
FUNDAMENTA
MATHEMATICAE

173 (2002)

Finiteness and choice

by

Omar De la Cruz (West Lafayette, IN)

Abstract. We deal with weak choice principles of the form: Every “finite” family of
non-empty sets has a choice function, where “finite” stands for one of several different
definitions of finiteness that are not equivalent unless we assume the axiom of choice
(AC). Several relations of implication and independence are established. In the process, we
answer a few open questions about the relations between different definitions of finiteness.

1. Introduction. The following is a well known result in set theory
without the axiom of choice:

Every finite family of non-empty sets has a choice function.(1)

(see Section 3.1 for the definition of choice function). The axiom of choice
(AC) states that this also holds for infinite families. However, without AC,
the notion of finiteness itself is not so clear, since different statements that
express properties that we expect finite sets to have and which are equivalent
under AC, are not provably equivalent without the axiom.

From the several statements considered in the literature as possible defi-
nitions of finiteness, in particular in Tarski [Tar24], Lévy [Lév58], and Spǐsiak
and Vojtáš [SV88], as well as in Howard and Rubin [HR98], it is commonly
agreed that the “right” definition is the most restrictive one: namely, equiv-
alence with a natural number (see notion I below, as well as Remark 1.2).
It is this notion of finiteness for which (1) is true.

In this article we study the relative strength of principles obtained by
modifying (1) to use less restrictive notions of finiteness, and more principles
that are obtained from these by weakening the definition of choice function.
It happens that none of these modifications of (1) can be proved without
assuming at least a weak form of AC. Many easy relations can be found
between these statements and between these and some other well known
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choice principles; other not so trivial relations are established in this article.
It turns out that these interrelations are different for ZF, the Zermelo–
Fraenkel axioms for set theory, and for ZFA, a weakened version of ZF in
which the axiom of extensionality is modified in order to allow the existence
of atoms. For a more complete exposition and complete lists of axioms, see
for example Jech [Jec73]. Notice in particular that every theorem of ZFA
is also a theorem of ZF; unless otherwise stated, all results here can be
obtained from the weaker theory ZFA.

In Section 2 we list the notions of finiteness to be used and establish all
the relationships between them (for which we answer a few open questions).
These results are summarized in Figure 1. In Section 3 we state the choice
principles we will consider, and we find several implications, while in Sec-
tion 4 we establish some independence results about them. Our results are
summarized in Figure 2.

2. Notions of finiteness. The first group of notions is taken from Lévy
[Lév58], who established all the relations of implication and independence
(with respect to ZFA) between them. Lévy introduced Ia and VII, while
definitions I, II, III, and V were introduced by Tarski [Tar24], as well as
VI (attributed to Tarski by Mostowski [Mos38]). Notion IV was originally
introduced by Dedekind.

Definition 1. A set X is said to be:

1. I-finite if every non-empty family of subsets of X has a maximal (or
minimal) element under inclusion.

2. Ia-finite if X is not the disjoint union of two non-I-finite sets.
3. II-finite if every non-empty family of subsets of X which is linearly

ordered by inclusion has a maximal (or minimal) element under inclusion.
4. III-finite if there is no one-to-one map from P(X) into a proper subset

of P(X).
5. IV-finite (also Dedekind finite) if there is no one-to-one map from X

into a proper subset of X.
6. V-finite if X = ∅ or there is no one-to-one map from 2×X into X.
7. VI-finite if either X is empty, or it is a singleton, or there is no

one-to-one map from X ×X into X.
8. VII-finite if X is I-finite or it is not well orderable.

Remarks 1. 1. To each notion of finiteness Q corresponds a notion of
infinity: we will say that a set is Q-infinite if it is not Q-finite.

2. A set X is I-finite if and only if there is a bijection between X and
an ordinal n < ω (see Tarski [Tar24]). This one is the commonly accepted
definition of finiteness, among other reasons, because it is absolute for models
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of ZF. Therefore, whenever we use the terms finite and infinite without
further qualification, we mean I-finite and I-infinite, respectively.

3. An infinite set X which is Ia-finite is also called amorphous. An Ia-
infinite set is also called partible.

4. A set X is IV-infinite if and only if it contains a well orderable infinite
subset. A set X is III-infinite if and only if P(X) is IV-infinite, and if and
only if it has a well ordered infinite partition.

Cardinal numbers, as well as operations and order on cardinal numbers,
can be defined without using AC (see, for example, Jech [Jec73]). Using
those definitions we can rewrite some of the definitions in the following way:

1. X is I-finite iff |X| < ℵ0.
2. X is III-finite iff 2|X| + 1 > 2|X|.
3. X is IV-finite iff |X|+ 1 > |X| iff |X| 6≥ ℵ0.
4. X is V-finite iff |X| = 0 or 2 · |X| > |X|.
5. X is VI-finite iff |X| = 0, 1 or |X|2 > |X|.
Spǐsiak and Vojtáš [SV88] introduced the following way to derive new

definitions of finiteness from old ones.

