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Multiple solutions of indefinite elliptic systems
via a Galerkin-type Conley index theory

by

Marek Izydorek (Gdańsk) and
Krzysztof P. Rybakowski (Rostock)

Abstract. Let Ω be a bounded domain in RN with smooth boundary. Consider the
following elliptic system:

(ES)

−∆u = ∂vH(u, v, x) in Ω,

−∆v = ∂uH(u, v, x) in Ω,

u = 0, v = 0 in ∂Ω.

We assume that H is an even “−”-type Hamiltonian function whose first order partial
derivatives satisfy appropriate growth conditions. We show that if (0, 0) is a hyperbolic
solution of (ES), then (ES) has at least 2|µ| nontrivial solutions, where µ = µ(0, 0) is the
renormalized Morse index of (0, 0). This proves a conjecture by Angenent and van der
Vorst.

1. Introduction. Let Ω be a bounded domain in RN with smooth
boundary. Consider the following elliptic system

(1.1)

−∆u = ∂vH(u, v, x) in Ω,

−∆v = ∂uH(u, v, x) in Ω,

u = 0, v = 0 in ∂Ω.

Throughout this section we make the following

Hypothesis 1.1. (1) p, q ∈ ]1,∞[ are such that 1/p > 1/2−2/N , 1/q >
1/2− 2/N and 1/p+ 1/q > 1− 2/N .

(2) The function H: R×R×Ω → R, (ξ, η, x) 7→ H(ξ, η, x), is of class C2.
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(3) There is a constant c1 ∈ ]0,∞[ such that for all (ξ, η, x) ∈ R×R×Ω,

|∂ξH(ξ, η, x)| ≤ c1(|ξ|p−1 + |η|(p−1)q/p + 1),

|∂ηH(ξ, η, x)| ≤ c1(|η|q−1 + |ξ|(q−1)p/q + 1).

(4) There are constants c2, δ ∈ ]0,∞[ such that for all (ξ, η, x) ∈ R × R
×Ω,

∂ξH(ξ, η, x)ξ − ∂ηH(ξ, η, x)η ≥ −c2 + δ(|ξ|p + |η|q).
Under the above hypothesis, system (1.1) was investigated in the recent

important paper [1] by Angenent and van der Vorst. These authors show
that there is a Hilbert space E of functions z = (u, v), a linear E-symmetric
isometry L: E → E and a nonlinear continuous operator K1: E → E such
that the classical solutions of (1.1) are exactly the equilibria of the ordinary
differential equation

(1.2) ż = Lz +K1(z)

on E. Moreover, (1.2) is gradient-like with respect to a strongly indefinite
functional Φ1: E → R. (Here we are not using the notation of [1] but, rather,
the notation of our previous paper [13].) Using a specially developed version
of Morse–Floer homology, Angenent and van der Vorst established a few
results, which can be summarized in the following

Theorem A (see [1]). Suppose z0 = (0, 0) is a hyperbolic equilibrium of
(1.2) with renormalized Morse index µ(z0) 6= 0. Then

(1) (1.1) has a nontrivial solution.
(2) If Φ1 is a Morse function then (1.1) has at least two nontrivial so-

lutions.
(3) If Φ1 is a Morse function and H is an even function, then (1.1) has

at least 2|µ(z0)| nontrivial solutions.

The authors also conjecture that the last part of Theorem A is true
without the assumption that Φ1 be Morse:

Conjecture A (see [1]). Suppose that z0 = (0, 0) is a hyperbolic equi-
librium of (1.2). If H is an even function, then (1.1) has at least 2|µ(z0)|
nontrivial solutions.

In a previous paper [13] we studied the above system using a Galerkin
type version of Conley index theory for equations like (1.2), developed in
the article [12] (and called the LS-Conley index there). Let us briefly recall
the definition of the LS-Conley index for the particular case of equations
like (1.2). To this end, recall that in [13] we defined a sequence P l: E → E,
l ∈ N, of E-orthogonal projectors such that, for every l ∈ N, the subspace
P l(E) is finite-dimensional and L-invariant, and P lz → z in E for every
z ∈ E. Now suppose that K: E → E is a continuous map and N is a closed



Multiple solutions of indefinite elliptic systems 235

bounded subset of E such that the closure of K(N) in E is compact. For
every l ∈ N define the map gl: P l(E)→ P l(E) by

gl(z) := Lz + P lK(z), z ∈ P l(E).

If N is a isolating neighborhood with respect to the ordinary differential
equation

(1.3) ż = Lz +K(z)

on E, then there is a smallest l0 ∈ N such that, for every l ≥ l0, the set
N ∩ P l(E) is an isolating neighborhood relative to the ordinary differential
equation

(1.4) ż = gl(z)

on P l(E). Thus, for every l ≥ l0, the (finite-dimensional) Conley index
h(gl, N ∩P l(E)) is defined. Now we define the LS-Conley index h(L+K,N)
as the sequence

h(L+K,N) := (h(L+K,N)l)l≥l0
where

h(L+K,N)l := h(gl, N ∩ P l(E)), l ≥ l0.
In other words, the LS-Conley index of an isolating neighborhood N relative
to the infinite-dimensional ODE (1.3) is the sequence of the Conley indices
of N with respect to the finite-dimensional Galerkin approximations (1.4)
of (1.3). This index enjoys the usual properties of the classical Conley index,
like the nontriviality and homotopy invariance property. Using this index,
we established the results summarized in the following

Theorem B (see [13]). Let z0 = (u0, v0) be a hyperbolic equilibrium of
(1.2). Then there is a number γ = γ(z0) ∈ Z such that the LS-Conley index
h(L+K1, {z0}) has the property that

h(L+K1, {z0})l = Σγ+l for all l ∈ N large enough.

