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Weak difference property of functions
with the Baire property
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Tamás Mátrai (Budapest)

Abstract. We prove that the class of functions with the Baire property has the weak
difference property in category sense. That is, every function for which f(x+h)−f(x) has
the Baire property for every h ∈ R can be written in the form f = g+H + φ where g has
the Baire property, H is additive, and for every h ∈ R we have φ(x+ h)− φ(x) 6= 0 only
on a meager set. We also discuss the weak difference property of some subclasses of the
class of functions with the Baire property, and the consistency of the difference property
of the class of functions with the Baire property.

1. Introduction. Let R denote the set of real numbers and let F be a
class of real-valued functions on R. We say that F has the difference property
if every function f : R→ R for which

f(x+ h)− f(x) ∈ F for every h ∈ R
can be written in the form

f = g +H

where g ∈ F and H is additive, that is, H(x+ y) = H(x) +H(y) for every
x, y ∈ R. For real h we shall write

∆hf(x) = f(x+ h)− f(x)

for the difference functions of f .
Many function classes have the difference property, but the class of

Lebesgue measurable functions does not if we assume the continuum hy-
pothesis (see [5] or [6] for details). However, it was conjectured by Erdős
that every function f : R→ R for which ∆hf is measurable for every h ∈ R
is of the form f = g + H + φ where g is measurable, H is additive and
for every h ∈ R, φ(x + h) − φ(x) = 0 almost everywhere (with respect to
Lebesgue measure). This led to the definition of the weak difference prop-
erty.
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We say that a class F has the weak difference property if every function
f for which

∆hf(x) ∈ F for every h ∈ R
can be written in the form

f = g +H + φ

where g ∈ F , H is additive and for every h ∈ R, ∆hφ = 0 almost everywhere.
The conjecture of Erdős, namely the weak difference property of the

class of Lebesgue measurable functions, and many of its consequences, were
proved by M. Laczkovich [5].

The weak difference property in category sense was introduced in [1]. If
a property P (x) holds for every x ∈ R except a meager set of x’s then we say
that P (x) holds M-almost everywhere (for short M-a.e.) or for M-almost
every x, where M stands for the class of meager subsets of R. Analogously
we say that a class F has the weak difference property in category sense if
every function f for which

∆hf(x) ∈ F for every h ∈ R
can be written in the form

f = g +H + φ

where g ∈ F , H is additive and for every h ∈ R, ∆hφ = 0 M-almost
everywhere. The functions φ of this kind will be called null.

In [1] some problems were formulated on the analogy of the classical
weak difference property problems. One of these, the counterpart of the
result of M. Laczkovich for Lebesgue measurable functions, that is, the weak
difference property in category sense of the class of functions with the Baire
property, is proved in this paper. (A real-valued function has the Baire
property if for every b ∈ R the set {x ∈ R : f(x) < b} has the Baire
property, that is, it can be obtained as the symmetric difference of an open
and a meager set.) Once this is done, it will be a simple task to establish the
weak difference property of some subclasses of functions having the Baire
property. We will prove two theorems:

Theorem 1.1. Let f : R → R be a function with uniformly essentially
bounded difference functions, that is, for some K ∈ R,

|∆hf(x)| < K M-a.e.

for every h ∈ R. If ∆hf has the Baire property for every h ∈ R then

f = g + φ

where g has the Baire property and φ is null.

This answers Problem 2.2 of [1].
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Theorem 1.2. Let f : R → R be an arbitrary function. If ∆hf has the
Baire property for every h ∈ R then

f = g +H + φ

where g has the Baire property , H is additive and φ is null. That is, the
class of functions with the Baire property has the weak difference property
in category sense.

In [1] it was observed that similarly to the proof in [3] of the weak differ-
ence property for the class of functions a.e. equal to a continuous function
(with respect to Lebesgue measure), the weak difference property in cat-
egory sense of the class of functions with the Baire property would imply
this property for the class of functions that equal a continuous function
M-almost everywhere. Therefore Theorem 1.2 has the following corollary.

Corollary 1.3 (Problem 2.1 in [1]). The class of functions M-a.e.
equal to a continuous function has the weak difference property in category
sense.

It was observed in [6] that the consistency of the difference property of
the class of functions with the Baire property is also a corollary of Theo-
rem 1.2.

Corollary 1.4 (Problem 8.4 in [6]). It is consistent with ZFC that the
class of functions with the Baire property has the difference property.

