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Fiber orders and compact spaces of uncountable weight

by

Antonio Avilés (Murcia) and Ondřej F. K. Kalenda (Praha)

Abstract. We study an order relation on the fibers of a continuous map and its
application to the study of the structure of compact spaces of uncountable weight.

1. Introduction and main results. This work is motivated by the
following general problem: Given two compact convex sets K and L (in some
locally convex linear topological spaces), are K and L homeomorphic? When
K and L are metrizable (that is, they have countable weight) the well known
Keller theorem (cf. [7, 17]) implies that K and L are homeomorphic if and
only if they have the same dimension. Thus, when restricting our attention
to compact sets of countable weight, only one topological invariant has to
be computed to answer our question: the dimension, ranging from 0 to ω.

When we pass to the case when the weight is uncountable, the situation
is not that simple. A number of usual topological invariants, like chain con-
ditions, cardinal functions, functional-analytic properties, etc., can be used
to identify many different types of compact convex sets. Just to recall an
elementary example, we may compare an uncountable product of intervals
[0, 1]κ ⊂ Rκ with the ball B(κ) of the Hilbert space `2(κ) in the weak topol-
ogy. In B(κ) we may find an uncountable family of disjoint open sets but
[0, 1]κ has the countable chain condition. Another argument would be that
B(κ) cannot be homeomorphic to an uncountable product since it contains
Gδ-points (we will prove a much subtler fact: B(κ) is not even homeomorphic
to a finite product of compact spaces of uncountable weight).

Very often, however, the standard topological technology is not so helpful
as in the case of B(κ) and [0, 1]κ. An example is when we restrict our atten-
tion to weakly compact sets of the Hilbert space `2(κ). The first example of
a nonmetrizable weakly compact convex set not homeomorphic to B(κ) may
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be traced back to constructions of Corson and Lindenstrauss [8, 16], who
provided such a set in which all points are Gδ. Such sets, however, cannot
be symmetric and to the best of our knowledge, only recently has the first
author [1] provided a first example of an absolutely convex weakly compact
subset of `2(κ) of weight κ which is not homeomorphic to B(κ). This was
done by proving that B(κ) satisfies a certain chain condition of Ramsey type
introduced by Bell [4] and constructing ad hoc a compact convex set failing
that property.

Let us now provide some natural examples of compact convex sets, all
of them indeed representable as weakly compact convex subsets of `2(κ),
for which apparently the standard techniques from topology give us no clue
whether they are homeomorphic to each other or not (the letter κ always
denotes an uncountable cardinal):

• The ball of the Hilbert space, B(κ) = {x ∈ `2(κ) : ‖x‖2 ≤ 1}.
• The space P (A(κ)) of Radon probability measures on A(κ) = κ∪{∞},

the one-point compactification of the discrete set κ.
• The spaces P (A(κ)n), 2 ≤ n < ω.
• The spaces P (σn(κ)) of probability measures on σn(κ) = {x ∈ {0, 1}κ :
|supp(x)| ≤ n}, 2 ≤ n < ω.
• The finite and countable powers of the previous spaces.

We shall develop some new tools which will allow us to conclude that all
these spaces are not homeomorphic to each other, with perhaps the exception
of B(κ) and P (A(κ)) for which our techniques do not enable us to determine
whether they are homeomorphic or not. We also studied other examples, not
embeddable into a Hilbert space, namely the compact sets P ([0, κ]n)m for κ
an uncountable regular cardinal and n,m ∈ N. In addition, we will obtain
other applications concerning the structure of these spaces, regarding the
following two kinds of questions:

• Classification of the points of a compact space K, that is: for which
points x, y ∈ K does there exist a homeomorphism f : K → K such
that f(x) = y?
• When can a compact space K be homeomorphic to some power com-

pact of the form Ln, or when can it be homeomorphic to a product of
the form L1 × · · · × Ln?

All these questions are addressed through the beautiful technique of
Shchepin of inverse limits and the spectral theorem developed in [19] and
[20]. We explain this in detail in Section 2, but roughly speaking, given a com-
pact space K of uncountable weight, this technique allows one to study the
topological structure of K by studying the continuous surjections p : X → Y
for X and Y quotients of K of countable weight. And here comes the key
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idea of our work, to study a certain preorder relation induced on the fibers
of a continuous map:

Definition 1.1. Let f : K → L be a continuous map and x ∈ L. We
define a preorder relation ≤ on the fiber f−1(x) by letting s ≤ t if and only
if for every neighborhood U of s there exists a neighborhood V of t such
that f(V ) ⊂ f(U).

In other words, s ≤ t if and only if

{f(U) : U is a neighborhood of s} ⊂ {f(V ) : V is a neighborhood of t},

if and only if f−1f(U) is a neighborhood of t for every neighborhood U of s.
We shall write Fx(f) = f−1(x) for the fiber of x endowed with the preorder ≤
(and also with its inherent topology, though we shall not use the topological
structure here). We denote by Ox(f) = Fx(f)/∼ the ordered set obtained
by quotienting by the equivalence relation t ∼ s⇔ t ≤ s and s ≤ t.

In his study of the spaces expn(2κ) [19], Shchepin considered what in
our language would be the cardinality of Ox(f). This was already useful in
that discrete context but not in spaces like convex sets, where one needs to
consider the order structure of Ox(f) to get some information.

Let us indicate how fiber orders may be helpful in the problem of classifi-
cation of points of a compact space, and in the homeomorphic classification
of compact sets. Consider a compact space K of uncountable weight and a
point x ∈ K. We can then consider the family of all fiber orders of type
OpL(x)(q) for every continuous surjection q : L′ → L between metrizable
quotients of K with projections pL′ : K → L′, pL : K → L, qpL′ = pL. This
collection of ordered sets may be in principle rather complicated, but in the
examples we deal with, almost all these sets are order isomorphic to the same
ordered set that we can call Ox(K). For instance, for a finite power of the
ball of the nonseparable Hilbert space B(κ) we get the following picture:

Theorem 1.2. Let K = B(κ)n and x = (x1, . . . , xn) ∈ K. Define r =
|{i : ‖xi‖ < 1}|. Then Ox(K) ∼= [0, 1]r.

We view [0, 1]r as an ordered set endowed with the pointwise order, i.e.

(t1, . . . , tr) ≤ (s1, . . . , sr) iff ti ≤ si for every i.

Let us record some consequences of this result other than the fact that the
finite powers of the ball are nonhomeomorphic. It is a standard fact that
the points of B(κ)n all of whose coordinates belong to the sphere are the
Gδ-points of B(κ)n, and hence topologically different from the rest. We have
obtained something much less evident: that points with different number
of coordinates in the sphere are topologically different. This is a complete
classification of the points of B(κ)n because if two points have the same
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number of coordinates in the sphere, then there is an automorphism of B(κ)n

which moves one to the other.
Apart from the euclidean ball, we study spaces of probability measures

on scattered spaces. We develop a general method for computing fiber orders
in these cases, which constitutes the technically most involved part of our
work. One of the key steps in this task is our Lemma 5.1 which probably
has an independent interest. Every Radon probability measure on a scat-
tered compact space is discrete, thus it is a certain (finite or infinite) convex
combination of Dirac measures δx. The following result (which follows im-
mediately from Theorem 6.2 below) reduces the computation of fiber orders
in P (K) spaces to Dirac measures:

Theorem 1.3. Let K be a scattered compact and µ =
∑

i∈I riδxi ∈
P (K), where xi ∈ K are pairwise distinct and ri > 0 for i ∈ I. Then

Oµ(P (K)) ∼=
∏
i∈I

Oδxi
(P (K)).

The picture of the fiber orders of Dirac measures in our examples of
probability measure spaces is the following:

Theorem 1.4. Let K = σn(κ) and x ∈ K. Set k = n − |x|. Then
Oδx(P (K)) ∼= {(t1, . . . , tk) ∈ [0, 1]k : t1 ≤ · · · ≤ tk} where the order is
defined as t ≤ s if and only if tj ≤ sj for every j.

In the next result, we denote by 2k the power set of {1, . . . , k}.
Theorem 1.5. Let K = A(κ)n or K = [0, ω1]n, and let x = (x1, . . . , xn)

∈ Kn. Set k to be the number of coordinates of x which are not Gδ-points
of K. Then Oδx(P (K)) ∼= {(tA)A∈2k ∈ [0, 1]2

k
:
∑

A∈2k tA = 1} endowed
with the order (tA) ≤ (sA) if and only if

∑
A∈A tA ≤

∑
A∈A sA for every

upwards closed family A of subsets of {1, . . . , k}.
A similar statement holds for compact spaces K = [0, τ ] with τ an un-

countable regular cardinal, but for a modified version of the ordered sets
Ox(L) relative to the cardinal τ . Finally, we state results that we prove
using decompositions of compact spaces as products:

Theorem 1.6. Let K = B(κ), P (σn(κ)), P (A(κ)n) or P ([0, τ ]n) for τ
an uncountable regular cardinal , and let k,m ∈ N. Suppose that there exists
a compact L such that Kk ≈ Lm. Then k is a multiple of m.

Theorem 1.7. Let K = B(κ), P (A(κ)) or P ([0, ω1]) and let n,m ∈ N.
Suppose that L1, . . . , Lm are compact spaces of uncountable weight such that
Kn ≈

∏m
i=1 Li. Then m ≤ n.

Theorem 1.8. Let τ be a regular cardinal , n,m natural numbers, and
L1, . . . , Lm compact spaces of weight τ . If P ([0, τ ])n ≈ L1 × · · · × Lm, then
m ≤ n.
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We make two remarks about these results. First, our methods do not
allow us to decide whether these compact spaces can be expressed as a
nontrivial product with one factor metrizable. This appears not to be an
easy question. Using a result of [21] and its variants, the second author
[14] has shown that P (K) is homeomorphic to P (K) × [0, 1] for any com-
pact scattered K. However, it is unknown to us whether B(κ) is homeo-
morphic to B(κ) × [0, 1]. Second, the first author [3] has obtained with
different techniques an improvement of Theorem 1.7: If B(κ)n maps con-
tinuously onto a product of nonmetrizable compacta of the form

∏m
i=1 Li,

then m ≤ n. These techniques do not apply to the case of Theorem 1.6
for K 6= B(κ), and actually P (A(κ)n) and P (σn(κ)) map continuously
onto B(κ)n.

2. Spectral theory. In this section, we summarize in a self-contained
way what we need about spectral theory, which is essentially taken from [19]
and [20]. We also introduce the invariants Fx(K) and Ox(K), which play a
central role in the paper.

Let K be a compact space. We denote by Q(K) the set all Hausdorff
quotient spaces of K, that is, the set all Hausdorff compact spaces of the
form K/E endowed with the quotient topology, for E an equivalence relation
on K. An element of Q(K) can be represented either by the equivalence
relation E or by the quotient space L = K/E together with the canonical
projection pL : K → L.

