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Abstract. Assuming the existence of a P2κ-hypermeasurable cardinal, we construct
a model of Set Theory with a measurable cardinal κ such that 2κ = κ++ and the group
Sym(κ) of all permutations of κ cannot be written as the union of a chain of proper
subgroups of length < κ++. The proof involves iteration of a suitably defined uncountable
version of the Miller forcing poset as well as the “tuning fork” argument introduced by the
first author and K. Thompson [J. Symbolic Logic 73 (2008)].

1. Introduction. A deep theorem of Macpherson and Neumann [16]
states that if the symmetric group Sym(κ) consisting of all permutations of
a cardinal κ can be written as the union of an increasing chain 〈Gi : i < λ〉
of proper subgroups Gi, then λ > κ. Throughout this paper the minimal λ
with this property will be denoted by cf(Sym(κ)). It was proven in [22] that
for κ = κ<κ the pair (cf(Sym(κ)), 2κ) can be anything not obviously wrong.
More precisely, for every regular λ > κ and θ such that cf(θ) ≥ λ, there
exist a cardinal preserving forcing extension V P such that cf(Sym(κ)) = λ
and 2κ = θ in V P . Moreover, for inaccessible κ we can assume [17, §1] that
P is κ-directed closed. Therefore if κ is supercompact, then it remains so in
V Q∗P , where Q is a Laver preparation forcing making the supercompactness
of κ indestructible by κ-directed closed forcing notions. The main result of
this paper states that consistency of cf(Sym(κ)) > κ+ at a measurable κ
can be obtained assuming much less than supercompactness.

Theorem 1.1. Suppose GCH holds and there exists an elementary em-
bedding j : V → M such that crit(j) = κ and (H(κ++))V = (H(κ++))M .
Then there exists a forcing extension V ′ of V such that κ is still measurable
in V ′ and V ′ � cf(Sym(κ)) = κ++.

2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E55, 03E99.
Key words and phrases: cofinality of the symmetric group, hypermeasurable cardinal,
elementary embedding, lifting, Miller forcing, Sacks forcing.

DOI: 10.4064/fm207-2-1 [101] c© Instytut Matematyczny PAN, 2010



102 S.-D. Friedman and L. Zdomskyy

By work of Gitik [12] a cardinal κ of Mitchell order κ++ is required for
GCH to fail at a measurable cardinal; thus the hypothesis of our result is
close to optimal (it is in fact equiconsistent with the existence of a cardinal
κ whose Mitchell order for extenders is κ++ + 1).

A cardinal κ for which there exists an embedding as in Theorem 1.1
will be called P2κ-hypermeasurable. To the best knowledge of the authors,
cf(Sym(κ)) = κ+ for measurable κ in all other known models of Set Theory
constructed under assumptions weaker than (a certain degree of) supercom-
pactness; see Remark 5.6 for a more detailed discussion.

The idea of the proof of Theorem 1.1 resembles that of the consistency of
u < cf(Sym(ω)) established in [23]. In particular, in Section 2 we introduce
a variant of Miller forcing and a (slightly more general than in [14]) variant
of Sacks forcing at an inaccessible cardinal κ. According to Theorem 2.9, it-
erated forcing constructions where at each stage we take any of these forcing
notions do not collapse κ+. In Section 3 we introduce a new cardinal char-
acteristic gcl (κ), which is a version for κ of the classical groupwise density
number g. Section 4 is devoted to the proof of the fact that suitably ar-
ranged iterated forcing constructions considered in Section 2 of length κ++

make cf(Sym(κ)) equal to κ++. More precisely, the Miller forcing is respon-
sible for cf∗(Sym(κ)) = κ++, while the Sacks forcing makes cf(Sym(κ)) and
cf∗(Sym(κ)) equal. (Here cf∗(Sym(κ)) is the minimal length of a special
chain of proper subgroups of Sym(κ) introduced in Definition 4.1.) And fi-
nally, in Section 5 we show how to extend elementary embeddings to forcing
extensions considered in Section 2, and thus prove Theorem 1.1. The idea of
the proof in Section 5 can be traced back to the work [11], where the “tuning
fork” argument was introduced.

2. A variant of Miller forcing for uncountable cardinals. Ba-
sic properties. Alternation with Sacks. In this section we suggest one
of the possible ways to generalize the Miller forcing introduced in [18] to
uncountable cardinals and study some basic properties of iterated forcing
constructions, where at each stage we take either the Miller or Sacks forcing
poset. The discussion is patterned after Kanamori [14]. It is worth mention-
ing here that there are other generalizations of Miller forcing (see e.g. [5]).

Throughout this section κ denotes a strongly inaccessible cardinal.

Definition 2.1. Let p ⊂ κ<κ. For s ∈ p we denote by C(p, s) (or simply
by C(s) if p is clear from context) the set {α ∈ κ : ŝ α ∈ p}.

Miller(κ) denotes the following forcing. A condition is a subset p of κ<κ
such that:

(i) s ∈ p, t ⊂ s→ t ∈ p.
(ii) Each s ∈ p is increasing and has a proper extension in p.
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(iii) For every α < κ limit, and s ∈ κα, if s�β ∈ p for arbitrary large
β < α, then s ∈ p.

(iv) For every s ∈ p there is t ∈ p with s ⊂ t which splits in p (i.e.,
C(p, t) has more than one element). Moreover, if t0, t1 split in p and
t0 ⊂ t1, then C(p, t1) ⊂ C(p, t0).

(v) If s ∈ p splits in p, then the set C(p, s) is club.
(vi) If α is a limit ordinal, s ∈ κα, and s�β splits in p for arbitrary large

β < α, then s splits in p and C(s) is the intersection of C(s�β) for
all β such that s�β splits in p.

We order Miller(κ) by declaring p to be stronger than q (and write p ≤ q)
iff p ⊂ q.

It is clear that Miller(κ) is κ-closed. For every subtree p of κ<κ we denote
by Split(p) the family of all s ∈ p which split in p. Given s ∈ κ<κ, `(s) denotes
the length of s, i.e. the (unique) α such that s ∈ κα. If p ∈ Miller(κ) and
α ∈ κ, then we denote by Splitα(p) the set

{s ∈ p : o.t .({t ( s : t ∈ Split(p)}) ≤ α, ∀t ( s (o.t .(s(`(t))∩C(p, t)) ≤ α)}.

In what follows we shall heavily apply a fusion argument to Miller(κ) as well
as to the Sacks forcing.

Definition 2.2. For q ≤ p ∈ Miller(κ) and α ∈ κ the notation q ≤α p
means that Splitα(p) = Splitα(q). A sequence 〈pα : α ∈ κ〉, where pα ∈
Miller(κ), is called a fusion sequence if:

(i) If β ≤ α, then pα ≤ pβ .
(ii) pα+1 ≤α pα.
(iii) pδ =

⋂
α<δ pα for limit δ ∈ κ.

The following lemma is straightforward.

Lemma 2.3. Let 〈pα : α ∈ κ〉 be a fusion sequence. Then q =
⋂
α∈κ pα ∈

Miller(κ) and q ≤α pα for all α ∈ κ.

Next, we recall the definition of the Sacks forcing for uncountable cardi-
nals.

Definition 2.4. Let us fix a sequence ~A = 〈Aα : α < κ〉 such that
|Aα| < κ for all α. Let T be the set of all functions t which satisfy the
following conditions:

(i) There exists α such that the domain of t equals α.
(ii) For all β ∈ dom(t), t(β) ∈ Aβ .

Sacks( ~A) stands for the forcing whose conditions are subsets T of T such
that:
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(1) s ∈ T , t ⊂ s→ t ∈ T .
(2) Each t has a proper extension in T .
(3) If t ∈ T and the set of such β that t�β ∈ T is unbounded in `(t),

then t ∈ T .
(4) There exists a club C(T ) such that the set succT (t) of immediate

successors of an element t ∈ T with domain α coincides with {t̂ a :
a ∈ Aα} provided α ∈ C(T ), and |succT (t)| = 1 otherwise.

Extension is defined by S ≤ T iff S is a subset of T .

When each Aα is {0, 1} we get the usual Sacks forcing considered in
[7, 11, 14]. Some other sequences ~A are employed in [9]. Yet another sequence
will be used in Section 4. But the basic properties (e.g. chain condition,
fusion) of Sacks( ~A) do not really depend on ~A.