Independently of our results, this statement was recently proved in [2].

2. Preliminaries. In the proofs we will need two well known theorems
(see e.g. [4] or [7]).

Theorem 2.1 (Kuratowski–Ulam). Let k + l = n and let H ⊂ Rn be
meager. Then there is a meager set H0 ⊂ Rk such that ({x} × Rl) ∩ H is
meager for every x ∈ Rk \ H0. Conversely , if H is of second category and
has the Baire property then there is a set H0 ⊂ Rk of second category such
that ({x} × Rl) ∩H is of second category for every x ∈ H0.

Definition 2.2. Let H be a subset of R and let I ⊂ R be an open
interval. We say that H is of second category everywhere in I if for every
nonempty open interval J ⊂ I the set H ∩ J is of second category.

Theorem 2.3 (Banach). If H ⊂ R is of second category then it is of
second category everywhere in a suitable nonempty open interval of R.

We also use a classical result on the difference property. Its proof can be
found e.g. in [6].

Theorem 2.4 (Stability Theorem of Hyers). Let f : R→ R be such that

|f(x+ y)− f(x)− f(y)| ≤ K
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for a nonnegative constant K. Then there is an additive function H such
that

|f −H| ≤ K.
In the proofs Q, N and Z will stand for the sets of rationals, positive

integers and integers respectively, and λ will denote the Lebesgue measure.
For A,B ⊂ R, h ∈ R,

A4B = (A \B) ∪ (B \A)

will denote the symmetric difference of A and B, while

A+ h = {x+ h : x ∈ A}, A+A = {x+ y : x, y ∈ A}.
In order to avoid the use of multiple parentheses we adopt the convention
that

A ∩B + h = (A ∩B) + h.

For x ∈ Rn and r > 0 the open ball centered at x with radius r will be
denoted by B(x, r). For a function f : R→ R let

[f < b] = {x ∈ R : f(x) < b}.
The sets [f > b], [f ≤ b] and [f ≥ b] are defined analogously.

We will also use the following notation. For K : R× R→ R and y ∈ R,

Ky(x) = K(x, y)

denotes the horizontal section of K on R×{y}. The same is defined for sets,
that is, for S ⊂ R× R we write

Sy = S ∩ (R× {y}).

3. Bounded functions. In the proof of Theorem 1.1 we will follow
some ideas of M. Laczkovich [5]. We will need a kind of “norm” in order to
measure the proximity of two functions having the Baire property.

Definition 3.1. For a set H ⊂ R with the Baire property let

N (H) =
⋃
{I ⊂ R : I is an open interval

and H is of second category everywhere in I}.
It is easy to check that N (H) is an open set. The Banach Theorem and

the Baire property of H imply that H 4N (H) is meager.

Definition 3.2. Let f : R → R be a periodic function with period 1
having the Baire property. Let f+ = max{f, 0} and f− = max{−f, 0} be
the positive and negative parts of f . Our “norm” will be

‖f‖ =
1�

0

λ(N ([f+ > t]) ∩ [0, 1]) dt+
1�

0

λ(N ([f− > t]) ∩ [0, 1]) dt.
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The integrals exist since the integrands are nonincreasing. It is easy to
see that the triangle inequality does not hold for ‖ · ‖. This is the major
source of technical difficulties.

Lemma 3.3. Let ε > 0, let G1, G2, . . . be a sequence of measurable sub-
sets of [0, 1] such that

λ(Gi) > ε for i = 1, 2, . . . ,

and let (hi) be a sequence of reals converging to zero. Define T : R →
N ∪ {0} ∪ {∞} by

T (x) := sup{k ∈ N ∪ {0} : ∃(j1, . . . , jk) ∈ Nk :

x ∈ ((. . . ((︸ ︷︷ ︸
k−1

Gj1 + hj1) ∩Gj2 + hj2) ∩ . . .) ∩Gjk + hjk}.

Then
λ([T =∞]) ≥ ε.

Proof. The function T is clearly measurable. First we prove by induction
that T ≤ K is impossible for any K ∈ N.

