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Multifractal dimensions for invariant subsets
of piecewise monotonic interval maps

by

Franz Hofbauer, Peter Raith and Thomas Steinberger (Wien)

Abstract. The multifractal generalizations of Hausdorff dimension and packing di-
mension are investigated for an invariant subset A of a piecewise monotonic map on the
interval. Formulae for the multifractal dimension of an ergodic invariant measure, the
essential multifractal dimension of A, and the multifractal Hausdorff dimension of A are
derived.

Introduction. Consider a piecewise monotonic map T on the interval
(exact definitions will be given later), and denote by Z the collection of its
intervals of monotonicity. Let U be an open interval and consider the set A
of all points x whose orbit {Tnx : n ∈ N0} omits U , that is,

A :=
∞⋂

n=0

[0, 1] \ T−nU

(of course this is only of interest if A 6= ∅). Usually this set is a “fractal”.
We wish to investigate the size of A.

In order to motivate the problems investigated in this paper we make
some simplifications (in this simpler case the results presented in this paper
are known). Suppose that T is a piecewise monotonic map, that Z consists
of three intervals, U is the second of these intervals (which is assumed to
be open), and the first and third intervals are mapped onto [0, 1] by T .
Moreover, we assume that the restrictions of T to the first and third interval
of monotonicity are C1 and sup |T ′| > 1. This situation is known as “cookie-
cutter” in the literature (see e.g. [6] and [10]).

Let us consider two concrete examples (of cookie-cutters). The first one
is the map
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T1x :=





3x if x ∈ [0, 1/3],

x/2 + 1/4 if x ∈ (1/3, 2/3),

3x− 2 if x ∈ [2/3, 1],

U1 := (1/3, 2/3), and A1 :=
⋂∞
n=0 [0, 1] \ T−n1 U1. In this case A1 is the

usual Cantor set. Note that A1 is exactly the set of all points satisfying
limn→∞ Tn1 x 6= 1/2. Our second map is defined by

T2x :=





3x if x ∈ [0, 1/3],

x/2 + 1/4 if x ∈ (1/3, 1− 10−8),

108x− 108 + 1 if x ∈ [1− 10−8, 1].

Set U2 := (1/3, 1 − 10−8) and A2 :=
⋂∞
n=0 [0, 1] \ T−n2 U2. Again A2 is a

Cantor set, but it is obviously “much less regular”. Note that also in this
case A2 is exactly the set of all points satisfying limn→∞ Tn2 x 6= 1/2.

One possibility of measuring the size of A is to calculate its Hausdorff
dimension HD(A). In the above examples we get HD(A1) = log 2/log 3 =
0.63093 . . . and HD(A2) = 0.11548577 . . . It is not surprising that the Haus-
dorff dimension of A2 is smaller than that of A1. However, these numbers
do not give us any information that A1 is “very symmetric” and A2 is “very
asymmetric”. In order to obtain a better understanding of the “size” of a
set we should not assign only one number to it.

Assume that T is a piecewise monotonic map and that n ∈ N. We call a
nonempty set Z an n-cylinder if there exist Z0, Z1, . . . , Zn−1 ∈ Z such that
Z =

⋂n−1
j=0 T

−jZj . In the case of cookie-cutters there are exactly 2n different
n-cylinders having nonempty intersection with A. Fix an n ∈ N. Denote by
Zn the collection of all n-cylinders having nonempty intersection with A.
Whereas in the first example all n-cylinders have the same length, in the
second example the lengths of the n-cylinders differ significantly.

The phenomenon described above gives a motivation to define local di-
mensions. We assume that we are in the situation of cookie-cutters. First
we define m(Z) := 1/2n (the weight should be equally distributed to the
n-cylinders). This gives rise to a Borel probability measure m on [0, 1]. For
x ∈ A define the local dimension ld(x) by

ld(x) := lim
r→0+

logm((x− r, x+ r))
log(2r)

.

Note that 2r is the length of the interval (x− r, x+ r). In the first example
we have ld(x) = log 2/log 3 for all x ∈ A1 \ C, where C is a countable set.
This means that in this case the local dimension is essentially independent
of x. On the other hand, it turns out that in our second example the local
dimension depends very much on x (which is not surprising because of the
“asymmetry” of A2).
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To describe the “asymmetry” the facts discussed above motivate the
following definition of “multifractal spectrum”. The idea is to split our set A
into different “fractals”, on each of which the local dimension is constant.
Hence, for α ∈ R we define L(α) := {x ∈ A : ld(x) = α}. Then the map
α 7→ HD(L(α)) is called the multifractal spectrum of A.

In our first example the only nonzero value of the multifractal spectrum
is log 2/log 3, which is attained at the point log 2/log 3. However, it is much
more difficult to evaluate the multifractal spectrum in the second example.

For s ∈ R “define” the multifractal Hausdorff dimension ds(A) by

ds(A) := sup
{
t : lim

n→∞

∑

Z∈Zn
m(Z)s|Z|t =∞

}
,

where |Z| denotes the length of Z (a more exact definition will be given
later). Then for each s ∈ R there is a unique τ(s) ∈ R with p(A, T,−s log 2−
τ(s) log |T ′|) = 0, where p(·, ·, ·) denotes the topological pressure. According
to [10] (cf. also [6]), ds(A) = τ(s) for all s ∈ R and the multifractal spectrum
of A equals the Legendre transform τ̂ of τ , that is, τ̂(α) := inf{τ(s) + αs :
s ∈ R}. This means that in the case of cookie-cutters the multifractal spec-
trum can be determined if one knows the multifractal Hausdorff dimension.

The multifractal Hausdorff dimension in our first example is the map s 7→
(1−s)log 2/log 3, hence its graph is a straight line. In our second example the
graph of the multifractal Hausdorff dimension is shown in Figure 1 below.

0 1
0

0.1

Fig. 1. The graph of the function s 7→ ds(A2) on [0, 1]

Results similar to those described above have been obtained by several
authors even in higher dimensional systems (see e.g. [6] and [7]). However,
these results work only under assumptions on the dynamical system imply-
ing the existence of a Markov partition. Unfortunately the maps considered
in this paper need not have a Markov partition. In the general situation con-
sidered here we are not able to prove that the multifractal spectrum equals
the Legendre transform of τ . However, under some additional assumptions
(namely that T is expanding) it has been proved in [3] that the multifractal
spectrum equals the Legendre transform of τ .
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In the situation of cookie-cutters we have chosen a very special mea-
sure m. The question arises which measure should play the rôle of m in the
general situation. It turns out that we can choose any conformal measure m
(also in the case of cookie-cutters we could choose another measure). On the
other hand, the restriction to conformal measures is necessary, because we
need a relation between the measure m and the map T .

It is preferable to give a definition of ds(A) which does not involve n-
cylinders. This is done by replacing n-cylinders by balls of radius smaller
than ε. However, it turns out that then there are two approaches to mul-
tifractal dimensions. The first one uses covers of A by balls and leads
to the multifractal Hausdorff dimension ds(A), while the second approach
uses packings of A by balls and leads to the multifractal packing dimen-
sion Ds(A). For cookie-cutters ds(A) = Ds(A) (see e.g. [6]), but this need
not be true in general.

We will prove that a formula analogous to ds(A) = Ds(A) = τ(s) holds
for ergodic probability measures µ, where the multifractal dimensions ds(µ)
and Ds(µ) of µ are defined as the infima of the multifractal dimensions of
sets of full measure. Unfortunately we cannot prove that ds(A) = Ds(A) =
τ(s) in general. Therefore we define the essential multifractal dimensions
es(A) and Es(A) as the suprema of the multifractal dimensions of ergodic
measures with positive entropy. It is not known when es(A) = ds(A) and
Es(A) = Ds(A). Using a modified version of the topological pressure we will
prove that es(A) = Es(A) = τ(s). Finally we will prove that for expanding
maps T the formula ds(A) = es(A) = Es(A) = τ(s) holds even if one
uses the usual definition of the topological pressure. Applying this result
and using Theorem 6.1 of [6] we deduce that in the situation of cookie-
cutters ds(A) = Ds(A) = es(A) = Es(A) = τ(s) (essential multifractal
dimensions have been considered neither in [6] nor in [10]). Hence in this case
the essential multifractal dimensions coincide with the usual multifractal
dimensions.