On the set Q(K) there is a natural order relation. In terms of equivalence
relations, E ≤ E′ if and only if E′ ⊂ E. Equivalently, in terms of the quotient
spaces, L ≤ L′ if and only if there is a continuous surjection q : L′ → L such
that qpL′ = pL. The set Q(K) endowed with this order relation is a complete
semilattice, that is, every subset has a least upper bound or supremum: if
E is a family of equivalence relations of Q(K), its least upper bound is the
relation given by xE0y if and only if xEy for all E ∈ E , in other words
E0 = sup E =

⋂
E . It is easy to check that E0 gives a Hausdorff quotient if

each element of E does.
Let Qω(K) ⊂ Q(K) be the family of all quotients of K which have

countable weight. Notice that supA ∈ Qω(K) for every countable subset
A ⊂ Qω(K) and also that supQω(K) = K. A family S ⊂ Qω(K) is called
cofinal if for every L ∈ Qω(K) there exists L′ ∈ S such that L ≤ L′. The
family S is called a σ-semilattice if for every countable subset A ⊂ S, the
least upper bound of A belongs to S.

Theorem 2.1 (A version of Shchepin’s spectral theorem). Let K be a
compact space of uncountable weight and let S and S ′ be two cofinal σ-
semilattices in Qω(K). Then S ∩S ′ is also a cofinal σ-semilattice in Qω(K).
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Proof. The point is to prove that S ∩ S ′ is cofinal. Let L0 ∈ Qω(K) be
arbitrary. Since S is cofinal there exists L1 ∈ S with L0 ≤ L1, similarly find
L2 ∈ S ′ with L1 ≤ L2, and continue by induction to obtain an increasing
sequence with L2n+1 ∈ S, L2n ∈ S ′. Finally, L = sup{Ln : n < ω} ∈ S ∩ S ′
since both sets are σ-semilattices.

It may not be obvious how to check whether a given σ-semilattice is
cofinal, so this theorem must be applied together with the following criterion:

Lemma 2.2. Let K be a compact space of uncountable weight and S a
σ-semilattice in Qω(K). Then S is cofinal if and only if supS = K.

Proof. If S is cofinal, then supS = supQω(K) = K. Conversely, suppose
that supS = K. Consider the familyA of all continuous functions f : K → R
such that there exists L ∈ S such that f factors through pL : K → L,
that is, there exists f̂ : L → R with f = f̂pL. As S is a σ-semilattice,
A is a subalgebra of the algebra C(K) of real-valued continuous functions
on K. Clearly, the constant functions belong to A and since supS = K, A
separates the points of K. Hence, by the Stone–Weierstrass theorem every
f ∈ C(K) is the limit of a sequence of functions from A. But indeed A is
closed under limits of sequences, namely if fn factors through Ln ∈ S, then
lim fn factors through sup{Ln : n < ω} ∈ S. We conclude that A = C(K).
Now, if p : K → L is an arbitrary element of Qω(K), then we can take an
embedding L ⊂ Rω and consider the functions enp : K → R obtained by
composing with the coordinate functions en : Rω → R. For every n, since
A = C(K), there exists Ln ∈ S such that enp factors through Ln. Finally,
this implies that p factors through L∞ = sup{Ln : n < ω}, so L ≤ L∞ ∈ S.

The importance of this machinery is that it allows us to study a compact
space of uncountable weight by studying the cofinal σ-semilattice of metriz-
able quotients, and particularly the natural projections between elements
of the σ-semilattice. In this way, the study of compact spaces of uncount-
able weight is linked to the study of continuous surjections between compact
spaces of countable weight. The following language will be useful:

Definition 2.3. Let K be a compact space of uncountable weight and
let P be a property. We say that the σ-typical surjection of K has property P
if there exists a cofinal σ-semilattice S ⊂ Qω(K) such that for any elements
L < L′ of S, the natural projection p : L′ → L has property P.

It is a consequence of the spectral theorem that whether the σ-typical
surjection of K has a certain property can be checked on any given cofinal
σ-semilattice:

Theorem 2.4. Let K be a compact space of uncountable weight , let P
be a property , and let S be a fixed cofinal σ-semilattice in Qω(K). Then the
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σ-typical surjection of K has property P if and only if there exists a cofinal
σ-semilattice S ′ ⊂ S such that for any elements L < L′ of S ′, the natural
projection p : L′ → L has property P.

The main kind of properties P that we shall be interested in concern
the fiber orders of the surjections and the order relation that we defined
on them. Given a point x ∈ K, we can study properties of the point x by
looking at the fiber order of pL(x) in the σ-typical p : L′ → L. It may be
useful to call this σ-typical fiber Fx(K), which we certainly cannot define as
a concrete set, but rather as an abstract object, some properties of which we
can predict.

Definition 2.5. Let K be a compact space of uncountable weight and
x ∈ K, and let P be a property. We say that Fx(K) has property P if
FpL(x)(p) has property P for the σ-typical surjection p : L′ → L.

In a similar way we shall talk about Ox(K). It is worth noticing that a
point x is a Gδ-point of K if and only if |Fx(K)| = 1. In other words, the
information given by Fx(K) is trivial only when x is aGδ-point ofK. Namely,
if x is a Gδ-point of K then there is a continuous function f : K → [0, 1]
such that x = f−1(0). Then f can be viewed as an element L0 ∈ Qω(K) and
we find that |FpL(x)(p)| = 1 for all L′ > L > L0 and p : L′ → L. Conversely,
if |Fx(K)| = 1 then we can find L ∈ Qω(K) such that x = p−1

L (pL(x)).
Another elementary example is the compact K = Lκ where L is a metrizable
compact. In this case, one can show as an exercise that for every x ∈ K,
Fx(K) is homeomorphic to Lω and |Ox(K)| = 1.

3. Decomposition into products. In this section, apart from pro-
viding some basic facts that will be needed in the following, we prove two
results, Theorems 3.7 and 3.9, which establish some sufficient conditions in
terms of fiber orders in order that a compact K cannot be decomposed as
a product of other spaces in a certain way. In further sections, when com-
puting the fiber orders of specific spaces, we will find that several compact
spaces satisfy the assumptions of these results.

Definition 3.1. Let P be a set and ≤ be a binary relation on P . We
say that (P,≤) is a preordered set if

(1) t ≤ t for every t ∈ P ,
(2) if t ≤ s and s ≤ u, then t ≤ u, for every t, s, u ∈ P .

If, moreover, for any t, s ∈ P , if t ≤ s and s ≤ t then t = s, then we say that
(P,≤) is an ordered set. An ordered set (O,≤) is said to be linearly ordered
if for any t, s ∈ O, either t ≤ s or s ≤ t.
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There is a canonical way of constructing an ordered set from a given
preordered set (P,≤), namely we consider the equivalence relation on P
given by t ∼ s iff t ≤ s and s ≤ t, and then the quotient set P/∼ is an
ordered set when endowed with the relation induced from P . We call it the
ordered set associated to P . When we write p < q in a preordered set, it
means that p ≤ q but q 6≤ p.

An order-isomorphism between the preordered sets P and Q is a bijection
f : P → Q such that f(t) ≤ f(s) if and only if t ≤ s.

Definition 3.2. Let {Qi : i ∈ I} be a family of preordered sets. The
product of this family is the preordered set whose underlying set is the carte-
sian product

∏
i∈I Qi endowed by the preorder relation given by: (ti)i∈I ≤

(si)i∈I if and only if ti ≤ si for every i ∈ I.
The product of an empty family of preordered sets is considered to be a

singleton, with its only possible preorder structure. Products of preordered
sets arise naturally in the context of fiber orders at least in two different
situations, involving probability measures (cf. Theorem 6.2) and products of
compact spaces:

Proposition 3.3. Let {fi : Ki → Li : i ∈ I} be a family of contin-
uous surjections, let f :

∏
i∈I Ki →

∏
i∈I Li be its product , and let x =

(xi)i∈I be a point of
∏
i∈I Li. Then the natural map Fx(f) →

∏
i∈I Fxi(fi)

is an order-isomorphism. In particular , Fx(f) ∼=
∏
i∈I Fxi(fi) and Ox(f) ∼=∏

i∈I Oxi(fi).

The proof of this statement is straightforward. IfK is a finite or countable
product of compact spaces, then a cofinal σ-semilattice in Qω(K) is formed
by all quotients of countable weight of K which can be expressed as the
product of a quotient of every factor. In this way, we see that the fibers of
the σ-typical surjection of the product are the products of the fibers of the
σ-typical surjection of every factor. We are thus allowed to write expressions
like for instance F(x,y)(K × L) ∼= Fx(K) × Fy(L) or F(x1,x2,...)(

∏
n<ωKn) ∼=∏

n<ω Fxn(Kn).

Definition 3.4. An ordered set O is called irreducible if whenever O is
isomorphic to a product Q×R then either Q or R is a singleton.

An elementary example of an irreducible ordered set is a linearly ordered
set. An ordered set O is called connected if whenever it is expressed as the
disjoint union of two nonempty subsets O = A ∪ B, there exist a ∈ A and
b ∈ B such that either a ≤ b or b ≤ a. All the ordered sets that appear in
this note happen to be connected since indeed they have a minimum. The
following Theorem 3.5 and its Corollary 3.6 are due to Hashimoto [12] and
assert that any two decompositions of a connected ordered set as product
have a common refinement, and consequently, a decomposition of a connected
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ordered set as a product of irreducible ordered sets is unique. Among other
applications, this is a useful criterion to decide immediately that two given
ordered sets are not isomorphic.

Theorem 3.5. Let O be a connected ordered set , and {Oi : i ∈ I} and
{Qj : j ∈ J} two families of ordered sets such that O ∼=

∏
i∈I Oi

∼=
∏
j∈J Qj.

Then there is a further family {Zij : (i, j) ∈ I × J} such that Oi ∼=
∏
j∈J Zij

for every i ∈ I, and Qj ∼=
∏
i∈I Zij for every j ∈ J .

Corollary 3.6. Let O be a connected ordered set , {Oi : i ∈ I} a family
of irreducible ordered sets and {Qj : j ∈ J} a family of arbitrary ordered sets.
Assume that O ∼=

∏
i∈I Oi

∼=
∏
j∈J Qj. Then there is a partition I =

⋃
j∈J Fj

such that Qj ∼=
∏
i∈Ij Oi for every j ∈ J .

We shall use the following terminology: Two continuous maps f : U → V
and f ′ : U ′ → V ′ are said to be homeomorphic if there exist homeomorphisms
u : U → U ′ and v : V → V ′ such that vf = f ′u.

Theorem 3.7. Let K be a compact space of uncountable weight and let
O be a connected irreducible ordered set. Assume that there is x ∈ K such
that Ox(K) ∼= O and that Oy(K) 6∼= Ok for each y ∈ K and each k > 1. If
Kn ≈ Lm for some natural numbers n, m and some space L, then n is a
multiple of m.