The assumption T ≤ 1 would imply
∞⋃

i=1

Gi ∩
∞⋃

i=1

(Gi + hi) = ∅.(1)

On the other hand, since (hi) converges to zero, for I sufficiently large we
have

λ
(( ∞⋃

i=1

Gi

)
4
(( ∞⋃

i=1

Gi

)
+ hI

))
< ε/2,

thus using the fact that λ(GI + hI) > ε we get

λ
(

(GI + hI) ∩
∞⋃

i=1

Gi

)
> ε/2,

contradicting (1).
Let now K ≥ 2 and suppose that T ≤ K − 1 is impossible and that

T ≤ K. The assumption T ≤ K implies
∞⋃

i=1

Gi ⊂ [T ≤ K − 1].

Again, for I large enough and any j > I we have

λ([T ≤ K − 1]4 ([T ≤ K − 1] + hj)) < ε/2,

so

λ((Gj + hj) ∩ [T ≤ K − 1]) > ε/2.(2)



6 T. Mátrai

For i = 1, 2, . . . let

G̃i = (GI+i + hI+i) ∩ [T ≤ K − 1]− hI+i, h̃i = hI+i.(3)

Then G̃i ⊂ GI+i, G̃i is measurable and λ(G̃i) > ε/2 by (2). Now one can
define the function T̃ for this sequence of sets and reals the same way T was
defined. Since G̃i ⊂ GI+i and h̃i = hI+i it is easy to see that T̃ ≤ T . From
(3) we get

[T̃ 6= 0] ⊂ [T ≤ K − 1].

Hence T̃ ≤ K − 1, which contradicts the induction assumption. Thus we
have proved that T cannot be bounded.

Suppose now that for some δ > 0 we have

λ([T =∞]) < ε− δ.
Let K be such that λ([T ≥ K]) < ε− δ/2, and so

λ(Gi ∩ [T < K]) > δ/2.

Again, if I is sufficiently large then for any j > I we have

λ([T < K]4 ([T < K] + hj)) < δ/4,

so
λ((Gj ∩ [T < K] + hj) ∩ [T < K]) > δ/4.(4)

We continue as above. Let

G̃i = (GI+i ∩ [T < K] + hI+i) ∩ [T < K]− hI+i, h̃i = hI+i.

Since by (4) we have λ(G̃i) > δ/4, and again G̃i ⊂ GI+i is measurable, we
can define the function T̃ for this sequence of open sets and reals as before,
and we get T̃ < K. This contradicts the impossibility of boundedness and
proves the statement.

Lemma 3.4. Let ε > 0, let G1, G2, . . . be a sequence of open subsets of
[0, 1] such that

λ(Gi) > ε for i = 1, 2, . . . ,

and let (hi) be a sequence of reals converging to zero. Then for any N ∈ N
one can find an open interval IN and a sequence (j1, . . . , jN+1) ∈ NN+1 such
that

IN ⊂ ((. . . ((︸ ︷︷ ︸
N

Gj1 + hj1) ∩Gj2 + hj2) ∩ . . .) ∩GjN+1 + hjN+1 .(5)

Proof. Using the notations and statement of Lemma 3.3 we find that
[T > N ] is nonempty. Since

[T > N ] =
⋃
{((. . . ((︸ ︷︷ ︸

N

Gj1 + hj1) ∩Gj2 + hj2) ∩ . . .) ∩GjN+1 + hjN+1 :

(j1, . . . , jN+1) ∈ NN+1},
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we deduce that for some (j1, . . . , jN+1) the open set

((. . . ((︸ ︷︷ ︸
N

Gj1 + hj1) ∩Gj2 + hj2) ∩ . . .) ∩GjN+1 + hjN+1

is also nonempty.

Lemma 3.5. Let f : R → R be periodic with period 1 and suppose that
∆hf is uniformly essentially bounded and has the Baire property for every h.
Then

‖∆hnf‖ → 0 if hn → 0.

Proof. Let |∆hf | < K M-a.e. Suppose that there is an ε > 0 and a
sequence (hn) converging to zero such that

‖∆hnf‖ > ε (∀n ∈ N).

Using the fact that for any nonincreasing function g : [0, 1]→ [0, 1] we have

1�

0

g ≤ a+ g(a)

for every a ∈ [0, 1], we find that for any n ∈ N either

λ(N ([(∆hnf)+ > ε/4])) > ε/4 or λ(N ([(∆hnf)− > ε/4])) > ε/4.

By choosing a subsequence we may suppose that the same case holds for
every n ∈ N. The two cases can be treated in the same way, so we consider
only the first one.

So suppose that

λ(N ([(∆hnf)+ > ε/4])) > ε/4 for every n ∈ N.

Let

Gn = N ([(∆hnf)+ > ε/4]) = N ([∆hnf > ε/4]).