Given any T ∈ Sacks( ~A) and i ∈ κ, we denote by Spliti(T ) the set
{t ∈ T : (∃j ≤ i) `(t) = αj}, where 〈αi : i ∈ κ〉 is the increasing enumeration
of C(T ). Now the notions of ≤α and of a fusion sequence can be introduced
for Sacks( ~A) in the same way as for Miller(κ).

If γ is an ordinal and S0, S1 are disjoint subsets of γ such that S0∪S1 = γ,
then we denote by STS0,S1, ~A the forcing poset Pγ from the iterated forcing
construction 〈Pξ, Q̇η : ξ ≤ γ, η < γ〉 with supports of size ≤ κ defined as
follows:

{η < γ : Pη  Q̇η = Miller(κ)} = S0, {η < γ : Pη  Q̇η = Sacks( ~A)} = S1.

Definition 2.5. Suppose that α ≤ κ and 〈pβ : β ∈ α〉 is a decreasing
sequence of elements of STS0,S1, ~A. The “meet” q =

∧
β∈α pβ ∈ STS0,S1, ~A

is defined as follows: supp(q) =
⋃
β∈α supp(pβ) and for every ξ ∈ supp(q),

q�ξ  q(ξ) =
⋂
β∈α pβ(ξ). (Note that in case α = κ there could be no such q.)

In order to prove that κ+ is preserved by STS0,S1, ~A and κ++ is preserved
for γ = κ++ we need to employ a suitable variant of fusion.

Definition 2.6. Suppose that α ∈ κ, F ∈ [γ]<κ, and q, p ∈ STS0,S1, ~A.
q ≤F,α p means that q ≤ p and q�ξ  q(ξ) ≤α p(ξ) for all ξ ∈ F (1).

A sequence 〈(pα, Fα) : α ∈ κ〉 is a generalized fusion sequence (for
STS0,S1, ~A) iff:

(i) |Fα| < κ for all α ∈ κ.
(ii) Fα ⊃ Fβ for all β ≤ α < κ.
(iii) pα+1 ≤Fα,α pα for all α.
(iv) If δ is limit, then Fδ =

⋃
β<α Fβ and pδ =

∧
α<δ pα.

(v)
⋃
{Fα : α ∈ κ} =

⋃
{supp(pα) : α < κ}.

(1) The preorder ≤α here depends on whether ξ ∈ S0 or ξ ∈ S1.
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The easy but technical proof of the following lemma is left to the reader.
Lemma 2.7. Let 〈(pα, Fα) : α ∈ κ〉 be a generalized fusion sequence for

STS0,S1, ~A. Then q =
∧
α<κ pα ∈ STS0,S1, ~A and q ≤Fα,α pα for all α ∈ κ.

There is no loss of generality to assume that each Aα is an element of κ.
Definition 2.8. Suppose that p ∈ STS0,S1, ~A, F ⊂ supp(p) with |F | < κ,

and σ : F → κ<κ. Then p|σ is a function with the same domain as p
such that (p|σ)(ξ) equals p(ξ) if ξ 6∈ F and p(ξ)σ(ξ) otherwise, where for
q ∈ Miller(κ) ∪ Sacks( ~A) and t ∈ κ<κ, qt denotes the set of all elements of q
compatible with t.

It is clear that p|σ ∈ STS0,S1, ~A if and only if for every ξ ∈ F we have
(p|σ)�ξ ξ σ(ξ) ∈ p(ξ). If p|σ ∈ STS0,S1, ~A, then we say that σ lies on p.

Theorem 2.9. For every ordinal γ and decomposition γ = S0 ∪ S1 the
forcing STS0,S1, ~A preserves cardinals ≤ κ+.

Suppose that 2κ = κ+ in V . If γ < κ++, then there exists a dense subset
Wγ ⊂ STS0,S1, ~A of size |Wγ | ≤ κ+. If γ = κ++, then STS0,S1, ~A has the
κ++-chain condition.

Similar results were discussed in [14] and [7] for the Sacks forcing. Never-
theless, we give complete proofs here. Our exposition follows [14]. The first
part of Theorem 2.9 follows from the lemma below.

Lemma 2.10.
(1) Assume that p ∈ STS0,S1, ~A and p  ż ∈ V . Then for every F ∈ [γ]<κ

and α0 ∈ κ there exist q ≤F,α0 p and x ∈ V with |x| ≤ κ such that
q  ż ∈ x.

(2) Assume that p ∈ STS0,S1, ~A and p  “ ż ∈ V and |ż| ≤ κ”. Then for
every F ∈ [γ]<κ and α0 ∈ κ there exist q ≤F,α0 p and x ∈ V with
|x| ≤ κ such that q  ż ⊂ x.

Proof. It is well-known how to obtain the second item from the first one
(see [14, Theorem 2.3]).

In order to prove the first item we shall inductively construct a general-
ized fusion sequence 〈(pα, Fα) : α ∈ κ〉 with (pβ, Fβ) = (p, F ) for all β ≤ α0,
and x ∈ V of size |x| ≤ κ such that q =

∧
α∈κ pα and x are as required. The

trivial description of how to construct Fα’s is omitted. The limit step of the
construction is obvious, so we concentrate on the successor case.

Let us enumerate as {σα,i : i ∈ η} all ground model functions σ : Fα →
κα+1 which lie on some r ≤ pα so that r = r|σ, r�ξ  σ(ξ)�α ∈ Splitα(pα(ξ))
for all ξ ∈ Fα, and σ(ξ)(α) = α for all ξ ∈ Fα∩S0. (Here η < κ is a cardinal.)
We shall construct a sequence 〈pα,i : i ∈ η〉 as follows. Set pα,−1 = pα and
suppose that we have already constructed a decreasing sequence 〈pα,j : j < i〉



106 S.-D. Friedman and L. Zdomskyy

such that pα,j ≤Fα,α pα,k for all k ≤ j < i. If i is limit, we set pα,i =
∧
j<i pα,j .

Suppose that i = j + 1. If there is no r ≤ pα,j such that r = r|σα,j and
r�ξ  σ(ξ)�α ∈ Splitα(pα(ξ)) for all ξ ∈ Fα, we set pα,i = pα,j . And if there
is such an r, let rα,j ≤ r and xα,j ∈ V be such that rα,j  ż = xα,j . Now,
using the Maximal Principle we define pα,j+1 to be the amalgamation of pα,j
and rα,j as in the proof of [14, Theorem 2.2]. More precisely:

(a) supp(pα,j+1) = supp(rα,j).
(b) If ξ ∈ Fα, then pα,j+1(ξ) is such that

rα,j�ξ  pα,j+1(ξ) = (pα,j(ξ) \ pα,j(ξ)σα,j(ξ)) ∪ rα,j(ξ),
and for any condition c ≤ pα,j+1�ξ incompatible with rα,j�ξ,

c ξ pα,j+1(ξ) = pα,j(ξ).

(c) If ξ 6∈ Fα, then pα,j+1(ξ) is such that

rα,j�ξ  pα,j+1(ξ) = rα,j(ξ),

and for any condition c ≤ pα,j+1�ξ incompatible with rα,j�ξ,

c ξ pα,j+1(ξ) = pα,j(ξ).

Now we let pα+1 =
∧
i∈η pα,i. It follows that pα+1 ≤Fα,α pα. This completes

our construction of 〈(pα, Fα) : α ∈ κ〉. Set x = {xα,i}.
Claim 2.11. Suppose that r ≤ q. Then there exists a sequence 〈rα :

α ∈ κ〉 of elements of STS0,S1, ~A with r0 = r, a sequence 〈σα : Fα → κ<κ |
α < κ〉, and sequences 〈µα,ξ, να,ξ : α ∈ κ, ξ ∈ Fα〉 of ordinals less than κ
such that:

(i) If β < α, then rα ≤ rβ.
(ii) If ξ ∈ Fα, then `(σα(ξ)) = µα,ξ + 1.
(iii) If β < α, then σβ(ξ) ( σα(ξ) for all ξ ∈ Fβ.
(iv) For every ξ ∈ Fα+1 we have rα+1�ξ  “rα+1(ξ) = rα+1(ξ)σα+1(ξ),

σα+1(ξ)�µα+1,ξ splits in rα(ξ), and
σα+1(ξ)�µα+1,ξ ∈ Splitνα+1,ξ

(q(ξ))”.
(v) If δ is limit, then:
• σδ(ξ)�µδ,ξ =

⋃
α<δ σα(ξ).