If , in addition, z0 = (0, 0) and γ 6= 0, then (1.1) has at least one nontrivial
solution.

Here, as usual, we use the symbol Σr to denote the homotopy type of a
pointed r-dimensional sphere (Sr, s0).

In [4] M. Carbinatto and the second author developed a theory of Morse
decompositions for equations like (1.2). As an application of a corresponding
Morse equation, they established the following result:

Theorem C (see [4]). Suppose z0 = (0, 0) is a hyperbolic equilibrium of
(1.2) with γ = γ(z0) 6= 0. Moreover , suppose that Φ1 is a Morse function.
Then (1.1) has at least two nontrivial solutions. If , in addition, H is an
even function, then (1.1) has at least 2|γ| nontrivial solutions.
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In this paper we complete the picture composed of the above results.
In fact, we first show, in Theorem 2.3 below, that the number γ(z0) of

Theorem B equals the renormalized Morse index µ(z0). This gives, firstly,
a new interpretation of the renormalized Morse index. Secondly, this result
implies that Theorems B and C together are equivalent to Theorem A. As
a consequence we see that Theorem A can be proved by using Conley index
methods rather than the (analytically more involved) Floer homology.

The second main result of this paper is a proof of Conjecture A (see
Theorem 4.5 below). We obtain the proof by combining the G-equivariant
version of the Galerkin type Conley index from [12] with the Morse decom-
position theory from [4] and some abstract ideas from the paper [11] by the
first author and the paper [8] by Floer and Zehnder.

Some of our results are of an abstract character and, properly extended
and modified, they can be applied to establish multiplicity results for various
other classes of strongly indefinite equivariant problems. This will be treated
in a subsequent publication. For some other applications of the Conley index
theory to strongly indefinite problems see [9] and [10]. Various applications
of classical equivariant Conley index to problems with symmetries are con-
tained in the lecture notes [2].

In this paper we denote by R, Z, N and N0 the sets of all real, integer,
positive integer and nonnegative integer numbers, respectively. We also write
[[a, b]] := [a, b] ∩ Z for a, b ∈ R. Given a topological space X and Y ⊂ X,
we write IntX(Y ) and ClX(Y ) to denote the interior and closure of Y in X,
respectively. Given topological spaces X1 and X2 we denote by C(X1 → X2)
the set of all continuous maps from X1 to X2.

Finally, note that all vector spaces considered in this paper are over the
reals.

2. A proof that γ(z0) = µ(z0). In this section we use the notation and
results of our previous paper [13]. In particular, let the operators Aα, α ∈ R,
the Hilbert space E, the operator L: E → E, the projectors P l: E → E,
l ∈ N, and the nonlinear map K1: E → E be defined as in that paper.
Finally, as in [13] we use the notation h(f, S) = (h(f, S)l)l≥l0 for the LS-
Conley index of the pair (f, S) (defined in [12]).

Recall the following

Definition 2.1. Suppose z0 = (u0, v0) ∈ E is a solution of (1.1), i.e.
Lz0 +K1(z0) = 0. Define the linear map Klin,z0 : E → E by

Klin,z0(u, v) = (A−2s(−a(·)u+ c(·)v), A−2t(c(·)u− b(·)v)).

Here, the functions a, b, c ∈ C(Ω → R) are defined, for x ∈ Ω, by

a(x) = ∂ξξH(z0(x), x),
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b(x) = ∂ηηH(z0(x), x),

−c(x) = ∂ξηH(z0(x), x) = ∂ηξH(z0(x), x).

We call z0 hyperbolic if the linear operator L+Klin,z0 is injective.

Remark. Note that the operator L + Klin,z0 is the “formal” Fréchet
derivative of L+K1 at z0. In general, the true Fréchet derivative of L+K1

at z0 does not exist.

The following result has been established in [13]:

Theorem 2.2 (cf. the proof of Theorem 2.9, Corollary 2.10, and The-
orem 2.6 of [13]). Let z0 and Klin = Klin,z0 be as in Definition 2.1. Then
{z0} is an isolated invariant set relative to L + K1, {0} is an isolated in-
variant set relative to L + Klin and there is an integer γ = γ(z0) such that
h(L + K1, {z0})l = h(L + Klin, {0})l = Σγ+l for all l ∈ N large enough.
Moreover , {0} is an isolated invariant set relative to L and h(L, {0})l = Σl

for all l ∈ N.

The renormalized Morse index of a hyperbolic solution z0 of (1.1) was
defined of [1]. To recall the definition, let us first define, for every k ∈ N0

and β ∈ ]0, 1[, the space hk,β(Ω) to be the closure in Ck,β(Ω) of the subset
of smooth functions. Given α ∈ ]0, 1[ set

Xα = h2α
0 (Ω)× h2(1−α)

0 (Ω).

Here,

(1) if β ∈ ]0, 1/2[, then h2β
0 (Ω) := {ϕ ∈ h0,2β(Ω) | ϕ|∂Ω = 0};

(2) if β = 1/2, then h2β
0 (Ω) := {ϕ ∈ C1(Ω) | ϕ|∂Ω = 0};

(3) if β ∈ ]1/2, 1[, then h2β
0 (Ω) := {ϕ ∈ h1,2β−1(Ω) | ϕ|∂Ω = 0}.

Let α = s/2. Note that Xα ⊂ E with continuous inclusion. It turns out
that L(Xα) ⊂ Xα. Let L̃: Xα → Xα be the restriction of L to Xα.

Now let B− and B+ be linear, compact and E-symmetric operators on
Xα such that −L̃+B− and −L̃+B+ are injective. Let B: R→ L(Xα,Xα)
be an arbitrary continuous family of compact E-symmetric operators with

lim
t→−∞

‖B(t)−B−‖L(Xα,Xα) = 0 and lim
t→∞

‖B(t)−B+‖L(Xα,Xα) = 0.