Remark 3.8. Note that the assertion Oy(K) 6∼= Ok is not the negation
of Oy(K) ∼= Ok. It rather means that for the σ-typical surjection p we have
Oy(p) 6∼= Ok (another remark about notation: we write Oy(p) = Oy′(p),
where y′ is the projection of y on the range of p).

Proof of Theorem 3.7. Along this proof, it is important to have in mind
that if S is a cofinal σ-semilattice inQω(X), then Sk={pkZ :Xk→Zk : Z∈S}
is a cofinal σ-semilattice in Qω(Xk), k ≤ ω. Suppose that n is not a multiple
of m and that Kn ≈ Lm. Choose x ∈ K with Ox(K) ∼= O. By Proposi-
tion 3.3 we get O(x,...,x)(Kn) ∼= On. Let w=(w1, . . . , wm)∈Lm correspond
to (x, . . . , x) under this homeomorphism. Then, of course, Ow(Lm) ∼= On.
Further, by Proposition 3.3, for the σ-typical surjection q of L,

On ∼= Ow(qm) ∼=
m∏
i=1

Owi(q).

Using Corollary 3.6 and the fact that n is not a multiple of m, we find that
for the σ-typical surjection q of L there are k ∈ {1, . . . ,m} and n/m < s ≤ n
such that Owk(q) ∼= Os. It follows that there are k ∈ {1, . . . ,m} and
n/m < s ≤ n such that in each cofinal σ-semilattice in L there is some surjec-
tion q with Owk(q) ∼= Os (this follows from Theorem 2.1: if not, for any k, s
there would be a corresponding cofinal σ-semilattice Sk,s, and then

⋂
Sk,s

gives a contradiction). Set w̃ = (wk, . . . , wk) and let y = (y1, . . . , yn) ∈ Kn
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correspond to w̃ under the homeomorphism. By our assumptions there is
a cofinal σ-semilattice T ⊂ Qω(K) such that Op(yi)(p) 6∼= Oj for any sur-
jection p in T , i = 1, . . . , n and j > 1. Consider the cofinal σ-lattice
U = {Z ∈ Qω(L) : Zm ∈ T n}. By the previous argument, there exists a
surjection q in U such that Owk(q) ∼= Os. The surjection qm corresponds to
a surjection pn in T n for which

n∏
i=1

Oyi(p) ∼= Oy(pn) ∼= Osm.

As sm > n, Corollary 3.6 yields Op(yi)(p) ∼= Oj for some i ∈ {1, . . . , n} and
some j > 1, a contradiction.

Theorem 3.9. Let K be a compact space of uncountable weight , n a
natural number , and O a connected irreducible ordered set with |O| > 1.
Assume that the σ-typical surjection of K, p : X → Y , has the following
properties:

(1) For every y ∈ Y , Oy(p) is a connected ordered set.
(2) There is no y ∈ Y with Oy(p) ∼= O × P with |P | > 1.
(3) There exists x ∈ Y such that Ox(p) ∼= O.
(4) For any x ∈ Y with Ox(p) ∼= O the preordered set Fx(p) has an

equivalence class which is a singleton.

Then, if L1, . . . , Lm are compact spaces of uncountable weight such that
Kn ≈ L1 × · · · × Lm, then m ≤ n.

Proof. Let S be a cofinal σ-semilattice in Qω(K) in which all the natural
projections have properties (1) to (4). Let Sn be the cofinal σ-semilattice
in Qω(Kn), as defined in the proof of Theorem 3.7. Consider the cofinal
σ-semilattice T in Qω(L1 × · · · × Lm) whose elements are the quotients of
L1× · · · ×Lm which are products of quotients of each coordinate, that is, of
the form

q1 × · · · × qm : L1 × · · · × Lm → Z1 × · · · × Zm
for qi : Li → Zi in Qω(Li). Since Kn ≈ L1× · · · ×Lm, the σ-semilattices Sn
and T can be viewed as cofinal σ-semilattices of metrizable quotients over
the same compact, so by Theorem 2.1 they intersect in a further cofinal σ-
semilattice, and in particular, we can find a natural projection pn : Xn → Y n

in Sn and a natural projection q = q1×· · ·×qm : Z1×· · ·×Zm →W1×· · ·×
Wm in T which are homeomorphic. Of course, we have enough freedom to
choose them in such a way that Wi 6= Zi for every i. Consider a point w =
(w1, . . . , wm) inW1×· · ·×Wm which corresponds under the homeomorphism
to a point (x, x, . . .) ∈ Y n with Ox(p) ∼= O. Thus,

∏m
r=1 Owr(qr) ∼= On. After

reordering if necessary, by Corollary 3.6 we know that |Owr(qr)| = 1 for
r > n.
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Claim A. |Ov(qr)| = 1 for every v ∈Wr and every r > n.

Proof of the claim. Suppose for instance that there exists v ∈Wn+1 with
|Ov(qn+1)| > 1. Let w′ = (w1, . . . , wn, v, wn+2, . . .) and let y = (y1, . . . , yn)
∈ Y n correspond to w′ under the homeomorphism. Then

∏n
i=1 Oyi(p) ∼=

Ow′(q) ∼= On × Ov(qn+1). Using Theorem 3.5 and the fact that O is irre-
ducible, we conclude that there must exist i such that Oyi(p) is isomorphic
to a set of the form O × P with |P | > 1, which is a contradiction.

Claim B. |Fv(qr)| = 1 for every v ∈Wr and every r > n.

Proof of the claim. Suppose for instance that there exists v ∈Wn+1 with
|Fv(qn+1)| > 1, let w′ = (w1, . . . , wn, v, wn+2, . . .), and let y = (y1, . . . , yn)
∈ Y n correspond to w′ under the homeomorphism. We know by Claim A
that |Ov(qn+1)| = 1, which means that Fv(qn+1) consists of one equivalence
class which is not a singleton. By Proposition 3.3, this translates into the
fact that Fw′(q) ∼=

∏n
i=1 Fyi(p) has no equivalence class which is a singleton,

which further implies that for some i, Fyi(p) has no such equivalence class.
Moreover,

∏n
i=1 Oyi(p) ∼= Ow′(q) ∼= On, so by Corollary 3.6 and our hypoth-

esis (2), Oyi(p) ∼= O for every i. In this way, we have found a contradiction
with our hypothesis (4).

Finally, notice that |Fv(qr)| = 1 simply means that qr is one-to-one for
r > n, that is, Zr = Wr. Since we have supposed that Zr 6= Wr for all r, we
conclude that m ≤ n.

Remark 3.10. Note that the previous theorem cannot be formulated
just using Ox(K) and Fx(K) (while Theorem 3.7 is formulated in this way).
Indeed, if L is first countable, then Fx(L) is a singleton for each x ∈ L.
ThereforeK andK×L cannot be distinguished using just the objects Ox(K)
and Fx(K) and there are first countable compact spaces of uncountable
weight.

4. The ball of the Hilbert space, P (A(κ)) and M(A(κ)). In this
section we shall compute Ox for the ball of the Hilbert space and its finite
powers. In particular, we shall prove Theorem 1.2, and Theorems 1.6 and 1.7
for the case B(κ). Recall that

B(κ) =
{

(xi)i<κ ∈ Rκ :
∑
i<κ

|xi|2 ≤ 1
}
,

endowed with the weak topology of the Hilbert space `2(κ). The weak topol-
ogy clearly coincides with the pointwise topology. We can identify this space
by the obvious homeomorphism with

B(κ) ≈
{

(xi)i<κ ∈ Rκ :
∑
i<κ

|xi| ≤ 1
}
⊂ Rκ
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with the pointwise topology. This compact is also homeomorphic to the
ball of `p(κ) for 1 < p < ∞ in the weak topology and to the dual ball of
c0(κ) in the weak∗ topology. It is to be noticed that all the results proved
in this section hold true (with essentially identical proof) if we substitute
the space B(κ) by P (A(κ)) ≈ {(xi)i<κ ∈ [0, 1]κ :

∑
i<κ xi ≤ 1}. The fiber

orders of P (A(κ)) will be computed again as a particular case of our meth-
ods in spaces of probability measures. We shall also notice that P (A(κ)) is
not homeomorphic to the dual unit ball of the Banach space of continuous
functions C(A(κ)) in its weak∗ topology.

For a subsetM of κ, we consider B(M) = {(xi)i∈M ∈RM :
∑

i∈M |xi|≤1},
and for M ⊂ N we have the natural projection pMN : B(M) → B(N)
given by p((xi)i∈M ) = (xi)i∈N . Thus every B(M) can be seen as a quotient
of B(κ) through the projection pκM : B(κ) → B(M), and all quotients
of this type for M a countably infinite subset of κ constitute a cofinal σ-
semilattice of Qω(B(κ)), as follows easily from Lemma 2.2. Hence, the σ-
typical surjection of B(κ) is of the form pMN : B(M)→ B(N) and its fiber
orders are computed in the following way:

Lemma 4.1. Let pMN : B(M) → B(N) be as above, and let x ∈ B(N)
and y1, y2 ∈ p−1

MN (x). Then

y1 ≤ y2 if and only if
∑

i∈M\N

|y1
i | ≤

∑
i∈M\N

|y2
i |.

Proof. Set M∗ = M \N . Let y ∈ p−1
MN (x). A basic neighborhood of y is

of the form
U = {z ∈ B(M) : zi ∈Wi for i ∈ F}

where F is a finite subset of M and Wi is an open real interval containing
yi for every i ∈ F . Let ai = inf{|t| : t ∈ Wi} be the distance of the interval
Wi to 0. Then the image of the above typical basic neighborhood U under
pNM is

pMN (U) = {z ∈ B(N) : zi ∈Wi for i ∈ F ∩N}
if 0 ∈Wi for all i ∈ F ∩M∗;

pMN (U) =
{
z ∈ B(N) : zi ∈Wi for i ∈ F ∩N

and
∑
i∈N
|zi| < 1−

∑
i∈F∩M∗

ai

}
otherwise.

This means that:

• If yi = 0 for all i ∈ M∗, then the images of basic neighborhoods of y
are basic neighborhoods of x.
• Otherwise, the images of basic neighborhoods of y are of the form
V ∩ {z :

∑
i∈N |zi| < 1− r} where V is a basic neighborhood of x and

0 ≤ r <
∑

i∈M∗ |yi|.
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From this description, it is already clear that if
∑

i∈M∗ |y1
i | ≤

∑
i∈M∗ |y2

i |
then y1 ≤ y2. For the converse, it is enough to check that if r < s <
1−
∑

i∈N |xi| there is no neighborhood V of x such that V ∩{z :
∑

i∈N |zi| <
1−r} ⊆ {z :

∑
i∈N |zi| < 1−s}. This follows from the fact that N is infinite:

Suppose V = {z ∈ B(N) : zi ∈ Wi for i ∈ F} where F is some finite subset
of N and Wi are intervals; take t with 1 − s < t < 1 − r and n ∈ N \ F ;
consider y which agrees with x on F , yn = t −

∑
i∈F |xi|, and yi is 0 in

all other coordinates. Then 1 − s < t =
∑

i∈N |yi| < 1 − r and y ∈ V , so
y ∈ V ∩ {z :

∑
i∈N |zi| < 1− r} \ {z :

∑
i∈N |zi| < 1− s}.

