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Holonomy groups of flat manifolds with the R∞ property

by

Rafał Lutowski and Andrzej Szczepański (Gdańsk)

Abstract. LetM be a flat manifold. We say thatM has the R∞ property if the Rei-
demeister number R(f) is infinite for every homeomorphism f : M → M. We investigate
relations between the holonomy representation ρ of M and the R∞ property. When the
holonomy group ofM is solvable we show that if ρ has a unique R-irreducible subrepresen-
tation of odd degree then M has the R∞ property. This result is related to Conjecture 4.8
in [K. Dekimpe et al., Topol. Methods Nonlinear Anal. 34 (2009)].

1. Introduction. Let f : Mn → Mn be a continuous map on a closed
n-dimensional manifoldMn. From the point of view of fixed point theory the
following three numbers are of particular importance: the Lefschetz number
L(f), the Nielsen number N(f) and the Reidemeister number R(f). If n ≥ 3,
the Nielsen number N(f) is a sharp lower bound on the number of fixed
points of any element in the homotopy class of f . However in general N(f)
is difficult to calculate. In 1963, B. Jiang identified a large class of spaces for
which

N(f) =

{
0 if L(f) = 0,

R(f) if L(f) 6= 0,

for all continuous maps f : Mn →Mn.
In the light of the above relation, since the Nielsen number is always

finite, the finiteness of the Reidemeister number is important. This was one
of the motivations for introducing

Definition 1.1. A manifold Mn has the R∞ property if R(f) =∞ for
every homeomorphism f : Mn →Mn.

The Reidemeister number can be defined at the level of the fundamental
group Γ = π1(M

n). Recall that any continuous map f : Mn →Mn induces
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a morphism f] : Γ → Γ . We say that two elements α, β ∈ Γ are f]-conjugate
if there exists γ ∈ Γ such that β = γαf](γ)

−1. The f]-conjugacy class
{γαf](γ)−1 | γ ∈ Γ} of α is called a Reidemeister class of f. The number
of Reidemeister classes is called the Reidemeister number R(f) of f. It is
evident that we can also define R(Φ) for a countable discrete group E and its
automorphism Φ. We say that a group E has the R∞ property if R(Φ) =∞
for any automorphism Φ. The class of groups with the R∞ property includes:
all non-elementary Gromov-hyperbolic groups, the Baumslag–Solitar groups
BS(m,n) = 〈a, b | bamb−1 = an〉 except for BS(1, 1), the lamplighter groups
Zn oZ if and only if 2 |n or 3 |n, the Thompson group F and the symplectic
groups Sp(2n,Z), n ∈ Z+. See [4] and [9] for a more comprehensive list, the
history of R∞-groups and a complete bibliography.

Let Mn be a closed Riemannian manifold of dimension n. We shall call
Mn flat if, at any point, the sectional curvature is equal to zero. Equivalently,
Mn is isometric to the orbit space Rn/Γ, where Γ is a discrete, torsion-free
and cocompact subgroup of O(n) n Rn = Isom(Rn). From the Bieberbach
theorem (see [1], [10]), Γ defines a short exact sequence of groups

(1.1) 0→ Zn → Γ
p→ G→ 0,

where G is a finite group. Here Γ is called a Bieberbach group and G its holon-
omy group. We can define the holonomy representation ρ : G→ GL(n,Z) by
the formula:

(1.2) ∀g∈G ρ(g)(ei) = g̃ei(g̃)
−1,

where ei ∈ Γ , i = 1, . . . , n, are generators of the free abelian group Zn, and
g̃ ∈ Γ is such that p(g̃) = g.