• σδ(ξ)(µδ,ξ) = sup{σα(ξ)(µα,ξ) : α < δ} for all ξ ∈ Fδ ∩ S0 (we
assume that σα(ξ) = ∅ for all ξ 6∈ Fα).
• νδ,ξ = supα<δ να,ξ for all ξ ∈ Fδ.
• rδ�ξ “σδ(ξ) ∈ rδ(ξ), σδ(ξ)�µδ,ξ splits in rδ(ξ), and
σδ(ξ)�µδ,ξ ∈ Splitνδ,ξ(q(ξ))” for all ξ ∈ Fδ.

Proof. The construction proceeds by induction. For limit δ we simply
set σδ(ξ) and νδ,ξ to be as required in (v) and rδ =

∧
α<δ rα. Thus µδ,ξ =

supα<δ µα,ξ. Let us fix any α < δ and ξ ∈ Fα ∩ S0. From the above
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it follows that rδ�ξ  “σβ(ξ)�µβ,ξ splits in rα(ξ) for all α < β < δ”,
and hence rδ�ξ  “σδ(ξ)�µδ,ξ splits in rα(ξ)”, and consequently rδ�ξ 
“σδ(ξ)�µδ,ξ splits in rδ(ξ) =

⋂
β<δ rβ(ξ)”. By the definition of Miller(κ),

rδ�ξ  C(rα(ξ), σδ(ξ)�µδ,ξ)=
⋂
α<β<δ C(rα(ξ), σβ(ξ)�µβ,ξ), and hence rδ�ξ 

σδ(ξ)(µδ,ξ) = supα<β<δ σβ(ξ)(µβ,ξ) ∈ C(rα(ξ), σδ(ξ)�µδ,ξ)), which implies
that rδ�ξ  σδ(ξ)(µδ,ξ) ∈ C(rδ(ξ), σδ(ξ)�µδ,ξ) =

⋂
α<δ C(rα(ξ), σδ(ξ)�µδ,ξ)),

which gives rδ�ξ  σδ(ξ) ∈ rδ(ξ). Finally, the equalities σδ(ξ)�µδ,ξ =⋃
α<δ σα(ξ)�µα,ξ and νδ,ξ = supα<ξ να,ξ combined with rδ�ξ  σα(ξ)�µα,ξ ∈

Splitνα,ξ(q(ξ)) imply rδ�ξ  σδ(ξ)�µδ,ξ ∈ Splitνδ,ξ(q(ξ)), which completes the
limit step.

At successor step α+1 consider the increasing enumeration 〈ξi : i < η〉 of
Fα+1 and find a decreasing sequence 〈ui : i < η〉 of elements of STS0,S1, ~A as
follows: Set ui =

∧
j<i uj for limit i. Now given ui, find v ≤ ui�ξi, π ∈ κµ+1

for some µ ∈ κ, and ν ∈ κ such that π ⊃ σα(ξi) if ξi ∈ Fα and

v ξi π ∈ rα(ξi), π�µ ∈ Splitν(q(ξi)) ∩ Split(rα(ξi)).

Then we set

ui+1 = v̂rα(ξi)π ̂ rα�(γ \ (ξi + 1)), σα+1(ξi) = π.

(µα+1,ξi and να+1,ξi automatically become equal to µ and ν respectively.)
With ui’s thus defined, we set rα+1 =

∧
i<η ui. This completes the inductive

construction, hence the proof of the claim.

The following claim is obvious.

Claim 2.12. There exists a club C ⊂ κ such that µα,ξ = να,ξ = α
and σα(ξ)(µα,ξ) = α for every α ∈ C and ξ ∈ Fα. Consequently, rα�ξ 
σα(ξ)�α ∈ Splitα(q(ξ)) for every α ∈ C and ξ ∈ Fα.

We are in a position now to finish the proof of Lemma 2.10. Let C be
as in Claim 2.12 and α ∈ C. Then σα = σα,i for some i < η (see the
construction of pα+1 at the beginning of the proof of Lemma 2.10). Since
rα+1 ≤ q ≤ pα,i, Claim 2.11(iv) implies that for every ξ ∈ Fα+1 ⊃ Fα we
have rα+1�ξ  rα+1(ξ) = rα+1(ξ)σα(ξ). Therefore the construction of pα,i+1

is nontrivial. Since rα+1 ≤ q ≤ pα,i+1, rα+1 = rα+1|σα ≤ pα,i+1|σα,i = rα,i,
and hence rα+1  ż = xα,i. Therefore for every r ≤ q there exists r′ ≤ r such
that r′  ż ∈ x, which finishes our proof.

Proof of Theorem 2.9. The proof is analogous to that of [14, Lemma 3.1].
Let Wγ be the set of those q ∈ STS0,S1, ~A such that:

(i) There is an increasing sequence 〈Fα : α ∈ κ〉 of subsets of γ such that
|Fα| < κ for all α, Fδ =

⋃
α∈δ Fα for limit δ, and

⋃
α∈κ Fα = supp(q).

(ii) For every α there exists a (possibly empty) collection Σα of ground
model functions σ : Fα → κα+1 of size |Σα| < κ such that q|σ ∈
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STS0,S1, ~A for all σ ∈
⋃
α∈κΣα, and whenever β ∈ κ and r ≤ q, there

exist α > β and σ ∈ Σα such that r and q|σ are compatible.

The proof of Lemma 2.10 gives that Wγ is dense in STS0,S1, ~A. In addition,
almost literal repetition of the proof of [14, Lemma 3.1] shows that if a pair
of sequences

〈〈Fα : α ∈ κ〉, 〈Σα : α ∈ κ〉〉

is a witness for qi ∈ Wγ , i ∈ 2, then q0 ≤ q1 ≤ q0 in STS0,S1, ~A. It suffices to
note that there are at most κ+-many such pairs.

Finally, the fact that STS0,S1, ~A has κ++-chain condition provided γ =
κ++ is a direct consequence of [1, Theorem 2.2].

At this point we would like to note that there has been extensive work
by Eisworth, Rosłanowski, Shelah and perhaps others on possible general-
izations of proper forcing to uncountable cardinals (see, e.g., [8, 19]). It is
plausible that Theorem 2.9 follows from one of the general results about un-
countable versions of proper forcing. However, Claim 2.11 will play a central
role in the proof of Claim 5.4, and for this reason we gave a complete proof
of Theorem 2.9 instead of trying to put it into the framework of the results
from [8] or [19].

3. Miller(κ) and a variant of the groupwise density number.
Throughout this section κ is strongly inaccessible, 2κ = κ+ in V , κ++ =
S0 t S1, ~A = 〈Aα : α ∈ κ〉 is a sequence of ordinals below κ, and S0 is
κ+-stationary (we use t as notation for disjoint union). Here we define a
new cardinal characteristic of κ and show that iteration of Miller(κ) pushes
it to κ++.

Definition 3.1. We say that G ⊂ [κ]κ is a cgd-family (abbreviated from
club groupwise dense) if for every continuous increasing function φ : κ → κ
there exists a club C ⊂ κ such that

⋃
α∈C φ(α+ 1) \φ(α) ∈ G, and for every

A ∈ G and B ∈ [κ]κ such that |B \ A| < κ we have B ∈ G. In what follows,
the minimal size of a collection G of cgd-families with empty intersection is
denoted by gcl (κ).

Theorem 3.2. Suppose that G is an STS0,S1, ~A-generic filter. Then V [G]
|= gcl (κ) = κ++.

The proof of Theorem 3.2 is divided into a sequence of lemmas.

Lemma 3.3. Suppose that G is an STS0,S1, ~A-generic filter. Then for every
subset x of κ such that x ∈ V [G] there exists γ < κ++ such that x ∈ V [Gγ ],
and the smallest such γ has cofinality ≤ κ.
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Proof. Let ẋ be an STS0,S1, ~A-name of x. Note that the set D ⊂Wκ++ of
all q ∈ STS0,S1, ~A as in the proof of Theorem 2.9 with the additional property
that for every σ ∈ Σα the condition q|σ decides ẋ(β) for all β < α, is dense
in STS0,S1, ~A. (Any q obtained along the lines of the proof of Lemma 2.10
with an extra requirement that rα,j decides ẋ(β) for all β < α belongs to D.)
Item (ii) from the proof of Theorem 2.9 implies that {q|σ : σ ∈

⋃
α∈κΣα} is

predense below q. Therefore for every q ∈ D and β ∈ κ there exists a subset
Eq,β predense below q of size ≤ κ and such that each element of Eq,β decides
ẋ(β). From the above it follows that for every q ∈ D we have q  ẋ = π,
where π = {〈 ˇ〈β, iβ,r〉, r〉 : β ∈ κ, r ∈ Eq,β} and r  ẋ(β) = iβ,r. The rest of
the proof is straightforward.