1. Multifractal dimensions. The aim of this paper is to investigate
multifractal generalizations of Hausdorff dimension and packing dimension
of an invariant subset of a piecewise monotonic interval map. We relate
them to zeros of certain pressure functions, as is done in [8] for the usual
Hausdorff dimension. Similar results have been obtained by several authors
even in higher dimensional systems (see e.g. [6] and [7]). However, these
results work only under assumptions on the dynamical system implying the
existence of a Markov partition. In contrast to this situation the maps con-
sidered in this paper need not have a Markov partition. Therefore in the
proofs different techniques than those described in [6] or [7] have to be
used.
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We call Z a finite partition of [0, 1] if Z consists of finitely many pairwise
disjoint open intervals with

⋃
Z∈Z Z = [0, 1]. A map T : [0, 1] → [0, 1] is

called piecewise monotonic if there exists a finite partition Z of [0, 1] such
that for every Z ∈ Z the function T |Z is continuous and strictly monotonic.
If for every Z ∈ Z the function T |Z is differentiable and T ′|Z can be extended
to a continuous function on the closure of Z, then T is called piecewise
continuously differentiable. A finite partition Y of [0, 1] is called a generator
if for every sequence Y0, Y1, Y2, . . . in Y the set

⋂∞
j=0 T

−jYj contains at most
one element.

Let T : [0, 1]→ [0, 1] be a piecewise continuously differentiable piecewise
monotonic map. Set ϕ := − log |T ′|. Then ϕ is continuous on [0, 1]\P , where
P := {inf Z, supZ : Z ∈ Z}, ϕ is bounded from below, but ϕ need not be
bounded from above. It describes how T deforms the geometry on [0, 1]. For
an interval I define |I| := supx,y∈I |x − y|. If Y is an interval contained in
an element of Z, then

(1.1) |TY | =
�
Y

e−ϕ(x) dx.

In order to define multifractal dimensions we introduce a second geome-
try using a conformal measure m. Let ψ : [0, 1]→ R be a function such that
for every Z ∈ Z the function ψ|Z can be extended to a continuous func-
tion on the closure of Z. A Borel probability measure m on [0, 1] is called
e−ψ-conformal if

(1.2) m(TY ) =
�
Y

e−ψ(x) dm(x)

for every interval Y contained in an element of Z. Then e−ψ equals locally
the Radon–Nikodým derivative d(m ◦ T )/dm. In Theorem 2 of [5] conditions
on ψ are described which imply the existence of an e−ψ-conformal measurem
(called almost e−ψ-conformal measure there).

We give a brief explanation why we cannot take an arbitrary Borel prob-
ability measure m instead of the e−ψ-conformal measure. In the proofs we
will have to estimate m(Y ) for sets Y contained in an interval of monotonic-
ity of Tn. Roughly speaking, we deduce from (1.2) that m(Y ) ≈ m(T nY )
exp(

∑n−1
j=0 ψ(T jx)). This “equality” turns out to be crucial in the proofs.

The definition of multifractal Hausdorff dimension and multifractal pack-
ing dimension and information about their history can be found in [6] (cf.
also [7]). These notions can be defined on metric spaces and with respect
to a (general) Borel measure m. For the convenience of the reader we recall
these definitions for the setting considered in this paper. Note that we have
fixed the e−ψ-conformal measure m above.
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Let E,F ⊆ [0, 1], and let s ∈ R. For ε > 0 we call C a centered ε-cover
of F if F ⊆ ⋃C∈C C and for every C ∈ C there exist x ∈ F and α ∈ (0, ε]
with C = (x − α, x + α). Denote by Uε(F ) the collection of all centered
ε-covers of F . Now define for t ∈ R,

(1.3) νs,t(E) := sup
F⊆E

lim
ε→0

inf
C∈Uε(F )

∑

C∈C
m(C)s|C|t.

Then νs,t is a Borel measure on [0, 1] (cf. [6]). Note that we would not get a
measure if we omitted the “supF⊆E” in (1.3) (see [6] for a discussion of this
fact). For s = 0, ν0,t is the t-dimensional Hausdorff measure. Now set

(1.4) ds(E) := sup{t ∈ R : νs,t(E) =∞},
where the values −∞ and ∞ are allowed for ds(E). By Proposition 1.1 of
[6] we have

(1.5)
νs,t(E) =∞ for t < ds(E),

νs,t(E) = 0 for t > ds(E).

Note that d0(E) is the usual Hausdorff dimension of E. Hence in [6], ds(E) is
called a multifractal analogue of the Hausdorff dimension of E. For simplicity
we call it the multifractal Hausdorff dimension of E.

For ε > 0 we call C a centered ε-packing of F if C consists of pairwise
disjoint elements and for every C ∈ C there exist x ∈ F and α ∈ (0, ε] with
C = (x−α, x+α). Denote by Vε(F ) the collection of all centered ε-packings
of F . We call F a cover of E if F consists of at most countably many subsets
of [0, 1] with E ⊆ ⋃F∈F F . Let F(E) be the collection of all covers of E.
Now define for t ∈ R,

(1.6) πs,t(E) := inf
F∈F(E)

∑

F∈F

(
lim
ε→0

sup
C∈Vε(F )

∑

C∈C
m(C)s|C|t

)
.

Then πs,t is a Borel measure on [0, 1] (cf. [6]). Omitting “infF∈F(E)
∑

F∈F”
in (1.6) we would not get a measure (see [6] for a discussion of this fact).
For s = 0, π0,t is the t-dimensional packing measure. Now set

(1.7) Ds(E) := sup{t ∈ R : πs,t(E) =∞},
where the values −∞ and ∞ are allowed for Ds(E). By Proposition 1.1 of
[6] we have

(1.8)
πs,t(E) =∞ for t < Ds(E),

πs,t(E) = 0 for t > Ds(E).

Note that D0(E) is the usual packing dimension of E. Hence in [6], Ds(E) is
called a multifractal analogue of the packing dimension of E. For simplicity
we call it the multifractal packing dimension of E. We have

(1.9) ds(E) ≤ Ds(E)

for all E ⊆ [0, 1] (cf. Proposition 2.4 of [6]).
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Now let µ be a Borel probability measure on [0, 1]. Denote the collection
of all Borel subsets of [0, 1] by B. Define

(1.10) ds(µ) := inf
E∈B
µ(E)=1

ds(E), Ds(µ) := inf
E∈B
µ(E)=1

Ds(E).

We call ds(µ) the multifractal Hausdorff dimension of µ, and Ds(µ) the
multifractal packing dimension of µ.

In Theorem 1 it will be shown that for every ergodic T -invariant Borel
probability measure µ with hµ(T ) > 0 and µ(suppm) = 1 we have

ds(µ) = Ds(µ) =
hµ(T ) + s � ψ dµ
− � ϕdµ

if T ∈ C2([0, 1]) and Z is a generator. For s = 0 this formula is well known
(cf. [4]). Similar results can also be found in [7] (even for higher dimensional
systems), but only in situations where the transformation admits a Markov
partition.