It follows from Lemma 4.1 that Ox(pMN ) is order-isomorphic to an in-
terval [a, b] if

∑
i∈N |xi| < 1, and |Ox(pMN )| = 1 if

∑
i∈N |xi| = 1. From

this, it is also clear that for x ∈ B(κ), Ox(B(κ)) ∼= [0, 1] if
∑

i<κ |xi| < 1,
and |Ox(B(κ))| = 1 if

∑
i<κ |xi| = 1. Theorem 1.2 now follows immediately.

We notice that B(κ) satisfies the hypotheses of both Theorem 3.7 and
Theorem 3.9, with O = [0, 1]. An equivalence class of every fiber of pNM is a
singleton, namely the class of the minimum element, the one with yi = 0 for
all i ∈M∗. This yields the proof of the case B(κ) of Theorems 1.6 and 1.7.

We stated in the introduction that whenever two points x, y ∈ B(κ)n

have the same number of coordinates in the sphere then there is a hom-
eomorphism f : B(κ)n → B(κ)n with f(x) = y. Let us indicate why. It
is enough to consider the case n = 1. If ‖x‖ = ‖y‖ then we can find a
linear isometry of the Hilbert space `2(κ) onto itself sending x to y. Then it
remains to find some automorphism of B(κ) sending an element of norm λ
to some element of norm µ for every λ, µ ∈ [0, 1). View now again B(κ) =
{(xi)i<κ :

∑
|xi| ≤ 1}. By the standard homeomorphism, the norm function

is transformed into ‖x‖2 =
∑
|xi|. Consider an increasing homeomorphism

φ : [−1, 1]→ [−1, 1] such that φ(λ) = µ and there exist one-sided derivatives
which satisfy φ′+(−1) = 1 = φ′−(1). Consider then f : B(κ) → B(κ) given
by f((xi)i<κ) = (yi)i<κ where

y0 = φ(x0) and yi =
1− |φ(x0)|

1− |x0|
xi for i > 0.

Notice that f is a homeomorphism and f(λ, 0, 0, . . .) = (µ, 0, 0, . . .).
Let M(K) denote the set of all Radon measures of variation at most 1

(in other words, the dual ball of the Banach space C(K)) endowed with the
weak∗ topology. We know that Ox(P (A(κ))) is either a singleton or order-
isomorphic to [0, 1] for x ∈ P (A(κ)). A cofinal σ-semilattice forQω(M(K)) is
formed by the quotients of the formM(p) : M(K)→M(L) where p : K → L
is an element of Qω(K), and hence the σ-typical surjection ofM(K) is of the
form M(g) : M(X) → M(Y ), where g : X → Y is the σ-typical surjection
of K. Hence, in order to prove that P (A(κ)) 6≈ M(A(κ)), it is enough to
check the following:
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Proposition 4.2. Let g : K → L be a continuous surjection and let
f = M(g) : M(K)→M(L) be the induced map between the spaces of Radon
measures of variation at most 1. If there exists x ∈ L such that |Ox(g)| > 1,
then O0(f) is not linearly ordered.

Proof. Take y, z ∈ g−1(x) such that y 6≤ z, so that there is a neigh-
borhood U of y such that g(U) does not contain the image of any neigh-
borhood of z, and moreover z 6∈ U . There is a net (zα) in K that con-
verges to z and with g(zα) 6∈ g(U) for every α. Consider the measures
ν = 1

2δy −
1
2δz and µ = −1

2δy + 1
2δz. We claim that these are two incom-

parable elements of f−1(0). We prove that ν 6≤ µ (that µ 6≤ ν is proved by
analogy). We consider W = {λ ∈ M(K) : λ(U) > 3

8}, which is a neigh-
borhood of ν. We claim that f(W ) does not contain the f -image of any
neighborhood of µ. Notice that f(W ) ⊂ {ζ ∈ M(L) : ζ(g(U)) > −1

4}. Con-
sider the measures µα = −1

2δy + 1
2δzα . Then µα → µ and f(µα)(g(U)) = −1

2
for each α. In particular, f(µα) /∈ f(W ) for each α. This witnesses that
ν 6≤ µ.

5. Computing images of neighborhoods in spaces of probability
measures. In order to compute the order of the fiber of a certain point
y ∈ K2 in a surjection f : K1 → K2, we have to know how to compute the
images f(U) of basic neighborhoods U of points x ∈ f−1(y). The surjections
which appear in the cases that we are going to study are of the form f =
P (g) : P (K) → P (L) where g : K → L is a surjection between scattered
compacta and P is the functor of probability measure spaces. In this case, a
neighborhood basis of a measure µ ∈ P (K) is formed by the sets of the form

U = {ν ∈ P (K) : ν(Ui) > ci, i = 1, . . . , n}

where Ui are disjoint clopen subsets of K from a given basis of clopen sets,
and ci are any numbers with µ(Ui) > ci. The following lemma determines
the image f(U) of such a neighborhood and will be applied repeatedly.

Lemma 5.1. Let g : K → L be a surjection between compact spaces,
let f = P (g) : P (K) → P (L), U1, . . . , Un be disjoint closed subsets of K,
c1, . . . , cn ≥ 0, and U = {ν ∈ P (K) : ν(Ui) > ci, i = 1, . . . , n}. Then

f(U) =
{
λ ∈ P (L) : λ

(
g
( ⋃
i∈A

Ui

))
>
∑
i∈A

ci for A ⊂ {1, . . . , n}, A 6= ∅
}
.

The fact that f(U) is included in the right-hand side expression is trivial.
The other inclusion is related to the following numerical lemma:

Lemma 5.2. Let c1, . . . , cn ≥ 0, and αA ≥ 0 for all A ⊂ {1, . . . , n},
A 6= ∅, be numbers such that

∑
B∩A 6=∅ αB >

∑
i∈A ci for every A. Then
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for each A there exist numbers βA,i, i ∈ A, such that
∑

i∈A βA,i = αA and
moreover

∑
A3i βA,i > ci for every i = 1, . . . , n.

Let us comment about the history of the lemmas. We first had a long
inductive proof of Lemma 5.2. Then Richard Haydon indicated to us a more
elegant and shorter proof using combinatorial optimization, which we repro-
duce below. Later, after David Fremlin heard about it at the Marczewski
Centennial Conference in Będlewo, he wrote a note [10] where he showed
that actually Lemma 5.1 holds under more general assumptions in K-analytic
spaces (our original statement was only for scattered or metrizable compact
sets).

We first notice how Lemma 5.1 follows from Lemma 5.2 when K is either
scattered or metrizable, which is enough for the applications we present (for
the general case we refer to [10]). Given a measure λ on the right-hand side
of the conclusion of Lemma 5.1, we consider XA =

⋂
i∈A g(Ui) \

⋃
i 6∈A g(Ui)

and the numbers αA = λ(XA) (note that each XA is Borel as it is the differ-
ence of two closed sets), to which we can apply Lemma 5.2 and obtain the
numbers βA,i. We define a measure ν ∈ P (K) with f(ν) = λ in the following
way.

Suppose first that K and L are scattered, so that all Radon measures on
them are discrete, that is, determined by the measures of singletons (in this
case, we do not even need the sets Ui to be closed). If y ∈ L \

⋃n
i=1 g(Ui)

then we pick xy ∈ g−1(y) and declare ν({xy}) = λ({y}). If y ∈ XA for
some nonempty A ⊂ {1, . . . , n} with αA > 0, then we can choose xy,i ∈
f−1(y) ∩ Ui for every i ∈ A and set ν({xy,i}) = βA,i

αA
λ({y}). At any other

points, ν({x}) = 0. Then ν is a probability measure on K with f(ν) = λ
and moreover ν ∈ U since ν(Ui) =

∑
A3i βA,i.

Now suppose that K and L are metrizable. Then Radon and Borel mea-
sures coincide. For each A ⊂ {1, . . . , n} and each i ∈ A, we set YA,i =
g−1(XA) ∩ Ui, which is a nonempty Borel set. We also define X∅ = L \⋃n
i=1 g(Ui) and Y∅ = g−1(X∅). By the Jankov–von Neumann Uniformization

Theorem [15, Theorem 18.1], there exists a measurable selection sA,i : XA →
YA,i for the inverse of g|YAi and also a measurable selection s∅ : X∅ → Y∅ of
the inverse of g|Y∅ . Consider

ν = s∅(λ|X∅) +
∑
i∈A

βA,i
αA

sA,i(λ|XA,i).

Then f(ν) = λ, and ν(Ui) =
∑

A3i βA,i, so ν ∈ U .
For the proof of Lemma 5.2, we shall use the so-called max-flow min-cut

theorem from combinatorial optimization (Theorem 5.3 below). This result
is originally due to Ford and Fulkerson [11] and Dantzig and Fulkerson [9],
and can be found in the book [18, Theorem 10.3]. We have to recall some
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concepts from that area. A directed graph (digraph for short) is a couple
G = (V,A) where V is a finite set whose elements are called vertices, and
A ⊂ V × V is a set whose elements are called arcs. An s-t flow is a function
f : A → (0,+∞) which satisfies the flow conservation law at all points
except s and t:∑

(x,u)∈A

f(x, u) =
∑

(u,x)∈A

f(u, x) for every u ∈ V \ {s, t}.

In words, the flow entering u equals the flow leaving u. The value of the
flow f is the net amount of flow leaving s, which happens to be equal to the
net amount of flow entering t,

value(f) =
∑

(s,x)∈A

f(s, x)−
∑

(x,s)∈A

f(x, s) =
∑

(x,t)∈A

f(x, t)−
∑

(t,x)∈A

f(t, x).

Let us a consider a function c : A → (0,+∞) that we call a capacity
function. A flow f is said to be under c if f(u, v) ≤ c(u, v) for every (u, v) ∈ A.
Given a set B ⊂ A, the capacity of B is c(B) =

∑
(u,v)∈B c(u, v).

For a subset U ⊂ V , we denote by δ(U) the set of all arcs which leave U
and enter V \ U , that is,

δ(U) = {(u, v) ∈ A : u ∈ U, v 6∈ U}.
For s, t ∈ V , an s-t cut is a set of arcs of the form δ(U), where U ⊂ V

with s ∈ U and t 6∈ U .