These are open sets with λ(Gn) > ε/4 so by applying Lemma 3.4 for N =
[4K/ε + 1] (where [·] stands for the integer part) we get a nonempty open
interval IN and a sequence (j1, . . . , jN+1) with the properties of Lemma 3.4.
Let

h =
N+1∑

i=1

hji .

We claim that for M-almost every x ∈ IN − h,

∆hf ≥ Nε/4 ≥ K,(6)
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which is a contradiction. We have
∆hf(x) = ∆hjN+1

f(x+ hj1 + . . .+ hjN )

+∆hjN
f(x+ hj1 + . . .+ hjN−1) + . . .

+∆hjk
f(x+ hj1 + . . .+ hjk−1) + . . .

+∆hj2
f(x+ hj1) +∆hj1

f(x).

For every x ∈ IN − h we have x+ h ∈ IN , thus (5) yields

x+ h− hjN+1 − . . .− hjk ∈ Gjk .
Since

x+ h− hjN+1 − . . .− hjk = x+ hj1 + . . .+ hjk−1 ,

by the definition of Gjk we obtain

∆hjk
f(x+ hj1 + . . .+ hjk−1) > ε/4 M-a.e. on IN − h

for every 1 ≤ k ≤ N + 1, which implies (6).

The following lemma is a straightforward consequence of the Baire cat-
egory theorem.

Lemma 3.6. Let S, T ⊂ [0, 1]× [0, 1] be such that T y and Sy are open for
every y ∈ [0, 1]. If (T \S)y is of second category for every y ∈ Y where Y is
nonmeager then there are u, v ∈ Q and Y ′ ⊂ Y of second category such that

(u, v) ⊂ (T \ S)y for every y ∈ Y ′.
Lemma 3.7. Let K : [0, 1]2 → R have the following properties:

(i) Ky has the Baire property for every y ∈ [0, 1];
(ii) ‖Kyn −Ky‖ → 0 if yn → y in [0, 1].

Then there is a lower semicontinuous function G : [0, 1]2 → R such that

Ky −Gy = 0 M-a.e.

for M-almost every y ∈ [0, 1].

Proof. For q ∈ Q let

N(q) =
⋃

y∈[0,1]

N ([Ky > q])× {y},

M(q) =
⋃
{B(x, r) : x ∈ Q×Q, r ∈ Q,

(B(x, r) \N(q))y is meager for M-almost every y ∈ [0, 1]}.
Let

G(x, y) = sup{q ∈ Q : (x, y) ∈M(q)}.
As a supremum of lower semicontinuous functions (M(q) is open), G is lower
semicontinuous. In order to prove the statement of the lemma it is enough
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to show that
Ky −Gy = 0 M-a.e.

for M-almost every y ∈ [0, 1].
Consider the following relation for subsets of [0, 1] × [0, 1]. For T, S ⊂

[0, 1] × [0, 1] we write T ∼ S if (T 4 S)y is meager for M-almost every
y ∈ [0, 1]. This is clearly an equivalence relation. We shall prove that

[G > q] ∼ [K > q]

for every q ∈ Q. This will complete the proof, since Ky − Gy 6= 0 on a set
of second category for a nonmeager set of y’s would imply that

([G > q]4 [K > q])y

is of second category for a nonmeager set of y’s with an appropriate q ∈ Q.
We will prove the following chain of equivalences:

[G > q] ∼M(q) ∼ N(q) ∼ [K > q].

We start with the middle one, that is, M(q) ∼ N(q).
It follows easily from the definition ofM(q) that (M(q)\N(q))y is meager

for M-almost every y ∈ [0, 1]. So we have to show that (N(q) \M(q))y is
meager for M-almost every y ∈ [0, 1].

Suppose that (N(q) \M(q))y is not meager for a set Z1 ⊂ [0, 1] of y’s
of second category. From the definition of N(q) it is straightforward to see
that for ε sufficiently small even (N(q + ε) \ M(q))y is not meager for a
set Z2 ⊂ Z1 of y’s of second category. Since the horizontal sections of both
M(q) and N(q+ε) are open, by Lemma 3.6 we find that there exists an open
interval (u, v) ⊂ [0, 1] with u, v ∈ Q and a set Z3 ⊂ Z2 of second category
such that

(u, v) ⊂ (N(q + ε) \M(q))y ∀y ∈ Z3.(7)

By the Banach Theorem one can find an open interval U such that Z3 is
of second category everywhere in U . Let U ′ be the middle third of U and
Z4 = Z3 ∩ U ′. Choose % ∈ Q such that

0 < % < 1
2 min

{1
2 |u− v|,diam(U ′)

}
.