Next we investigate completely invariant sets A. A set A ⊆ [0, 1] is called
completely invariant if for every x ∈ [0, 1]\P the property x ∈ A is equivalent
to Tx ∈ A. We assume that Z is a generator and that A ⊆ suppm. These
assumptions will be discussed below. In Section 2 we introduce a pressure
q(A, T, f) for functions f : [0, 1]→ R which are continuous on [0, 1] \P , but
not necessarily bounded. If T and f are continuous, then q(A, T, f) equals
the usual topological pressure p(A, T, f) (see Proposition 1 of [3]). For a
fixed s ∈ R define

zs(A) := sup{t ∈ R : q(A, T, tϕ+ sψ) > 0}.
Moreover set

sA := inf{s ∈ R : q(A, T, sψ) = 0}.
Denote by E+(A, T ) the set of all ergodic Borel probability measures on A
with hµ(T ) > 0. Now define

(1.11) es(A) := sup
µ∈E+(A,T )

ds(µ), Es(A) := sup
µ∈E+(A,T )

Ds(µ).

The number es(A) is called the essential multifractal Hausdorff dimension
of A, and Es(A) is called the essential multifractal packing dimension of A.
These “essential multifractal dimensions” measure the “size” of the part
of A which is “dynamically important”. In general it is an open problem
when es(A) = ds(A) and Es(A) = Ds(A) (obviously es(A) ≤ ds(A) and
Es(A) ≤ Ds(A)).

We will show in Theorem 2 that

es(A) = Es(A) = zs(A)

if s ∈ [0, sA). This generalizes the results of Section 5 of [5].
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If supx∈A ϕ(x) < 0 and supx∈A ψ(x) < 0, then we will show in Theorem 3
that

ds(A) = es(A) = Es(A) = zs(A) = z̃s(A)

for every s ∈ [0, sA), where z̃s(A) is the unique zero of t 7→ p(A, T, tϕ+ sψ)
(p(A, T, tϕ+ sψ) denotes the usual topological pressure of tϕ+ sψ). This is
a generalization of Theorem 2 of [8].

For certain dynamical systems, namely graph directed self-similar sets
in Rd and cookie-cutters in [0, 1], these results are a part of Theorems 5.1
and 6.1 of [6]. In contrast to our situation the maps considered in [6] ad-
mit a Markov partition. A very general construction, called C-structures,
is introduced in [7]. The multifractal dimensions considered in the present
paper are a special case of that general construction. Results similar to our
results described above are obtained in [7] for C-structures generated by
certain dynamical systems. Although these transformations may be higher
dimensional, they always admit a Markov partition.

In order to overcome the problems arising in our situation (e.g. in the
Markovian case the “bounded distortion principle” is frequently used) we
use an approximation by Markov maps and the methods developed in [4].

Finally we describe how our results can be applied to a certain class of
sets which are not necessarily completely invariant. Let G be a finite union
of open intervals, and define

A := [0, 1] \
∞⋃

j=0

T−jG.

Assume that A 6= ∅. We show that our results hold for A. To this end
we change T on G so that T remains a piecewise monotonic map with
respect to a generator Y and TG ⊆ G. Then also the functions ϕ and ψ
change on G, but T , ϕ and ψ remain unchanged on [0, 1] \ G (and hence
on A). Therefore zs(A) remains unchanged. By Lemma 4 of [3] the set A is
completely invariant for the changed map T .

2. Topological pressure. We introduce a version of the definition of
the topological pressure (cf. [3] and [5]). Let T : [0, 1]→ [0, 1] be a piecewise
monotonic map with respect to the finite partition Z of [0, 1]. Let C([0, 1])
be the set of all functions f : [0, 1]→ R such that for each Z ∈ Z the map
f |Z can be extended to a continuous real-valued function on the closure of Z.
Furthermore let D+([0, 1]) be the set of all functions f : [0, 1] → (−∞,∞]
such that for each Z ∈ Z the map f |Z is a continuous real-valued function
and can be extended to a continuous function fZ : Z → (−∞,∞], and
let D([0, 1]) be the set of all functions f : [0, 1] → [−∞,∞] such that for
each Z ∈ Z the map f |Z is a continuous real-valued function and can be
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extended to a continuous function fZ : Z → [−∞,∞]. Note that C([0, 1]) ⊆
D+([0, 1]) ⊆ D([0, 1]).

Next let A ⊆ [0, 1] be nonempty. A nonempty closed B ⊆ A is called
a Markov subset of A if there exists a finite partition Y of [0, 1] refining Z
such that T (B ∩ Y ) ⊆ B for all Y ∈ Y and for every Y1, Y2 ∈ Y we have
either T (B ∩ Y1) ∩ Y2 = ∅ or B ∩ Y2 ⊆ T (B ∩ Y1). Denote by M(A) the
collection of all Markov subsets B ⊆ A.

If X is a compact metric space and T : X → X is a continuous function,
then (X,T ) is called a topological dynamical system. For ε > 0 and n ∈ N a
set E ⊆ X is said to be (n, ε)-separated if for every x 6= y ∈ E there exists a
j ∈ {0, 1, . . . , n − 1} with d(T jx, T jy) > ε. Let f : X → R be a continuous
function. Then the topological pressure p(X,T, f) is defined by

(2.1) p(X,T, f) := lim
ε→0

lim sup
n→∞

1
n

log
(

sup
E

∑

x∈E
exp

( n−1∑

j=0

f(T jx)
))
,

where the supremum is taken over all (n, ε)-separated subsets E of X. Define
the topological entropy by

(2.2) htop(X,T ) := p(X,T, 0).

For x ∈ X we define the ω-limit set ω(x) of x as the set of all limit points
of the sequence (Tnx)n∈N0 . A subset R ⊆ X is called topologically transitive
if there exists an x ∈ R with ω(x) = R. Note that every topologically
transitive R ⊆ X is closed. If µ is a Borel probability measure on X and
f : X → R is a Borel measurable function which is integrable with respect
to µ, then define

(2.3) µ(f) :=
�
X

f dµ.

We denote the measure-theoretic entropy of T with respect to µ by hµ(T )
(see e.g. §4.4 of [11] for the definition).

In general a piecewise monotonic map need not be continuous. One can
use a standard doubling points construction in order to get a topological
dynamical system (see e.g. [9] for the details). Hence for every nonempty
closed T -invariant A ⊆ [0, 1] and for every f ∈ C([0, 1]) we can define the
topological pressure p(A, T, f) (and therefore also the topological entropy
htop(A, T )). Observe that by Lemma 2 of [8] this definition does not depend
on the partition Z.

Let T : [0, 1] → [0, 1] be a piecewise monotonic map with respect to
the finite partition Z of [0, 1], and let A ⊆ [0, 1] be a nonempty closed
T -invariant set. For f ∈ D+([0, 1]) we define
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(2.4) q(A, T, f) = sup
B∈M(A)

sup
g∈C([0,1])

g≤f

p(B,T, g).

Observe that

(2.5) q(A, T, f) = sup
B∈M(A)

p(B,T, f) for f ∈ C([0, 1]).

From now on let T : [0, 1] → [0, 1] be a piecewise monotonic map with
respect to the finite partition Z such that T ′ ∈ C([0, 1]). Then the function

(2.6) ϕ := − log |T ′|
satisfies ϕ∈D+([0, 1]). Furthermore let ψ∈C([0, 1]) be so that q([0, 1], T, ψ)
= 0. Then by Theorem 2 of [5] there exists an e−ψ-conformal measure m on
[0, 1]. Now assume that A is completely invariant, topologically transitive,
A ⊆ suppm, and htop(A, T ) > 0.

Denote by E(A, T ) the set of all ergodic T -invariant Borel probability
measures µ on [0, 1] with µ(A) = 1, and by EM(A, T ) the set of all ergodic
T -invariant Borel probability measures µ on [0, 1] with µ(B) = 1 for some
B ∈M(A). By Lemma 1 of [5] we have

(2.7) q(A, T, f) = sup
µ∈EM(A,T )

hµ(T ) + µ(f)

for every f ∈ D+([0, 1]).

