
FUNDAMENTA

MATHEMATICAE

186 (2005)

On complexification and iteration of

quasiregular polynomials which have algebraic degree two
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Ewa Ligocka (Warszawa)

Abstract. We prove that each degree two quasiregular polynomial is conjugate to
Q(z) = z2 − (p+ q)|z|2 + pqz2 + c, |p| < 1, |q| < 1. We also show that the complexification
of Q can be extended to a polynomial endomorphism of CP2 which acts as a Blaschke
product z−p

1−pz
· z−q

1−qz
on CP2 \ C2. Using this fact we study the dynamics of Q under

iteration.

1. Introduction. The results of [Li1] imply that quasiregular polyno-
mials of algebraic degree two can live only on R2. We shall identify R2 with
the complex plane C. Remark 3.6 and Proposition 3.7 of [Li1] show that
each quasiregular polynomial mapping C → C of algebraic degree two is
conjugate via a holomorphic affine map to

Q(z) = z2 + a|z|2 + bz2 + c.

The quasiregularity is equivalent to the condition

1 − |b|2 > |a|
∣∣∣∣b−

a

a

∣∣∣∣.

(There is a sign error in [Li1].)

In the first section we shall give a detailed proof of the above facts and
describe some elementary properties of quasiregular polynomials of degree
two. In particular we shall prove that we can always put a = −(p + q),
b = pq, where |p| < 1 and |q| < 1.

In Section 2 we shall complexify the mapping Q(z) in the same manner
as in [Li2]. We shall prove that the complexified map f : C2 → C2 extends
to a regular mapping f : CP2 → CP2 of complex projective space. It turns
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out that f |CP2 \ C2 is exactly the Blaschke product

φ(ξ) =
ξ − p

1 − pξ
· ξ − q

1 − qξ
.

The dynamics of Blaschke products is well known (see [C-G, pp. 79
and 107–108], [H], [Sh-Su]). We shall use results concerning Blaschke prod-
ucts together with the results of Hubbard–Papadopol [H-P] and Bedford–
Jonsson [B-J1,2] about polynomial mappings of CP2 to study the dynamics
of quasiregular polynomials of algebraic degree two.

In the homogeneous case we shall describe the dynamics of Q on its
Julia set JQ. We shall also outline the proof of the existence of the Böttcher
coordinate near infinity in the case when Q(z) is nonhomogeneous and φ(ξ)
has a fixed point inside the unit disc.

Generally speaking, we hope that the complexification of real-analytic
mappings of C (as in [Li2]) can lead to important applications of holomorphic
dynamics in C2 (or CP2). We hope that the paper [Li2] and the present study
of quasiconformal polynomials of degree two are just the first examples of
such approach.

In the present paper we shall use the definitions and notation from [Li1].

2. Preliminaries. Any homogeneous polynomial of algebraic degree
two can be written as

P (z) = αz2 + β|z|2 + γz2.

If α = 0, then P (z) cannot be quasiregular. If α 6= 0, then P (z) is conjugate
via a linear holomorphic map to

Q(z) = z2 + a|z|2 + b.

We have the following

Proposition 2.1. The following conditions are equivalent :

(a) Q(z) is quasiregular ;
(b) 1 − |b|2 > |a| |b− a/a|;
(c) Q(z) = (z − pz)(z − qz), |p| < 1, |q| < 1. Hence a = −(p + q) and

b = pq.

If Q is quasiregular then it has topological degree two.

Proof. (a)⇔(b). Recall that Q(z) is quasiregular iff
∣∣∣∣
∂Q/∂z

∂Q/∂z

∣∣∣∣ < k < 1

a.e. on C (see [Li1] for further details). We have

∂Q/∂z

∂Q/∂z
(z) =

2bz + az

2z + az
=

2b+ az/z

2z/z + a
=

2b+ aξ

2ξ + a
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where z 6= 0, ξ = z/z̄. It suffices to prove that
∣∣∣∣
2b+ aξ

2ξ + a

∣∣∣∣ < 1 if |ξ| = 1.

This is equivalent to

|2b+ aξ|2 < |2ξ + a|2 ⇔ 4|b|2 + |a|2 + 4ℜabξ < 4 + |a|2 + 4ℜaξ
⇔ 1 − |b|2 > ℜ(abξ − aξ).

The right side has maximal value for ξ = ab−a
|ab−a| . This value is equal to

|ab− a| = |ab− a|.
Hence we get the condition

1 − |b|2 > |ab− a| = |a|
∣∣∣∣b−

a

a

∣∣∣∣

for a 6= 0, and |b| < 1 if a = 0.