Then the map

Φ =
d

dt
− L̃+B(t): W 1,2(R,Xα)→ L2(R,Xα)

is a well defined Fredholm operator. Its Fredholm index IndΦ depends only
on the pair (−L̃+B−,−L̃+B+) and we write µ(−L̃+B−,−L̃+B+) := IndΦ.
Now let z0 and Klin,z0 : E → E be as in Definition 2.1. One shows that
Klin,z0(Xα) ⊂ Xα. Let K̃: Xα → Xα be the restriction of Klin,z0 to Xα. It
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is clear that both Klin,z0 and K̃ are compact and E-symmetric. Moreover,
the operators −L, −L̃, −L−Klin,z0 and −L̃− K̃ are injective. The renor-
malized Morse index µ(z0) is now defined by µ(z0) = µ(−L̃ − K̃,−L̃) (see
Definition 17 of [1]).

We can now state our first basic result.

Theorem 2.3. Assume the hypotheses of Theorem 2.2. Then γ(z0) =
µ(z0).

Proof. Note that for every l ∈ N the projection operator P l is compact,
E-symmetric, P l(Xα) ⊂ Xα and the restriction of P l to Xα is compact.
It follows that the operator P l ◦ Klin,z0 ◦ P l: E → E is E-symmetric and
compact. It restricts to a compact operator K̃l: Xα → Xα. Moreover, a
simple compactness argument proves that there is an l1 ∈ N such that for
all l ≥ l1 and t ∈ [0, 1] the operator L+tKlin,z0+(1−t)P l◦Klin,z0◦P l: E → E
is injective. By Lemma 18 of [1] we thus obtain, for l ≥ l1,

µ(−L̃− K̃,−L̃− K̃l) = 0.

The cocycle property of the relative index µ (Lemma 16 of [1]) implies that

(2.1) µ(−L̃− K̃,−L̃) = µ(−L̃− K̃l,−L̃), l ≥ l1.
Fix l ≥ l1 arbitrarily. Note that El = P l(E) is a closed subspace of Xα.
Let Y l be the intersection of Xα with the orthogonal complement of El

in E. Then Xα is the direct sum of El and Y l. Moreover, the spaces El and
Y l are invariant relative to L̃ and K̃l with L̃|El = Ll, K̃l|El = P l ◦ K|El
and K̃l|Y l = 0. Define Bl(t): El → El by Bl(t) = −K̃l|El for t ∈ ]−∞, 0],
Bl(t) = −(1− t)K̃l|El for t ∈ [0, 1] and Bl(t) = 0 for t ∈ [0,∞[.

Let

ΦEl =
d

dt
− L̃|El +Bl(t): W 1,2(R, El)→ L2(R, El),

ΦY l =
d

dt
− L̃|Y l : W 1,2(R, Y l)→ L2(R, Y l)

and Φ = ΦEl⊕ΦY l . Proceeding almost verbatim as in the proof of Lemma 15
of [1] we see that ΦY l is invertible so ΦY l is Fredholm and

(2.2) IndΦY l = 0.

Now, since El is finite-dimensional, it follows that ΦEl is Fredholm and

IndΦEl = m−(−Ll − P l ◦K|El)−m−(−Ll)(2.3)

= m+(Ll + P l ◦K|El)−m+(Ll),

where for a linear map A on El,m−(A) (resp.m+(A)) denotes the number of
negative (resp. positive) eigenvalues of A, counted with multiplicities (cf. [14]
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or [17]). Thus Φ is Fredholm and

(2.4) µ(−L̃− K̃l,−L̃) = IndΦ = IndΦEl + IndΦY l = IndΦEl .

Now, the definition of the LS-Conley index from [12] and Theorem 2.2 imply
that m+(Ll +P l ◦K|El) = γ+ l and m+(Ll) = l for all l large enough. The
theorem now follows from formulas (2.1)–(2.4).

It should be noted that the results stated so far in this section are valid
under the sole Hypothesis 1.1(1)–(3).

Remark. We now see that, under the full Hypothesis 1.1 and with the
notation of the introduction, the conjunction of Theorems B and C is, in-
deed, equivalent to Theorem A.

In what follows we will require

Definition 2.4 (see [4]). Let X be a Banach space, U ⊂ X be open,
and f ∈ C(U → X) be arbitrary. Let S ⊂ U be invariant relative to f .
A finite sequence (Mr)kr=1 of subsets of S is called a Morse decomposition
of S relative to f if the following properties hold:

(1) The setsMr, r ∈ [[1, k]], are closed, invariant relative to f and pairwise
disjoint.

(2) For every solution σ of f with σ(R) ⊂ S, either σ(R) ⊂Mi for some
i ∈ [[1, k]] or else there are i, j ∈ [[1, k]] with i < j, α(σ) ⊂Mj and ω(σ) ⊂Mi.
Here,

α(σ) =
⋂

t∈]−∞,0]

ClX σ(]−∞, t]), ω(σ) =
⋂

t∈[0,∞[

ClX σ([t,∞[)

are the α- and ω-limit sets of σ, respectively.

3. Equivariant cohomology and an abstract multiplicity result.
In this section, in a step toward the proof of Conjecture A, we establish
an abstract multiplicity result for finite-dimensional ordinary differential
equations with a Z2-symmetry (see Theorem 3.8 below). This result requires
some background material on transformation groups, which we briefly collect
here for the readers’ convenience. See [3] and [6] for general information on
the subject.