Lemma 1. (1) If µ ∈ EM(A, T ), then µ(ϕ) ≤ 0 and µ(ψ) ≤ 0.
(2) For every µ ∈ EM(A, T ) with hµ(T ) > 0 we have µ(ϕ) < 0 and

µ(ψ) < 0.

Proof. Since q([0, 1], T, ψ) = 0 we see by (2.7) that hµ(T ) + µ(ψ) ≤ 0.
Hence µ(ψ) ≤ −hµ(T ).

In order to prove µ(ϕ) ≤ 0 assume that µ(ϕ) > 0. Let B ∈ M(A)
with µ(B) = 1. As B ∈ M(A) the map T |B is a Markov map. By Propo-
sitions 21.2 and 21.8 of [1] there exist p ∈ B and k ∈ N with T kp = p

and µp(ϕ) > 0, where µp(C) := k−1∑k−1
j=0 1C(T jp) for every Borel set

C ⊆ [0, 1]. Hence |(T k)′p| = e−kµp(ϕ) < 1, and therefore p is an attract-
ing periodic point. Since there is an x ∈ A whose ω-limit set equals A, we
obtain A = {T jp : j ∈ {0, 1, . . . , k − 1}}, which contradicts htop(A, T ) > 0.

Finally suppose that hµ(T ) > 0. Then Theorem 2 of [2] gives hµ(T ) ≤
−µ(ϕ), completing the proof.

Next we prove that (t, s) 7→ q(A, T, tϕ+sψ) is continuous and decreasing.
Set G(T ) := R2 and G0(T ) := R if ϕ ∈ C([0, 1]); otherwise set G(T ) :=
{(t, s) ∈ R2 : t ≥ 0} and G0(T ) := {t ∈ R : t ≥ 0}. In the first case
tϕ + sψ ∈ C([0, 1]) for all (t, s) ∈ G(T ), and in the second case tϕ + sψ ∈
D+([0, 1]) for all (t, s) ∈ G(T ).
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Lemma 2. The function (t, s) 7→ q(A, T, tϕ+sψ) defined on G(T ) is con-
tinuous. Furthermore, for (t1, s1), (t2, s2) ∈ G(T ) with t1 ≤ t2 and s1 ≤ s2

we have
q(A, T, t1ϕ+ s1ψ) ≥ q(A, T, t2ϕ+ s2ψ).

Proof. Set R := − infx∈[0,1] ϕ(x) and S := − infx∈[0,1] ψ(x). First we
prove that for every (t1, s1), (t2, s2) ∈ G(T ) we have

(2.8) |q(A, T, t1ϕ+ s1ψ)− q(A, T, t2ϕ+ s2ψ)| ≤ R|t1 − t2|+ S|s1 − s2|.
Fix (t1, s1), (t2, s2) ∈ G(T ) and let ε > 0. Then by (2.7) there exists a
µ ∈ EM(A, T ) with

q(A, T, t1ϕ+ s1ψ) < hµ(T ) + t1µ(ϕ) + s1µ(ψ) + ε.

On the other hand, (2.7) also gives hµ(T ) + t2µ(ϕ) + s2µ(ψ) ≤ q(A, T,
t2ϕ+ s2ψ). Hence using also Lemma 1 we obtain (2.8).

Obviously (2.8) implies the continuity of (t, s) 7→ q(A, T, tϕ + sψ). As-
sume that t1 ≤ t2, s1 ≤ s2 and q(A, T, t1ϕ + s1ψ) < q(A, T, t2ϕ + s2ψ).
Then (2.7) gives the existence of a µ ∈ EM(A, T ) such that (t2 − t1)µ(ϕ) +
(s2 − s1)µ(ψ) > 0. As µ(ϕ) ≤ 0 and µ(ψ) ≤ 0 by Lemma 1, we arrive at a
contradiction.

For s ∈ R and t ∈ G0(T ) we define

(2.9) %s(t) := q(A, T, tϕ+ sψ).

Our next result follows immediately from Lemma 2.

Lemma 3. For each s ∈ R the function t 7→ %s(t) is continuous and
decreasing.

Now we investigate further properties of the function t 7→ %s(t).

Lemma 4. (1) limt→−∞ %s(t) =∞ if ϕ ∈ C([0, 1]).
(2) If s ≥ 0, then %s(1) ≤ 0.
(3) If supx∈A ϕ(x) < 0 and s < 0, then there exists a t0 ∈ R with

%s(t) ≤ 0 for all t ≥ t0.

Proof. (1) Since htop(A, T ) > 0, Lemma 6 of [8] shows that there exists
a B ∈ M(A) with htop(B,T ) > 0. Therefore by the variational principle
there exists a µ ∈ E(B,T ) ⊆ EM(A, T ) with hµ(T ) > 0. Now Lemma 1(2)
implies µ(ϕ) < 0. By (2.7) we obtain %s(t) ≥ hµ(T ) + tµ(ϕ) + sµ(ψ), and
hence limt→−∞ %s(t) =∞.

(2) Assume that %s(1) > 0. Then (2.7) gives the existence of a µ ∈
EM(A, T ) with hµ(T ) + µ(ϕ) + sµ(ψ) > 0. As µ(ψ) ≤ 0 by Lemma 1(1)
and s ≥ 0 this implies hµ(T ) > −µ(ϕ). Again by Lemma 1(1) we get
µ(ϕ) ≤ 0, and hence hµ(T ) > 0. Now Theorem 2 of [2] gives hµ(T ) ≤ −µ(ϕ),
contradicting hµ(T ) > −µ(ϕ).
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(3) In this case we have tϕ + sψ ∈ C([0, 1]) for all t ∈ R. Suppose that
t ≥ 0 and %s(t) > 0. By (2.7) there exists a µ ∈ EM(A, T ) with

0 < hµ(T ) + tµ(ϕ) + sµ(ψ) ≤ htop(A, T ) + t sup
x∈A

ϕ(x) + |s| sup
x∈A
|ψ(x)|.

Therefore

t < t0 :=
htop(A, T ) + |s| supx∈A |ψ(x)|

− supx∈A ϕ(x)
.

For s ∈ R we define

(2.10) zs(A) := sup{t ∈ G0(T ) : q(A, T, tϕ+ sψ) > 0},
where the values −∞ and ∞ are allowed for zs(A). By Lemma 3,

(2.11)
%s(t) > 0 for t ∈ G0(T ) with t < zs(A),

%s(t) ≤ 0 for t ∈ G0(T ) with t ≥ zs(A).

If ϕ ∈ C([0, 1]), then Lemma 4(1) implies zs(A) ∈ (−∞,∞]. Furthermore, by
Lemma 4(2) we find that in this case zs(A) ∈ R for all s ≥ 0. Finally, using
also Lemma 4(3) we conclude that zs(A) ∈ R for all s∈R if supx∈A ϕ(x)<0.

3. Multifractal dimensions of a measure. Recall that T : [0, 1] →
[0, 1] is a piecewise monotonic map with respect to a finite partition Z
such that T ′ ∈ C([0, 1]), and that ϕ := − log |T ′|. Furthermore recall that
ψ ∈ C([0, 1]) with q([0, 1], T, ψ) = 0, and m is an e−ψ-conformal measure on
[0, 1] (its existence follows from Theorem 2 of [5]).