Fix x0 = (u+ v)/2 and take any y0 ∈ Z4. Since (x0, y0) 6∈ M(q), for any
y′0 ∈ Q with |y0 − y′0| < % we have

B((x0, y
′
0), %) 6⊂M(q).

This implies that
(B((x0, y

′
0), %) \N(q))y

is not meager for a set of y’s of second category, so

(B((x0, y0), 2%) \N(q))y
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is also not meager for a set V1 ⊂ U of y’s of second category, since

(B((x0, y
′
0), %) \N(q))y ⊂ (B((x0, y0), 2%) \N(q))y.

Again by Lemma 3.6, since the horizontal sections of B((x0, y0), 2%) and
N(q) are open, we infer that there is an open interval (u′, v′) ⊂ (u, v) and a
set V2 ⊂ V1 of second category such that

(u′, v′)× V2 ⊂ B((x0, y0), 2%) \N(q).(8)

Now we have a set Z3 dense in U and a set V2 somewhere dense in U . So we
can take a sequence (yn) ⊂ V2 with yn → y for some y ∈ Z3. From (7) we
have Ky > q + ε M-a.e. on (u′, v′) ⊂ (u, v), and from (8) we get Kyn ≤ q
M-a.e. on (u′, v′). Hence

[Ky −Kyn < ε] ∩ (u′, v′)

is meager, so

λ(N ([Ky −Kyn ] ≥ δ)) ≥ λ((u′, v′)) for every 0 < δ < ε,

thus
‖Ky −Kyn‖ ≥ ελ((u′, v′)) for every n ∈ N.

This is a contradiction, hence (N(q)\M(q))y is meager forM-almost every
y ∈ [0, 1] and so M(q) ∼ N(q).

The equivalence N(q) ∼ [K > q] follows easily from the definitions.
Finally we prove [G > q] ∼M(q). For any q ∈ Q we have

[G > q] = {(x, y) ∈ [0, 1]2 : ∃r > q : (x, y) ∈M(r)} =
⋃

r>q

M(r).

Since M(r) ∼ N(r) for every r ∈ Q, we get
⋃

r>q

M(r) ∼
⋃

r>q

N(r).

Since N(q) ∼ [K > q] for every q ∈ Q and [K > q] =
⋃
r>q[K > r], we have

N(q) ∼ [K > q] ∼
⋃

r>q

[K > r] ∼
⋃

r>q

N(r).

So we get

M(q) ∼ N(q) ∼
⋃

r>q

N(r) ∼
⋃

r>q

M(r) ∼ [G > q],

as stated.

Proof of Theorem 1.1. We can suppose that f is periodic with period 1.
Indeed, let f1(x) = f({x}) where {x} stands for the fractional part of x.
Then f − f1 is essentially bounded and has the Baire property since the
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difference functions of f are uniformly essentially bounded and for n ≤ x <
n+ 1 we have

f1 − f = f(x− n)− f(x) = ∆−nf.

This implies that the difference functions of f1 are also uniformly essentially
bounded, while

∆hf1(x) = f1(x+ h)− f1(x)

= [f1(x+ h)− f(x+ h)] + [f(x+ h)− f(x)] + [f(x)− f1(x)]

shows the Baire property for every h. If f1 = g1 + φ where g1 has the Baire
property and φ is null then f = g + φ, where g = (f − f1) + g1 also has the
Baire property.

Suppose now that f is periodic with period 1 and let

K(x, y) = f(x+ y)− f(x).

The equality

Kyn(x)−Ky(x) = f(x+ yn)− f(x+ y) = ∆yn−yf(x+ y)

and Lemma 3.5 imply that ‖Kyn − Ky‖ → 0 if yn → y. Thus using the
periodicity of K and Lemma 3.7 we get a Borel function G : R × R → R
such that Ky −Gy = 0 M-a.e. for M-almost every y ∈ R. Let

S(x, y) = K(x, y)−G(x, y) = f(x+ y)− f(x)−G(x, y).