In this article we describe relations between the R∞ property of the
flat manifold Mn (or of the Bieberbach group Γ ) and the structure of the
holonomy representation. Connections between geometric properties of Mn

and algebraic properties of ρ were already considered in different cases. For
example, Out(Γ ) is finite if and only if the holonomy representation is Q-
multiplicity free and any Q-irreducible component of the holonomy represen-
tation is R-irreducible (see [8]). A similar equivalence says that an Anosov
diffeomorphism f : Mn → Mn exists if and only if any Q-irreducible com-
ponent of the holonomy representation that occurs with multiplicity one is
reducible over R (see [5]).

We want to define conditions of this kind for the holonomy representation
of a flat manifold with the R∞ property. We already know that, in this way,
a complete characterization is not possible. There are examples [3, Th. 5.9]
of flat manifolds M1,M2 with the same holonomy representation such that
M1 has the R∞ property and M2 does not. In [3, Corollary 4.4] it is proved
that if there exists an Anosov diffeomorphism f : Mn → Mn then R(f)
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is finite and Mn does not have the R∞ property. Moreover there exists
M whose holonomy representation has a Q-irreducible component which is
irreducible over R and occurs with multiplicity one andM does not have the
R∞ property, [3, Example 4.6]. Nevertheless in [3, Th. 4.7] the following is
proved:

Theorem 1.2. Let M be a flat manifold with holonomy representation
ρ : G → GL(n,Z). Assume that there exists a Q-irreducible Q-subrepresen-
tation ρ′ : G → GL(n′,Z) of ρ such that ρ′(G) is not Q-conjugate to ρ̃(G)
for any other Q-subrepresentation ρ̃ of ρ. Suppose moreover that for every
D′ ∈ NGL(n′,Z)(ρ

′(G)), there exists A ∈ G such that ρ′(A)D′ has eigenvalue
1. Then M has the R∞ property.

Remark 1.3. If we assume that

(1.3) NGL(n′,Q)(ρ
′(G))/CGL(n′,Q)(ρ

′(G)) ∼= Aut(G),

then the above requirement that ρ′(G) is not Q-conjugate to ρ̃(G) is equiva-
lent to the condition that ρ′ ⊂ ρ has multiplicity one. For example, if we take
the diagonal representation ρ : (Z2)

2n → SL(2n + 1,Z) of the elementary
abelian 2-group, then (1.3) is not satisfied for any Q-irreducible subrepre-
sentation of ρ.

We shall prove:

Theorem 1.4. Let M be a flat manifold with holonomy representation
ρ : G→ GL(n,Z) where G is a solvable group. Assume that there exists a Q-
irreducible Q-subrepresentation ρ′ : G → GL(n′,Z) of ρ of odd dimension
such that ρ′(G) is not Q-conjugate to ρ̃(G) for any other Q-subrepresentation
ρ̃ of ρ. Then M has the R∞ property.

If we restrict our consideration to the class of finite groups which satisfy
the condition (1.3) we have

Theorem 1.5. Let M be a flat manifold with holonomy representation
ρ : G → GL(n,Z) where G is a solvable group. Assume that there exists
a Q-irreducible Q-subrepresentation ρ′ : G → GL(n′,Z) of ρ of multiplicity
one and odd dimension which satisfies the condition (1.3). Then M has the
R∞ property.

The above result is a corollary of [7, Th. 5.4.4], Theorem 1.2 and the
following theorem:

Theorem A. Let G be a finite group with a non-trivial normal abelian
subgroup A and let ρ : G → GL(n,Z) be a faithful R-irreducible represen-
tation. Suppose n is odd. Then for every D ∈ NGL(n,Z)(ρ(G)), there exists
g ∈ G such that ρ(g)D has eigenvalue 1.
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The main idea used in the proof of the main result is to apply Clifford’s
theorem [2, Theorem 49.2], which gives a relation between irreducible kG-
modules and kH-modules, where H is a normal subgroup of a finite group G,
and k is an arbitrary field.

Remark 1.6. Conjecture 4.8 in [3] says that the above Theorem A is
true for any finite group. We do not know whether it holds in general.