(a)⇔(c). Consider the polynomial w(s) = s2 +as+ b. Let p and q be its
roots. For z 6= 0 we have

Q(z) = z2

((
z

z

)2

+ a
z

z
+ b

)

= z2w

(
z

z

)
= z2

(
z

z
− p

)(
z

z
− q

)
= (z − pz)(z − qz).

This implies that if |p| = 1 (resp. |q| = 1), then Q(z) vanishes along the
line {z : 2 arg z = arg p} (resp. {z : 2 arg z = arg q}). Hence Q cannot be
quasiregular (see [Li1]). If |p| < 1, then the argument of z−pz increases with
arg z. As z makes one turn counterclockwise around zero, the argument of
z−pz increases by 2π. If |p| > 1, the argument of z−pz decreases with arg z,
and after the whole round counterclockwise it decreases by 2π. If either p or
q has a modulus greater than 1 then arg(Q(z)) changes by 0 or −4π after one
turn counterclockwise. But |Q(z)| increases with |z| if |z| is sufficiently large.
Hence Q is not orientation-preserving and thus cannot be quasiregular.

Finally, if |p| < 1 and |q| < 1, then |Q(z)| increases with |z| and argQ(z)
strictly increases with arg z. Hence Q(z) is orientation-preserving, which
implies that

ψ(z) =

∣∣∣∣
∂Q/∂z

∂Q/∂z

∣∣∣∣ < 1.

Since Q is homogeneous, the function ψ(z) depends only on arg z. Hence

ψ(z) ≤ sup
|z|=1

ψ(z) = k < 1

and Q(z) is quasiregular.
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The argument of Q(z) increases by 4π if z makes one turn around zero
counterclockwise. Thus Q has topological degree two.

Let now P (z) be any quasiregular polynomial of algebraic degree two.

Proposition 2.2. The polynomial P is conjugate via some holomorphic

affine map to a polynomial Q(z) = z2 + a|z|2 + bz2 + c where 1 − |b|2 >
|a||b − a/a| or a = 0 and |b| < 1. Proposition 2.1 implies that Q(z) is also

quasiregular.

Proof. It follows from the results of [Li1] that

P (z) = P2(z) + P1(z) + c0

where P2(z) is a quasiregular homogeneous polynomial of algebraic degree 2,
P1(z) is an R-linear quasiconformal mapping and c0 is a constant.

The Goursat theorem implies that the topological degree of P is the
same as that of P2. By Proposition 2.1, P2(z) has topological degree two.

Each quasiregular function on C can be written as g(z) = f(h(z)) where
f is entire and h(z) is a quasiconformal homeomorphism of C such that
h(∞) = ∞, h(0) = 0, h(1) = 1. (This is a direct consequence of the solv-
ability of the Beltrami equation.)

Since P (z) has topological degree two, we have

P (z) = w(h(z))

where h is as above and w is a holomorphic polynomial of degree 2.
The polynomial w is conjugate via some holomorphic affine map φ to

w1(z) = z2 + c, w = φ−1w1φ. We have

P (z) = φ−1w1φh(z),

where conjugating P (z) via φ we have

P̃ (z) = φP (φ−1(z)) = w1(φhφ
−1(z)),

hence
P̃ (z) = w1(h1(z)), h1 = φhφ−1.

Conjugating (if needed) via translation we can assume that h1(0) = 0.
We have

P̃ (z) = (h1(z))
2 + c, h1(0) = 0.

The polynomial P̃ cannot contain terms of order 1. Indeed, the exis-
tence of such terms implies that both P̃ and h1 are diffeomorphisms in the
neighbourhood of zero. However we have

∂P̃

∂z
(0) = 2h1(0)

∂h1

∂z
(0) = 0.

Contradiction.
Hence P̃ (z) is conjugate to a map z2 + a|z|2 + bz2 + c.
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Remark 2.3. The mapping h1(z) can be described explicitly. If

P (z) = z2 − (p+ q)|z|2 + pqz2 + c = (h(z))2 + c,

then (11/2 = 1)

h(z) = z

(
1 − p

z

z

)1/2(
1 − q

z

z

)1/2

= z

(
1 +

∞∑

k=1

akp
k z

k

z

)(
1 +

∞∑

k=1

qk
zk

zk

)

where (1 + x)1/2 = 1 +
∑∞

k=1 akx
k. Hence

h(x) = z

(
1 +

p+ q

2

z

z
+ · · ·

)
.

In order to study the behaviour of

Q(z) = z2 − (p+ q)|z|2 + pqz2 + c, |p| < 1, |q| < 1,

in a neighbourhood of ∞ we conjugate it via ψ(z) = 1/z. We have

ψ−1 ◦Q ◦ ψ(z) =
z2

(1 − pz/z)(1 − qz/z) + cz2

=
z2

(1 − pz/z)(1 − qz/z)

∞∑

k=0

(
cz2

(1 − pz/z)(1 − qz/z)
· (−1)

)k

.