Then S(x, y) = 0 M-a.e. in x for M-almost every y ∈ R. By the definition
of S we have

S(x, y + z) = f(x+ y + z)− f(x)−G(x, y + z),

−S(x+ y, z) = −f(x+ y + z) + f(x+ y) +G(x+ y, z),

−S(x, y) = −f(x+ y) + f(x) +G(x, y).

By adding and setting

L(x, y, z) = S(x, y + z)− S(x+ y, z)− S(x, y)

we get
L(x, y, z) = −G(x, y + z) +G(x+ y, z) +G(x, y),

so L, as a difference of Borel functions, has the Baire property. Hence the
fact that forM-almost every z ∈ R and forM-almost every y ∈ R we have
L(x, y, z) = 0 M-a.e. in x implies by the converse part of the Kuratowski–
Ulam Theorem that

L(x, y, z) = 0 M-a.e. in R3.

The Kuratowski–Ulam Theorem tells us that there exists a point x0 such
that for M-almost every z ∈ R we have

L(x0, y, z) = 0 for M-almost every y ∈ R.
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However, for M-almost every z ∈ R also S(x0 + y, z) = 0 M-a.e. in y, so
for M-almost every z ∈ R we have

(9) L(x0, y, z) + S(x0 + y, z)

= S(x0, y + z)− S(x0, y) = 0 for M-a.e. y ∈ R.
Let Z denote the residual set from which z can be chosen in (9). For every
h ∈ R, since Z ∩ (h − Z) 6= ∅, there are z1, z2 ∈ Z such that h = z1 + z2.
Therefore for every h ∈ R we have

(10) S(x0, y + h)− S(x0, y)

= [S(x0, y + z1 + z2)− S(x0, y + z2)] + [S(x0, y + z2)− S(x0, y)] = 0

for M-almost every y ∈ R.
Now we can define g and φ. By the definition of S we have

S(x0, y) = f(x0 + y)− f(x0)−G(x0, y),

so
f(y) = S(x0, y − x0) + f(x0) +G(x0, y − x0).

Let
g(y) = f(x0) +G(x0, y − x0), φ(y) = S(x0, y − x0).

The function g, as a section of the Borel function G, obviously has the Baire
property. The function φ is null, since by (10),

∆hφ(y) = S(x0, y + h− x0)− S(x0, y − x0) = 0 for M-a.e. y ∈ R.

4. Unbounded functions. Theorem 1.1 allows us to find a decompo-
sition f = g + φ if it is guaranteed in some way that f contains no additive
function. In the following our goal is to find an additive function in a gen-
eral f .

Definition 4.1. Let g : R → R have the Baire property. For an open
interval I ⊂ R we say that the induced oscillation of g is less than D in I if
there exists an a ∈ R such that I ⊂ N ([|g−a| < D]). For x ∈ R we say that
the induced oscillation of g is less than D at x if there is an open interval I
with x ∈ I such that the induced oscillation of g is less than D in I. In this
case we say that the fact that the induced oscillation of g at x is less than
D is witnessed by I.

Set

XD(g) = {x ∈ R : the induced oscillation of g at x is less than D}.
Lemma 4.2. For every g : R → R with the Baire property and D > 0

the set R \XD(g) is nowhere dense.
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Proof. The open set
⋃

a∈Q
N ([|g − a| < D])

is contained in XD(g), so it is enough to prove that it is dense. Let I be
an open interval. By the Baire category theorem, for some a ∈ Q the set
[|g − a| < D] ∩ I is of second category, which—together with the Baire
property of g—implies

N ([|g − a| < D]) ∩ I 6= ∅.
Definition 4.3. Let f : R→ R be such that∆hf has the Baire property

for every h ∈ R, let D > 0, and consider the following relation on R:

y ∼D z if y ∈ XD(∆z−yf).

For an open interval I with y ∈ I we say that y ∼D z is witnessed by I if
y ∈ XD(∆z−yf) is witnessed by I.

That is, y ∼D z if the induced oscillation of f(t+z)−f(t+y) is less than
D at t = 0. This relation is symmetric and reflexive, but not transitive. It
is easy to check that instead of transitivity we have the following property.

Lemma 4.4. If t∼D y and t∼D z, both witnessed by B(t, ε), then y∼2D z
witnessed by B(y, ε).

We also have the following property.

Lemma 4.5. If y ∼D t and y ∼D τ , both witnessed by B(y, ε), and |t−τ |
< δ < ε, then y ∼2D y + t− τ witnessed by B(y, ε− δ).