Definition 2. Let Q be any notion of finiteness. We say that a set X
is Q′′-finite if P(X) is Q-finite.

Remarks 2. 1. Spǐsiak and Vojtáš [SV88] notice that IV′′ is equivalent
to III, and also that III′′ is equivalent to I (by a result of Tarski [Tar24]
which states that for each infinite set X, P(P(X)) is IV-infinite). As a
consequence, I′′, Ia′′, and II′′ are also equivalent to I.

2. As noted by Spǐsiak [Spi93], in any model of ZFA where P(ω) is
not well orderable, all sets are VII′′-finite (while every infinite ordinal is
VII-infinite). Of course, this makes VII′′ a rather unreasonable definition
for finiteness, but it still satisfies the formal requirement of being equivalent
to notion I under AC. This illustrates the fact that not all the notions men-
tioned in this paper can be considered reasonable definitions of finiteness.

Another group of notions of finiteness was introduced by Truss [Tru74]
in the form of classes of Dedekind finite cardinals.

Definition 3. Define the following classes of cardinals:

∆1 = {a : a = b + c→ b or c is finite},
∆2 = {|X| : any linearly ordered partition of X is finite},
∆3 = {|X| : any linearly ordered subset of X is finite},
∆4 = {a : ¬(ℵ0 ≤∗ a)}

(|x| ≤∗ |y| if there exists a function f from y onto x),
∆5 = {a : ¬(a + 1 ≤∗ a)}.
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Remarks 3. 1. We will use the symbols ∆i, for i = 1, . . . , 5, as notions
of finiteness; that is, we will say that a set X is ∆i-finite if |X| ∈ ∆i.

2. Clearly, ∆1-finiteness is equivalent to Ia-finiteness. It is also noticed
by Truss [Tru74] that ∆2-finiteness is equivalent to II-finiteness and that
∆4-finiteness is equivalent to III-finiteness.

3. It can be shown that a set is ∆5-infinite if and only if it admits the
structure of a tree of infinite height.

Howard and Yorke [HY89] introduced yet another notion:

Definition 4. A set X is D-finite if either it has at most one element,
or X = X1 ∪X2 with |X1|, |X2| < |X|.

A D-finite set with more than one element is called decomposable. In
the same paper, besides determining the relation between D and each of
the notions from Definition 1, the authors introduce the following prin-
ciples: If Q1,Q2 are notions of finiteness, E(Q1,Q2) stands for the formula
∀X (X is Q1-finite ↔ X is Q2-finite). Several of these principles are (or
are equivalent to) well known weak principles of choice (see Howard and
Rubin [HR98], Note 94). In particular, E(V,VI), E(VI,VII), and E(I,D)
are equivalent to AC.

It should be remarked that several other notions of finiteness have been
studied by other researchers (for example, see Tarski [Tar38]); however, the
ones listed here seem to be among the most commonly studied, and we will
concentrate our work on them.

2.1. Implications between notions of finiteness. Given two notions of
finiteness Q0 and Q1, we use the abbreviation Q0 → Q1 instead of the
formula ∀X (X is Q0-finite → X is Q1-finite).

It is shown in Lévy [Lév58], building on results of Tarski [Tar24], that

I→ Ia→ II→ III→ IV→ V→ VI→ VII.

It is easy to see that ifQ0,Q1 are notions of finiteness andQ0 → Q1, then
Q′′0 → Q′′1. Also, we have VII→ VII′′: If X is not well orderable, then P(X)
is not well orderable, since X can be mapped one-to-one into P(X). Besides
this, Spǐsiak and Vojtáš [SV88] show, using elementary cardinal arithmetic,
that III → V′′, V′′ → IV, and VI′′ → V. These derived notions are further
studied by Spǐsiak [Spi93] and Howard and Spǐsiak [HS].

Truss [Tru74] proves that the following implications are theorems of ZFA:
III→ ∆5 → IV and II→ ∆3 → IV.

Howard and Yorke prove that IV→ D → VII.
Finally, our last implication is stated in the following theorem, which

has a surprisingly simple proof:

Theorem 5. V′′ → ∆5.
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Proof. Suppose that X is not ∆5-finite. Then there exists a function
f from X onto X ∪ {u}, where u 6∈ X. Now we have a one-to-one map
Y 7→ f−1(Y ) from P(X ∪ {u}) into P(X); this means that

2|X| ≥ 2|X|+1 = 2 · 2|X|.

Therefore P(X) is V-infinite and X is V′′-infinite.