If we put

F (z) =
z2

(1 − pz/z)(1 − qz/z)
,

we get

ψ−1 ◦Q ◦ ψ(z) = F (z) +
∞∑

k=1

(−1)kck(F (z))k+1.

Problem 2.4. Is ψ−1◦Q◦ψ(z) conjugate to F (z) in some neighbourhood

of zero?

In the homogeneous case, when c = 0, the following is true.

Proposition 2.5. There exists a continuous and R-homogeneous func-

tion φ : C → C for which φ(F (z)) = (φ(z))2 and

|z|
(1 + |p|)(1 + q)

≤ |φ(z)| ≤ |z|
(1 − |p|)(1 − |q|) .

Proof. The proof is the same as the proof of Theorem 4.1 in Chapter II
of Carleson and Gamelin’s book [C-G]. We have

F ◦n(z) =
z2n

[(
1 − pzz

)(
1 − q zz

)]2n−1

· · ·
[(

1 − pF
◦(n−1)(z)

F ◦(n−1)(z)

)(
1 − qF

◦(n−1)(z)

F ◦(n−1)(z)

)] ,
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hence

|z|2n

[(1 + |p|)(1 + |q|)]2n−1
≤ |F ◦n(z)| ≤ |z|2n

[(1 − |q|)(1 − |p|)]2n−1
.

Put

φn(z) = (F ◦n(z))1/2
n

=
z

[(
1 − pzz

)(
1 − q zz

)]1/2 · · ·
[(

1 − pF
◦(n−1)(z)

F ◦(n−1)(z)

)(
1 − qF

◦(n−1)(z)

F ◦(n−1)(z)

)] .

We have

φn+1

φn
=

(
φ1 ◦ F ◦n

F ◦n

)1/2

=

(
1(

1 − pF
◦n

F ◦n

)(
1 − qF

◦n

F ◦n

)
)1/2n

and
∣∣∣∣1 − φn+1

φn

∣∣∣∣ =

∣∣∣∣
1 −

[(
1 − pF

◦n

F ◦n

)(
1 − qF

◦n

F ◦n

)]1/2n+1

[(
1 − pF

◦n

F ◦n

)(
1 − qF

◦n

F ◦n

)]1/2n+1

∣∣∣∣

≤ 1 − [(1 − |p|)(1 − |q|)]1/2n+1

(1 − |p|)(1 − |q|)1/2n+1

≤ 1 − (1 − |p|)(1 − |q|)
1+[(1−|p|)(1−|q|)]1/2n+1 +· · ·+ [(1−|p|)(1−|q|)](2n+1−1)/2n+1

× 1

[(1 − |q|)(1 − |p|)]1/2n+1

≤ 1 − (1 − |p|)(1 − |q|)
2n+1(1 − |p|)(1 − |q|) .

This estimate implies that the infinite product

φ =

∞∏

n=1

φn+1

φn

converges uniformly to a continuous function on C. We have

|z|
(1 + |q|)(1 + |p|) ≤ |φ(z)| ≤ |z|

(1 − |q|)(1 − |p|) .

By the very construction of φ,

φ(z) = z · ψ
(
z

z

)
.

Thus for t ∈ R,

φ(tz) = tzψ

(
tz

tz

)
= tzψ

(
z

z

)
= tφ(z)

and φ is 1-homogeneous (over R).
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Generally speaking, φ need not be univalent. If F has more than one
fixed point different from zero, that is, F (z1) = z1, F (z2) = z2, z1 6= z2,
z1 · z2 6= 0, then φ(z1) = (φ(z1))

2 and φ(z2) = (φ(z2))
2, which implies

φ(z1) = φ(z2) = 1.

Now let again ψ(z) = 1/z. The mapping

G(z) = ψ−1 ◦ φ ◦ ψ(z) = ψ ◦ φ ◦ ψ(z)

is continuous and R-homogeneous on C. Proposition 2.5 implies immedi-
ately:

Proposition 2.6. There exists a continuous and R-homogeneous func-

tion G : C → C for which G(Q(z)) = (G(z))2 and

|z|(1 − |p|)(1 − |q|) ≤ |G(z)| ≤ |z|(1 + |p|)(1 + |q|).
Problem 2.7. Characterize F (or Q) for which φ (or G) is a homeo-

morphism.

