vq] ∩ πκh

−1
r π−1[Vr]

is an open neighbourhood of pκ in Xκ. Since U(κ) is a local π-base at pκ,
there is some U ∈ U(κ) which is contained in the neighbourhood V . We will
prove the following claim,

Claim. H(q)(U) ∈ Vq and H(r)(U) ∈ Vr.

Proof of Claim. We prove the statement only for q, the case for r is
identical. So suppose that H(q)(U) = πhq(e) = d. Then e ∈ π−1

κ [U ], so
eκ ∈ U . Since U ⊆ V ⊆ πκh

−1
q π−1[Vq] it follows that

π−1
κ (eκ) ∩ h−1

q π−1[Vq] 6= ∅,

and by applying hq we have

hqπ
−1
κ (eκ) ∩ π−1[Vq] 6= ∅.

Since hqπ
−1
κ (eκ) ⊆ π−1(d), it follows that d ∈ Vq and this proves the

Claim. ◭

Since Vq ∩ Vr = ∅ it follows from the claim that H(q)(U) 6= H(r)(U),
and thus H(q) 6= H(r). We have shown that H is injective and therefore
|X| = |∆(X,µ)| ≤ |D||U(κ)| = d(X)πχ(X).

Since every power homogeneous space is also ∆-power homogeneous, it
follows that the cardinality of power homogeneous spaces is bounded by
d(X)πχ(X). By the same observation, the following corollary answers van
Mill’s question in [8].

Corollary 3.5. If X is a ∆-power homogeneous regular space, then

|X| ≤ 2πχ(X)c(X).

Proof. The assertion follows from Theorem 3.4 and the fact that d(X) ≤
πχ(X)c(X), which was proved by Shapirovskĭı in [12, Theorem 3].

By t(X) and pct(X) we denote the tightness and pointwise compactness

type respectively; see Sections 1 and 4 in [2] for the respective definitions.
By L(X) we denote the Lindelöf degree. The following corollary answers
Question 4.10 in [2].

Corollary 3.6. If X is a power homogeneous regular space, then

|X| ≤ 2t(X)pct(X)L(X).

Proof. Since X is a power homogeneous regular space, we have d(X) ≤
2t(X)pct(X)L(X) by [2, Corollary 4.5]. Furthermore, πχ(X) ≤ t(X)pct(X) by
[13, Corollary 1.13]. So Theorem 3.4 implies that |X| ≤ 2t(X)pct(X)L(X).
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4. ∆-power homogeneity reflects to small powers. As an applica-
tion of the results obtained in this section, we present a new proof of van
Douwen’s theorem without using his “clustering” method. This method is
very powerful since one can prove cardinality results about a space X by
looking at some power Xµ, regardless of the size of the cardinal number µ.
The main result in this section is that if X is ∆-power homogeneous and
πw(X) = κ, then Xκ is ∆-homogeneous. We are then able to prove van
Douwen’s theorem by just looking at the space Xκ.

The following result is similar to [11, Theorem 4], see also [5, Exercise
2.7.12]. It can also be obtained as an application of Theorem 2.2. Recall
from [11, Theorem 3] that if Y =

∏

{Xi : i ∈ I} and d(Xi) ≤ κ for all
i ∈ I, then the closure of an open set U in Y depends on not more than κ

co-ordinates, which means that U = π−1
A [πA[U ]] for some A ∈ [I]≤κ.

Theorem 4.1. Let Y =
∏

{Xi : i ∈ I} and suppose that h : Y → Y

is a homeomorphism. Suppose further that d(Xi) ≤ κ for all i ∈ I, and

πw(Xj) ≤ κ for some j ∈ I. Then there is a set A ∈ [I]≤κ such that for all

w, z ∈ Y ,

wA = zA ⇒ h(w)j = h(z)j.

Proof. Fix a π-base U in Xj of size ≤ κ. Then we may fix a set of
co-ordinates A ∈ [I]≤κ such that for every U ∈ U , the closure of h−1π−1

j [U ]
depends on the co-ordinates in A. We will show that A is as required.

So let w, z ∈ Y with wA = zA and suppose p = h(w)j 6= h(z)j = q. Then
we may fix a neighbourhood V of p in Xj with q 6∈ V . Let V = {U ∈ U :
U ⊆ V }. Since U is a π-base in Xj we have p ∈ Cl

⋃

V. But then w ∈ F

where

F =
⋃

{Clh−1π−1
j [U ] : U ∈ V}.

By construction we have F = π−1
A [πA[F ]], so also F = π−1

A [πA[F ]]. Since

zA = wA ∈ πA[F ], it follows that z ∈ π−1
A [πA[F ]] = F . But we also have

F ⊆ h−1π−1
j [V ], and therefore it follows that q = h(z)j ∈ V , which is

impossible.

Corollary 4.2. Let h : Xµ → Xµ be a homeomorphism and suppose

πw(X) ≤ κ. If B ∈ [µ]≤κ then there is a set A ∈ [µ]≤κ such that for all

w, z ∈ Xµ,

wA = zA ⇒ h(w)B = h(z)B.