Proof. By definition, y ∼D t and y ∼D τ witnessed byB(y, ε) means that
the induced oscillation of ∆t−yf(x) and ∆τ−yf(x) is less than D in B(y, ε).
So |t − τ | < δ implies that the induced oscillation of ∆t−yf(x + τ − t) in
B(y, ε− δ) is also less than D. Since

∆τ−yf(x)−∆t−yf(τ − t+ x) = ∆τ−tf(x)

we conclude that the induced oscillation of ∆τ−tf(x) is less than 2D in
B(y, ε− δ), as required.

Definition 4.6. Let f : R→ R be such that∆hf has the Baire property
for every h ∈ R, and let D > 0. For t ∈ R let

Ef,D(t) = {y ∈ R : t ∼D y}.
Lemma 4.7. Let (xi) ⊂ R. If

E =
∞⋃

i=1

Ef,D(xi)
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is dense in an interval then

F =
∞⋃

i=1

Ef,2D(xi)

is of second category everywhere in R.

Proof. Suppose that E is dense in an open interval I but F is meager
in an open interval J . We can suppose λ(I) = λ(J)/2. Let (ej) ⊂ E be also
dense in I. Then one can take a translation by an h ∈ R such that

(ej) + h ⊂ J \ F,
that is, (E + h)∩ (J \F ) is dense in J . We claim that for every t ∈ (E + h)
∩ (J \F )− h the induced oscillation of ∆hf is not less than D at t. Indeed,
since the induced oscillation of∆hf less thanD at t would imply t ∼D (t+h),
it follows that if t ∼D xi (such an xi exists because t ∈ E) then by Lemma
4.4 we would have xi ∼2D t + h and t + h ∈ F , which is not true. Since
(E + h) ∩ (J \ F )− h is dense in an interval, this contradicts Lemma 4.2.

Lemma 4.8. Let g : R → R have the Baire property. Suppose that for
some δ > 0, a nonnegative constant K and a dense subset Z of B(0, 2δ), for
every z ∈ Z we have

|∆zg| < K M-a.e. in B(q0, δ)

for some q0 ∈ R. Then the induced oscillation of g in B(q0, δ) is less than K.

Proof. Suppose that the induced oscillation of g in B(q0, δ) is not less
than K. Then there is an a ∈ R such that both [g− a > 3K/4] and [g− a <
−3K/4] are of second category in B(q0, δ). The Baire property of g implies
that

N ([g − a > 3K/4]) ∩B(q0, δ) and N ([g − a < −3K/4]) ∩B(q0, δ)

are nonempty, so by the density of Z in B(0, 2δ) there are z ∈ Z and
x ∈ N ([g − a < −3K/4]) such that x + z ∈ N ([g − a > 3K/4]). From this
and the Baire property of g we have

|∆zg| > 3K/2

M-a.e. in the nonempty open set

(N ([g − a > 3K/4])− z) ∩ N ([g − a < −3K/4]).

This is a contradiction.

Proof of Theorem 1.2. Let f : R → R be such that ∆hf has the Baire
property for every h ∈ R. By the reflexivity of ∼D, the set

⋃

q∈Q
Ef,1(q)
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contains Q, so it is dense. Then, by Lemma 4.7 for (xi) = Q, D = 1, there
is a q0 ∈ Q such that Ef,2(q0) is of second category. Since

Ef,2(q0) =
⋃

n∈N
{x ∈ R : q0 ∼2 x witnessed by B(q0, 1/n)},

there exists an n ∈ N such that the set

En = {x ∈ R : q0 ∼2 x witnessed by B(q0, 1/n)}
is of second category. By the Banach Theorem one can find an open interval
B(x0, 24%) in which En is of second category everywhere. We can suppose
24% < 1/n. Let E = En ∩B(x0, 24%).

From Lemma 4.5 for every t, τ ∈ E with |t − τ | < 8% we have q0 ∼4

q0 + τ − t witnessed by B(q0, 16%). So the induced oscillation of ∆τ−tf(x) is
less than 4 on B(q0, 16%). This implies that for every y ∈ B(q0, 8%) we have

|∆y−q0∆τ−tf(x)| < 8 M-a.e. in B(q0, 8%).