Remark 2.8. Problem 2.7 seems easy, but it is only an illusion. The
main obstacle is that in the nonholomorphic case we have no control over
the derivatives of a convergent sequence of mappings. The quasiregularity
does not help here because the distortion tends to infinity and no normal
family arguments are possible. We think that the complexification is the
only thing that can be useful.

We end this section with the following two facts:

Proposition 2.9. Let Q(z) = z2 + a|z|2 + bz2 + c be a quasiregular

mapping. There exists R > 0 such that Q(z) is uniformly expanding on the

set {z : |z| > R}.
Proof. We need to prove that for large |z| both eigenvalues of the Jacobi

matrix of Q have modulus greater than one. The Jacobi matrix

DQ(z) =

[
2z + az 2bz + az

2bz + a z 2z + az

]

has characteristic polynomial

w(λ) = λ2 − 2ℜ(2z + az) + |2z + az|2 − |2bz + az|2.
Its roots are

λ1(z) = ℜ(2z + az) +
√

(ℜ(2z + az))2 − |2z + az|2 + |2bz + az|2,
λ2(z) = ℜ(2z + az) −

√
(ℜ(2z + az))2 − |2z + az|2 + |2bz + az|2.

We have

λ1(z) = |z|λ1(z/|z|), λ2(z) = |z|λ2(z/|z|).
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Since Q is quasiregular, it follows that 0 = λ1(z) · λ2(z) iff z = 0. Hence

k = inf
|z|=1

min(|λ1(z)|, |λ2(z)|) > 0.

Thus if |z| > 1/k, then |λ1(z)| > 1 and |λ2(z)| > 1.

Proposition 2.10. Let Q(z) = z2−(p+q)|z|2+pqz2+c, |p| < 1, |q| < 1,
be a quasiregular polynomial. For every k > 1 there exists R > 0 such that

if |z| > R, then |Q(z)| > k|z|. This implies that ∞ is a superattracting fixed

point for Q.

Proof. We have

Q(z) = (z − pz)(z − qz) + c.

Put

R =
|c| + k

(1 − |p|)(1 − |q|) .

If |z| > R, then

|(z − pz)(z − qz)| ≥ |z|2(1 − |p|)(1 − |q|) > |z|(1 − |p|)(1 − |q|) > |c| + k.

Hence (|z| > R > 1)

|Q(z)| ≥ |z|2(1 − |p|)(1 − |q|) − |c|
> |z|(|c|+ k) − |c| = k|z| + (|z| − 1)|c| > k|z|.

3. The complexification. Let Q(z) = z2+a|z|2+bz2+c be a quasireg-
ular polynomial. We shall now complexify Q in the same manner as in [Li2].

Define

f(z, w) = (z2 + azw + bw2 + c, w2 + azw + bz2 + c).

Let H = {(z, w) ∈ C2 : w = z}. We have

f(H) = H, f(z, z) = (Q(z), Q(z)).

Theorem 3.1. The function f(z, w) extends to a holomorphic endomor-

phism of CP2, the complex two-dimensional projective space.

Proof. The quasiregularity of Q implies (by Proposition 2.1) that the
polynomial ξ2 + aξ + b has roots with modulus less than one.

The mapping f extends to CP2 iff

(∗) The conditions z2 + azw + bw2 = 0 and bz2 + azw + w2 = 0 imply
that z = 0 and w = 0.

Suppose this is not true; then there exist w 6= 0 and z 6= 0 for which the
polynomials in (∗) vanish. Let ξ = z/w. Then ξ and 1/ξ are the roots of the
polynomial s2 + as+ b, s ∈ C. Since |ξ| 6= 1, we have ξ 6= 1/ξ. Hence

a = −
(
ξ +

1

ξ

)
, b =

ξ

ξ
.
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Now the mapping ξ(Q− c) is quasiregular and nonconstant. We have

ξ(Q− c)(z) = ξz2 − (|ξ|2 + 1)|z|2 + ξz2.

But this last mapping has only real values. Contradiction.

Remark 3.2. Theorem 3.1 is not valid for quasiregular polynomials of
degree greater than two. We can take for example Q(z) = z|z|2. In this case

f(z, w) = (z2w,w2z) = 0

if only zw = 0.

We shall now describe the behaviour of f on the set π = CP2 \ C2. Let

f̃ denote the homogenization of f . The mapping f̃ acts on C3 \ {0} and is
equal to

f̃(z, w, t) = (z2 + awz + bw2 + ct2, bz2 + azw + w2 + t2c, t2).

If t = 0 and z/w = ξ, then we get the mapping

φ(z) =
ξ2 + aξ + b

bξ2 + aξ + 1
=

(ξ − p)(ξ − q)

(1 − pξ)(1 − qξ)

where a = −(p+ q), b = pq. If w = z, then |ξ| = 1. We have

arg
z

z
= arg ξ = 2arg z.