Proof. We may view Xµ as the product space of XB and Xα for α ∈
µ \B. Since πw(XB) = πw(X) · |B| ≤ κ (cf. [7, 5.3]), the statement follows
from Theorem 4.1.
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Note that in the previous corollary, any set containing the set A also
satisfies the conclusion. In particular, the set A may be taken so that it
contains B.

Theorem 4.3. Let h :Xµ→Xµ be a homeomorphism and let πw(X)≤κ.
Suppose B ∈ [µ]≤κ. Then there is a set A ∈ [µ]≤κ such that B ⊆ A and for

all w, z ∈ Xµ,

wA = zA ⇔ h(w)A = h(z)A.

Proof. By Corollary 4.2 we may construct a sequence (An)n which sat-
isfies the following conditions for all n < ω:

(1) A0 = B, An ∈ [µ]≤κ and An ⊆ An+1.
(2) For all w, z ∈ Xµ, wA2n+1 = zA2n+1 ⇒ h(w)A2n

= h(z)A2n
,

(3) For all w, z ∈ Xµ, h(w)A2n+2 = h(z)A2n+2 ⇒ wA2n+1 = zA2n+1.

Now set A =
⋃

n<ω An and the theorem follows.

Note that if A is as in the previous theorem, then it is also the case that
for all w, z ∈ Xµ,

wA = zA ⇔ h−1(w)A = h−1(z)A.

Theorem 4.4. Let X be a topological space and suppose πw(X)≤κ≤µ.
Suppose further that h : Xµ → Xµ is a homeomorphism. If B ⊆ µ with

|B| ≤ κ then there is a subset A ⊆ µ with |A| ≤ κ such that B ⊆ A and

A has the following property : if i : XA → Xµ is any continuous injection

with πA ◦ i = idXA then

πA ◦ h ◦ i : XA → XA

is a homeomorphism.

Proof. By Theorem 4.3 we may choose A ⊆ µ such that B ⊆ A, |A| ≤ κ

and A has the following property: for all x, y ∈ Xµ,

(∗) xA = yA ⇔ h(x)A = h(y)A and xA = yA ⇔ h−1(x)A = h−1(y)A.

Let i : XA → Xµ be any continuous injection such that πA ◦ i = idA and let
f = πA ◦ h ◦ i and g = πA ◦ h−1 ◦ i. Then, clearly, f and g are continuous.

We will show that f ◦g = g◦f = idXA . So let z ∈ XA. Then by definition
of g we have

i(g(z))A = g(z) = h−1i(z)A.

By (∗) it follows that

f(g(z)) = hi(g(z))A = i(z)A = z.

Similarly it follows that g(f(z)) = z for all z ∈ XA. This proves the theo-
rem.
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Theorem 4.5. Suppose X is ∆-power homogeneous and πw(X) = κ.

Then Xκ is ∆-homogeneous.

Proof. We may choose µ ≥ κ such that Xµ is ∆-homogeneous. Instead of
choosing arbitrary elements of ∆(X,κ), we choose x, y ∈ ∆(X,µ) arbitrarily
and show that for some homeomorphism g of Xκ, g(xκ) = yκ.

SinceXµ is∆-homogeneous, we may fix a homeomorphism h : Xµ → Xµ

with h(x) = y. Let A ∈ [µ]κ be as in the previous theorem. Let i : XA → Xµ

be the injection given by i(z) = w where wA = zA and wα = xα if α ∈ µ\A.
Then i(xA) = x and πA ◦ i = idXA . Let f = πA ◦ h ◦ i. Then f : XA → XA

is a homeomorphism with f(xA) = yA. By a suitable change of co-ordinates
we obtain a homeomorphism g of Xκ which maps xκ onto yκ. It is essential
here that both x and y are constant as functions from µ into X.

We now obtain the announced proof of van Douwen’s theorem (cf. [4,
Theorem 1]). Of course, this result also follows from Theorem 3.4; here we
use Proposition 2.1 and Theorem 4.5.

Theorem 4.6. If X is ∆-power homogeneous then |X| ≤ 2πw(X).

Proof. Let κ = πw(X). By Theorem 4.5 it follows that Xκ is ∆-homo-
geneous. Therefore the diagonal ∆(X,κ) is contained in some type of Xκ.
Since πw(Xκ) = κ (cf. [7, 5.3]) we have d(Xκ) ≤ κ and πχ(Xκ) ≤ κ. It
follows from Proposition 2.1 that

|X| = |∆(X,κ)| ≤ κκ = 2κ.

5. Power homogeneity and ∆-power homogeneity. Most of the
cardinality results in this paper are proved for∆-power homogeneous spaces.
On close inspection of the proofs in [2], it becomes clear that the results there
can also be proved for ∆-power homogeneous spaces (see in particular the
proof of [2, Corollary 2.9]). Thus if X is a ∆-power homogeneous compact
space, then |X| ≤ 2t(X), and more generally: if X is a ∆-power homoge-
neous regular space, then |X| ≤ 2t(X)pct(X)L(X) (see also Corollary 3.6).
This raises the question whether ∆-power homogeneity and power homo-
geneity are equivalent notions. We do not know of an example of a ∆-power
homogeneous space which is not power homogeneous.