Let G be a compact Lie group, EG be a contractible space with a free
(left) G-action and let BG = EG/G be the corresponding orbit space. Let R
be a commutative ring with unity and let (Hq)q∈Z be the Alexander–Spanier
cohomology functor with coefficients in R. (See [18].) As usual, if (Y, Y ′) is a
topological pair, then we write H∗(Y, Y ′) :=

⊕
q∈ZH

q(Y, Y ′). We also write
H∗(Y ) := H∗(Y, ∅). It is clear that H∗(BG) is a (graded) ring with unity,
where the multiplication in H∗(BG) is defined by the cup product ∪. In
particular, if a ∈ Hn(BG) and b ∈ Hm(BG), then ab := a∪b ∈ Hn+m(BG).
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Given a (left) G-space Y let the product EG × Y carry the diagonal
action and let YG = (EG× Y )/G be the corresponding orbit space.

Let (X,A) be an arbitrary pair of G-spaces, i.e. X is a G-space and A is a
G-invariant subspace of X. Since the quotient map EG×X → (EG×X)/G
is open, it follows that the topology of (EG × A)/G is just the subspace
topology of (EG × A)/G in (EG × X)/G. The G-equivariant cohomology
of (X,A) is defined as H∗G(X,A) := H∗(XG, AG). In particular, H∗G(X) =
H∗G(X, ∅). (Notice at this point that this definition of H∗G(X), identical to
that of [6], differs from the definition of H∗G(X) as made in [11].) There is
a multiplication ∗: H∗(BG) × H∗G(X,A) → H∗G(X,A) such that whenever
n,m ∈ N0, then a ∗ u = γ∗X(a) ∪ u ∈ Hn+m

G (X,A) for a ∈ Hn(BG) and
u ∈ Hm

G (X,A). Here, γX : (EG×X)/G→ BG is induced by the projection
map EG×X → EG, and ∪ is again the cup product. This makes H∗G(X,A)
into a (graded) module over the ring H∗(BG).

Proposition 3.1. Assume that (X,A,B) is a triple of G-spaces, i.e.
X is a G-space, X ⊃ A ⊃ B and A and B are G-invariant. Let

. . .
δ∗→ H∗G(X,A)

j∗→ H∗G(X,B) i∗→ H∗G(A,B) δ∗→ H∗G(X,A)
j∗→ . . .

be the long exact (ordinary) cohomology sequence of the triple (XG, AG, BG).
Then j∗ and i∗ are H∗(BG)-homomorphisms while δ∗(ω ∗ u) = (−1)pω ∗
δ∗(u) whenever ω ∈ Hp(BG) and u ∈ H∗G(A,B).

Proof. If (Y, Y ′) and (Z,Z ′) are topological pairs and f : (Y, Y ′)→(Z,Z ′)
is continuous then f∗(a ∪ b) = f∗(a) ∪ f∗(b) for all a ∈ H∗(Z) and b ∈
H∗(Z,Z ′). This immediately implies that j∗ and i∗ are H∗(BG)-homo-
morphisms. Furthermore, in the notation of Section 6.5 of [18], if φ1 ∈
Cp(Y,R) and φ2 ∈ Cq(Y,R) then δ(φ1 ∪ φ2) = δφ1 ∪ φ2 + (−1)pφ1 ∪ δφ2.
This easily implies the last statement of the proposition (cf. the proof of
Theorem 5.3.5 of [18]).

Proposition 3.2 (cf. the proof of Remark 3.8 of [11]). Let X be a G-
space and ω ∈ H∗(BG). Then ω ∗H∗G(X) = 0 if and only if γ∗X(ω) = 0 in
H∗G(X). Moreover , if ω ∗ H∗G(X) = 0 and A ⊂ Y ⊂ X are G-invariant ,
then ω ∗H∗G(Y,A) = 0.

Proof. Suppose ω ∗ H∗G(X) = 0 and let e ∈ H∗(BG) be the unity of
H∗(BG). Then 0 = ω ∗ γ∗X(e) = γ∗X(ω) ∪ γ∗X(e) = γ∗X(ω ∪ e) = γ∗X(ω), so
γ∗X(ω) = 0 in H∗G(X). Conversely, if γ∗X(ω) = 0 in H∗G(X) then, for every
u ∈ H∗G(X),

(3.1) ω ∗ u = γ∗X(ω) ∪ u = 0 ∪ u = 0,

so ω∗H∗G(X) = 0. If A ⊂ Y ⊂ X are G-invariant and ν: EG×Y → EG×X
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is the inclusion induced map, then γX ◦ ν = γY , so

(3.2) γ∗Y = ν∗ ◦ γ∗X .
Now, if ω ∗H∗G(X) = 0, then by the first part of this proposition, we have
γ∗X(ω) = 0 and so formula (3.2) implies that γ∗Y (ω) = 0 in H∗G(Y ). As in the
proof of formula (3.1) we now see that ω ∗ u = 0 for every u ∈ H∗G(Y,A), so
ω ∗H∗G(Y,A) = 0.

For the rest of this paper we make the following

Standing Assumption. G is the additive group Z2, R is the ring Z2,
EG is the infinite-dimensional sphere S∞ with the antipodal action (g, x) 7→
(−1)gx and so BG = RP∞, the infinite-dimensional real projective space.

It is well known (cf. Theorem III 2.5 of [6]) that H∗(BG) = Z2[ω], where
ω is the (uniquely determined) generator of H1(BG).

Proposition 3.3. Let X be a normed vector space which is also a G-
space and x be a point of X with trivial isotropy group Gx. Then every
neighborhood of the G-orbit Gx contains a closed G-invariant neighborhood
N of Gx with Hq

G(N) = 0 for all q ∈ N. In particular , ω ∗H∗G(N) = 0.