Note that the unit circle is a complete invariant set for φ (see the proof of
Proposition 2.2). The Julia set Jφ is contained in the unit circle. If Q(z) =
z2 + c, then f(z, w) = (z2 + c, w2 + c) and φ(ξ) = ξ2.

This simple example gives us an opportunity to compare our method of
complexification to the standard one. We can write

Q(z) = Q(x, y) = (x2 − y2 + c1, 2xy + c2)

where z = x+ iy and c = c1 + ic2, c1, c2 ∈ R. The standard complexification
of Q is

F (z, w) = (z2 − w2 + c1, 2zw + c2).

The mapping F (z, w) extends to CP2. Its restriction to CP2 \ C2 has the
form

ψ(ξ) =
1

2

(
ξ − 1

ξ

)
.

The mappings φ(ξ) and ψ(ξ) are of course conjugate via the homography

h(ξ) =
ξ − i

ξ + i
.

Generally speaking, if Q(z) is some real-analytic polynomial mapping
on R2, f(z, w) is its complexification by our method and F (z, w) is its stan-
dard complexification, then f(z, w) and F (z, w) are conjugate via a C-linear
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isomorphism of C2, and either both F and f are extendable to CP2 or nei-
ther of them is. In the former case the actions of F and f on CP2 \ C2 are
conjugate via a homography.

However, our method of complexification seems to be more straightfor-
ward and often leads to simpler mappings (as in the above example).

Let us describe the dynamics of φ(ξ), according to [C-G, p. 79 and Ex-
ample on pp. 107–108].

There are four cases possible:

Case (1): The mapping φ(ξ) has an attracting point in the interior of
the unit disc. In this case the Julia set of φ is equal to the unit circle and
the following holds:

Proposition 3.3. The mapping φ(ξ) is conjugate via a Möbius map to

ψ(ξ) = ξ · ξ − p1

1 − p1ξ
, |p1| < 1.

The map ψ is uniformly expanding on its Julia set Jψ = C(0, 1), the unit

circle. The polynomial Q(z) is conjugate via an R-linear quasiconformal map

to Q1(z) = z2 + a|z|2 + c1, |a| < 1.

Proof. Let a ∈ B(0, 1), the unit disc, be such that φ(a) = a. Let ha(ξ) =
(ξ − a)/(1 − aξ). Then

ha ◦ φ ◦ h−1
a (ξ) = eiθξ − ξ − p0

1 − p0ξ
=: φ1(ξ).

Put g(ξ) = eiθξ. We have

ψ(ξ) = g ◦ φ1 ◦ g−1(ξ) = ξ · ξ − p1

1 − p1ξ
, |p1| < 1.

The fact that ψ is uniformly expanding in C(0, 1) follows from the result of
Tischler [T, condition (iii)]. It can also be proved via an immediate calcula-
tion of the derivative of ψ at z/z, z 6= 0. If g is an R-linear quasiconformal
map, then it can be written as g(z, z) = a(z − bz) where |b| < 1, a 6= 0.

Let us complexify g as in the proof of Theorem 3.1. We obtain the
mapping

g̃(z, w) = (a(z − bw), a(w − bz))

which extends to CP2. It acts on CP2 \ C2 as

hg(ξ) =
a

a

ξ − b

1 − bξ
.

The mapping g 7→ hg is a group homomorphism. (In fact one can prove
that the automorphism group of the unit disc is isomorphic to the group of
R-linear quasiconformal mappings of C divided by the equivalence relation
g1 ∼ g2 ⇔ ∃t ∈ R \ {0} : g1 = tg2.)
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Hence, if φ1 and φ2 are conjugate via a Möbius map, then Q1 − c1
and Q2 − c2 are conjugate via a quasiconformal R-linear map. This proves
Proposition 3.3.

Case (2): The mapping φ has no fixed point in the interior of B(0, 1).
(The Denjoy–Wolff theorem implies that if φ has a fixed point in B(0, 1),
then it must be attracting.) We also assume that one of the fixed points of
φ on the unit circle is attracting. In this case the Julia set Jφ is a Cantor
subset of the unit circle and the basin of attraction of the attracting point
is equal to Ĉ \ Jφ.
Case (3): The map φ has a triple neutral fixed point in the unit circle.

This point has two Leau leafs: B(0, 1) and Ĉ \B(0, 1). It follows from [C-G,
Example, pp. 107–108] that the Julia set of φ is equal to the unit circle and
φ must be conjugate via a Möbius map to

ψ(ξ) =
ξ − i/

√
3

1 + iξ/
√

3
· ξ + i/

√
3

1 − iξ/
√

3

and Q− c is conjugate via an R-linear quasiconformal map to

Q0(z) = z2 + z2/3

(as in Proposition 3.3).