2. Proof of Theorem A

Theorem 2.1. Let G be a finite group and n be an odd integer. Let
ρ : G → GL(n,Z) be a faithful representation of G which is irreducible
over R. Then ρ is irreducible over C.

Proof. Assume that ρ is reducible over C and let τ be any C-irreducible
subrepresentation of ρ. By [6, Theorem 2], the representation ρ is uniquely
determined by τ and, if χ is the character of τ , then the character of ρ is
χ+ χ. Hence ρ is of even degree. This proves the theorem.

For the rest of this section we assume that ρ : G→ GL(n,Z) is an abso-
lutely irreducible representation of G, where n is an odd integer.

Proposition 2.2. If A is a normal abelian subgroup of G, then A is an
elementary abelian 2-group.

Proof. Let τ be an R-irreducible subrepresentation of ρ|A. By Clifford’s
theorem [2, Theorem 49.2], all R-subrepresentations of ρ|A are conjugates of
an R-irreducible subrepresentation τ , i.e. there exist g1 = 1, g2, . . . , gl ∈ G
such that

(2.1) ρ|A = τ (g1) ⊕ · · · ⊕ τ (gl),

where
∀1≤i≤l ∀g∈G τ (gi)(g) = τ(g−1i ggi).

Let a ∈ A be an element of order greater than 2. Since ρ is faithful, there
exists 1 ≤ i ≤ l such that τ (gi)(a) is a real matrix of order at least 3. Hence
deg(τ (gi)) = deg(τ) = 2 and n = deg(ρ) = deg(ρ|A) = l deg(τ) = 2l is an
even integer. This contradiction finishes the proof.

Since A is an elementary abelian 2-group, the decomposition (2.1) may
be realized over the rationals. By [2, Theorem 49.7] we may assume that

(2.2) ρ|A = eτ (g1) ⊕ · · · ⊕ eτ (gk),

i.e. the one-dimensional representations τ (g1), . . . , τ (gk) occur with the same
multiplicity e = n/k. Let ρi := eτ (gi) for i = 1, . . . , k. By a suitable choice of
basis of Qn we may assume that for every a ∈ A, ρ(a) is a diagonal matrix
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such that

(2.3) ∀1≤i≤k Img(ρk) = 〈−I〉,

where I is the e× e identity matrix.
Since A�G and ρ is faithful, we have

ρ(A)� ρ(G) ⊂ NGL(n,Q)(ρ(A)) = {m ∈ GL(n,Q) | m−1ρ(A)m = ρ(A)}.

In the next two subsections we will focus on the above normalizer.

2.1. Centralizer. First we describe the centralizer

CGL(n,Q)(ρ(A)) = {m ∈ GL(n,Q) | ∀a∈A mρ(a) = ρ(a)m}.

Let m = (mij) ∈ GL(n,Q) be a block matrix such that mρ|A = ρ|Am. We
get

m11 . . . m1k

...
. . .

...
mk1 . . . mkk



ρ1 0

. . .

0 ρk

 =


ρ1 0

. . .

0 ρk



m11 . . . m1k

...
. . .

...
mk1 . . . mkk

 ,

and thus
∀1≤i,j≤k mijρj = ρimij .

Since for i 6= j, ρi and ρj have no common subrepresentation, by Schur’s
Lemma (see [2, (27.3)]) mij = 0 for i 6= j and mii ∈ GL(n/k,Q) for i =
1, . . . , k. We have just proved

Lemma 2.3. Let ρ : G → GL(n,Q) be a faithful, absolutely irreducible
representation of a finite group G of odd degree n. Let A be a normal abelian
subgroup of G such that conditions (2.2) and (2.3) hold. Then

CGL(n,Q)(ρ(A)) = {diag(c1, . . . , ck) | ci ∈ GL(n/k,Q), i = 1, . . . , k},

where k is the number of pairwise non-isomorphic irreducible subrepresenta-
tions of ρ|A.