Assume that Y is a finite or countable collection of pairwise disjoint open
intervals which refines Z. Set E(Y) :=

⋂∞
j=0 T

−j(
⋃
Y ∈Y Y ). Then for every

x ∈ E(Y) and for every n ∈ N there exist unique Y0, Y1, . . . , Yn−1 ∈ Y with
T jx ∈ Yj for all j ∈ {0, 1, . . . , n− 1}. For x ∈ E(Y) and n ∈ N we define

(3.1) Yn(x) :=
n−1⋂

j=0

T−jYj ,

where Y0, Y1, . . . , Yn−1 are as above. If there exists a T -invariant Borel prob-
ability measure µ with µ(

⋃
Y ∈Y Y ) = 1, then µ(E(Y)) = 1, and hence Yn(x)

is defined for µ-almost all x in this case.
Suppose that m̃ is a Borel probability measure on [0, 1]. Let U ⊆ [0, 1]

be an interval, and assume that x is contained in the interior of U . Then
there exist two disjoint intervals U1 and U2 with x 6∈ U1, x 6∈ U2 and
U = U1 ∪ U2 ∪ {x}. We define

(3.2) dm̃(x,U) := min{m̃(U1), m̃(U2)}.
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Fix p > 0. For a function g : [0, 1]→ R we define

(3.3) varp g := sup
{ n∑

j=1

|g(xj)− g(xj−1)|p
}
,

where the supremum is taken over all n ∈ N and all x0, x1, . . . , xn ∈ [0, 1]
with x0 < x1 < . . . < xn. We say that g is of bounded p-variation if
varp g <∞.

Lemma 5. Assume that µ is an ergodic T -invariant Borel probability
measure with hµ(T ) > 0. Suppose that g1, . . . , gq : [0, 1]→ R are integrable
with respect to µ, and that for each j ∈ {1, . . . , q}, gj ∈ C([0, 1]) or egj is
of bounded p-variation for some p > 0. Then for each ε > 0 there exists a
finite or countable collection Y of pairwise disjoint open intervals refining
Z such that

(1) µ(
⋃
Y ∈Y Y ) = 1,

(2) supx∈Y gj(x) − infx∈Y gj(x) < ε for every Y ∈ Y and every j ∈
{1, . . . , q},

(3) limn→∞−n−1 logµ(Yn(x)) = hµ(T ) for µ-almost all x, and
(4) whenever t1, . . . , tq ∈ R and m̃ is an et1g1+...+tqgq -conformal measure

with µ(supp m̃) = 1, then limn→∞ n−1 log dm̃(Tnx, TnYn+1(x)) = 0 for µ-
almost all x.

Proof. We claim that for each j ∈ {1, . . . , q} there exists a finite or
countable collection Yj of pairwise disjoint open intervals refining Z such
that µ(

⋃
Y ∈Yj Y ) = 1, supx∈Y gj(x) − infx∈Y gj(x) < ε for every Y ∈ Yj ,

and

(3.4) Hµ(Yj) := −
∑

Y ∈Yj
µ(Y ) logµ(Y ) <∞.

If egj is of bounded p-variation for some p > 0, then the claim follows
from Lemma 1 of [4]. Otherwise gj ∈ C([0, 1]) and obviously there exists
a finite collection Yj of pairwise disjoint open intervals refining Z with
µ(
⋃
Y ∈Yj Y ) = 1 and supx∈Y gj(x) − infx∈Y gj(x) < ε for every Y ∈ Yj .

As Yj is finite, (3.4) holds trivially in this case.
Now let Y be the collection of all nonempty sets Y of the form Y =⋂q

j=1 Yj with Yj ∈ Yj for j ∈ {1, . . . , q}. It is obvious that Y satisfies
(1) and (2). Since Hµ(Y) ≤∑q

j=1 Hµ(Yj) we obtain Hµ(Y) <∞.
By (3.4) and the Shannon–McMillan–Breiman Theorem we obtain

lim
n→∞

− 1
n

logµ(Yn(x)) = hµ(T )

for µ-almost all x.
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Set D := {Tn−1Yn(x) : x ∈ E(Y), n ∈ N}. Then D is a finite or count-
able set of open intervals. Choose an arbitrary E ∈ D with µ(E) > 0.
As µ has no atoms, E can be written as a union C1 ∪ C ∪ C2 of pairwise
disjoint intervals with C1 < C < C2, µ(intC) > 0, µ(intC1) > 0 and
µ(intC2) > 0. Since µ(supp m̃) = 1 we get m̃(C1) > 0 and m̃(C2) > 0.
Hence c := min{m̃(C1), m̃(C2)} > 0. By (3.2) we obtain

(3.5) dm̃(x,E) ≥ c > 0

for every x ∈ C. A proof analogous to the first part of the proof of Proposi-
tion 2 of [4] shows the existence of a set L ⊆ [0, 1] with µ(L) = 1 such that
for every x ∈ L there exists a strictly increasing sequence (nk(x))k∈N in N
with

(i) Tnk(x)x ∈ C and Tnk(x)Ynk(x)+1(x) = E for every k ∈ N,
(ii) limk→∞ nk+1(x)/nk(x) = 1, and

(iii) limn→∞ n−1∑n−1
j=0 f(T jx) = µ(f), where f := t1g1 + . . .+ tqgq.

Next we fix an x ∈ L. For n ∈ N set Dn := TnYn+1(x) and rn(x) :=
dm̃(Tnx, TnYn+1(x)). Since m̃ is an ef -conformal measure we get

rn+1(x) ≤ dm̃(Tn+1x, TDn) ≤ rn(x) sup
y∈Dn

ef(y),

because Tnx ∈ Dn and Dn+1 ⊆ TDn. If we set α := (|t1|+ . . .+ |tq|)ε this
implies rn+1(x) ≤ rn(x) exp(f(Tnx) + α).

If l ∈ N is large enough we can find a k ∈ N with nk−1(x) < l ≤ nk(x).
Since Tnk(x)x ∈ C and Dnk(x) = E we deduce by (3.5) that rnk(x)(x) ≥ c.
Hence

c ≤ rnk(x)(x) ≤ rl(x) exp
( nk(x)−1∑

j=l

f(T jx) + (nk(x)− l)α
)
.

Observe that (ii) implies liml→∞ nk(x)/l = 1. Using this and (iii) we get

lim
l→∞

1
l

nk(x)−1∑

j=l

f(T jx)

= lim
l→∞

nk(x)
l

1
nk(x)

nk(x)−1∑

j=0

f(T jx)− lim
l→∞

1
l

l−1∑

j=0

f(T jx)

= µ(f)− µ(f) = 0.

As rl(x) ≤ 1 the estimates above imply liml→∞ l−1 log rl(x) = 0, which
completes the proof.
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For r > 0 and x ∈ [0, 1] setBr(x) := {y ∈ [0, 1] : |y−x| < r}. Throughout
this section we assume that ϕ ∈ C([0, 1]) or T ′ is of bounded p-variation for
some p > 0.

Lemma 6. Suppose that Z is a generator. Let µ be an ergodic T -invar-
iant Borel probability measure with hµ(T ) > 0 and µ(suppm) = 1. Set

M :=
{
x ∈ [0, 1] : lim

r→0+

logµ(Br(x))
log r

=
hµ(T )
χµ

and

lim
r→0+

logm(Br(x))
log r

=
−µ(ψ)
χµ

}
,

where χµ := −µ(ϕ). Then µ(M) = 1.

Proof. Define

M1 :=
{
x ∈ [0, 1] : lim

r→0+

logµ(Br(x))
log r

=
hµ(T )
χµ

}
,

M2 :=
{
x ∈ [0, 1] : lim

r→0+

logm(Br(x))
log r

=
−µ(ψ)
χµ

}

and M := M1 ∩M2. It remains to show that µ(M1) = 1 and µ(M2) = 1.
By Theorem 1 of [3] we get µ(M1) = 1, as χµ > 0 by Theorem 2 of [2].
Choose a sequence (εk)k∈N in {x ∈ R : x > 0} with εk < χµ/2 for all

k ∈ N and limk→∞ εk = 0. Fix a k ∈ N. Denote the Lebesgue measure on
[0, 1] by λ. Observe that for every interval U ⊆ [0, 1] we have λ(U) = |U |.
By Lemma 5 there exists an Lk ⊆ [0, 1] with µ(Lk) = 1, and there exists a
finite or countable collection Y of pairwise disjoint open intervals refining Z
such that

(1) µ(
⋃
Y ∈Y Y ) = 1,

(2) supx∈Y ϕ(x)− infx∈Y ϕ(x) < εk for every Y ∈ Y,
(3) supx∈Y ψ(x)− infx∈Y ψ(x) < εk for every Y ∈ Y,
(4) limn→∞ n−1∑n−1

j=0 ϕ(T jx) = µ(ϕ) for every x ∈ Lk,

(5) limn→∞ n−1∑n−1
j=0 ψ(T jx) = µ(ψ) for every x ∈ Lk,

(6) limn→∞ n−1 log dλ(Tnx, TnYn+1(x)) = 0 for every x ∈ Lk, and
(7) limn→∞ n−1 log dm(Tnx, TnYn+1(x)) = 0 for every x ∈ Lk.