Case (4): The map φ has one double neutral fixed point and one re-
pelling fixed point on the unit circle. Then Jφ is a Cantor subset of the unit

circle and the neutral fixed point has one Leau leaf which is equal to Ĉ\Jφ.
For further information concerning the dynamics of Blaschke products

see [H] and [Sh-Su].

4. The homogeneous case. In this section we deal with the case of
c = 0. We have Q(z) = z2 +a|z|2+bz2, a = −(p+q), b = pq, |p| < 1, |q| < 1.

The complexified mapping

f(z, w) = (z2 + azw + bw2, w2 + azw + bz2)

is homogeneous. Hence we can use Proposition 7.1 of [H-P] which says that
the basin of attraction of zero for f is equal to

Ωf = {(z, w) : hf (z, w) < 0}
where

hf (z, w) = lim
m→∞

1

2m
log ‖f◦m(z, w)‖.

The set Ωf is a complete circular Stein domain in C2.

The above fact yields immediately
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Proposition 4.1. The basin of attraction of zero for Q in C is a bounded

domain in C, starlike with respect to zero and given by

ωQ = {z ∈ C : hQ(z) < 0} where hQ(z) = lim
m→∞

1

2m
log |Q◦m(z)|.

Proof. We have

‖f◦m(z, z)‖ =
√

2 |Q◦m(z)|.
The boundedness of ωQ follows from Proposition 2.10.

Note that if hQ(z) > 0, then limm→∞Q◦m(z) = ∞. We have two su-
perattractors: zero and ∞, and the set JQ = {z ∈ C : hQ(z) = 0} which
separates their basins of attraction.

We have

Theorem 4.2. The set JQ is a Jordan curve.

Proof. The polynomial Q(z) is R-homogeneous. We have

hQ(tz) = log |t| + hQ(z) for z 6= 0.

This implies that on each halfline issuing from zero there is exactly one
point z0 for which hQ(z0) = 0. The function hQ(z) is continuous on C, since
hf (z, w) is continuous on C2.

Take eiθ ∈ C(0, 1) and define g(eiθ) = z(eiθ) to be the unique point on
the halfline with origin at zero passing through eiθ for which hQ(z(eiθ)) = 0.

Since hQ is continuous (see [H-P]), the mapping g is also continuous and
univalent. The circle C(0, 1) is compact and thus g is a homeomorphism
from C(0, 1) onto JQ.

In what follows, we shall denote by h the mapping g−1.

Problem 4.3. How to describe the geometric shape of JQ?

If, for example, Q(z) = z2 + |z|2/2, then z0 = 2
3 is a repelling fixed point.

Hence z0 and its counterimages −2
3 , 2√

3
i, − 2√

3
i, ±

√
3 ± i belong to JQ.

Hence JQ cannot be an ellipse with imaginary and real axes. In particular
it is not a circle with center at zero.

The dynamics of Q on its Julia set JQ is closely related to the dynamics
of the Blaschke product φ(ξ) on the unit circle.

Proposition 4.4. There is one-to-one correspondence between the fixed

points of φ(ξ) on the unit circle and nonzero fixed points of the homogeneous

polynomial Q(z). If the fixed point ξ0 is repelling , then so is the correspond-

ing point z0. If ξ0 is attracting or neutral with one Leau leaf , then the cor-

responding z0 is a saddle point. If φ(ξ) is as in Case (1) or (3) of Section 3,
then the dynamics of Q on JQ is chaotic. If φ(ξ) is as in Case (2) or (4),
then Q|JQ

has an attracting point in JQ.
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Proof. Let ξ ∈ C(0, 1), φ(ξ) = ξ. Take z1 ∈ C(0, 1) such that arg z1 =
(arg ξ)/2. We have

z1
z1

= ξ and
z1
z1

=
Q(z1)

Q(z1)
= φ

(
z1
z1

)
.

This implies that Q(z1)/z1 is a nonzero real number.

Put z0 = z2
1/Q(z1). Then

Q(z0) = Q

[
z1

Q(z1)
· z1

]
=

z2
1

Q2(z1)
·Q(z1) =

z2
1

Q(z1)
= z0

by the homogeneity of Q.

If Q(z0) = z0, z0 6= 0, then

φ

(
z0
z0

)
=
Q(z0)

Q(z0)
=
z0
z0

and z0/z0 is a fixed point of φ. In the neighbourhood of the fixed point
z0 the mapping Q(z) is conjugate to φ via the map z 7→ z/z = ξ and the
inverse branch of this map which maps ξ0 to z0. This permits us to prove
the rest of Proposition 4.4.