2.2. Normalizer. Since the group A is finite, Aut(A) is a finite group.
Moreover, we have a monomorphism

NGL(n,Q)(ρ(A))/CGL(n,Q)(ρ(A)) ↪→ Aut(A).

Hence any coset mCGL(n,Q)(ρ(A)) with m ∈ NGL(n,Q)(ρ(A)) corresponds to
some automorphism of A.

Let ϕ ∈ Aut(A) and m = (mij) ∈ GL(n,Q) be a block matrix which
represents this automorphism, with blocks of degree n/k, i.e.

∀c∈CGL(n,Q)(ρ(A)) ∀a∈A (mc)ρ(a)(mc)−1 = mρ(a)m−1 = ρ(ϕ(a)).
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We have
m11 . . . m1k

...
. . .

...
mk1 . . . mkk



ρ1 0

. . .

0 ρk

 =


ρ1ϕ 0

. . .

0 ρkϕ



m11 . . . m1k

...
. . .

...
mk1 . . . mkk

 .

Note that

(2.4) ∀1≤i≤k Img(ρi) = Img(ρiϕ) = 〈−I〉.
Since, for i 6= j, ρi and ρj do not have common subrepresentations, the
same applies to ρiϕ and ρjϕ. Hence, using Schur’s lemma again, for every
1 ≤ i ≤ k there exists exactly one 1 ≤ j ≤ k such that

mjiρi = ρjϕmji

andmji 6= 0. Moreover, det(m) 6= 0 and also det(mij) 6= 0. By (2.4), ρi = ρjϕ
and there exists a permutation σ ∈ Sk, where Sk is the symmetric group on
k letters, such that

(2.5) m diag(ρ1, . . . , ρk)m
−1 = diag(ρσ(1), . . . , ρσ(k)).

Let τ ∈ Sk be any permutation and let Pτ ∈ GL(n,Q) be the block
matrix, with all blocks of degree n/k, such that

(2.6) (Pτ )i,j =

{
I if τ(i) = j,

0 otherwise,
where 1 ≤ i, j ≤ k. By (2.5) we may take

m = Pσ

as a representative of a coset in NGL(n,Q)(ρ(A))/CGL(n,Q)(ρ(A)) which real-
izes the automorphism ϕ.

Let
S := {τ ∈ Sk | Pτ ∈ NGL(n,Q)(ρ(A))}.

Then S is a subgroup of Sk and

P := {Pτ | τ ∈ S}
is a subgroup of the normalizer. By the above and Lemma 2.3, we get

Proposition 2.4. The normalizer NGL(n,Q)(ρ(A)) is a semidirect pro-
duct of CGL(n,Q)(ρ(A)) and P . Moreover

NGL(n,Q)(ρ(A)) = CGL(n,Q)(ρ(A))·P ∼= CGL(n,Q)(ρ(A))oS ∼= GL(n/k,Q)oS,
where o denotes wreath product.

2.3. Properties of the group G. Let C := CG(A) be the centralizer
of A in G. Since ρ is faithful, we have

C = ρ−1(CGL(n,Q)(ρ(A))).
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By Proposition 2.4, the kernel of the composition

G
ρ→ NGL(n,Q)(ρ(A))

ν→ NGL(n,Q)(ρ(A))/CGL(n,Q)(ρ(A)) ∼= S,

where ν is the quotient homomorphism, equals C and hence we have an
isomorphism of groups

S ∼= G/C.

The representations ρi, i = 1, . . . , k, are defined on the group A. Lem-
ma 2.3 enables us to extend their domains to C. Let Vi be the subspaces of
Qn corresponding to the representations ρi, i = 1, . . . , k. In fact, since ρ|C is
in block diagonal form, we have

∀1≤i≤k Vi = Θ ⊕ · · · ⊕Θ︸ ︷︷ ︸
i−1

⊕Qn/k ⊕Θ ⊕ · · · ⊕Θ ⊂ Qn,

where Θ is considered as a zero-dimensional subspace (zero vector) of Qn/k.
Moreover, every element of the group S permutes the set {V1, . . . , Vk}. We
want to prove that this action is transitive.