Theorem 5.3 (max-flow min-cut theorem). Let G = (V,A) be a digraph,
t, s ∈ V and c : A → R+ a capacity function. Then the maximum value of
an s-t flow under c equals the minimum capacity of an s-t cut ,

max{value(f) : f ≤ c is an s-t flow} = min{c(δ(U)) : U ⊂ V, s ∈ U, t 6∈ U}.
Proof of Lemma 5.2. We denote by Pn the family of all nonempty subsets

of {1, . . . , n}. First we consider numbers c′i > ci for every i ≤ n such that
the inequalities ∑

B∩A 6=∅

αB >
∑
i∈A

c′i

still hold. We consider a digraph G = (V,A) where the set of vertices is

V = {s} ∪ {pi : 1 ≤ i ≤ n} ∪ {qA : A ∈ Pn} ∪ {t},
and the set of arcs is

A = {(s, pi) : 1 ≤ i ≤ n} ∪ {(pi, qA) : i ∈ A} ∪ {(qA, t) : A ∈ Pn}.
Let M ∈ (0,+∞) be such that M >

∑n
i=1 c

′
i. We define a capacity function

c : A→ R+ by

c(s, pi) = c′i, c(pi, qA) = M, c(pi, qA) = αA.
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Claim A. The minimal capacity of an s-t cut in G equals
∑n

i=1 c
′
i.

Proof of Claim A. If U = {s}, then c(δ(U)) =
∑n

i=1 c
′
i. We suppose

that δ(U) is an arbitrary s-t cut and we show that its capacity is larger
than

∑n
i=1 c

′
i. Let A = {i ≤ n : pi ∈ U}. If there exists B ∈ Pn such that

qB 6∈ U and A ∩ B 6= ∅, then there exists (pi, qB) ∈ δ(U) and in particular
c(δ(U)) ≥ c(pi, qB) = M >

∑n
i=1 c

′
i. Hence, we can suppose that qB ∈ U

whenever A ∩B 6= ∅, therefore (qB, t) ∈ δ(U) whenever A ∩B 6= ∅, and

c(δ(U)) ≥
∑
i 6∈A

c(s, pi) +
∑

B∩A 6=∅

c(qB, t) =
∑
i 6∈A

c′i +
∑

B∩A 6=∅

αB

≥
∑
i 6∈A

c′i +
∑
i∈A

c′i =
n∑
i=1

c′i.

By Claim A and Theorem 5.3, there exists an r-s flow f ≤ c with value
equal to

∑n
i=1 c

′
i. Notice that f(s, pi) ≤ c′i but

∑n
i=1 f(s, pi) = value(f) =∑n

i=1 c
′
i, hence f(s, pi) = c′i.

By the flow conservation law at the vertex qA, for every A ∈ Pn we have∑
i∈A

f(pi, qA) = f(qA, t) ≤ c(qA, t) = αA,

therefore we can choose numbers βA,i for i ∈ A such that βA,i ≥ f(pi, qA) and∑
i∈A βA,i = αA. We claim that these numbers have the desired property. To

check this, we use again the flow conservation law, now at pi:

ci < c′i = f(s, pi) =
∑
A3i

f(pi, qA) ≤
∑
A3i

βA,i.

6. Fiber orders of the probability measures on a scattered com-
pact. As already mentioned, it is a standard fact that if K is a totally
disconnected compact and B is a basis for the topology of K consisting of
clopen sets, then a basis for the topology of P (K) consists of the sets of
the form {µ ∈ P (K) : µ(Ui) > ci, i = 1, . . . , n}, where the ci’s are positive
numbers and the Ui’s are disjoint basic clopen sets. When K is scattered, all
measures from P (K) are discrete, and this allows us to find a finer neigh-
borhood basis which will be quite useful for us. To avoid heavy notation, we
write µ(x) instead of µ({x}) to denote the measure of a singleton.

Lemma 6.1. Let K be a scattered compact space, µ ∈ P (K), and let
B be a basis of the topology of K consisting of clopen sets. A neighborhood
basis of µ consists of the sets of the form {ν : ν(Ui) > ci for i = 1, . . . , n},
where U1, . . . , Un are pairwise disjoint basic clopen neighborhoods of points
x1, . . . , xn of K and c1, . . . , cn are positive numbers with µ(xi) > ci.
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Proof. Consider a neigborhood of µ of the form V = {ν ∈ P (K) :
ν(Vj) > dj , j = 1, . . . , n} for some disjoint basic clopen neighborhoods Vj
with µ(Vj) > dj . Since µ is discrete, for every j we can find a finite family
{xji : i ∈ Fj} of points such that

∑
{µ(xji ) : i ∈ Fj} > dj . Consider numbers

dji < µ(xji ) such that
∑

i∈Fj d
j
i > dj , and disjoint basic clopen sets U ji with

xji ∈ U
j
i ⊂ Vj . Then

µ ∈ {ν ∈ P (K) : ν(U ji ) > dji , j = 1, . . . , n, i ∈ Fj} ⊂ V.

For the rest of the section, we fix g : K → L to be a surjection between
scattered compact spaces and f = P (g) : P (K) → P (L) the induced map
between the spaces of probability measures. Note that the norm we use below
is the `1-norm, i.e.

‖µ− ν‖ =
∑
k∈K
|µ(k)− ν(k)| for µ, ν ∈ P (K).

Theorem 6.2. Let µ =
∑

i∈I riδxi be a probability measure on L, where
I = N or I = {1, . . . , N} for some N ∈ N, xi, i ∈ I, are pairwise dis-
tinct points in L, and ri > 0 for all i ∈ I. Then the natural bijection∏
i∈I f

−1(δxi) → f−1(µ) given by (νi)i∈I 7→
∑

i∈I riνi is an order-isomor-
phism. In particular , Fµ(f) ∼=

∏
i∈I Fδxi (f) and Oµ(f) ∼=

∏
i∈I Oδxi

(f).

Proof. Consider the mapping Φ : P (K)I → P (K) defined by

Φ((νi)i∈I) =
∑
i∈I

riνi.

It is easy to check that Φ is a continuous surjection. Moreover, as it is affine, it
maps

∏
i∈I f

−1(δxi) bijectively onto f−1(µ). We will show that the restriction
of Φ to

∏
i∈I f

−1(δxi) is an order-isomorphism.
First, suppose that

∑
i∈I riνi ≤

∑
i∈I riν

′
i with νi, ν

′
i ∈ f−1(δxi) for i ∈ I;

we shall prove that ν1 ≤ ν ′1. We consider a typical neighborhood of ν1 of the
form

U = {ν ∈ P (K) : ν(Uj) > cj for j = 1, . . . , n}

where each Uj is a clopen neighborhood of some aj satisfying ν1(aj) > cj
and Uj ’s are pairwise disjoint. We want to find a neighborhood V of ν ′1 such
that f(V ) ⊂ f(U).

We consider a very small number ε > 0 such that

ε < r1 and (r1 + ε)(cj + 2ε) < r1ν1(aj) for j = 1, . . . , n.

Choose k ∈ I such that ∑
i>k

ri <
1
4r1ε(r1 − ε)
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and H a clopen subset of L such that x1 ∈ H but xi 6∈ H for 2 ≤ i ≤ k. The
following is a neighborhood of

∑
i∈I riνi:

U0 = {ν ∈ P (K) : ν(Uj ∩ g−1(H)) > (r1 + ε)(cj + 2ε) for j = 1, . . . , n}.

By our assumption, there exists a neighborhood V 0 of
∑

i∈I riν
′
i such that

f(V 0) ⊂ f(U0). We take V 0 to be of the typical form

V 0 = {ν ∈ P (K) : ν(Vj) > dj for j ∈ J}

where J is a finite set, Vj is a clopen neighborhood of some bj satisfying∑
i∈I

riν
′
i(bj) > dj

and Vj ’s are pairwise disjoint. We let

Ji = {j ∈ J : g(bj) = xi}.

Without loss of generality we suppose that Vj ⊂ g−1(H) for j ∈ J1, and
Vj ∩ g−1(H) = ∅ for j ∈ J2 ∪ · · · ∪ Jk. Notice that

(6.1)
∑{

dj : j ∈
⋃
i>k

Ji

}
< 1

4r1ε(r1 − ε).

Consider now

V = {ν ∈ P (K) : ν(Vj) > dj/r1 for j ∈ J1}
∩ {ν ∈ P (K) : ν(K \ g−1(H)) < ε/2}.

This is a neighborhood of ν ′1 (notice that ν ′1(K \ g−1(H)) = 0 and ν ′1(Vj) ≥
ν ′1(bj) > dj/r1 for j ∈ J1). We claim that f(V ) ⊂ f(U).

So take ξ1 ∈ V . We can easily find ξ2 ∈ V with ‖ξ2 − ξ1‖ < ε such that
ξ2(K \ g−1(H)) = 0. We pick a measure λ ∈ P (K) with λ(g−1(H)) = 0 and
λ(Vj) > dj/(1−r1) for j ∈ J2∪· · ·∪Jk. Then the measure ξ3 = r1ξ2+(1−r1)λ
satisfies ξ3(Vj) > dj for j ∈ J1 ∪ · · · ∪ Jk. By (6.1) we may find ξ4 ∈ V 0 such
that

‖ξ4 − ξ3‖ < 1
2r1ε(r1 − ε).

Set

r = ξ4(g−1(H)) and ξ5 =
1
r
ξ4|g−1(H).

We have

(6.2) |r1 − r| = |ξ3(g−1(H))− ξ4(g−1(H))| < 1
2r1ε(r1 − ε) < ε
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and

‖ξ2 − ξ5‖ =
∑

t∈g−1(H)

|ξ2(t)− ξ5(t)| =
∑

t∈g−1(H)

∣∣∣∣ξ3(t)r1
− ξ4(t)

r

∣∣∣∣
=

∑
t∈g−1(H)

1
r1r
|rξ3(t)− r1ξ4(t)| ≤

1
r1r
‖rξ3 − r1ξ4‖

≤ 1
r1r
‖(r1 − r)ξ4‖+

1
r1r
‖rξ3 − rξ4‖

≤ 1
r1r
|r1 − r|+

1
r1
‖ξ3 − ξ4‖

<
ε(r1 − ε)

2r
+

1
2
ε(r1 − ε) <

ε

2
+
ε

2
= ε.

The first inequality on the last line follows from the first inequality of (6.2),
for the second one we use the fact that r1−ε < r. It follows that ‖ξ1−ξ5‖ <
2ε, and hence

(6.3) ‖f(ξ1)− f(ξ5)‖ < 2ε

as well.
Now, ξ4 ∈ V0, hence f(ξ4) ∈ f(V0) ⊂ f(U0). By the description of f(U0)

given by Lemma 5.1, the fact that all clopen subsets of K appearing in the
definition of U0 are contained in g−1(H) implies that

f(ξ5) ∈ f({ν ∈ P (K) : ν(Uj ∩ g−1(H)) > (r1 + ε)(cj + 2ε)/r(6.4)

for j = 1, . . . , n})
⊂ f({ν ∈ P (K) : ν(Uj) > cj + 2ε for j = 1, . . . , n}).