Proof. Since the isotropy group Gx is trivial, it follows that Gx con-
tains exactly two points, namely x and Θ(x), where Θ: X → X is the
left translation corresponding to the element 1 ∈ Z2. Thus there is a G-
equivariant homeomorphism α: Gx → G, gx 7→ g. The map IdEG×α thus
induces a homeomorphism (EG × Gx)/G → (EG × G)/G. On the other
hand the map EG × G → EG, (s, g) 7→ g−1s, induces a homeomorphism
(EG×G)/G→ EG. It follows that (EG×Gx)/G ∼= EG and so Hq

G(Gx) is
isomorphic to Hq(EG) for every q ∈ Z. Since EG is contractible, we have
Hq(EG) = 0 for q ∈ N. Thus

(3.3) Hq
G(Gx) = 0 for all q ∈ N.

Let W be an arbitrary neighborhood of Gx. As x 6= Θ(x) there is a closed
ball B centered at x such that B ∩ Θ(B) = ∅ and N := B ∪ Θ(B) ⊂ W .
Since B and Θ(B) are disjoint, one can easily construct a G-equivariant
strong deformation retraction h: [0, 1] × N → N of N onto Gx, namely,
h(t, y) = (1 − t)x + ty if y ∈ B and h(t, y) = Θh(t, Θ−1y) otherwise. The
map h induces a strong deformation retraction [0, 1] × (EG × N)/G →
(EG ×N)/G of (EG ×N)/G onto (EG × Gx)/G. It follows that H∗G(Gx)
and H∗G(N) are isomorphic. Consequently, (3.3) implies that Hq

G(N) = 0
for all q ∈ N.

Definition 3.4. Let (X,x0) be a pointed G-space, i.e. assume that
(X, {x0}) is a pair of G-spaces. Let r ∈ N0. We say that (X,x0) is of type
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Σr
G if there is an r-dimensional inner product space V on which G acts or-

thogonally (i.e. V is a G-orthogonal representation space), and (X,x0) is G-
homotopy equivalent to the pointed G-space (Z, z0) :=(D(V )/S(V ), [S(V )]),
where D(V ) and S(V ) are the unit disk and the unit sphere of V , respec-
tively, and the G-action on (Z, z0) is that induced by the G-action on V .

Remark. Since every G-homotopy equivalence is an ordinary homotopy
equivalence and since the pointed space (D(V )/S(V ), [S(V )]) is homeomor-
phic (hence homotopy equivalent) to a pointed sphere (Sr, s0) it follows that
every pointed G-space of type Σr

G has the (ordinary) homotopy type Σr of
a pointed r-sphere. However, two pointed spaces of type Σr

G need not be
G-homotopy equivalent. To see this, let V1 be the space R2 endowed with
the antipodal G-action (g, x) 7→ (−1)gx, while V2 be the space R2 endowed
with the G-action (g, (x1, x2)) 7→ (x1, (−1)gx2). Then the pointed G-spaces

(Z1, z1) := (D(V1)/S(V1), [S(V1)]),

(Z2, z2) := (D(V2)/S(V2), [S(V2)])

are not G-homotopy equivalent. In fact, G-equivariant maps map G-fixed
points to G-fixed points. Furthermore, the set of G-fixed points of Z1 has two
elements and hence is disconnected, while the set of G-fixed points of Z2 is
connected. It follows that whenever f : (Z1, z1)→ (Z2, z2) and g: (Z2, z2)→
(Z1, z1) are G-equivariant and continuous then h := g◦f : (Z1, z1)→ (Z1, z1)
maps the two G-fixed points of Z1 to the single G-fixed point of Z1. There-
fore, in particular, h cannot be G-homotopic to the identity map on (Z1, z1).

It follows from these considerations that, in contrast to the nonequivari-
ant case, the symbol Σr

G does not denote a single G-homotopy type, but,
rather, a class of G-homotopy types.

Definition 3.5. Let M be an arbitrary H∗(BG)-module. An element
u ∈M is called nontorsion if ωm ∗ u 6= 0 for all m ∈ N. Here, ∗ denotes the
multiplication H∗(BG)×M →M .

Proposition 3.6. Let (N1, N2) be a pair of G-spaces such that the pair
(N1/N2, [N2]) is of type Σr

G for some r ∈ N0. Let q be the smallest nonneg-
ative integer for which there is a nontorsion element v ∈ Hq

G(N1, N2). Then
q = r.

Proof. Let V be as in Definition 3.4. It is clear (and also follows from
Lemma 2 of [7]) that H∗G(N1, N2) and H∗G(N1/N2, [N2]) are isomorphic
H∗(BG)-modules. Also, H∗G(D(V ), S(V )) and H∗G(D(V )/S(V ), [S(V )]) are
isomorphic H∗(BG)-modules. Thus our assumption implies that

(3.4) H∗G(N1, N2) andH∗G(D(V ), S(V )) are isomorphic H∗(BG)-modules.

Since R = Z2 it follows that the vector bundle ζ: (EG × V )/G → BG
induced by the projection EG×V → EG is orientable over R. Thus Thom’s
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isomorphism theorem (cf. Theorem 5.7.10 of [18]) implies that there is a
u ∈ Hr

G(D(V ), S(V )) (the Thom class of ζ) such that the map H∗(BG)→
H∗+rG (D(V ), S(V )), a 7→ a∗u, is an H∗(BG)-module isomorphism. Together
with (3.4) this implies that there is a v ∈ Hr

G(N1, N2) such that the map
H∗(BG) → H∗+rG (N1, N2), a 7→ a ∗ v, is an H∗(BG)-module isomorphism.
Hence we conclude that Hp

G(N1, N2) = 0 for all p < r. Thus the number q,
if it exists, must satisfy q ≥ r. To show that q = r we just have to show
that v is nontorsion. If this is not true then ωm ∗ v = 0 for some m ∈ N.
This implies ωm = 0. However, recalling that H∗(BG) = Z2[ω] and so, in
particular, ωm 6= 0 for all m ∈ N, we obtain a contradiction.