The following lemma resembles [3, Lemma 5.10].

Lemma 3.4. Let G be an STS0,S1, ~A-generic filter and F ∈ V [G] be a
cgd-family. There is a κ+-closed unbounded set of ordinals η < κ++ for
which F ∩ V [Gη] ∈ V [Gη] and F ∩ V [Gη] is a cgd-family in V [Gη].

Proof. Let Ḟ be an STS0,S1, ~A-name for F and p ∈ G be a condition which
forces that Ḟ is a cgd-family, and γ < κ++ be such that p ∈ Pγ . The proof of
Lemma 3.3 yields a set Πγ of Pγ-names of size |Πγ | = κ+ such that for every
Pγ-generic filter H and x ∈ P(κ) ∩ V [H] there exists π ∈ Πγ with x = πH .
For every π ∈ Πγ we denote by B(π) a maximal antichain of conditions in
Pκ++ that decide whether π ∈ Ḟ . Let η1 = η1(γ) be the supremum of the
union of the supports of all conditions appearing in some B(π), π ∈ Πγ .
(Recall that STS0,S1, ~A has κ++-c.c.) Then F ∩ V [Gγ ] ∈ V [Gη1 ].

For every π ∈ Πγ we can find a maximal antichain A(π) below p whose
elements decide whether π is (the range of) a continuous increasing function,
and if q ∈ A(π) decides that π is such, then for some ξ(π, q) > γ and
θπ,q ∈ Πξ(π,q), q forces θπ,q to be a club and

⋃
α∈θπ,q [π(α), π(α + 1)) ∈ Ḟ .

Let η2 be the upper bound of the set{
ξ(π, q) : π ∈ Πγ , q ∈

⋃
π∈Πγ

A(π)
}
∪

{
supp(q) : q ∈

⋃
π∈Πγ

A(π)
}
.

Then η(γ) := max{η1, η2} has the properties ḞH ∩V [Hγ ] ∈ V [Hη(γ)], and if
ψ ∈ V [Hγ ] is any continuous increasing sequence, then there is a club C ∈
V [Hη(γ)] such that

⋃
α∈C [ψ(α), ψ(α+ 1)) ∈ ḞH , where H is any STS0,S1, ~A-

generic filter containing p.
Let E ⊂ κ++ be the κ+-closed unbounded set of those η such that η(γ) ≤

η for all γ < η. We claim that E is as required. Indeed, by Lemma 3.3 for
every η ∈ E we have F ∩V [Gη] = {πGη : ∃γ < η (π ∈ Πγ ∧B(π)∩Gη 6= ∅ ∧
the unique element of B(π)∩Gη forces π ∈ Ḟ)}, and the last set is obviously
in V [Gη]. Now suppose that ψ ∈ V [Gη] is a continuous increasing function
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from κ to κ. Applying Lemma 3.3 we can find γ < η such that ψ ∈ V [Gγ ].
From the above it follows that there is a club C ∈ V [Gη(γ)] ⊂ V [Gη] such
that

⋃
α∈C [ψ(α), ψ(α+ 1)) ∈ ḞG ∩ V [Gη], which finishes our proof.

Lemma 3.5. For every p ∈ Miller(κ) there exists a continuous increasing
sequence 〈να : α ∈ κ〉 such that for every club C there exists q ≤ p such
that the range of every branch through q is almost (= modulo a subset of size
< κ) contained in

⋃
α∈C [να, να+1).

Proof. We define the desired sequence 〈να〉α∈κ inductively. Choose ν0

arbitrary. For limit δ ∈ κ we set νδ = supα∈δ να. After να is defined, let
β > να be such that for every s ∈ p whose range is a subset of να and
ξ ∈ [να, β), if ŝ ξ ∈ p, then the range of the smallest extension t ∈ Split(p)
of ŝ ξ is contained in β. We set να+1 = β.

We claim that the sequence 〈να : α ∈ κ〉 is as required. Indeed, it is
continuous by the construction. Let C and D ⊂

⋃
α∈C [να, να+1) be clubs.

(The role of D here is to ensure that the splitting nodes of the condition q
constructed below split into clubs rather than into sets containing clubs. We
could take, e.g., D = {α ∈ C : να = α}.) Let q be the tree generated by
the set of those s = s1 ξ̂ ∈ p such that s1 ∈ Split(p) and for every t ≤ s,
if t ∈ Split(p), then s(`(t)) ∈

⋃
α∈C\µ(t)[να, να+1) ∩ D, where µ(t) is the

minimal ordinal µ such that νµ contains the range of t. Then q ∈ Miller(κ).
It suffices to note that the range of each branch through q is a subset of⋃
α∈C [να, να+1) ∪ β, where β is the range of the stem (= smallest splitting

element) of p.

Proof of Theorem 3.2. A simple density argument based on Lemma 3.5
shows that if H is a Miller(κ)-generic filter and F is a cgd-family in V , then
the range of

⋂
H ∈ κκ is almost included in some F ∈ F .

Now let F ∈ V [G] be a collection of cgd-families of size κ+. For every
F ∈ F Lemma 3.4 yields a κ+-closed unbounded set CF ∈ P(κ++) ∩ V
such that F ∩ V [Gη] ∈ V [Gη] and F ∩ V [Gη] is a cgd-family in V [Gη] for
every η ∈ CF . Let us fix η ∈ S0 ∩

⋂
F∈FCF . From the above it follows

that Gη+1 = Gη ∗H, where H is a Miller(κ)-generic filter over V [Gη]. As we
already noted, H gives rise to a subset X ∈ V [Gη+1] of κ such that for every
F ∈ F there exists F ∈ F ∩ V [Gη] such that X ⊂ F . Therefore X ∈

⋂
F,

which finishes our proof.

4. A new lower bound for the cofinality of the symmetric group.
In this section κ denotes a strongly inaccessible cardinal. The main result
of this section says that for a certain sequence ~A, if both S0 and S1 are
κ+-stationary and G is STS0,S1, ~A-generic, then V [G] � cf(Sym(κ)) = κ++.
The motivation for this is given in Section 5. We follow the strategy of the
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proof of [23, Theorem 2.2]. In its turn that proof relies upon the methods
developed in [21, §2].

Following [23] we give the following definition.

Definition 4.1. For a subset A of κ we shall identify the group Sym(A)
with the subgroup of Sym(κ) consisting of permutations σ such that σ�(κ\A)
= idκ\A.

For every increasing ψ ∈ κκ let Pψ be the group
∏
α∈κ Sym(ψ(α + 1)

\ψ(α)), which will be identified with a subgroup of Sym(κ). Let cf∗(Sym(κ))
be the least cardinal λ such that it is possible to express Sym(κ) =

⋃
i<λ Γi

as the union of a chain of proper subgroups such that for every increasing
continuous φ ∈ κκ there exists i ∈ λ such that Pφ is a subgroup of Γi.

For an increasing function θ : κ → κ we set θ̃(α) = supξ∈α θ(ξ) and
Qθ = Pθ̃. (Note that θ̃ is continuous and Pθ ⊂ Qθ.)

The following lemma resembles [23, Theorem 2.6]. But the proofs of
Lemma 4.2 and of Theorem 2.6 from [23] are completely different.

Lemma 4.2. cf∗(Sym(κ)) ≥ gcl (κ).

Proof. The proof is divided into two steps.

Claim 4.3. For every π ∈ Sym(κ) there exists a continuous increasing
ψ ∈ κκ such that π ∈ Pψ.

Proof. For any α ∈ κ we set β(α) = min{π(ξ) : ξ ≥ α} and γ(α) =
sup{π(ξ) : ξ ∈ α}. Since π is a bijection, Fodor’s lemma implies that
β(α) ≥ α for club many α’s. Therefore there exists a club C ⊂ κ such
that γ�C = idC and β(α) ≥ α for all α ∈ C. Now, the increasing bijective
enumeration ψ : κ→ C ∪ {0} is as required.

Given any B ∈ [κ]κ, we denote by eB : κ → B the increasing bijective
enumeration of B. Note that continuous strictly increasing functions from κ
to κ are exactly those of the form eC for a club C.