The inclusion above follows from (6.2); note that r1 + ε > r. Finally, using
(6.4) and (6.3) it easily follows from Lemma 5.1 that f(ξ1) ∈ f(U), which
completes the proof of the first implication.

We now pass to the converse. So we assume that νi ≤ ν ′i for every i, and
we shall see that

∑
i∈I riνi ≤

∑
i∈I riν

′
i.

Let U be a neighborhood of
∑
riνi in P (K). By the continuity of Φ and

the definition of the product topology there is some k ∈ I and neighborhoods
Ui of νi for i ≤ k such that

(6.5)
{∑
i∈I

riλi : λi ∈ P (K) for i ∈ I, λi ∈ Ui for i ≤ k
}
⊂ U.

As νi ≤ ν ′i for all i ∈ I, there is, for each i ≤ k, a neighborhood Vi of ν ′i such
that f(Vi) ⊂ f(Ui).

Now we are going to specify the form of Vi’s. Let H1, . . . ,Hk be pairwise
disjoint clopen subsets of L containing x1, . . . , xk, respectively. Then we can
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without loss of generality suppose that for each i ≤ k we have

Vi = {λ ∈ P (K) : λ(V j
i ) > dji for j ∈ Ji}

where Ji is a finite set, dji > 0 for j ∈ Ji and V j
i , j ∈ Ji, are pairwise disjoint

clopen subsets of g−1(Hi). Set

V = {λ ∈ P (K) : λ(V j
i ) > rid

j
i for j ∈ Ji, i ≤ k}.

Then V is clearly a neighborhood of
∑

i∈I riν
′
i. We claim that f(V ) ⊂ f(U).

Let λ ∈ V be arbitrary. Choose δ > 0 such that

(1 + δ)
∑
j∈Ji

dji < 1, i = 1, . . . , k;(6.6)

λ(V j
i ) > (1 + δ)rid

j
i , j ∈ Ji, i = 1, . . . , k.(6.7)

Further, define the following measures:

σi =
∑
j∈Ji

(1 + δ)dji
λ|V ji
λ(V j

i )
, i = 1, . . . , k,

τ = λ−
k∑
i=1

riσi.

All σi’s are clearly positive measures. Moreover, τ is also positive by (6.7),
as

τ|V ji
= λ|V ji

(
1−

(1 + δ)rid
j
i

λ(V j
i )

)
for j ∈ Ji, i = 1, . . . , k.

It follows from (6.6) that σi(K)<1 for each i = 1, . . . , k, and so τ(K)> 0.
For i = 1, . . . , k set

θi = σi +
1− σi(K)
τ(K)

τ.

Then θi ∈ P (K). Moreover,

θi(V
j
i ) ≥ σi(V j

i ) = (1 + δ)dji > dji

for j ∈ Ji, hence θi ∈ Vi for i = 1, . . . , k. We claim that

(6.8) λ ∈
{∑
i∈I

riλi : λi ∈ Vi for i = 1, . . . , k
}
.

Indeed, we can take λi = θi for i = 1, . . . , k. To see this, we have to check
that

ϑ = λ−
k∑
i=1

riθi
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is a nonnegative measure:

ϑ = λ−
k∑
i=1

riθi = λ−
k∑
i=1

ri

(
σi +

1− σi(K)
τ(K)

τ

)

= λ−
k∑
i=1

riσi −
k∑
i=1

ri
1− σi(K)
τ(K)

τ = τ −
k∑
i=1

ri
1− σi(K)
τ(K)

τ

=
τ

τ(K)

(
τ(K)−

k∑
i=1

ri +
k∑
i=1

riσi(K)
)
,

which is positive because
∑k

i=1 ri ≤ 1 = λ(K) = τ(K)+
∑k

i=1 riσi(K). Thus,
(6.8) is proved. Using (6.8) and (6.5) we see by Lemma 5.1 that f(λ) ∈ f(U),
which completes the proof.

Let g : K → L be a continuous surjection, x ∈ L and y1, . . . , yn ∈
g−1(x). We define 〈y1, . . . , yn〉 to be the set of all z ∈ g−1(x) such that
for any neighborhoods U1, . . . , Un of y1, . . . , yn respectively there exists a
neighborhood V of z such that g(V ) ⊂ g(U1) ∪ · · · ∪ g(Un).

Notice some elementary properties, for instance 〈y〉={z ∈ g−1(x) : z≥ y}
and 〈Y 〉 ⊂ 〈Y ′〉 whenever Y ⊂ Y ′. The 〈·〉-operation provides in general a
finer structure on the fiber g−1(x) than the one given by the order, and it
is needed to determine the fiber order on spaces P (K) in terms of the fibers
of K. To avoid heavy notation, for a measure ν, we often write ν〈·〉 and ν{·}
instead of ν(〈·〉) and ν({·}).

Theorem 6.3. Let ν, ν ′ be elements of f−1(δx). Then ν ≤ ν ′ if and only
if ν〈y1, . . . , yn〉 ≤ ν ′〈y1, . . . , yn〉 for any y1, . . . , yn ∈ g−1(x).

Proof. Suppose first that ν≤ν ′, and let y1, . . . , yn∈g−1(x). If ν〈y1, . . . , yn〉
> ν ′〈y1, . . . , yn〉, this would mean that we can find u1, . . . , ur ∈ 〈y1, . . . , yn〉,
and v1, . . . , vs∈g−1(x)\〈y1, . . . , yn〉, and a number ξ>0 such that

∑r
i=1 ν(ui)

> ξ and
∑s

i=1 ν
′(vi) > 1 − ξ. Since vj 6∈ 〈u1, . . . , ur〉 for any j we can find

neighborhoods Uij of ui such that
⋃r
i=1 g(Uij) does not contain the g-image

of any neighborhood of vj . Set Ui =
⋂s
j=1 Uij . Consider a neighborhood of ν

of the form
U = {λ ∈ P (K) : λ(Ui) > di, i = 1, . . . , r}

where di < ν(ui) and
∑r

i=1 di > ξ. We claim that f(U) does not contain the
image of any neighborhood of ν ′, contradicting the fact that ν ≤ ν ′. So take
any neighborhood of ν ′, which we can suppose of the normal form

V = {λ ∈ P (K) : λ(Vj) > ej , j = 1, . . . , k}
where the Vj ’s are disjoint neighborhoods of wj with ν ′(wj) > ej and more-
over we can assume that wj = vj for j = 1, . . . , s. For every j = 1, . . . , s we
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can pick xj ∈ g(Vj) \
⋃r
i=1 g(Ui). Consider the measure λ ∈ P (L) such that

λ(xj) =
∑
{ν ′(vj′) : xj′ = xj} for j = 1, . . . , s

and λ(x) = 1−
∑s

j=1 ν
′(vj). Using Lemma 5.1 it easily follows that λ ∈ f(V ).

Further, notice that

λ
( r⋃
i=1

g(Ui)
)
≤ 1−

s∑
i=1

λ(xi) = 1−
s∑
i=1

ν ′(vi) < ξ.

This implies that λ 6∈ f(U) because otherwise we should have

λ
( r⋃
i=1

g(Ui)
)
>

r∑
i=1

di > ξ.

Now we suppose that ν〈Y 〉 ≤ ν ′〈Y 〉 for every finite set Y ⊂ g−1(x). We
want to see that ν ≤ ν ′ so we take a typical neighborhood of ν of the form

U = {λ ∈ P (K) : λ(Ui) > ci, i = 1, . . . , n}
where the Ui’s are disjoint clopen neighborhoods of yi such that ν(yi) > ci.
For every nonempty A ⊂ {1, . . . , n} we have

ν ′〈yi : i ∈ A〉 ≥ ν〈yi : i ∈ A〉 ≥ ν{yi : i ∈ A} >
∑
i∈A

ci,

and so there exists a finite set {zj : j ∈ FA} ⊂ 〈yi : i ∈ A〉 such that∑
j∈FA

ν ′(zj) >
∑
i∈A

ci.

Pick ξj < ν ′(zj) such that
∑

j∈FA ξj >
∑

i∈A ci. For every j ∈ FA, since
zj ∈ 〈yi : i ∈ A〉 we can find a clopen neighborhood Vj of zj such that
g(Vj) ⊂

⋃
i∈A g(Ui). We can suppose that Vj∩Vj′ = ∅ for different j, j′ ∈ FA.

Now, for every A the following is a neighborhood of ν ′:

V A = {λ ∈ P (K) : λ(Vj) > ξj , j ∈ FA}.
Let V =

⋂
{V A : ∅ 6= A ⊂ {1, . . . , n}}. We claim that f(V ) ⊂ f(U). Take

λ ∈ f(V ). According to Lemma 5.1 we have to check that for every nonempty
A ⊂ {1, . . . , n}, λ(

⋃
i∈A g(Ui)) >

∑
i∈A ci. Since λ ∈ f(V ) ⊂ f(V A), by the

same lemma we know that λ(
⋃
j∈FA g(Vj)) >

∑
j∈FA ξj >

∑
i∈A ci, and on

the other hand
⋃
j∈FA g(Vj) ⊂

⋃
i∈A g(Ui).

We finish this section by the following proposition which will enable us
to verify the assumptions of Theorems 3.7 and 3.9 for spaces of the form
P (K).

Proposition 6.4. Let K be a scattered compact space and O a connected
irreducible ordered set with |O| > 1.
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(i) Suppose that there is a point x ∈ K such that Oδx(P (K)) ∼= O and
for each y ∈ K \ {x} we have Oδy(P (K)) 6∼= Ok for any k ≥ 1. Then
P (K) satisfies the assumption of Theorem 3.7.

(ii) Suppose that for the σ-typical surjection f : L → M (where L
and M are metrizable quotients of K) there is x ∈ M such that
Oδx(P (f)) ∼= O, Fδx(P (f)) has an equivalence class which is a sin-
gleton, and Fδy(P (f)) is a singleton for each y ∈ M \ {x}. Then
P (K) satisfies the assumptions of Theorem 3.9.

Proof. (i) We have Oδx(P (K))∼=O. Further, suppose that Oµ(P (K))∼=Ok
for some k > 1 for some µ ∈ P (K). Let C be a countable set supporting µ.
Then it follows from Theorem 6.2 and Corollary 3.6 that for the σ-typical sur-
jection f of K there is some y ∈ C \{x} such that Oδy(P (f)) ∼= Oj for some
j ≥ 1. Now, as C is countable, there is y ∈ C∗ = C \ {x} such that in each
cofinal σ-semilattice in K there is a surjection f such that Oδy(P (f)) ∼= Oj

for some j ≥ 1, which contradicts our assumptions. (Otherwise, for every
y ∈ C∗ there would be a cofinal σ-lattice Sy ⊂ Qω(K) with Oδy(P (f)) 6∼= Oj

for every j; an obvious improvement of Theorem 2.1 shows that
⋂
y∈C∗ Sk is

a cofinal σ-semilattice, which leads to a contradiction). Thus we have verified
the assumptions of Theorem 3.7.