For the rest of this section assume that E is a finite-dimensional inner
product space and G acts on E orthogonally. Let U ⊂ E be open and
G-invariant.

Assume that f ∈ C(U → E) is G-equivariant and let N be a G-
invariant isolating neighborhood relative to f . Let ε(f,N) be as in Propo-
sition 3.6 of [12]. By the results of [7] and [12] it follows that whenever
f ′, f ′′: U → E are arbitrary G-equivariant locally Lipschitzian maps with
|f ′− f |N < ε(f,N) and |f ′′− f |N < ε(f,N), and (N ′1, N

′
2) (resp. (N ′′1 , N

′′
2 ))

are arbitraryG-invariant index pairs inN relative to the flow generated by f ′

(resp. f ′′), then the pointed spaces (N ′1/N
′
2, [N

′
2]) and (N ′′1 /N

′′
2 , [N

′′
2 ]) are G-

homotopy equivalent. Moreover, the graded H∗(BG)-modules H∗G(N ′1, N
′
2)

and H∗G(N ′′1 , N
′′
2 ) are isomorphic. Thus we have a well defined G-homotopy

type
hG(f,N) := hG(N ′1/N

′
2, [N

′
2]),

which we call the G-equivariant Conley index of (f,N). We also have a well
defined H∗(BG)-module isomorphism type

H∗G(f,N) := H∗G(N ′1, N
′
2),

which we call the G-equivariant cohomological Conley index of (f,N). Ac-
tually hG(f,N) (resp. H∗G(f,N)) depends only on the invariant set S =
Inv(f,N) and not on the choice of an isolating neighborhood. Thus we have
a well defined G-equivariant Conley index hG(f, S) := hG(f,N) (resp. the
G-equivariant cohomological Conley index H∗G(f, S) := H∗G(f,N)) where S
is a compact, G-invariant, and isolated invariant set relative to f , and N is
an arbitrary G-invariant isolating neighborhood of S. The fact that we use
the same symbols to denote the index of an isolating neighborhood and the
index of an isolated invariant set should not lead to confusion.

We say that hG(f, S) (or hG(f,N)) is of type Σr
G if (in the above nota-

tion) (N ′1/N
′
2, [N

′
2]) is of type Σr

G. Again this property is independent of the
choice of f ′ and (N ′1, N

′
2).

We have the following elementary
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Proposition 3.7. Let f : E → E be linear , G-equivariant and symmet-
ric with respect to the inner product on E. Assume also that f has r positive
and dimE − r negative eigenvalues, counted with multiplicities. Then {0}
is a G-invariant isolated invariant set relative to f and hG(f, {0}) is of
type Σr

G.

We can now state and prove the following abstract multiplicity result.
This result is based on Theorem 5.1 of [11], which, in turn, is based on ideas
from [8].

Theorem 3.8. Let U ⊂ E be open, G-invariant and f ∈ C(U → E) be
G-equivariant. Suppose that N ⊂ U is a G-invariant isolating neighborhood
relative to f . Let k ∈ N, for every r ∈ [[1, k]] let Wr ⊂ N be a G-invariant
isolating neighborhood relative to f , set Mr := Inv(f,Wr) and suppose that
(Mr)kr=1 is a Morse decomposition of S := Inv(f,N) relative to f in the
sense of Definition 2.4. Suppose that there is a ν ∈ [[1, k]] and numbers
p0, p∞ ∈ N0 such that hG(f,Wν) is of type Σp0

G and hG(f,N) is of type
Σp∞
G . Moreover , suppose that ω ∗H∗G(Wr) = 0 for all r ∈ [[1, k]] with r 6= ν.

Then
k − 1 ≥ |p0 − p∞|.

Remark. Despite some (deceptive) similarity in the notations we should
notice a fundamental difference between this theorem and Theorem 5.1
of [11]: here we consider only a finite-dimensional ODE and, in particular,
we do not use the concept of a G-spectrum, introduced in [11].

Proof. Recall that the space E is finite-dimensional. By Theorem 4.6
of [4] there is an ε > 0, ε ≤ ε(f,N), such that whenever f ′ ∈ C(U → E)
satisfies |f − f ′|N < ε then N and Wr, r ∈ [[1, k]], are isolating neigh-
borhoods relative to f ′ and (Inv(f ′,Wr))kr=1 is a Morse decomposition of
Inv(f ′, N) relative to f ′. Clearly, hG(f ′,Wν) is of type Σp0

G and hG(f ′, N)
is of type Σp∞

G . Choosing, if necessary, f ′ to be G-equivariant and locally
Lipschitzian we may thus assume, with no loss of generality, that f itself
is locally Lipschitzian. Therefore we can consider the flow π defined by the
ODE ẋ = f(x).

Let (Ar)kr=0 be the attractor filtration with respect to π associated with
the Morse decomposition (Mr)kr=1. For every r ∈ [[1, k]] the pair (Ar−1,Mr)
is a G-invariant attractor-repeller pair in Ar. Therefore there is a G-invariant
index triple (N r

1 , N
r
2 , N

r
3 ) for the pair (Ar−1,Mr), relative to Ar, with

Nr
1 ⊃ Nr

2 ⊃ Nr
3 . (Cf. [5], [16] and in particular Definition III 2.2 of [15].)