Lemma 2.5. S ⊂ Sk is a transitive permutation group.

Proof. Assume that S is not transitive, so

∃1≤j≤k ∀i 6=j ∀τ∈S τ(i) 6= j.

Let

V̂j =
k⊕
i=1
i 6=j

Vi

and g ∈ G. Then ρ(g) = Pτm for some τ ∈ S and m ∈
⊕k

i=1GL(n/k,Q).
We get

ρ(g)(V̂j) = Pτm · V̂j = Pτ · V̂j =
k⊕
i=1
i 6=j

Vτ(i) = V̂j .

Thus V̂j ( Qn is an invariant subspace of ρ and hence ρ is reducible (over Q).
This contradiction proves the lemma.

The following lemma helps us to understand the structure of the repre-
sentation ρ.

Lemma 2.6. The representations ρ1, . . . , ρk : C → GL(n/k,Q) are abso-
lutely irreducible.

Proof. Let φ : C → GL(d,C) be a C-irreducible subrepresentation of ρ|C .
By Clifford’s theorem, for the group C �G the representation ρ|C is a sum
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of conjugates of φ, i.e.

ρ|C =
m⊕
s=1

φ(gs),

where gs ∈ G, s = 1, . . . ,m, and g1 = 1. For every 1 ≤ s ≤ m, φ(gs) is
a complex subrepresentation of some ρi, i = 1, . . . , k. Counting dimensions,
we can see that for every 1 ≤ i ≤ k,

ρi =

m/k⊕
j=1

ρi,j ,

where
∀1≤j≤m/k ρi,j ∈ {φ(gs) | 1 ≤ s ≤ m}.

Let Vi,j ⊂ Vi be an invariant space under the action of ρi,j for 1 ≤ i ≤ k,
1 ≤ j ≤ m/k. Taking a suitable basis for Vi, 1 ≤ i ≤ k, we can assume that
the decomposition

ρi =

m/k⊕
j=1

ρi,j

is given in block diagonal form:

∀1≤j≤m/k Vi,j = Θ ⊕ · · · ⊕Θ︸ ︷︷ ︸
j−1

⊕Cn/m ⊕Θ ⊕ · · · ⊕Θ ⊂ Vi,

where Θ is a zero-dimensional subspace (zero vector) of Cn/m. Note that the
images of ρi|A, i = 1 . . . , k, remain the same in this new basis. Hence the
description of the representatives of the normalizer given in Subsection 2.2
remains the same for the group GL(n,C).

If the representations ρi, i = 1, . . . , k, are C-reducible then m > k. Let

W =

k⊕
i=1

Vi,1

and g ∈ G. Then ρ(g) = Pτm (as in the proof of Lemma 2.5) and we get

ρ(g)(W ) = Pτm ·W = Pτ ·W =

k⊕
i=1

Vτ(i),1 =W.

HenceW ( Cn is an invariant subspace of ρ and thus ρ cannot be absolutely
irreducible. This contradiction finishes the proof.

2.4. Abelian normal subgroups. Without loss of generality we can
assume that A is a maximal abelian normal subgroup of G, i.e. if A′ �G is
abelian and A ⊂ A′ then A = A′. We will show that A is unique in G and
hence characteristic.
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Lemma 2.7. A is unique in C.

Proof. Let A′ � G be an abelian group such that A′ ⊂ C. Since all ele-
ments of A commute with all elements of C, they commute with all elements
of A′. Hence AA′ is a normal abelian subgroup of G. Since A is maximal, we
have

AA′ = A⇒ A′ ⊂ A.
If we can prove that A ⊂ C, then A is going to be unique in G. Recall

that we have a short exact sequence

1→ C → G
p→ S → 1.