(ii) Let f : L → M and x ∈ M be as in the assumptions. Clearly
Fδy(P (f)) is a singleton for each y ∈M \ {x}. Therefore Theorem 6.2 shows
that Oµ(P (f)) ∼= O if µ(x) > 0, and Fµ(P (f)) is a singleton if µ(x) = 0. In
this way we have verified conditions (1)–(3) of Theorem 3.9. The remaining
condition (4) follows immediately from Theorem 6.2.

7. Examples of spaces of probability measures

7.1. The space σn(κ). In this section we are going to prove Theorem 1.4,
the case of P (σn(κ)) of Theorem 1.6 and the case of P (A(κ)) of Theorem 1.7.

For N ⊂ M , let gMN : σn(M) → σn(N) be the continuous surjection
given by g = gNM (x) = x ∩ N . The σ-typical surjection of P (σn(κ)) is of
the form f = P (g) : P (σn(M)) → P (σn(N)) for M ⊂ N infinite countable
subsets of κ such that M∗ = M \ N is infinite. We now compute the fiber
order and the 〈·〉-operation.

For x ∈ σn(N), g−1(x) = {x ∪ y : y ⊂ M∗, |y| ≤ n − |x|}. A basic
neighborhood of such x ∪ y ∈ g−1(x) is of the form

U = {z ∈ σn(M) : x ∪ y ⊂ z, z ∩ u = ∅, z ∩ v = ∅},

where u ⊂M∗ and v ⊂ N are finite sets. The image of such a neighborhood
equals

g(U) = {z ∈ σn(N) : x ⊂ z, |z| ≤ n− |x ∪ y|, z ∩ v = ∅}.
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From this it is clear that for w,w′ ∈ g−1(x) we have w ≤ w′ if and only if
|w| ≤ |w′|, and also that

〈w1, . . . , wk〉 = {w ∈ g−1(x) : |w| ≥ min(|w1|, . . . , |wk|)}.
Thus, if we go to the spaces of probabilities, for f = P (g) : P (σn(M)) →
P (σn(N)) and two measures ν, ν ′ ∈ f−1(δx), we have ν ≤ ν ′ if and only if
for every k = 1, . . . , n− |x|,

ν{w ∈ g−1(x) : |w| ≥ |x|+ k} ≤ ν ′{w ∈ g−1(x) : |w| ≥ |x|+ k}.
Notice that 〈x〉 = g−1(x), thus ν(〈x〉) = ν ′(〈x〉) for all ν, ν ′ ∈ f−1(δx). The
ordered set Oδx(f) is thus isomorphic to

Oδx(f) ∼= {t ∈ [0, 1]n−|x| : t1 ≤ · · · ≤ tn−|x|}.

Proposition 7.1. The ordered set Ok = {t ∈ [0, 1]k : t1 ≤ · · · ≤ tk} is
irreducible.

Proof. We proceed by induction on k. For k = 0, O0 is a singleton (by
convention, if desired), and for k = 1, O1 = [0, 1] is linearly ordered, so we
suppose that k ≥ 2 and that we have an order-isomorphism φ : Ok → P ×Q.
We denote by 0 and 1 the minimum and maximum respectively of any of the
ordered sets Ok, P and Q (all exist so that φ(0) = (0, 0) and φ(1) = (1, 1)).
Let

Λ = {t ∈ Ok : t2 = t3 = · · · = tk = 1}
= {t ∈ Ok : {s : s ≥ t} is linearly ordered}.

Every element of φ(Λ) must be either of the form (x, 1) or (1, x), since
otherwise {s : s ≥ φ(λ)} cannot be linearly ordered. Moreover, since Λ is
linearly ordered, it follows that either φ(Λ) ⊂ P × {1} or φ(Λ) ⊂ {1} × Q.
We suppose that φ(Λ) ⊂ P × {1}. Now set λ = (0, 1, . . . , 1) ∈ Λ and φ(λ) =
(u, 1). We have

Ok−1
∼= φ{t ∈ Ok : t ≤ λ} = {s ∈ P : s ≤ u} ×Q,

so by the inductive hypothesis, either |Q| = 1 (which would finish the proof)
or u = 0. So we suppose that u = 0, which implies that Q ∼= Ok−1 and also
φ(Λ) = P×{1} (because we have found that φ(λ) = (0, 1) ∈ φ(Λ), and this is
an upwards closed set). Thus Q ∼= Ok−1 and P ∼= Λ ∼= [0, 1], and it remains
to show that Ok 6∼= Ok−1 × [0, 1]. The reason is that p = ((0, 1, . . . , 1), 1)
and q = ((1, . . . , 1), 0) are incomparable elements of Ok−1 × [0, 1] with the
property that {t : t ≥ p} and {t : t ≥ q} are linearly ordered. However, we
noticed that the set Λ of points with this property in Ok is linearly ordered.

Since one of our announced objectives was to show that P (σn(κ)) is
not homeomorphic to P (σm(κ)) for n 6= m, let us now make it explicit
why this is true. It is enough to notice that the irreducible ordered sets
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Ok = {t ∈ [0, 1]k : t1 ≤ · · · ≤ tk} which appear in the fiber orders of these
spaces are not order-isomorphic for different values of k, since for n < m,
Om does not appear as the fiber order of any point of P (σn(κ)). This can be
realized in many different ways. For example, set

e = (0, 0, . . . , 1) = max{t ∈ Ok : {s : s ≤ t} is linearly ordered}.

Then Ok−1
∼= {t ∈ Ok : tk = 1} = {t : t ≥ e}. This shows that Ok−1 can

be obtained in an intrinsic way from Ok, and thus if Ok ∼= Oj , then Ok−1
∼=

Oj−1. The inductive repetition of this argument leads to a contradiction if
k 6= j.

Finally, let us show the appropriate parts of Theorems 1.6 and 1.7. We
see easily that σn(κ) satisfies the assumptions of Proposition 6.4(i) with
O = On and x = ∅. Further, A(κ) = σ1(κ) satisfies the assumptions of
Proposition 6.4(ii) with O = O1 = [0, 1] and x = ∅.

7.2. The spaces P ([0, ω1]n) and P (A(κ)n). In this section we shall prove
Theorem 1.5 and the appropriate part of Theorems 1.6 and 1.7.

The fiber orders of the two spaces of probability measures from the title
can be computed in the same way. ForM ⊃ N , let pMN : A(M)→ A(N) be
the continuous surjection given by pMN (x) = x if x ∈ A(N) and pMN (x) =
∞ otherwise. The σ-typical surjection of P (A(κ)n) is of the form P (pnMN ) :
P (A(M)n)→ P (A(N)n) forM ⊃ N infinite countable subets of κ such that
M \N is infinite.

On the other hand, for countable ordinals α < β let qβα : [0, β] → [0, α]
be the continuous surjection given by qβα(γ) = γ for γ ≤ α, and qβα(γ) = α
for γ > α. The σ-typical surjection of P ([0, ω1]n) is of the form P (qnβα) :
P ([0, β]n)→ P ([0, α]n) where α < β are countable limit ordinals. From the
point of view of fiber orders both surjections pMN and qβα can be treated
simultaneously since both can be viewed as a surjection g : K → L with the
following properties:

(?) There exist $ ∈ L and m ∈ g−1($) such that |g−1(x)| = 1 for every
x ∈ L \ {$}, and with respect to the fiber order of g−1($), we have
m < t and t ∼ s for any t, s ∈ g−1($) \ {m}.

In the case of pMN we should take $ = ∞ and m = ∞, while for qβα,
$ = α and m = α.

From now on, we concentrate on computing the fiber orders of P (gn)
where g : K → L is a continuous surjection satisfying (?); the computation
of the fiber orders of P (A(κ)n) and P ([0, ω1]n) will then follow immediately.

We fix x = (x1 . . . , xn) ∈ Ln, and set R(x) = {i ∈ {1, . . . , n} : xi = $}.
The first step is to determine the sets of the form 〈y(1), . . . , y(k)〉 in (gn)−1(x).
For every y ∈ (gn)−1(x) we set S(y) = {i ∈ R(x) : yi > m}.
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Claim A. 〈y(1), . . . , y(k)〉 = {z ∈ (gn)−1(x) : ∃j ∈ {1, . . . , k} : S(z) ⊃
S(y(j))}.

Proof of Claim A. Suppose first that S(z) ⊃ S(y(j)) for some j. Then it
follows immediately that y(j) ≤ z since the inequality holds coordinatewise.
Thus z ∈ 〈y(1), . . . , y(k)〉.

For the converse inclusion, suppose that for every j there exists a coordi-
nate i(j) ∈ S(y(j)) \S(z). So zi(j) = m and y(j)

i(j) > m. Since all the elements

of Fx(g) which are greater than m are equivalent, for every y
(j)
i > m we

can easily find a neighborhood W j
i such that W =

⋃
i,j g(W

j
i ) does not

contain the image of any neighborhood of m. For every j ∈ {1, . . . , k} set
Uj = {y ∈ Kn : yi(j) ∈ W

j
i(j)}, which is a neighborhood of y(j). We claim

that gn(U1) ∪ · · · ∪ gn(Uk) contains no image of a neighborhood of z, which
will finish the proof of Claim A. Namely, if V is a neighborhood of z of the
form V1×· · ·×Vn with Vi a neighborhood of zi, then for every i ∈ R(x)\S(z)
we can find a point ti ∈ g(Vi) \W . If we take u ∈ V with g(ui) = ti for
i ∈ R(x) \ S(z), then gn(u) 6∈ gn(U1) ∪ · · · ∪ gn(Uk).

Claim B. For ν, ν ′ ∈ P (gn)−1(δx), we have ν ≤ ν ′ if and only if for every
upwards closed subset A⊂ 2R(x), we have ν{z : S(z)∈A}≤ ν ′{z : S(z)∈A}.

Proof of Claim B. It follows from Claim A that the subsets of (gn)−1(x)
of the form 〈y(1), . . . , y(k)〉 are exactly the sets of the form {z : S(z) ∈ A}
for some upwards closed family A of subsets of R(x).

As a consequence, for x ∈ Ln with |R(x)| = k, we find that Oδx(P (gn)) ∼=
{t ∈ [0, 1]2

k
:
∑

i∈2k ti = 1}, endowed with the order t ≤ s if and only if∑
i∈A ti ≤

∑
i∈A si for every upwards closed subset of 2k.