Choose any G-invariant open set V in E with Ar−1 ⊂ V ⊂ Nr
2 . Then

(Nr
1 \ V,Nr

2 \ V ) is a G-invariant index pair in N r
1 \ V . By excision, the

H∗(BG)-module H∗G(Nr
1 \V,Nr

2 \V ), representing H∗G(f,Mr), is isomorphic
to the H∗(BG)-module H∗G(Nr

1 , N
r
2 ). Using the long exact G-equivariant
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cohomology sequence of the triple (N r
1 , N

r
2 , N

r
3 ) of Proposition 3.1 we thus

obtain a well defined long exact sequence

(3.5) . . .
δ∗→ H∗G(f,Mr)

j∗→ H∗G(f,Ar)
i∗→ H∗G(f,Ar−1) δ∗→ H∗G(f,Mr)

j∗→ . . .

ofR-module homomorphisms. Proposition 3.1 and the fact thatG = Z2 (and
so −g = g for g ∈ G) imply that the maps j∗, i∗ and δ∗ are H∗(BG)-module
homomorphisms.

Let r ∈ [[1, k]] and r 6= ν. Then there is a G-invariant index pair (N ′1, N
′
2)

in Wr relative to the flow π. It follows from our assumptions and Proposi-
tion 3.2 that ω ∗H∗G(N ′1, N

′
2) = 0 and so ω ∗H∗G(f,Mr) = 0.

We first claim that

(3.6) ωr ∗H∗G(f,Ar) = 0, r ∈ [[0, ν − 1]].

In fact, A0 = ∅ so H∗G(f,Ar) = 0 and thus ωr ∗ H∗G(f,Ar) = 0 for r = 0.
Let r ∈ [[1, ν − 1]] and suppose that ωr−1 ∗ H∗G(f,Ar−1) = 0. Whenever
u ∈ H∗G(f,Ar) then i∗(u) ∈ H∗G(f,Ar−1), so 0 = ωr−1 ∗ i∗(u) = i∗(ωr−1 ∗u),
and so the exactness of the sequence (3.5) implies that j∗(z) = ωr−1 ∗ u
for some z ∈ H∗G(f,Mr). Since r 6= ν we obtain ω ∗ z = 0 and so ωr ∗ u =
ω ∗ j∗(z) = j∗(ω ∗ z) = 0. This proves (3.6) by induction.

For r ∈ [[0, k]] let nr be the smallest nonnegative number n such that
Hn
G(f,Ar) contains a nontorsion element. We claim that for all r ∈ [[ν, k]]

the number nr is defined and

p0 − (ν − 1) ≤ nν ≤ p0,(3.7)

nr−1 ≤ nr ≤ nr−1 + 1, r ∈ [[ν + 1, k]].(3.8)

By Proposition 3.6 there is a nontorsion element u ∈ Hp0
G (f,Mν). We claim

that j∗(u) is nontorsion. Indeed, if 0 = ωm ∗ j∗(u) = j∗(ωm ∗ u) then by
exactness in (3.5) there is an x ∈ H∗G(f,Aν−1) with ωm∗u = δ∗(x). Now (3.6)
implies that ων−1 ∗ x = 0 and so we obtain ων−1+m ∗ u = ων−1 ∗ δ(x) =
δ(ων−1 ∗ x) = 0, a contradiction. Since j∗(u) ∈ Hp0

G (f,Aν) it follows that
nν is defined and, indeed, nν ≤ p0. Now let z ∈ Hnν

G (f,Aν) be nontorsion.
Formula (3.6) implies that i∗(ων−1 ∗ z) = 0, so ων−1 ∗ z = j∗(x) for some
x ∈ H∗G(f,Mν) with

(3.9) dimx = dim(ων−1 ∗ z) = (ν − 1) + nν .

Since ωm ∗ x = 0 implies ων−1+m ∗ z = 0, we see that x is nontorsion and
so, by Proposition 3.6, dimx ≥ p0. Thus (3.9) implies that p0 ≤ (ν−1)+nν
and (3.7) is proved. Now suppose r ∈ [[ν + 1, k]] is such that nr−1 is defined.
Let z ∈ H

nr−1
G (f,Ar−1) be nontorsion. Since r 6= ν, we have δ(ω ∗ z) =

ω ∗ δ∗(z) = 0, so there is an x ∈ H∗G(f,Ar) with i∗(x) = ω ∗ z and

(3.10) dimx = dim(ω ∗ z) = 1 + nr−1.
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As x is clearly nontorsion, it follows from (3.10) that nr is defined and
nr ≤ nr−1 + 1. Now let x ∈ Hnr

G (f,Ar) be nontorsion. We claim that i∗(x)
is nontorsion. Indeed, ωm ∗ i∗(x) = 0 implies that ωm ∗ x = j∗(z) for some
z ∈ H∗G(f,Mr). It follows that ω ∗ z = 0, so ωm+1 ∗ x = 0, a contradiction.
Thus nr−1 ≤ dim i∗(x) = dimx = nr. Altogether we see that (3.8) holds.

Iterating (3.8), using (3.7) and noting that, by Proposition 3.6, p∞ = nk
we obtain p∞ = nk ≤ nν + (k − ν) ≤ p0 + (k − 1) so

(3.11) p∞ − p0 ≤ k − 1.

Using (3.8) and (3.7) again we also obtain p∞ = nk ≥ nν ≥ p0 − (ν − 1) ≥
p0 − (k − 1), so

(3.12) p∞ − p0 ≥ −(k − 1).

Now formulas (3.11) and (3.12) imply that (k − 1) ≥ |p0 − p∞|.

4. A proof of the Angenent–van der Vorst conjecture. In this
section we will prove Conjecture A stated in the introduction. Throughout
this section we use the notation of [13]. We will use the abstract multiplic-
ity result established in the preceding section as well as some basic results
from [13].

Assume Hypothesis 1.1(1)–(3) as well as the following hypotheses:

Hypothesis 4.1. H(−ξ,−η, x) = H(ξ, η, x) for all (ξ, η, x) ∈ R×R×Ω.