We may assume that |Y | < 1 for all Y ∈ Y.
Let x ∈ Lk. For n ∈ N define rn(x) := dλ(x, Yn(x)). Obviously rn(x) ≤

|Yn(x)| and rn(x) is decreasing in n. Since Z is a generator and Y refines Z,
we get limn→∞ rn(x) = limn→∞ |Yn(x)| = 0. By (1.1) and (3.2),

(3.6) rn(x) ≥ exp
( n−1∑

j=0

ϕ(T jx)− nεk
)
dλ(Tnx, TnYn+1(x))
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for every n ∈ N. Therefore (6) above implies rn(x) > 0 for every n ∈ N.
Now (4)–(7) imply that there exists an n0 ∈ N with

(3.7)

n(µ(ϕ)− εk) ≤
n−1∑

j=0

ϕ(T jx) ≤ n(µ(ϕ) + εk),

n(µ(ψ)− εk) ≤
n−1∑

j=0

ψ(T jx) ≤ n(µ(ψ) + εk),

−nεk ≤ log dλ(Tnx, TnYn+1(x)),

−nεk ≤ log dm(Tnx, TnYn+1(x)),

n

n− 1
µ(ψ)− 3εk
µ(ϕ) + 2εk

≤ µ(ψ)− 4εk
µ(ϕ) + 2εk

,

n− 1
n

µ(ψ) + 2εk
µ(ϕ)− 3εk

≥ µ(ψ) + 3εk
µ(ϕ)− 3εk

,

for all n ≥ n0. Using (2) and (3) we get, by (1.1), (1.2), (3.2), (3.6), and
(3.7),

(3.8)

n(µ(ψ)− 3εk) ≤ logm(Yn(x)) ≤ n(µ(ψ) + 2εk),

log |Yn(x)| ≤ n(µ(ϕ) + 2εk),

log rn(x) ≥ n(µ(ϕ)− 3εk),

for every n ≥ n0. Now fix an arbitrary r > 0 with r < rn0(x). We estimate
logm(Br(x))/log r from above. By the choice of r there is an n > n0 with
|Yn(x)| ≤ r < |Yn−1(x)|. Hence Yn(x) ⊆ Br(x), and therefore

logm(Br(x))
log r

≤ logm(Yn(x))
log |Yn−1(x)| .

As by (3.8),
logm(Yn(x))
log |Yn−1(x)| ≤

n

n− 1
µ(ψ)− 3εk
µ(ϕ) + 2εk

,

(3.7) gives
logm(Br(x))

log r
≤ µ(ψ)− 4εk
µ(ϕ) + 2εk

.

Therefore

(3.9) lim sup
r→0+

logm(Br(x))
log r

≤ µ(ψ)− 4εk
µ(ϕ) + 2εk

for every x ∈ Lk.
Next we have to give a lower bound for logm(Br(x))/log r. Since r <

rn0(x) there exists an n > n0 with rn(x) ≤ r < rn−1(x). As r < rn−1(x) we
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have Br(x) ⊆ Yn−1(x). This implies

logm(Br(x))
log r

≥ logm(Yn−1(x))
log rn(x)

.

By (3.8) we get

logm(Yn−1(x))
log rn(x)

≥ n− 1
n

µ(ψ) + 2εk
µ(ϕ)− 3εk

.

Hence (3.7) implies

logm(Br(x))
log r

≥ µ(ψ) + 3εk
µ(ϕ)− 3εk

.

Therefore

(3.10) lim inf
r→0+

logm(Br(x))
log r

≥ µ(ψ) + 3εk
µ(ϕ)− 3εk

for every x ∈ Lk.
Finally set L :=

⋂∞
k=1 Lk. Since µ(Lk) = 1 for all k ∈ N we have

µ(L) = 1. Let x ∈ L. Then (3.9) and (3.10) imply

lim
r→0+

logm(Br(x))
log r

=
µ(ψ)
µ(ϕ)

,

because limk→∞ εk = 0. Hence L ⊆M2.

Now we are able to prove a formula for the multifractal dimension of µ.
Recall that we assume that ϕ ∈ C([0, 1]) or T ′ is of bounded p-variation for
some p > 0, that ψ ∈ C([0, 1]), and that Z is a generator.

Theorem 1. Let µ be an ergodic T -invariant Borel probability measure
with hµ(T ) > 0 and µ(suppm) = 1. Define χµ := − � ϕdµ. Then for every
s ∈ R we have

ds(µ) = Ds(µ) =
hµ(T ) + s � ψ dµ

χµ
.

Proof. Set α := hµ(T )/χµ and β := −µ(ψ)/χµ. By Theorem 2 of [2] we
have α > 0. Furthermore Lemma 6 gives β ≥ 0. We will prove Ds(µ) ≤
α− sβ ≤ ds(µ).

In order to prove Ds(µ) ≤ α − sβ choose an arbitrary t > α − sβ and
set ε := 1

2 (t− α+ sβ). For k ∈ N define

(3.11) Mk := {x ∈ [0, 1] : µ(Br(x))(t−ε)/α ≥ k−1rt and

µ(Br(x))(sβ−ε)/α ≥ k−1m(Br(x))s for all r ∈ (0, 1)}.
Choose an x ∈ [0, 1] with

lim
r→0+

logµ(Br(x))
log r

= α and lim
r→0+

logm(Br(x))
log r

= β.
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Then there exists an r0(x) > 0 with

t− ε
α

logµ(Br(x))
log r

≤ t,

sβ − ε
α

logµ(Br(x))
logm(Br(x))

=
sβ − ε
α

logµ(Br(x))
log r

log r
logm(Br(x))

≤ s

for all r ∈ (0, r0(x)) (note that this is also true in the case β = 0). Hence
there is a k∈N with x∈Mk, and therefore Lemma 6 implies µ(

⋃∞
k=1 Mk)=1.

As Ds(
⋃∞
k=1Mk) = supk∈NDs(Mk) (see e.g. p. 90 of [6]), using (1.8) and

(1.10) it remains to show πs,t(Mk) <∞ for all k ∈ N.
Fix a k ∈ N and a δ ∈ (0, 1), and let C be a centered δ-packing of Mk.

Then (3.11) gives
∑

C∈C
m(C)s|C|t≤2tk2

∑

C∈C
µ(C)(sβ−ε)/αµ(C)(t−ε)/α=2tk2

∑

C∈C
µ(C) ≤ 2tk2.

Now (1.6) shows πs,t(Mk) <∞, completing the proof of Ds(µ) ≤ α− sβ.
Next we prove that α−sβ ≤ ds(µ). By (1.10) it suffices to show µ(L) = 0

for every Borel set L ⊆ [0, 1] with ds(L) < α−sβ. Let L be such a set. Choose
a t with ds(L) < t < α− sβ and set ε := 1

2 (α− sβ − t). For k ∈ N define

(3.12) Lk := {x ∈ L : µ(Br(x))(t+ε)/α ≤ krt and

µ(Br(x))(sβ+ε)/α ≤ km(Br(x))s for all r ∈ (0, 1)}.