Claim 4.4. Let Γ be a subgroup of Sym(κ) containing Sym0(κ) = {π :
π(α) = α for all but < κ many α’s} and such that 〈Γ, g〉 6= Sym(κ) for all
g ∈ Sym(κ), and GΓ = {A ∈ [κ]κ : ∀B (|B \ A| < κ → QeB 6⊂ Γ )}. Then
GΓ is a cgd-family.

Proof. Let φ : κ→ κ be a continuous increasing function. Since Sym0(κ)
⊂ Γ , the family GΓ is closed under modifications of size < κ of its ele-
ments. Thus it is enough to show that there exists a club C such that, let-
ting Cφ =

⋃
α∈C [φ(α), φ(α + 1)), we have Cφ ∈ GΓ , which means QeCφ

6⊂ Γ . Assume to the contrary that QeCφ ⊂ Γ for every club C ⊂ κ.
Set O =

⋃
α odd[φ(α), φ(α + 1)). We claim that Sym(O) ⊂ Γ. Once this

is established, we get a contradiction with [16, Lemma 2.4]. Let us fix
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σ ∈ Sym(O). Claim 4.3 yields a continuous increasing ψ : κ → κ such
that σ ∈

∏
ξ∈κ Sym([eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) ∩ O). Set C = {α : α is limit

and φ(α) = supξ∈α eO ◦ψ(ξ)}. It is clear that C is club. Since elements of C
are limit ordinals, the choice of O ensures that Cφ ∩O = ∅. We claim that
(1) [φ(α), φ(α+ 1)) ∩ [eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) = ∅
for all α ∈ C and ξ ∈ κ. Indeed, if ξ < α, then eO◦ψ(ξ+1) < supη<α eO◦ψ(η)
= φ(α). Now suppose ξ ≥ α. Then O 3 eO ◦ ψ(ξ) ≥ φ(α), and therefore
[φ(α), φ(α+ 1))∩O = ∅ implies eO ◦ψ(ξ) ≥ φ(α+ 1), which proves (1). For
any ξ ∈ κ consider α(ξ), β(ξ) ∈ κ such that α(ξ) = min{α ∈ C : φ(α) ≥
eO ◦ ψ(ξ + 1)} and φ(α(ξ)) is the β(ξ)th element of Cφ. Equation (1) gives

[eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) ⊂ [ sup
β<β(ξ)

eCφ(β), eCφ(β(ξ)))

= [ẽCφ(β(ξ)), ẽCφ(β(ξ) + 1)),

and therefore∏
ξ∈κ

Sym([eO ◦ ψ(ξ), eO ◦ ψ(ξ + 1)) ∩O) ⊂ QeCφ ⊂ Γ,

which implies σ ∈ Γ and thus completes our proof.
Let us express Sym(κ) =

⋃
i<λ Γi as the union of an increasing chain of

proper subgroups such that each Pψ is contained in some Γi. Since |Sym0(κ)|
= κ and λ > κ, we can assume that Sym0(κ) ⊂ Γ0. For every A ∈ [κ]κ there
exists i ∈ λ such that QeA = PẽA ⊂ Γi, consequently

⋂
i∈λ GΓi = ∅, and

therefore gcl (κ) ≤ λ, which finishes our proof. Lemma 4.2

Definition 4.5. Let φ0 : κ → κ be the continuous increasing function
such that φ0(0) = ω and φ0(α + 1) = φ0(α) + α for all α ∈ κ. We set
Nα = Sym(φ0(α+ 1) \ φ0(α)), ~N = 〈Nα : α < κ〉, and STS0,S1 = STS0,S1, ~N .

Each branch ~t = 〈t(α)〉α∈κ of T ∈ Sacks( ~N) can be naturally identified
with an element of σ~t ∈ Pφ0 such that σ~t�(φ0(α+1)\φ0(α)) = t(α).We also
need the following

Definition 4.6. [κ]κ,κ denotes the set {A ⊂ κ : |A| = |κ \ A| = κ}. If
A ∈ [κ]κ,κ and σ ∈ Sym(κ), then σA is defined by σA(eA(α)) = eA(σ(α)). If
Γ is a subgroup of Sym(κ), then ΓA = {σA : σ ∈ Γ} and Γ (A) = {σ�A :
σ ∈ Γ, σ[A] = A}.

The next lemma is of crucial importance for the proof of the equal-
ity cf∗(Sym(κ)) = cf(Sym(κ)) in V STS0,S1 for κ+-stationary subsets S0, S1

of κ++.
Lemma 4.7. Let ψ : κ → κ be a continuous increasing function. Then

for every T ∈ Sacks( ~N) there exists A ∈ [κ]κ,κ such that for every π ∈ Pψ
there exists S ≤ T such that σ~s�A = πA for all branches ~s of S.
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Proof. Let B = {α ∈ κ : ψ(α) = φ0(α) = α}. Then B is obviously a club.
Consider D ∈ [C(T ) ∩ B]κ such that D is a discrete subspace of κ and find
a club C ′ ⊂ C(T ) \D. Set A =

⋃
α∈D(φ0(α+ 1) \ φ0(α)) =

⋃
α∈D[α, α+α).

We claim that for every β < κ there exists α(β) ∈ D such that

(2) eA[ψ(β), ψ(β + 1)) ⊂ [φ0(α(β)), φ0(α(β) + 1)) = [α(β), α(β) · 2).

Indeed, let us fix β and find α(β) such that eA(ψ(β)) ∈ [α(β), α(β) ·2). Since
α(β) is a fixed point of φ0, it is indecomposable, i.e. it is not equal to the sum
of any two smaller ordinals. By our choice of D, α(β) > sup(D ∩α(β)), and
hence o.t .(A ∩ φ0(α(β))) < φ0(α(β)) = α(β). Therefore o.t .(A ∩ α(β) · 2) =
o.t .(A∩ φ0(α(β))) +α(β) = α(β), which means that eA(α(β)) = α(β) · 2. It
follows that ψ(β) = o.t .(A ∩ eA(ψ(β))) < o.t .(A ∩ α(β) · 2) = α(β). Since
α(β) is a fixed point of ψ, we conclude that ψ(β+1) < α(β). In other words,
o.t .(A∩eA(ψ(β+1))) < o.t .(A∩φ0(α(β)+1)), which implies the inequality
eA(ψ(β + 1)) < φ0(α(β) + 1) and thus proves (2).

Now, let us fix π ∈ Pψ. A direct verification shows that S ∈ Sacks( ~N)
such that C(S) = C ′ and for every β ∈ κ and s ∈ S we have

e−1
A ◦ s(α(β)) ◦ eA�[ψ(β), ψ(β + 1)) = π�[ψ(β), ψ(β + 1))

is as required.

Lemma 4.8. Suppose that λ= cf(Sym(κ))< cf∗(Sym(κ)) and 〈Γi : i∈λ〉
is an increasing chain of proper subgroups of Sym(κ) such that Sym(κ) =⋃
i<λ Γi. Then there exists a continuous increasing ψ : κ → κ such that

PAψ 6⊂ Γi(A) for all i < λ and A ∈ [κ]κ,κ.

Proof. Let us fix A0 ∈ [κ]κ,κ. The same argument as in the proof of [4,
Lemma 2.7] gives us a continuous increasing ψ : κ → κ such that PA0

ψ 6⊂
Γi(A0) for all i < λ. We claim that this ψ is as required. Indeed, let A ∈ [κ]κ,κ

and π ∈ Sym(κ) be such that π�A is the monotone bijection between A
and A0, and j ∈ λ be such that π ∈ Γj . It is easy to check that if PAψ ⊂ Γi(A)
for some i, then PA0

ψ ⊂ Γmax{i,j}(A0), which contradicts our choice of ψ.

The next lemma can be proven by the same methods as Lemma 3.4.

Lemma 4.9. Suppose that 2κ = κ+ in V , κ++ = S0 ∪ S1 is a decom-
position into two κ+-stationary subsets, and G is an STS0,S1-generic filter.
For every Π ⊂ Sym(κ) of size |Π| ≤ κ+ and every sequence 〈Γi : i < κ+〉 ∈
V [G] of subgroups of Sym(κ) there is a κ+-closed unbounded set of ordinals
η < κ++ for which Π ∈ V [Gη], 〈Γi∩V [Gη] : i < κ+〉 ∈ V [Gη], and for every
A ∈ [κ]κ,κ ∩ V [Gη] and i < κ+ we have Γi(A) ∩ V [Gη] = (Γi ∩ V [Gη])(A).