We shall now try to describe the dynamics of Q|JQ
in Cases (1)–(4) of

Section 3.

Recall that

arg
z

z
= 2arg z

and hence if h(z) denotes the homeomorphism from JQ onto the unit circle
C(0, 1), constructed in Theorem 4.2, then

h(z)

h(z)
= (h(z))2, z ∈ JQ.

Note that from the very construction of h it follows that

h(−z) = −h(z).
Let us consider Case (1). We can assume that

Q(z) = z2 − p|z|2, |p| < 1.

Hence the complexified map f(z, w) acts on CP2 \ C2 as

φ(ξ) = ξ
ξ − p

1 − pξ
.

Elementary calculations permit us to show that if |ξ| = 1, i.e. ξ = 1/ξ,
then

φ(ξ2) =

(
ξ2

|1 − pξ2|
1 − pξ2

)2

.
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Hence

ξ2
|1 − pξ2|
1 − pξ2

and −ξ2 |1 − pξ2|
1 − pξ2

are two continuous branches of (φ(ξ2))1/2 on C(0, 1).
Let ψ(ξ) be the branch for which

Q(z) = h−1ψh(z)

for z ∈ JQ (for the other one we have −Q(z) = h−1ψh(z)).
Hence Q(z) has the same dynamics on JQ as ψ(ξ) on C(0, 1). The dy-

namics of ψ(ξ) is basically the same as the dynamics of φ(ξ). It follows from
the results of [Sh-Su], [H] and [T] that φ(ξ) is chaotic, uniformly expanding,
ergodic and mixing on C(0, 1). Hence we get

Proposition 4.5. The dynamics of Q|JQ
in Case (1) is the same as

the dynamics of the continuous branch ψ(ξ) of (φ(ξ2))1/2 on C(0, 1).

This dynamics is uniformly expanding, chaotic, mixing and ergodic.
Let us consider Case (3). We can assume that

Q(z) = z2 + z2/3

and the complexified mapping f(z, w) acts on CP2 \ C2 as

φ(ξ) =
ξ − i√

3

1 + i√
3
ξ
·
ξ + i√

3

1 − i√
3
ξ
.

Elementary calculations show that

φ(ξ2) =

(
ξ2

|1 + ξ4/3|
1 + ξ4/3

)2

if |ξ| = 1. We again have two continuous branches of (φ(ξ2))1/2 on C(0, 1)
equal to

±ξ2 |1 + ξ4/3|
1 + ξ4/3

.

We can again choose one branch ψ(ξ) for which Q(z) = h−1ψh(z). The
mapping ψ is again chaotic on C(0, 1) but it is not uniformly expanding.

It remains to study Cases (2) and (4). In both, the Julia set of the map

φ(ξ) =
ξ − p

1 − pξ
· ξ − q

1 − qξ

for Q(z) = (z − pz)(z − qz) is the Cantor subset of C(0, 1). The set

U = C(0, 1) \ JQ
is the basin of attraction of a fixed point ξ0 of φ(ξ), |ξ0| = 1. In Case (2),
ξ0 ∈ U , and in Case (4), ξ0 ∈ Jφ ∩ ∂U . By Proposition 4.4 there exists
z0 ∈ JQ such that Q(z0) = z0 and (h(z0))

2 = ξ0.
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As before, if |ξ| = 1, then

φ(ξ2) =

(
ξ2 · |1 − pξ2|

1 − pξ2
· |1 − qξ2|

1 − qξ2

)2

and we can again find a continuous branch ψ of (φ(ξ2))1/2 for which h−1 ◦
ψ ◦ h(z) = Q(z).

Let W = {z ∈ JQ : (h(z))2 ∈ U} and CQ = {z ∈ JQ : (h(z))2 ∈ Jφ}.
We obtain immediately the following

Proposition 4.6. In Cases (2) and (4), JQ = W ∪ CQ, W ∩ CQ = ∅.
The set W is an open set in JQ which is attracted to z0. In Case (2), z0 ∈W ,
and in Case (4), z0 ∈ CQ ∩ ∂W . The set CQ is a Cantor set. The mapping

Q|CQ
is conjugate to ψ and also to φ. The set CQ is the support of a chaotic

dynamics of Q.

5. The nonhomogeneous case. Almost nothing is known about the
dynamics of regular nonhomogeneous polynomial mappings of CP2. However
Theorem 4.3 (and its proof) from [B-J1] permits us to state the following

Theorem 5.1. Suppose that Q(z) = z2 +a|z|2 +bz2 +c is a quasiregular

polynomial conjugate to z2 − p|z|2 + c1 (Case (1) from Section 3). Then

there exists a neighbourhood V of ∞ in the Riemann sphere Ĉ and a hom-

eomorphism ψ which maps V onto some neighbourhood of ∞, ψ(∞) = ∞,
conjugating Q to Q − c. This means that in this case we have a Böttcher

coordinate near infinity.