If x ∈ L with

lim
r→0+

logµ(Br(x))
log r

= α and lim
r→0+

logm(Br(x))
log r

= β,

then there exists an r0(x) > 0 with

t+ ε

α

logµ(Br(x))
log r

≥ t,

sβ + ε

α

logµ(Br(x))
logm(Br(x))

=
sβ + ε

α

logµ(Br(x))
log r

log r
logm(Br(x))

≥ s,

for all r ∈ (0, r0(x)) (also in the case β = 0). Therefore there exists a k ∈ N
with x ∈ Lk, and we get µ(L) = limk→∞ µ(Lk) by Lemma 6. Hence it
remains to show µ(Lk) = 0 for all k ∈ N.

To this end fix a k ∈ N and an η > 0. By (1.3) and (1.5) there exists a
δ ∈ (0, 1) and a centered δ-cover C of Lk with

∑

C∈C
m(C)s|C|t < 2t

k2 η
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since ds(L) < t. Now (3.12) implies

µ(Lk)≤
∑

C∈C
µ(C)=

∑

C∈C
µ(C)(sβ+ε)/αµ(C)(t+ε)/α≤ k

2

2t
∑

C∈C
m(C)s|C|t<η.

As η > 0 was arbitrary we obtain µ(Lk) = 0, which completes the proof.

4. Essential multifractal dimensions of invariant sets. Throughout
this section let T : [0, 1]→ [0, 1] be a piecewise monotonic map with respect
to a finite partition Z such that T ′ ∈ C([0, 1]) and Z is a generator. Set
ϕ := − log |T ′|. We assume that ϕ ∈ C([0, 1]) or T ′ is of bounded p-variation
for some p > 0. Furthermore let ψ ∈ C([0, 1]) with q([0, 1], T, ψ) = 0, and let
m be an e−ψ-conformal measure on [0, 1] (its existence follows from Theo-
rem 2 of [5]). Finally let A ⊆ [0, 1] be completely invariant and topologically
transitive, and suppose that A ⊆ suppm and htop(A, T ) > 0.

Set

(4.1) sA := inf{s ∈ R : q(A, T, sψ) = 0}.
Note that q(A, T, ψ) ≤ q([0, 1], T, ψ) = 0 by (2.7). As htop(A, T ) > 0,
Lemma 6 of [8] gives q(A, T, 0)>0. By Lemma 2 the function s 7→q(A, T, sψ)
is continuous and decreasing. Hence sA ∈ (0, 1]. Furthermore s < sA im-
plies q(A, T, sψ) > 0. Recall the definition of zs(A) given in (2.10). Then
Lemmas 2 and 4(2) give

(4.2) zs(A) ∈ (0, 1]

for every s ∈ [0, sA).
If s ∈ R, denote by cs(A) the infimum of all t ∈ R such that there

exists an e−tϕ−sψ-conformal measure m̃ on [0, 1] with supp m̃ = A, where
the values −∞ and ∞ are allowed for cs(A).

Lemma 7. Let t ∈ R and s ∈ R. Suppose that there exists an e−tϕ−sψ-
conformal measure m̃ on [0, 1] with supp m̃ = A. If µ is an ergodic T -
invariant Borel probability measure with hµ(T ) > 0 and µ(A) = 1, then

hµ(T ) + tµ(ϕ) + sµ(ψ) ≤ 0

and χµ > 0, where χµ := −µ(ϕ).

Proof. First note that χµ > 0 by Theorem 2 of [2].
Assume that hµ(T ) + tµ(ϕ) + sµ(ψ) > 0. Choose an η > 0 with

(4.3) hµ(T ) + tµ(ϕ) + sµ(ψ) ≥ 5η.

By Lemma 5 and the Ergodic Theorem there exists a finite or countable
collection Y of pairwise disjoint open intervals refining Z and a set M ⊆ A
with µ(M) = 1 such that
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(1) supx∈Y (tϕ+ sψ)(x)− infx∈Y (tϕ+ sψ)(x) < η for every Y ∈ Y,
(2) limn→∞ n−1∑n−1

j=0 (tϕ+ sψ)(T jx) = tµ(ϕ) + sµ(ψ) for all x ∈M ,
(3) limn→∞−n−1 logµ(Yn(x)) = hµ(T ) for all x ∈M , and
(4) limn→∞ n−1 log dm̃(Tnx, TnYn+1(x)) = 0 for all x ∈M .

For k ∈ N define

Mk :=
{
x ∈M :

1
n

n−1∑

j=0

(tϕ+ sψ)(T jx) ≥ tµ(ϕ) + sµ(ψ)− η,

− 1
n

logµ(Yn(x)) ≥ hµ(T )− η and

1
n

log dm̃(Tnx, TnYn+1(x)) ≥ −η for all n ≥ k
}
.

Obviously
⋃∞
k=1 Mk = M . Therefore we can fix a k with µ(Mk) > 0. Now

fix an n ≥ k with e−nη < µ(Mk).
Choose an x ∈ Mk. As m̃ is an e−tϕ−sψ-conformal measure, we get (cf.

(1.2))

dm̃(Tnx, TnYn+1(x)) ≤ m̃(TnYn(x))

≤ exp
( n−1∑

j=0

(−tϕ− sψ)(T jx)
)
enη m̃(Yn(x)).

Hence the definition of Mk gives n−1 log m̃(Yn(x)) ≥ tµ(ϕ) + sµ(ψ) − 3η.
Using again the definition of Mk we infer by (4.3) that

1
n

log
m̃(Yn(x))
µ(Yn(x))

≥ hµ(T ) + tµ(ϕ) + sµ(ψ)− 4η ≥ η.

This implies µ(Yn(x)) ≤ e−nηm̃(Yn(x)).
Define Ŷ := {Yn(x) : x ∈ Mk}. Obviously µ(Mk) ≤ ∑Y ∈Ŷ µ(Y ) and∑
Y ∈Ŷ m̃(Y ) ≤ 1. Therefore

µ(Mk) ≤
∑

Y ∈Ŷ

µ(Y ) ≤ e−nη
∑

Y ∈Ŷ

m̃(Y ) ≤ e−nη,

which contradicts e−nη < µ(Mk).

Recall that G0(T ) := R if ϕ ∈ C([0, 1]), and G0(T ) := {t ∈ R :
t ≥ 0} otherwise. In the first case intG0(T ) = R, and in the second case
intG0(T ) = {t ∈ R : t > 0}. Observe that by (2.10), zs(A) ∈ R implies
zs(A) ∈ intG0(T ).

Proposition 1. Let s ∈ R.

(1) es(A) = Es(A) ≤ cs(A).
(2) If zs(A) ∈ R, then es(A) = Es(A) ≤ cs(A) ≤ zs(A).
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Proof. The definitions (1.11) of es(A) and Es(A) together with Theo-
rem 1 give es(A) = Es(A). In order to show Es(A) ≤ cs(A) choose an
arbitrary t ∈ R such that there exists an e−tϕ−sψ-conformal measure m̃ on
[0, 1] with supp m̃ = A. Let µ ∈ E+(A, T ). By Theorem 1 and Lemma 7 we
obtain

Ds(µ) =
hµ(T ) + sµ(ψ)

χµ
≤ t.

Hence the definitions of Es(A) and cs(A) imply Es(A) ≤ cs(A), which com-
pletes the proof of (1).

Suppose that zs(A) ∈ R. As zs(A) ∈ intG0(T ), (2.10) and Lemma 2
imply q(A, T, tϕ + sψ) = 0 for t = zs(A). Now Theorem 2 of [5] gives the
existence of an e−tϕ−sψ-conformal measure m̃ on [0, 1] with supp m̃ = A.
Therefore cs(A) ≤ zs(A), completing the proof.