Proposition 7.2. Consider the ordered set Pk= {t∈ [0,1]2
k
:
∑

i∈2k ti=1}
endowed with the order t ≤ s if and only if

∑
i∈A ti ≤

∑
i∈A si for every

upwards closed subset of 2k. Then Pk is an irreducible ordered set.

Proof. We proceed by induction on k. If k = 1, then Pk ∼= [0, 1]. Suppose
that we had an isomorphism φ : Pk → Q×R. We use 0 and 1 to denote the
minimum and maximum of any of these ordered sets (notice that that the
minimum of Pk is the characteristic function of the empty set 0 = χ{∅}, and
its maximum is 1 = χ{{1,...,n}}). For every i ∈ {1, . . . , n} let ei ∈ Pk be the
characteristic function of the singleton {{i}}. Notice that {t ∈ Pk : t ≤ ei}
is linearly ordered since any such t satisfies

∑
a6⊂{i} ta = 0. Thus φ(ei) must

be of the form either φ(ei) = (ui, 0) or φ(ei) = (0, ui). Notice now that

{t ∈ Pk : t ≥ ei} =
{
t ∈ Pk :

∑
i∈a

ta = 1
}
∼= Pk−1
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and Pk−1 is irreducible by the inductive hypothesis, so ui = 1 since {(r, s) :
(r, s) ≥ (r0, s0)} = {r : r ≥ r0} × {s : s ≥ s0}. Hence φ(ei) ∈ {(1, 0), (0, 1)}
for every i ∈ {1, . . . , k}. If k > 2 this is already a contradiction, so we suppose
that k = 2 and φ(e1) = (1, 0) and φ(e2) = (0, 1). We denote the elements of
P2 by t = (t∅, t{1}, t{2}, t{1,2}). For every λ ∈ [0, 1], we set xλ = (1−λ, λ, 0, 0)
and yλ = (1 − λ, 0, λ, 0) in P2. We have xλ ≤ e1 and yλ ≤ e2 and so
φ(xλ) = (rλ, 0) and φ(yλ) = (0, sλ) for suitable rλ and sλ. We consider the
specific elements u = (0.7, 0.1, 0.1, 0.1) and u′ = (0.8, 0, 0, 0.2) of P2. Suppose
φ(u) = (r, s) and φ(u′) = (r′, s′). On the one hand, x0.2 and y0.2 are smaller
than u and u′ so r0.2 ≤ r, r0.2 ≤ r′, s0.2 ≤ s and s0.2 ≤ s′. On the other
hand, if λ > 0.2 then xλ 6≤ u, xλ 6≤ u′, yλ 6≤ u, and yλ 6≤ u′. Hence indeed
r = r′ = r0.2 and s = s′ = s0.2. Thus φ(u) = φ(u′), a contradiction.

Notice that Pk is not order-isomorphic to Pk′ for k 6= k′, since the set

H = {t ∈ Pk : {s : s ≤ t} is linearly ordered}
= {t ∈ Pk : ∃i ∈ {1, . . . , k} : t ≤ ei}

contains exactly k maximal elements: e1, . . . , ek, where again ei ∈ Pk denotes
the characteristic function of the singleton {i}. This also shows that these
irreducible ordered sets are not isomorphic to the irreducible ordered sets
Ok which appeared in the fiber orders of the spaces P (σn(κ)) (for n > 1),
because in those cases the set of all elements t such that {s : s ≤ t} is linearly
ordered was linearly ordered with precisely one maximal element.

The above calculation proves Theorem 1.5. Further, both A(κ)n and
[0, ω1]n satisfy the assumptions of Proposition 6.4(i) with O = Pn and
x = (∞, . . . ,∞) resp. x = (ω1, . . . , ω1). This proves the appropriate part of
Theorem 1.6. Finally, [0, ω1] satisfies the assumptions of Proposition 6.4(ii)
with O = [0, 1] and x = α (using the above notation). This proves the
appropriate part of Theorem 1.7.

We have not mentioned it so far, but despite the fact that the picture of
fiber orders is similar, the spaces P (A(κ)n) and P ([0, ω1]n) are very different,
for other well known reasons. Namely, P (A(κ)n) is an Eberlein compact, and
hence a Fréchet–Urysohn space, so it cannot contain any copy of [0, ω1].

8. Higher weights. So far we have used the version of spectral theorem
stated as Theorem 2.1, but one can use other versions. For example, for a
regular cardinal τ , we consider the family Qτ (K) of quotients of weight
strictly less than τ , and we define a τ -semilattice to be a subset S ⊂ Q(K)
such that the supremum of every subset of S of cardinality less than τ
belongs to S. The set S is cofinal in Qτ (K) if for every L ∈ Qτ (K) there
exists L′ ∈ S with L ≤ L′. We assume that τ is a regular cardinal because
otherwise there exists no cofinal τ -semilattice in Qτ (K).
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Theorem 8.1. Let K be a compact space with weight at least τ . The
intersection of two cofinal τ -semilattices in Qτ (K) is another cofinal τ -
semilattice in Qτ (K).

Proof. It is completely analogous to the proof of Theorem 2.1.

Lemma 8.2. Let K be a compact space of weight at least τ and S a τ -
semilattice in Qτ (K). Then S is cofinal in Qτ (K) if and only if supS = K.

Proof. Suppose supS = K. By the same argument as in the proof of
Lemma 2.2, every real-valued continuous function f ∈ C(K) factors through
an element of S. Now, if p : K → L is an arbitrary element of Qτ (K), then
we can take an embedding L ⊂ Rγ for a cardinal γ < τ and consider the
functions eip : K → R obtained by composing with the coordinate functions
ei : Rγ → R, i < γ. For every i < γ we know that there exists Li ∈ S
such that eip factors through Li. Finally, this implies that p factors through
L∞ = sup{Li : i < γ}, so L ≤ L∞ ∈ S.

Just as for σ-semilattice spectra, we can say that the τ -typical surjection
of K has a property P if there is cofinal τ -semilattice in which all the natural
surjections have property P, and when this happens such a τ -semilattice can
be found as a subsemilattice of any given one. Also similarly, we can talk in
this context of Fτx(K) and Oτ

x(K).
An application can be found in the study of the space P ([0, τ ]n) and its fi-

nite powers, for τ > ω1 a regular cardinal. The fiber orders of K = P ([0, α]n)
for any ordinal α ≥ ω1 can be computed using very similar arguments to
those in Section 7.2, and indeed Oδx(K) ∼= Pk where k is the number of coor-
dinates of x ∈ [0, α]n with uncountable cofinality. Therefore, for α ≥ ω1+ω1,
P ([0, α]n) does not satisfy the assumptions of Proposition 6.4. Indeed, [0, α]
has at least two non-Gδ-points and hence [0, α]n contains several points x
with Oδx(P (K)) ∼= Pn. Moreover, P ([0, α]n) does not satisfy even the as-
sumptions of Theorems 3.9 and 3.7—for n = 1 this is witnessed by the fact
that O 1

2
(δx+δy)

(P ([0, α])) = [0, 1]2 whenever x and y are two distinct points
with uncountable cofinality.

However, it is still possible to get decomposition results for the spaces
P ([0, τ ]n) using τ -semilattices, since analogues of Theorems 3.9 and 3.7 for
the τ -typical surjection hold, with identical proof. There is a natural cofinal
τ -semilattice for [0, τ ]: For α < β consider the continuous surjection pβα :
[0, β]→ [0, α] given by pβα(x) = x for x ≤ α, and pβα(x) = α for x > α. The
τ -semilattice consists of all quotients given by pτα, α < τ , and the τ -typical
surjection is of the form pβα, α < β < τ . Thus, the situation is completely
analogous to that of P ([0, ω1]n), and we have the following result:

Theorem 8.3. Let τ be a regular cardinal ,K=P ([0,τ ]n), x= (x1, . . . , xr)
∈ [0, τ ]n and k = |{i : xi = τ}|. Then Oτ

δx
(K) ∼= Pk = {t ∈ [0, 1]2

k
:
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i∈2k ti = 1} endowed with the order t ≤ s if and only if

∑
i∈A ti ≤

∑
i∈A si

for every upwards closed subset of 2k.

Now we easily get the remaining part of Theorems 1.6 and 1.8.
We mention that, answering a question posed to us by R. Deville and

G. Godefroy, the ideas of this section are used in [2] to show that there exist
2κ many nonhomeomorphic weakly compact convex subsets in `2(κ).

9. Final remarks and open problems

Question 1. Let M(K) denote the space of regular Borel measures of
variation at most 1 (that is, the dual ball of the space of continuous functions
C(K)) in its weak∗ topology. We show in this paper that M(A(κ)) is not
homeomorphic to P (A(κ)) using fiber orders. We did not make a systematic
study of the fiber orders ofM(K) and this may be interesting. Analysing the
relatively easy case of A(κ) it seems that the fiber orders of M(A(κ)) look
similar to those of P (A(κ))2, so we may ask whether M(K) ≈ P (K)2 for
each compact space. However, this has a negative answer. Let K be the well-
known “double arrow space”. Then P (K) is first countable (for example by
[13, Proposition 7]) whileM(K) is not first countable as K is not metrizable.
Therefore M(K) 6≈ P (K)2. But we can still ask: Is M(K) homeomorphic to
P (K)2 for compact spaces considered in this paper (A(κ), σn(κ) etc.)?

Question 2. The analysis of the generic fibers of B(κ) yields the same
result as for P (A(κ)), namely all the non-Gδ-points have generic fibers order-
isomorphic to an interval. Are the spaces B(κ) and P (A(κ)) homeomorphic?
In this connection, it follows from [14] that P (A(κ)) is homeomorphic to
P (A(κ)) × [0, 1]. Is B(κ) homeomorphic to B(κ) × [0, 1] or even to any
product of two nontrivial spaces?

Question 3. In the various spaces of probability measures that we have
studied, fiber orders allow us to identify different types of points. Is this a
complete classification? That is, we ask to determine exactly for which points
x, y ∈ P (K) there exists a homeomorphism f : P (K) → P (K) such that
f(x) = y.

Question 4. Fiber orders are a good tool to determine whether two
spaces are homeomorphic, but they do not seem to help in determining
whether a given space is the continuous image of another. In [3] the case
of the spaces B(κ)n is studied, but the situation is not clear for the other
spaces studied here. For instance, we do not know whether P (σn(κ)) maps
onto P (σm(κ)) for n < m, and so on. This is also related to the problem of
the A(κ)ω-images, initiated by Benyamini, Rudin and Wage [6] and studied
specially by Bell in [4] and [5]. It is proven in [1] that P (A(κ)) and B(κ)
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are continuous images of A(κ)ω, but it is unclear to us whether P (σn(κ)) or
P (A(κ)n) are continuous images of A(κ)ω for n > 1.
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