Finally, we are in a position to prove the following theorem, which is the
main result of this section.
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Theorem 4.10. Let S0, S1, and G be as in Lemma 4.9. Then V [G] �
cf(Sym(κ)) = κ++.

Proof. Suppose to the contrary that V [G] � Sym(κ) = κ+. Let 〈Γi :
i < κ+〉 ∈ V [G] be an increasing chain of subgroups of Sym(κ) such that
Sym(κ) =

⋃
i<κ+ Γi. By Theorem 3.2 and Lemma 4.2 we have V [G] �

cf∗(Sym(κ)) = κ++. Lemma 4.8 yields a continuous increasing ψ : κ → κ
such that for every A ∈ [κ]κ,κ and i < κ+ we have PAψ 6⊂ Γi(A). Fix
A∗ ∈ [κ]κ,κ and for every i < κ+ find πi ∈ Pψ such that πA∗i ∈ P

A∗
ψ \Γi(A∗).

Observe that ΠA 6⊂ Γi(A) for any A ∈ [κ]κ,κ and i < κ+, where Π = {πi :
i < κ+}. (The condition πAi 6∈ Γi(A) holds at least starting from i such that
Γi contains an extension of the order-preserving bijection between A∗ and A.)

Let η < κ++ be an element of the κ+-closed unbounded subset provided
by Lemma 4.9 for 〈Γi : i < κ+〉 and Π for which Q̇η = Sacks( ~N), i.e. η ∈ S1.
We can additionally require A∗ ∈ V [Gη]. Suppose that H is the Sacks( ~N)-
generic filter over V [Gη] such that Gη+1 = Gη ∗ H and ~h is the common
branch of all trees in H. Applying Lemma 4.7 we conclude that the set

{S ∈ Sacks( ~N) : ∃A ∈ [κ]κ,κ ∩ V [Gη] ∃π ∈ Π
(πA 6∈ (Γi ∩ V [Gη])(A) ∧ S  σ~h�A = πA)}

is dense for all i < κ+. Therefore for every i there exist Ai ∈ [κ]κ,κ ∩ V [Gη]
and j(i) < κ+ such that σ = σ~h�Ai = πAij(i) 6∈ (Γi ∩ V [Gη])(Ai). Let i < κ+

be such that σ ∈ Γi. Then
(Γi ∩ V [Gη])(Ai) 63 πAij(i) = σ�Ai ∈ Γi(Ai) ∩ V [Gη],

which contradicts our choice of η.

Now it is natural to ask whether we needed to employ Sacks( ~N) at all.

Question 4.11. Is cf(Sym(κ)) ≥ gcl (κ)?

The cardinal characteristic gcl (κ) seems to be a natural generalization
of the classical groupwise density number g introduced in [2] and it was
proved in [4] that cf(Sym(ω)) ≥ g. But the methods of [4] do not seem to
be applicable to Question 4.11.

5. Proof of Theorem 1.1. Without loss of generality, j = jE for some
(κ, κ++)-extender E (such embeddings will be called (κ, κ++)-extender ul-
trapowers in what follows) so that M = {j(f)(a) : f ∈ V, f : H(κ) → V,
and a ∈ H(κ++)} (see, e.g, [13, pp. 381–384] (2).

(2) What we actually use here is the following analogue of [13, Lemma 20.30]:
A cardinal κ is P2κ-hypermeasurable iff there exists a (κ, κ++)-extender E such that
H(κ++) ⊂ UltE and κ++ < jE(κ).
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Claim 5.1. There exists a cardinal preserving forcing extension V ′ of V
such that GCH holds in V ′ and j can be extended to an elementary embedding
j′ : V ′ →M ′ satisfying the following conditions:

(i) H(κ++)V
′

= H(κ++)M
′ .

(ii) j′ is given by a (κ, κ++)-extender ultrapower so thatM ′ = {j′(f)(a) :
f ∈ V ′, f : H(κ)V

′ → V ′, and a ∈ H(κ++)V
′} (3).

(iii) There exist disjoint κ+-stationary (in V ′, and hence in M ′) subsets
S0, S1 ∈ M ′ of κ++ such that S0 ∪ S1 = κ++, and a sequence
〈(S0

k , S
1
k) : k ∈ κ〉, where S0

k and S1
k are disjoint ρ+

k -stationary
subsets of ρ++

k for which ρ++
k = S0

k ∪ S1
k, such that j′〈(S0

k , S
1
k) :

k ∈ κ〉(κ) = (S0, S1). (Here ρk denotes the kth inaccessible cardinal
below κ, k < κ.)

Proof. We define a forcing poset R as follows. Let R0 = {10}. For k ≤ κ
we denote by Ṡk an Rk-name for the poset Fn(ρ++

k , 2, ρ++
k ) adding one Co-

hen subset to ρ++
k (see [15]). Proceeding this way along all inaccessible car-

dinals ≤ κ and using reverse Easton supports we define R. Let G be an
Rκ-generic over V , g be an Sκ = ṠGκ -generic over V [G], Gk = G ∩ Rk

and gk be such that Gk+1 = Gk ∗ gk for all k < κ. Note that gk is the
characteristic function of some subset of S0

k of ρ++. It is clear that S0
k as

well as its complement meet all subsets of ρ++
k of size ρ++

k which appear
in V [Gk]. Since Rk+1 has ρ++

k -c.c., each ρ+
k -closed unbounded (in ρ++

k ) sub-
set C ′ ∈ V [Gk+1] contains a ρ+

k -closed unbounded (in ρ++
k ) subset C ∈ V

(the proof of [13, Lemma 22.25] works in this case as well), and hence S0
k as

well as ρ++
k \ S0

k are ρ+
k -stationary subsets of ρ++

k in V [Gk+1]. The rest of
our forcing is ρ+++

k -closed, and hence S0
k and ρ++

k \S0
k remain ρ+

k -stationary
in V [G ∗ g]. Let S0 be such that g is the characteristic function of S0

and S1 = κ++ \ S0. Again, S0 and S1 are κ+-stationary subsets of κ++

in V [G ∗ g].
j(R) is the iteration with reverse Easton supports of length j(κ) + 1.

A standard argument gives j(R)κ = Rκ, and hence G is j(R)κ-generic over
M and (H(κ)++)V [G] = (H(κ)++)M [G] (see [7, Lemma 4.4]). From the above
it follows that Fn(κ++, 2, κ++)V [G] = Fn(κ++, 2, κ++)M [G], and therefore
R = j(R)κ+1 and g is Fn(κ++, 2, κ++)-generic over M as well.

Suppose that there exists a j(R)-generic filter G′ = G ∗ g ∗ H ∗ h ∈
V [G ∗ g] over M such that H is a j(R)κ,j(κ)-generic over M [G ∗ g], h is
Sj(κ) = j(Ṡκ)G∗g∗H -generic over M [G ∗ g ∗H], and j[G ∗ g] ⊂ G′. Then j can
be extended to an elementary embedding j′ : V [G ∗ g] → M [G′] such that
j′(G ∗ g) = G′ (see [6, Proposition 9.1]). Therefore j′〈S0

k : k ∈ κ〉(κ) = S0.

(3) We could assume here that the domain of f is still H(κ)V and a ∈ H(κ++)V , but
this is irrelevant.
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In addition, conditions (i) and (ii) hold by [6, Proposition 9.3]. Thus j′,
V ′ = V [G ∗ g], and M ′ = M [H] are as required.

It suffices to note that such H and h exist: the construction of H is
standard, see, e.g., fourth, fifth and sixth paragraphs of the proof of [7,
Theorem 4.2]; the existence of h follows from the κ+-distributivity of Sκ by
virtue of [6, Proposition 15.1], which implies that the subfilter h of Sj(κ)

generated by j[g] is as required.
There is no loss of generality in assuming j = j′, V = V ′, and M = M ′.

We define a forcing poset P as follows. Let P0 = {10}. For k ≤ κ we denote
by Q̇k a Pk-name for STS0

k,S
1
k
(4). Proceeding this way along all inaccessible

cardinals ≤ κ and using reverse Easton supports we define P. Observe that
Pk has ρ+

k -c.c., and hence S0
k , S

1
k are still ρ+

k -stationary in V Pk . From the
above and Theorem 4.10 we see that V P � cf(Sym(κ)) = κ++. Thus it
suffices to prove that κ is measurable in V P. In order to do this we shall
extend j to an elementary embedding from V P into M j(P).

j(P) is an iteration of length j(κ) + 1 in M with reverse Easton support.
It is clear that j(P)κ = Pκ. Let G be a Pκ-generic filter over V . Since M
and V have the same H(κ++) and j〈(S0

k , S
1
k) : k ∈ κ〉(κ) = (S0, S1), we

have (κ++)M [G] = (κ++)V [G] (see [7, Lemma 4.4]) and j(P)κ+1 = P. Note
that j(P) = j(Pκ) ∗ j(Q̇κ). Let g be generic for Q̇G

κ over V [G]. We need to
find a suitable j(P)-generic filter over M in order to lift j to V [G ∗ g]. The
following claim is analogous to [1, Lemma 6.4].