Remark. Observe that by Lemmas 2 and 4 we have zs(A) ∈ R (and
therefore we can apply Proposition 1(2)) if one of the following assumptions
is satisfied:

(1) s ∈ [0, sA),
(2) ϕ ∈ C([0, 1]) and s ≥ 0, or
(3) supx∈A ϕ(x) < 0 and s ∈ R is arbitrary.

Next we prove the main result of this section.

Theorem 2. Let s ∈ [0, sA). Then

es(A) = Es(A) = cs(A) = zs(A).

Proof. We observed in (4.2) that zs(A) ∈ (0, 1]. Hence Proposition 1
gives es(A) = Es(A) ≤ cs(A) ≤ zs(A), and it remains to show zs(A) ≤
es(A).

To this end choose an arbitrary t ∈ (0, zs(A)). Then q(A, T, tϕ+sψ) > 0
by Lemma 2 and (2.10). By (2.7) there exists a µ ∈ EM(A, T ) with

(4.4) hµ(T ) + tµ(ϕ) + sµ(ψ) > 0.

As µ(ϕ) ≤ 0 and µ(ψ) ≤ 0 by Lemma 1, (4.4) implies hµ(T ) > 0. Therefore
Theorem 1, (1.11) and (4.4) give t < (hµ(T ) + sµ(ψ))/χµ = ds(µ) ≤ es(A),
which completes the proof.

5. Multifractal Hausdorff dimensions of invariant sets. In the
previous section the essential multifractal dimension was treated. Now we
investigate the multifractal Hausdorff dimension of A.

Lemma 8. Assume that supx∈A ϕ(x) < 0. Let s ∈ R.

(1) The function t 7→ p(A, T, tϕ+ sψ) is continuous and strictly decreas-
ing , and there exists a unique z̃s(A) ∈ R with p(A, T, z̃s(A)ϕ+ sψ) = 0.
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(2) If s ≤ sA, then z̃s(A) ≥ 0.
(3) If s < sA, then z̃s(A) > 0.

Proof. The proof of (1) is completely analogous to the proof of Lemma 3
of [8]. Then (2) and (3) follow from (4.1) and the fact that p(A, T, sψ) ≥
q(A, T, sψ).

If supx∈A ϕ(x) < 0 and s ∈ R, then let z̃s(A) be the number described
in Lemma 8(1).

Lemma 9. Assume that supx∈A ϕ(x) < 0 and supx∈A ψ(x) < 0.

(1) For every t ∈ R the function s 7→ p(A, T, tϕ+ sψ) is continuous and
strictly decreasing.

(2) If s ≥ 0, then z̃s(A) ≤ 1.

Proof. A proof analogous to the proof of Lemma 3 of [8] shows (1).
By Lemma 3 and Theorem 2 of [8] we get p(A, T, ϕ) ≤ 0. If s ≥ 0, then
p(A, T, ϕ+ sψ) ≤ 0 by (1), and Lemma 8(1) implies z̃s(A) ≤ 1.

Our next result states that z̃s(A) is an upper bound for ds(A) if s ∈
[0, sA]. If f : [0, 1]→ R is a function, then we define for n ∈ N and x ∈ [0, 1],

(5.1) Snf(x) :=
n−1∑

j=0

f(T jx).

Lemma 10. Assume that supx∈A ϕ(x) < 0, and let s ∈ [0, sA]. Then
ds(A) ≤ z̃s(A).

Proof. Let t > z̃s(A). By Lemma 8(1) we get p(A, T, tϕ + sψ) < 0. Let
η > 0 with

η < −p(A, T, tϕ+ sψ)
t+ s+ 1

.

Choose a finite partition Y of [0, 1] refining Z with

(5.2) max
Y ∈Y

sup
x,y∈Y

|ϕ(x)− ϕ(y)| < η, max
Y ∈Y

sup
x,y∈Y

|ψ(x)− ψ(y)| < η.

For n ∈ N define Yn(A) := {Yn(x) : x ∈ A ∩ E(Y)}. Since supx∈A ϕ(x) < 0
we find that Yn(A) is a generator for T |A. Therefore

(5.3) p(A, T, tϕ+sψ) = lim
n→∞

1
n

log
∑

Y ∈Yn(A)

sup
x∈Y

exp(tSnϕ(x)+sSnψ(x))

by Theorem 9.6 of [11]. By (5.3) and the choice of η there exists an n1 ∈ N
such that

(5.4)
∑

Y ∈Yn(A)

sup
x∈Y

exp(tSnϕ(x) + sSnψ(x)) < e−n(t+s+1)η

for all n ≥ n1.
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Let F ⊆ A and ε > 0. Then there exists an n2 ∈ N with n2 ≥ n1 such
that |Y | < ε for any Y ∈ Yn(A) with n ≥ n2. Fix an n ≥ n2. If Y ∈ Yn(A)
satisfies Y ∩ F 6= ∅, then there exist x1, x2 ∈ F and α1, α2 ∈ (0, ε) with

F ∩ Y = F ∩ ((x1 − α1, x1 + α1) ∪ (x2 − α2, x2 + α2)).

Hence

(5.5) inf
C∈Uε(F )

∑

C∈C
m(C)s|C|t ≤ 2

∑

Y ∈Yn(A)

m(Y )s|Y |t.

Using (1.1) we get by induction

|TnY | =
�
Y

e−Snϕ(x) dx ≥ |Y | exp(− sup
x∈Y

Snϕ(x))

if Y ∈ Yn(A). This implies

(5.6) |Y |t ≤ exp(t sup
x∈Y

Snϕ(x))

for all Y ∈ Yn(A). Analogously using (1.2) we obtain

(5.7) m(Y )s ≤ exp(s sup
x∈Y

Snψ(x))

for all Y ∈ Yn(A). By (5.2) we have

(5.8) exp(t sup
x∈Y

Snϕ(x)) exp(s sup
x∈Y

Snψ(x))

≤ en(t+s)η sup
x∈Y

exp(tSnϕ(x) + sSnψ(x))

whenever Y ∈ Yn(A). Now (5.4)–(5.8) imply

inf
C∈Uε(F )

∑

C∈C
m(C)s|C|t ≤ 2e−nη.

Therefore (1.3) gives νs,t(A) = 0, and by (1.5) we obtain ds(A) ≤ t. As
t > z̃s(A) was arbitrary, this completes the proof.

Now we are able to prove the main result of this section.

Theorem 3. Let A be a completely invariant subset of [0, 1]. Suppose
that supx∈A ϕ(x) < 0 and supx∈A ψ(x) < 0. Then for every s ∈ [0, sA) we
have

ds(A) = es(A) = Es(A) = cs(A) = zs(A) = z̃s(A).

Proof. Fix an s ∈ [0, sA). By (4.2) we get zs(A) ∈ (0, 1]. Next we prove
that z̃s(A) = zs(A). Assume that t ≥ 0 and p(A, T, tϕ + sψ) > 0. As
supx∈A ϕ(x) < 0 and supx∈A ψ(x) < 0, we get

lim
n→∞

1
n

sup
x∈A

Sn(tϕ+ sψ)(x) ≤ 0 < p(A, T, tϕ+ sψ).
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Therefore Lemma 6 of [8] gives q(A, T, tϕ + sψ) = p(A, T, tϕ + sψ). Hence
(2.10) and Lemma 8 imply z̃s(A) = zs(A).

By Theorem 2 we obtain es(A) = Es(A) = cs(A) = zs(A) = z̃s(A).
Furthermore es(A) ≤ ds(A) by (1.10) and (1.11). Using Lemma 10 we obtain
ds(A) ≤ z̃s(A), which completes the proof.

Remark. The result of Theorem 3 remains valid if the conditions
supx∈A ϕ(x) < 0 and supx∈A ψ(x) < 0 are replaced by

lim
n→∞

1
n

sup
x∈A

Snϕ(x) < 0 and lim
n→∞

1
n

sup
x∈A

Snψ(x) < 0.
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