Hypothesis 4.2. z0 = 0 is a hyperbolic solution of (1.1) with renormal-
ized Morse index γ ∈ Z.

For the rest of this section we consider the space E as a G-space with
respect to the antipodal G-action (g, z) 7→ (−1)gz, g ∈ G = Z2, z ∈ E. We
then have the following G-equivariant Linearization Principle.

Theorem 4.3. Assume Hypotheses 1.1(1)–(3), 4.1 and 4.2. Then the G-
equivariant Conley index hG(L+K1, {0})l is of type Σγ+l

G for all l sufficiently
large.

Proof. Let Klin = Klin,0. It is shown in the proof of Theorem 2.9 of [13]
that there is a closed ball N at zero such that for every θ ∈ [0, 1] the set
N is an isolating neighborhood of {0} relative to L + θK1 + (1 − θ)Klin.
Since N is G-invariant and the homotopy [0, 1] × E → E, (θ, z) 7→ Lz +
(θK1 + (1− θ)Klin)(z), is G-equivariant, the G-homotopy invariance of the
G-equivariant LS-Conley index (see [12]) implies that

hG(L+K1, N)l = hG(L+Klin, N)l(4.1)

= hG(Ll + (P l ◦Klin)|El , N ∩ El)
= hG(Ll + (P l ◦Klin)|El , {0})
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for all l large enough. Since the map L + Klin is injective, it follows that
for all l large enough the linear map Ll + (P l ◦ Klin)|El is injective, and
by Theorems 2.2 and 2.3 this map has γ + l positive eigenvalues (counted
with multiplicities). Thus, by Proposition 3.7, hG(Ll+ (P l ◦Klin)|El , {0}) is
of type Σγ+l

G for all l large enough. This together with (4.1) completes the
proof of the theorem.

Theorem 4.4. Assume Hypotheses 1.1, 4.1 and 4.2. Define S to be the
set of all points z0 ∈ E for which there is a bounded solution z: R → E of
(1.2) such that z(0) = z0. Then S is a G-invariant isolated invariant set
relative to L + K1 and hG(L + K1, S)l is of type Σl

G for all l sufficiently
large.

Proof. The set S is obviously G-invariant. Let N be the closed ball
at zero with radius 2M where M is as in Proposition 2.12 of [13]. Then
that proposition implies that for every θ ∈ [0, 1] the set N is an isolating
neighborhood relative to L+θK1. Since N is G-invariant and the homotopy
[0, 1] × E → E, (θ, z) 7→ Lz + θK1(z), is G-equivariant, the G-homotopy
invariance of the G-equivariant LS-Conley index implies that

hG(L+K1, N)l = hG(L,N)l = hG(Ll, N ∩ El)(4.2)

= hG(Ll, {0}) for all l large enough.

For all l the linear map Ll is injective and has l positive eigenvalues (counted
with multiplicities). Thus, by Proposition 3.7, hG(Ll, {0}) is of type Σl

G for
all l ∈ N. This together with (4.2) completes the proof of the theorem.

We can now prove the Angenent–van der Vorst conjecture:

Theorem 4.5. Assume Hypotheses 1.1, 4.1 and 4.2. Then system (1.1)
has at least 2|γ| nontrivial solutions.

Proof. If (1.1) has infinitely many solutions then we are done. There-
fore, suppose that the set E of solutions of (1.1) is finite. Let S be as in
Theorem 4.4 and N be a G-invariant isolating neighborhood of S relative
to f := L + K1. Let P be the set of all G-orbits of elements of E and
k ∈ N be the cardinality of P. By Hypothesis 4.1, the Lyapunov function
Φ1 of the equation ż = f(z) is constant on G-orbits. Thus we can order
P in such a way that P = {Mr | r ∈ [[1, k]]} where (Mr)kr=1 is a Morse
decomposition of S = Inv(f,N) relative to f , in the sense of Definition 2.4.
There is a ν ∈ [[1, k]] such that Mν = {0} while for all r 6= ν the set Mr

has two elements. It follows from Proposition 3.3 that whenever r 6= ν,
then Mr = Inv(f,Wr) for some G-invariant neighborhood Wr ⊂ N of Mr

with ω ∗ H∗G(Wr) = 0. Choose Wν ⊂ N to be an arbitrary G-invariant
neighborhood of Mν with Inv(f,Wν) = Mν . For l ∈ N define the map
f l: U ∩ El → El by z 7→ Llz + P lK1(z). An application of Theorem 4.15
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of [4] shows that there is an l1 ∈ N such that whenever l ≥ l1 then the sets
N ∩ El and Wr ∩ El, r ∈ [[1, k]], are isolating neighborhoods relative to f l

and (Inv(f l,Wr ∩El))kr=1 is a Morse decomposition of Inv(f l, N ∩El) rela-
tive to f l. Using Theorems 4.3 and 4.4 we further find an l2 ∈ N such that
whenever l ≥ l2 then hG(f l,Wν ∩El) is of type Σγ+l

G and hG(f l, N ∩El) is
of type Σl

G.
Fix l ≥ max(l1, l2). Set p0 := γ + l, p∞ := l, U ′ = E′ := El, f ′ :=

f l, N ′ := N ∩ El, S′ := Inv(f l, N ∩ El), and moreover W ′r := Wr ∩ El,
M ′r := Inv(f l,Wr ∩ El) for r ∈ [[1, k]]. Using Proposition 3.2 we see that
ω ∗H∗G(W ′r) = 0 for every r 6= ν.

Now an application of Theorem 3.8 implies that k− 1 ≥ |p0− p∞| = |γ|.
This means that there are at least 2|γ| nontrivial solutions of system (1.1).
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