Claim 5.2. If x ⊂ M [G] (resp. x ⊂ M [G ∗ g]), x ∈ V [G] (resp. x ∈
V [G ∗ g]), and V [G] � |x| ≤ κ (resp. V [G ∗ g] � |x| ≤ κ), then x ∈ M [G]
(resp. x ∈M [G ∗ g]).

Proof. We present the proof of the G ∗ g part only. The other part is
analogous. Without loss of generality, x is a set of ordinals. Let ẋ be a
P-name such that ẋG∗g = x. The κ++-c.c. of P yields a set of ordinals y ∈ V
of size |y| ≤ κ+ in V and a condition q ∈ P such that q  ẋ ⊂ y. For every
α ∈ y there exists a maximal (in {p ∈ P : p ≤ q}) antichain Aα of conditions
p such that p  α ∈ ẋ for every p ∈ Aα. Applying Theorem 2.9, we conclude
that |Aα| ≤ κ+ for every α ∈ y. It is clear that 〈Aα : α ∈ y〉 ∈ H(κ++),
and hence 〈Aα : α ∈ y〉 ∈ (H(κ++))M . It suffices to note that x = {α ∈ y :
G ∗ g ∩Aα 6= ∅}.

In the same way as in the proof of [7, Theorem 4.2] (using Claim 5.2
instead of [11, Lemma 3]) we can find a j(P)�(κ, j(κ))-generic filter H ∈
V [G ∗ g] over M [G ∗ g]. Thus j[G] = G ⊂ G ∗ g ∗ H, and hence j lifts
to an embedding j∗ : V [G] → M [G ∗ g ∗ H] definable in V [G ∗ g] (see [6,
Proposition 9.1]). Let M∗ denote M [G ∗ g ∗H].

(4) Here S0
κ = S0 and S1

κ = S1.
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We give Definition 5.3 and Claim 5.4 in full generality for any iteration
of Miller and Sacks forcings.

Definition 5.3. Let ρ be a strongly inaccessible cardinal and γ be an
ordinal, S0, S1 be disjoint sets such that S0 ∪ S1 = γ, and ~A = 〈Aα :
α < ρ〉 be a sequence of elements of ρ. Suppose that 〈(pα, Fα) : α ∈ ρ〉 is a
generalized fusion sequence for STS0,S1, ~A, q =

∧
α<ρ pα, and i ∈ ρ. We say

that a function σ : F → ρi+1 is i-properly situated on q (with respect to the
fusion sequence 〈(pα, Fα) : α ∈ ρ〉) if Fi ⊂ F , σ lies on some r ≤ q such
that r�ξ  σ(ξ)�i ∈ max Spliti(q(ξ)) for all ξ ∈ F , and σ(ξ)(i) = i for all
ξ ∈ F ∩ S0.

Claim 5.4. Let ρ, S0, S1, ~A, 〈(pα, Fα) : α ∈ ρ〉, q, i be as in Defini-
tion 5.3, u ≤ q, F, T ∈ [γ]<ρ with F ⊂ T , and C ⊂ ρ be a club. Then there
exists v ≤F,i u satisfying the following conditions:

For every σ : F → ρi+1 which lies on v and has the property σ(ξ)(i) = i
for all ξ ∈ F ∩ S0, there exist j ∈ C and π : T ∪ Fj → ρ(j+1) such that
π(ξ)�(i+1) = σ(ξ) for all ξ ∈ F , π lies on v, v|σ = v|π, and v|π is a witness
for π being j-properly situated on q with respect to 〈(pα, Fα) : α ∈ ρ〉.

Proof. Let us enumerate as {σζ : ζ ∈ η} all σ : F → ρi+1 with the
property σ(ξ)(i) = i for all ξ ∈ F ∩ S0 and which lie on some r ≤ u. Set
u0 = u and suppose that for some ζ < η and all ζ ′ < ζ we have already
defined uζ′ ∈ STS0,S1, ~A such that uζ′ ≤F,i uζ′′ for all ζ ′′ ≤ ζ ′ < ζ. If ζ is
limit, we set uζ =

∧
ζ′∈ζ uζ′ .

Let us consider the case ζ = ζ ′ + 1. If there is no r ≤ uζ′ such that σζ′

lies on r = r|σζ′ , then we set uζ = uζ′ . Otherwise set rζ
′

0 = r, σζ
′

0 = σζ
′ ,

and F ζ
′

α = Fα ∪ T . Repeating the same argument as in Claim 2.11, we can
construct a sequence 〈rξ

′
α : α ∈ ρ〉 of elements of STS0,S1, ~A, a sequence

〈σζ
′
α : F ζ

′
α → ρ<ρ|α < ρ〉, and sequences 〈µζ

′

α,ξ, ν
ζ′

α,ξ : α ∈ ρ, ξ ∈ F ζ
′

α 〉 of
ordinals less than ρ satisfying (i)–(v) of Claim 2.11. Claim 2.12 yields a club
Cζ
′ ⊂ ρ such that µζ

′

α,ξ = νζ
′

α,ξ = α and σζ
′
α (ξ)(µζ

′

α,ξ) = α for every α ∈ Cζ′

and ξ ∈ F ζ
′

α ∩S0. Let us fix jζ′ ∈ Cζ′ ∩C and set πζ′ = σζ
′

jζ′
and rζ′ = rζ

′

jζ′+1
.

By Claim 2.11(iii),(iv) we have rζ′ |πζ′ = rζ
′ and rζ′ is a witness for πζ′ being

jζ
′-properly situated on q. Now let uζ be the amalgamation of uζ′ and rζ

′

defined as follows:

(a) supp(uζ) = supp(rζ
′
).

(b) If ξ ∈ F , then uζ(ξ) is such that

rζ
′
�ξ  uζ(ξ) = (uζ′(ξ) \ uζ′(ξ)σζ′ (ξ)) ∪ r

ζ′(ξ),
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and for any condition c ≤ uζ�ξ incompatible with rζ′�ξ, c ξ uζ(ξ) =
uζ′(ξ).

(c) If ξ 6∈ F , then uζ(ξ) is such that rζ′�ξ  uζ(ξ) = rζ
′
(ξ), and for any

condition c ≤ uζ�ξ incompatible with rζ′�ξ, c ξ uζ(ξ) = uζ′(ξ).

By the definition of uζ we have

uζ |σζ
′

= rζ
′

= rζ
′ |πζ′ = (uζ |σζ

′
)|πζ′ = uζ |πζ

′

and uζ ≤F,i uζ′ .
We claim that v =

∧
ζ<η uζ is as required. Indeed, let σ : F → ρi+1

be as in the formulation. Since v ≤ u, we have σ = σζ for some ζ ∈ η
and the construction of uζ+1 is nontrivial. From the above it follows that
v|σ ≤ uζ |σζ = uζ |πζ , consequently πζ lies on v and v|σ = v|πζ ≤ uζ |πζ = rζ .
Now it is easy to see that j = jζ and π = πζ are as required.

Claim 5.5. Let ρ, S0, S1, and ~A be as in Definition 5.3, and p ∈
STS0,S1, ~A. Then for every sequence 〈Dα : α ∈ ρ〉 of open dense subsets
of STS0,S1, ~A there exists a generalized fusion sequence 〈(pα, Fα) : α ∈ ρ〉
with p0 = p and such that, with q =

∧
α∈ρ pα, for every limit i ∈ ρ and

σ : Fi → ρi+1 which is i-properly situated on q, σ lies on q and q|σ ∈ Di.

Proof. Take rα,j ∈ Dα in the construction of a fusion sequence from the
proof of Lemma 2.10 (the part before Claim 2.11) instead of demanding that
rα,j decides ż as a ground model object. The resulting fusion sequence is
easily seen to be as required.