Assuming A 6⊂ C, we get 1 6= p(A)�S.We will prove that this is impossible.

Lemma 2.8. Let S ⊂ Sk be a transitive permutation group and k be
an odd natural number. Then S contains no non-trivial normal elementary
abelian 2-groups.

Proof. Let x ∈ X = {1, . . . , k}. Let Sx be the stabilizer of x in S, and
Sx be the orbit of x. By the transitivity of the action of S on X, we have
Sx = X and since we have a bijection

Sx↔ {τSx | τ ∈ S},
the index [S : Sx] is an odd number. Now let B be any normal 2-subgroup
of S. Then B ⊂ Sx and we get

B =
⋂
τ∈S

τBτ−1 ⊂
⋂
τ∈S

τSxτ
−1 =

⋂
τ∈S

Sτ(x) = 1,

since S acts faithfully on X.

We have just proved

Proposition 2.9. The maximal, normal elementary abelian subgroup
A�G is unique maximal in G and hence it is a characteristic subgroup.

Corollary 2.10.

NGL(n,Q)(ρ(G)) ⊂ NGL(n,Q)(ρ(A)).

2.5. The proof of Theorem A. Let us recall the statement of the
theorem.

Theorem A. Let G be a finite group with a non-trivial normal abelian
subgroup A and let ρ : G → GL(n,Z) be a faithful R-irreducible represen-
tation. Suppose n is odd. Then for every D ∈ NGL(n,Z)(ρ(G)), there exists
g ∈ G such that ρ(g)D has eigenvalue 1.

Proof. Note that, by R-irreducibility of ρ, N = NGL(n,Z)(ρ(G)) is a finite
group (see [8, pp. 587–588]).
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Since eigenvalues of matrices do not depend on their conjugacy class, we
can assume that ρ(A) is a group of diagonal matrices. Using Corollary 2.10,
Proposition 2.4 and the fact that

N ⊂ NGL(n,Q)(ρ(G)),

we get
N ⊂ CGL(n,Q)(ρ(A)) · P.

Recall that

CGL(n,Q)(ρ(A)) =
k⊕
i=1

GL(n/k,Q)

and elements of P are “block permutation matrices” (see Lemma 2.3 and
(2.6) respectively).

Let D ∈ N . Then D has the form

D = Pσ diag(c1, . . . , ck),

where σ ∈ Sk and ci ∈ GL(n/k,Q) for i = 1, . . . , k. Recall that G/C ∼= S,
where S ⊂ Sk is a transitive permutation group (see Lemma 2.5). Hence
there exists τ ∈ S such that

τ(1) = σ−1(1)

and for some g′ ∈ G,

ρ(g′) = diag(c′1, . . . , c
′
k)Pτ .

We get

ρ(g′)D = diag(c′1, . . . , c
′
k)PτPσ diag(c1, . . . , ck)

= diag(c′1, . . . , c
′
k)Pστ diag(c1, . . . , ck) = diag(d, T ),

where T is the matrix of rows of diag(c2, . . . , ck) permuted by στ and mul-
tiplied on the left by diag(c′2, . . . , c

′
k). Since d = c′1c1 ∈ GL(n/k,Q) has an

odd degree, it must have a real eigenvalue, and since N is of finite order,
this eigenvalue is ±1. If the eigenvalue is 1, then we take g = g′ and the
theorem is proved. Otherwise, by Clifford’s theorem and the faithfulness of
ρ, we can take a ∈ A such that ρ1(a) = −I. Then ρ1(a)d has an eigenvalue
1 and hence, taking g = ag′, the element

ρ(g)D = ρ(ag′)D = ρ(a)ρ(g′)D = ρ(a) diag(d, T )

= (ρ1 ⊕ · · · ⊕ ρk)(a) · diag(d, T )
= diag(ρ1(a)d, (ρ2 ⊕ · · · ⊕ ρk)(a)T )

also has an eigenvalue equal to 1. This finishes the proof.
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