Outline of the proof. Let Q(z) = z2 − p|z|2 + c and Q0(z) = z2 − p|z|2.
The complexified mapping is f(z, w) = (z2 − pzw + c, w2 − pzw + c). We
have

φ(ξ) = ξ
z − p

1 − pz
,

Jφ = C(0, 1) and φ is uniformly expanding on Jφ. Hence the assumptions
of Theorem 4.3 of [B-J1] are fulfilled and there exists a homeomorphism

ψ : W s(Jφ, Q0) ∩A0,Q0

onto−→W s(Jφ, Q) ∩A0,Q

conjugating f(z, w) and

f0(z, w) = (z2 − pzw,w2 − pzw).

Here W s(Jφ, Q0) and W s(Jφ, Q) denote the sets of points of CP2 which are
attracted to Jφ by iterating Q0 or Q respectively, and

A0,Q = {(z, w) ∈ CP2 : GQ(z, w) > R0}
where GQ is the Green function for Q.

Proposition 2.10 implies that there exists R > 0 such that

{(z, z) : |z| > R} ⊂W s(Jφ, Q0) ∩A0,Q0 ∩W s(Jφ, Q) ∩A0,Q.
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Let ψ(z, w) = (ψ1(z, w), ψ2(z, w)). If we show that

ψ1(z, z) = ψ2(z, z),

then ψ(z) = ψ1(z, z) will be the needed homeomorphism. Take z0 ∈ C with
|z0| > R. Since φ is uniformly expanding on Jφ, there exists a ∈ Jφ such
that (z, z) belongs to the stable disc W s(a,Q0). One can check that

ψ|W s(a,Q0) = ψ1,a

where ψ1,a comes from a holomorphic homotopy on W s(a,Q0),

ψτ,a,n = f−nNτ ◦ fnN0

where fτ (z, w) = (z2 − pzw + τc, w2 − pzw + τc1), |τ | < 2, namely

ψτ,a = lim
n→∞

ψτ,a,n.

The branches f−nNτ are chosen such that f−nNτ is holomorphic in τ , and
ψ0,a,n = Id.

Fix n ∈ N. There exist ε > 0 and δ > 0 such that if |τ | < ε, then fnNτ is
a nonbranched covering of

B((z0, z0), δ) ∩W s(a,Q0).

Thus the counter-images of

B((z0, z0), δ) ∩W s(a,Q)

with respect to different branches of f−nNτ are “far apart”. This implies that
we can find ε0, 0 < ε0 < ε, such that

ψ2
τ,a,n(z, z) = ψ1

τ,a,n(z, z)

for τ ∈ R, |τ | < ε0 and (z, z) ∈ B((z0, z0), δ/2) ∩W s(a,Q0). The function

ψ2
τ,a,n(z, z) − ψτ,a,n(z, z)

is real-analytic on (−2, 2) ⊂ R, vanishes on (−ε0, ε0), and hence it must be

equal to zero for each τ ∈ R, |τ | < 2. This implies that ψ2
τ,a = ψ1

τ,a for τ ∈ R

and ψ2
1,a = ψ1

1,a. This ends our outline of the proof.

In order to obtain a full proof one must read our outline together with
Section 4 of the Bedford–Jonsson paper [B-J1].

Problem 5.2. Is Theorem 5.1 valid for other quasiregular polynomials
of degree two?

Remark 5.3. One can feel tempted to act in the standard way: define
the filled-in Julia set or something like the Mandelbrot set and try to mimick
the theory of the quadratic family {z2 + c}. We think this is not the right
thing to do now. First we must understand the behaviour of our mappings
Q(z) and complexified mappings f(z, w) on CP2 in the nonhomogeneous
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case. At present we do not have good analytic tools to deal with this prob-
lem. Proposition 4.6 shows that the dynamical behaviour of Q(z) can be
quite different from the behaviour of a quadratic holomorphic polynomial.
Moreover, in this case the support of a chaotic dynamics of Q is equal to
CQ ( JQ. Hence the important set is CQ, not the whole Julia set.

Acknowledgements. We wish to thank the referee for a very interest-
ing and helpful review of the first version of our paper. We owe him/her
the final form of Proposition 2.1, an essential simplification of its proof and
the statement of Proposition 2.6. Moreover, the referee pointed out that the
branches of (φ(ξ2))1/2 can be used in the study of Q|JQ
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