Let us come back to our main task, namely to extend j∗ to an ele-
mentary embedding j∗∗ : V [G ∗ g] → M∗[h] for some Qj(κ) := j∗(Q̇G

κ ) =
STM

∗

j∗(S0),j∗(S1),j∗( ~N)
-generic filter h overM∗ so that j∗∗ is definable in V [G∗g].

By [6, Proposition 9.1] it is enough to find a Qj(κ)-generic h ∈ V [G ∗ g] over
M∗ for which j∗[g] ⊂ h.

For every ξ < κ++ we denote by x(ξ) ∈ κκ∩V [G∗g] the (unique!) branch
through all trees in g(ξ) and let aξ = κ (resp. aξ = 0) for all ξ ∈ S0 (resp.
ξ ∈ S1). We claim that

h = {j∗(p)|σI : p ∈ g, I ∈M∗, I ⊂ j[κ++], |I| = κ},

where σI(j(ξ)) = x(ξ)̂ aξ for all j(ξ) ∈ I, is Qj(κ)-generic overM∗. The proof
below is a generalization of the “tuning fork” argument invented in [11]. Let
D̄ ∈M∗ be an open dense subset of Qj(κ). Write D̄ as j∗(f)(ā), where f has
domain H(κ)V , f ∈ V [G], and ā ∈ H(κ++)V . There is no loss of generality
to assume that f(a) is open dense in Qκ := Q̇G

κ for all a ∈ H(κ)V . Let us
enumerate H(κ)V as 〈ak : k ∈ κ〉 and set Dk =

⋂
k′≤k f(ak′).
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Let p ∈ Qκ be arbitrary. Claim 5.5 yields a generalized fusion sequence
〈(pk, Fk) : k ∈ κ〉 such that p0 = p and, with q =

∧
k∈κ pk, for every

limit k ∈ κ and σ which is k-properly situated on q, σ lies on q and
q|σ ∈ Dk.

Let 〈F̄k̄ : k̄ ∈ j(κ)〉 and 〈p̄k̄ : k̄ ∈ j(κ)〉 be the results of applying j∗ to
〈Fk : k ∈ κ〉 and 〈pk : k ∈ κ〉 respectively. By elementarity of j∗, 〈(p̄k̄, F̄k̄) :
k̄ ∈ j(κ)〉 is a generalized fusion sequence for Qj(κ), q̄ := j∗(q) =

∧
k̄<j(κ) p̄k̄,

and there exists β̄ ∈ j(κ) so that for each limit ᾱ ≥ β̄ and σ̄ which is
ᾱ-properly situated on q̄, σ̄ lies on q̄ and q̄|σ̄ ∈ D̄. We can additionally
assume that β̄ > κ.

Fix u ≤ q and a club C ⊂ κ such that j(C) ∩ (κ, β̄] = ∅ (its existence
is established, e.g., in the proof of [11, Lemma 4]). Using Claim 5.4, we can
construct a fusion sequence 〈(uk, Tk) : k ∈ κ〉 with u0 = u satisfying the
following conditions:

(i) Fk ⊂ Tk.
(ii) For every σ : Tk → κk+1 which lies on uk and has the property

σ(ξ)(k) = k for all ξ ∈ Tk ∩ S0, there exist a limit ordinal m ∈
C \(k+1) and π : Tk+1∪Fm → κ(m+1) such that π(ξ)�(k+1) = σ(ξ)
for all ξ ∈ Tk, π lies on uk+1, uk+1|σ = uk+1|π, and uk+1|π is
a witness for π being m-properly situated on q with respect to
〈(pk, Fk) : k ∈ κ〉.

Let 〈T̄k̄ : k̄ ∈ j(κ)〉 and 〈ūk̄ : k̄ ∈ j(κ)〉 be the results of applying
j∗ to 〈Tk : k ∈ κ〉 and 〈uk : k ∈ κ〉 respectively, v =

∧
k<κ uk, and

v̄ = j∗(v) =
∧
k̄<j(κ) ūk̄. By elementarity of j∗, for every σ̄ : T̄κ → j(κ)κ+1

which lies on ūκ and has the property σ̄(ξ̄)(κ) = κ for all ξ̄ ∈ T̄κ ∩ j(S0),
there exist a limit ordinal m̄ ∈ j(C)\ (κ+ 1) and π̄ : T̄κ+1∪ F̄m̄ → j(κ)(m̄+1)

such that π̄(ξ̄)�(κ+1) = σ̄(ξ̄) for all ξ̄ ∈ T̄κ, π̄ lies on ūκ+1, ūκ+1|σ̄ = ūκ+1|π̄,
and ūκ+1|σ̄ is a witness for π̄ being m̄-properly situated on q̄ with respect
to 〈(p̄k̄, F̄k̄) : k̄ ∈ j(κ)〉.

Since p and u ≤ q were chosen arbitrarily, we can assume that v ∈ g.
Observe that T̄κ =

⋃
k∈κ j[Tk] ⊂ j[κ++], |T̄κ| = κ, and T̄κ ∈M∗. The elemen-

tarity of j∗ implies that σ̄ := σT̄κ lies on j∗(w) for any w ∈ g. In particular,
σ̄ lies on ūk = j∗(uk) for all k ∈ κ, and hence it lies on ūκ =

∧
k∈κ ūk as well.

Therefore we can find m̄ ∈ j(C) \ (κ + 1) and π̄ : T̄κ+1 ∪ F̄m̄ → j(κ)(m̄+1)

as above, i.e. ūκ+1|σ̄ is a witness for π̄ being m̄-properly situated on q̄ with
respect to 〈(p̄k̄, F̄k̄) : k̄ ∈ j(κ)〉. By the construction of 〈(pk, Fk) : k ∈ κ〉,
elementarity of j∗, the equalities j(C) ∩ (κ, β̄) = ∅ and m̄ ∈ j(C) \ (κ + 1),
and our choice of β̄, we conclude that π̄�F̄m̄ lies on q̄ and q̄|(π̄�F̄m̄) ∈ D̄. On
the other hand,
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q̄|(π̄�F̄m̄) ≥ ūκ+1|π̄ = ūκ+1|σ̄ ≥ v̄|σ̄ = j∗(v)|σT̄κ ∈ h,

which means that h ∩ D̄ 6= ∅ and thus finishes the proof of Theorem 1.1.

Remark 5.6. 1. To the best knowledge of the authors there are essen-
tially three other different forcing extensions V P of V which preserve the
measurability of κ and kill the GCH at κ under the assumption that κ is
P2κ-hypermeasurable (see [6, §24], [11], and [7, §4]). In all three cases we have
cf(Sym(κ)) = κ+ in V P . The historically first of them is due to Woodin [6,
§24]. His P can be written as P0 ∗ P1 ∗ P2, where P0 is iteration of Cohen
posets below κ with reverse Easton support, and thus |P0| = κ and P0 has
κ-c.c.; P1 is the poset adding κ++-many Cohen subsets of κ, and P2 adds
no new subsets of κ. It is clear that V P0∗P1 � cf(Sym(κ)) = κ+ (see the last
paragraph in [22, p. 894]), and a forcing which does not add new subsets of
κ cannot enlarge cf(Sym(κ)).

In forcing extensions constructed in [11] and [7] the equality d(κ) = κ+

holds, and it is well-known (the proof of [21, Proposition 1.4] works for every
regular κ) that cf(Sym(κ)) ≤ d(κ) for every regular κ.

2. It is known [22] that the equality cf(Sym(κ)) = κ++ (and much
more) is consistent for every inaccessible κ. But the authors were not able
to lift elementary embeddings to forcing extensions used in [22] (5) assum-
ing considerably less than supercompactness. However, such a possibility
is not formally excluded. On the other hand, applying the methods devel-
oped in [10] to forcing extensions from [22] we could obtain the following
result:

Suppose 0] exists. Then there is an inner model in which cf(Sym(κ)) =
κ++ for every regular cardinal κ of the form ℵ2α.

It is worth mentioning here that for every cardinal κ the inequality
cf(Sym(κ)) > κ+ implies cf(Sym(κ+)) ≤ cf(Sym(κ)), and it is not known
even how to obtain cf(Sym(κ)) > κ+ at two consecutive κ simultaneously
(see [22]).

3. In order to show that j(P)κ+1 = P in the proof of Theorem 1.1 we
needed suitable stationary sets S0, S1 and 〈S0

k , S
1
k : k ∈ κ〉. Instead of using

the auxiliary forcing introducing such sets we could apply the same inner
model argument as in the proof of [9, Theorem 11].
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