Since ∆y−q0∆τ−tf(x) = ∆τ−t∆y−q0f(x), we have

|∆τ−t∆y−q0f(x)| < 8 M-a.e. in B(q0, 8%)(11)

for every t, τ ∈ E with |t − τ | < 8%. Since ∆y−q0f has the Baire property,
E − E is dense in B(0, 8%) and (11) shows that

|∆z∆y−q0f(x)| < 8 M-a.e. in B(q0, 4%)

for every z ∈ (E −E)∩B(0, 8%), we can apply Lemma 4.8 for Z = (E −E)
∩ B(0, 8%), g = ∆y−q0f(x), δ = 4% and K = 8. We conclude that the
induced oscillation of ∆y−q0f(x) on B(q0, 4%) is less than 8, that is, for
every y ∈ B(q0, 4%) we have q0 ∼8 y witnessed by B(q0, 4%).

Thus by Lemma 4.4,

∀x, y ∈ B(q0, 4%) x ∼16 y witnessed by B(x, 4%).(12)

Let f1 be the periodic extension of f |[q0−%/2,q0+%/2), that is, for x ∈
[q0 − %/2, q0 + %/2) and l ∈ Z let

f1(x+ l%) = f(x).

We now show that for every h ∈ R the induced oscillation of ∆hf1 is essen-
tially bounded by a nonnegative constant K.

Let
W = {z% : z ∈ Z},

and let h ∈ R. Since ∆hf1(t) is also periodic with period %, it is enough to
verify its boundedness for t ∈ [q0 − %/2, q0 + %/2).

For h ∈W we have ∆hf1 = 0. For h 6∈W let

h̃ = h− %[h/%]
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where [·] stands for the integer part. For q0−%/2 ≤ t < q0 +%/2− h̃ we have

∆hf1(t) = ∆
h̃
f(t).

By (12) for x = t + h̃ and y = t the induced oscillation of ∆
h̃
f(t) in

[q0 − %/2, q0 + %/2) is less than 16. For q0 + %/2 − h̃ ≤ t < q0 + %/2 we
have

∆hf1(t) = ∆
h̃−%f(t),

and by (12) for x = t+ h̃− % and y = t the induced oscillation of ∆
h̃−%f(t)

in [q0 − %/2, q0 + %/2) is also less than 16.
So if we show that ∆

h̃
f(t) − ∆

h̃−%f(t) is essentially bounded for t ∈
[q0 − %/2, q0 + %/2) by a nonnegative constant R not depending on h, then
it will follow that the induced oscillation of ∆hf1 on [q0 − %/2, q0 + %/2) is
less than K = R+ 16 + 16.

To see this, observe first that

∆
h̃
f(t)−∆

h̃−%f(t) = ∆%f(t+ h̃− %),(13)

a difference function of f with the fixed difference % not depending on h. By
(12) for x = t+ h̃ and y = t+ h̃−% this difference function ∆%f has bounded
oscillation on B(q0, %/2), so it is essentially bounded there by a nonnegative
constant R not depending on h. Thus by (13),

∆
h̃
f(t)−∆

h̃−%f(t)

is also essentially bounded on B(q0, %/2) by R. This implies that the induced
oscillation of ∆hf1 is essentially bounded by a nonnegative constant K.

It is an easy computation that f1− f and ∆hf1 have the Baire property
for every h ∈ R (see the beginning of the proof of Theorem 1.1).

Since the induced oscillation of ∆hf1 is at most K, one can find a “mean
value” D(h) of ∆hf1, that is, a real such that

N ([|∆hf1 −D(h)| < K]) = R.
Thus for any h ∈ R the set

[|∆hf1 −D(h)| > K]

is meager, so for any fixed u, v ∈ R the set

[|(D(u+ v)−∆u+vf1)− (D(u)−∆uf1(Id +v))− (D(v)−∆vf1)| > 3K]

is also meager. On the other hand,

D(u+ v)−D(u)−D(v)

= (D(u+ v)−∆u+vf1)− (D(u)−∆uf1(Id +v))− (D(v)−∆vf1)

is constant for every fixed u, v ∈ R, so

|D(u+ v)−D(u)−D(v)| ≤ 3K.
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According to the Stability Theorem of Hyers this implies

D = d+H

where d is a bounded function and H is additive. Let l = f1 −H. Since

∆hl = ∆hf1 −H(h) = ∆hf1 −D(h) + d(h),

∆hl is uniformly essentially bounded and has the Baire property for every
h ∈ R, so by Theorem 1.1,

l = k + φ

where k has the Baire property and φ is null.
With g = f −f1 +k we finally have f = g+H+φ where g has the Baire

property, H is additive and φ is null.
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