Question 5.1. Is there a space which is ∆-power homogeneous but which

is not power homogeneous?

We have some simple partial results for answering this question. Recall
from [2] that the homogeneity index of X, hind(X), is defined as the number
of different types inX. Thus hind(X) = |{tpe(x,X) : x ∈ X}|. In particular,
hind(X) may be finite.
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Proposition 5.2. Suppose Xµ is ∆-homogeneous and hind(X) < ω.

Then Xµ is homogeneous.

Proof. Let hind(X) = n. We may choose x1, . . . , xn ∈ X such that
X =

⋃

{tpe(xi, X) : 1 ≤ i ≤ n}. Let y be the point in ∆(X,µ) with all co-
ordinates equal to x1. It suffices to show that whenever z ∈ {x1, . . . , xn}

µ

then z ∈ tpe(y,Xµ).

Claim. Whenever I ⊆ {1, . . . , n} and z ∈ {xi : i ∈ I}µ then z ∈
tpe(y,Xµ).

Proof of Claim. The proof is by induction on |I|. If |I| = 1, then the
conclusion follows from ∆-homogeneity of Xµ. Next suppose that for all
I ⊆ {1, . . . , n} with |I| = k the statement is true and choose J ⊆ {1, . . . , n}
with |J | = k + 1.

Let z ∈ {xj : j ∈ J}µ. Then for some j0 ∈ J , the set A = {α < µ :
zα = xj0} is of cardinality µ. Let j1 ∈ J with j1 6= j0. By ∆-homogeneity
we may pick a homeomorphism h : XA → XA such that h(zA)α = xj1 for
all α ∈ A. If B = µ \ A and g is the identity on XB then f = h × g is a
homeomorphism of Xµ and f(z) ∈ {xi : i ∈ I}µ where I = J \ {j0}. Since
|I| = k it follows from the induction hypothesis that f(z) ∈ tpe(y,Xµ) and
thus z ∈ tpe(y,Xµ). ◭

The proposition follows from the Claim if we take I = {1, . . . , n}.

Corollary 5.3. Suppose hind(X) < ω. Then X is ∆-power homoge-

neous if and only if X is power homogeneous.

In view of Theorem 4.5 and Question 5.1 one may ask the following ques-
tion. If X is power homogeneous and πw(X) = κ, is then Xκ homogeneous?
The following theorem provides a positive answer in some special cases.

Theorem 5.4. Suppose X is power homogeneous. Let κ be a cardinal

number such that πw(X) ≤ κ and hind(X) < cf(κ). Then Xκ is homoge-

neous.

Proof. We may fix a cardinal µ ≥ κ such that Xµ is homogeneous. We
fix a point p ∈ ∆(X,µ). We will show that for every x ∈ Xκ we have
x ∈ tpe(pκ, X

κ). Let ν = hind(X). We may fix a set Q ∈ [X]≤ν such that
X =

⋃

{tpe(q,X) : q ∈ Q}. It suffices to show that for every x ∈ Qκ, we
have x ∈ tpe(pκ, X

κ).

So let x ∈ Qκ be fixed. For every q ∈ Q we define A(q) as follows:

A(q) = {α ∈ κ : xα = q}.
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Note that κ =
⋃

q∈QA(q). So as |Q| = ν < cf(κ), it follows that |A(q′)| = κ

for some q′ ∈ Q. We define a point w ∈ Xµ that extends x as follows:

wα =

{

xα if α < κ,

q′ if α ≥ κ.

Since Xµ is homogeneous, we may fix a homeomorphism h : Xµ → Xµ such
that h(p) = w. Since πw(X) ≤ κ, we may find a set A ⊆ µ with κ ⊆ A and
|A| = κ as in Theorem 4.4. We let i : XA → Xµ be the injection defined for
y ∈ XA by

i(y)α =

{

yα if α ∈ A,

π(p) if α 6∈ A.

We clearly have πA ◦ i = idXA , so it follows that if f = πA ◦ h ◦ i then f is
a homeomorphism. Further note that f(pA) = wA. We will define another
homeomorphism g : Xκ → XA. First we define sets B(q) similar to A(q) for
q ∈ Q as follows:

B(q) = {α ∈ A : wα = q}.

In fact we have A(q) = B(q) if q 6= q′ and B(q′) = A(q′)∪ (A \ κ). It follows
that |B(q′)| = κ = |A(q′)|. Fix a bijection ξ : A(q′) → B(q′). We define
g : Xκ → XA as follows for y ∈ Xκ:

g(y)α =

{

yα if α 6∈ B(q′),

yβ if α ∈ B(q′) and β = ξ−1(α).

One easily verifies that g(x) = wA and g(pκ) = pA. It follows that g−1 ◦f ◦g
is a homeomorphism of Xκ that maps pκ onto x. This completes the proof.

Added in proof. The author has recently shown in [10] that Question 5.1 has a
negative answer. This means that every ∆-power homogeneous space is also power homo-
geneous.

References
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