These implications are summarized in Figure 1.
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Fig. 1. Relations between notions of finiteness
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2.2. Independence results about notions of finiteness. Here we show that
the implications in Figure 1 (and those that can be derived by transitivity)
are the only ones that hold in general.

Independence results in this article will be obtained using two well known
methods: permutation models (for ZFA) and symmetric models (for ZF). For
lack of space we will not describe the construction of most of the models
used, especially when the models have been thoroughly described in the
literature.

In what follows, A will always be the set of atoms of the universe under
discussion, except in Section 4.2, where it will be a set of reals.

Lévy [Lév58] proved that Ia 6→ I (using the set A in the Basic Fraenkel
Model), that II 6→ Ia (considering the set 2 × A in the same model), and
that VI 6→ V (using the set ω × A in Mostowski’s ordered model; this way
he proves the independence of the notions even under the assumption of the
Linear Ordering Principle).

Truss [Tru74] proved that III 6→ ∆3 (using the set A in Mostowski’s or-
dered model); as a consequence we find that III 6→ II, and that Q 6→ ∆3 for
any notion Q below III in Figure 1. Also, it is proved there that
∆3 6→ ∆5, using the Second Fraenkel Model. Consequently, ∆3 6→ Q for
any notion Q above ∆5.

Howard and Yorke [HY89] proved that D 6→ VI, using the set of all
finite, one-to-one sequences from A ∪ ω in the Basic Fraenkel Model. That
means that D 6→ Q is false unless Q is VII or VII′′.

As we mentioned before, Spǐsiak [Spi93] showed that VII′′ 6→ VII (see
Remark 2.2), and therefore VII′′ 6→ Q for all other Q in Figure 1. Also,
Howard and Spǐsiak [HS] prove that V′′ 6→ III, which implies Q0 6→ Q1
for every Q0 below V′′ and every Q1 above III. The model used is rather
complicated, and we will not offer a description for lack of space.

The next two lemmas will be enough to eliminate the rest of the impli-
cations that do not appear in Figure 1.

Lemma 6. ∆5 6→ VI′′ and ∆3 6→ VI′′.

Proof. Consider the set A in the Second Fraenkel Model. Truss [Tru74]
proves that A is ∆5-finite, while Howard and Spǐsiak [HS] prove that A is
VI′′-infinite by explicitly defining a one-to-one function f : P(A)×P(A)→
P(A) in the model.

To prove the second part, it is enough to prove that A is also ∆3-finite.
It is easy to see that a linear order for an infinite subset of A cannot have a
finite support.

Consequently, we have Q 6→ VI′′ for every Q below ∆5 (in particular,
D 6→ VI′′).
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Lemma 7. VI′′ 6→ D.

Proof. We use model M6 from Howard and Yorke [HY89]. The model
is constructed as follows: Start with a model of ZFA + AC and consider the
set A of atoms to be ordered in the order type of the rationals. M6 is the
permutation model obtained using the group of all permutations that move
at most finitely many elements of A, and the ideal of bounded subsets of A
as the normal ideal of supports.

Howard and Yorke [HY89] prove that A is not D-finite in M6. We will
prove here that A is VI′′-finite.

For the sake of a contradiction, suppose that there is a one-to-one map
f from P(A) × P(A) into P(A); let E be a support for f . Choose distinct
a, b ∈ A r E, and let X = f({a}, {b}). Then we can assume, without loss
of generality, that {a} 6= X r E and {a} 6= A r (X ∪ E) (if this fails for
a, then it is true for b). Then we can find c ∈ A r E, c 6= a, such that
the transposition (a, c) leaves X invariant. In that case we conclude that
f(c, b) = X, and therefore f is not one-to-one.

As a consequence of this lemma, we obtain VI′′ 6→ Q for each Q above
D; in particular, we have VI′′ 6→ IV.

2.3. Two additional lemmas. Before we finish this section we establish
the following lemmas.

Lemma 8. If X is Q-finite, where Q is any of the notions in Figure 1,
and |X| = |X ′|, then X ′ is Q-finite.

Lemma 8, which can be easily verified case by case, states that all our
notions of finiteness are cardinal invariants, as should be expected.

Lemma 9. For every notion Q of finiteness in Figure 1,

X is Q-finite if and only if X ∪ {y} is Q-finite,(2)

where X is any set and y is any object (set or atom).

Proof. For notions Q such that IV → Q, we find that if either X or
X∪{y} is Q-infinite, then |X| = |X ∪ {y}|, and therefore the contrapositive
of (2) holds.

For the notions that are not implied by IV, (2) can be easily verified case
by case. We show here the proof for Q = V′′; the case Q = VI′′ is similar.
We assume that y 6∈ X to avoid trivialities.

Since 2|X|+1 = 2 · 2|X|, we see that P(X) is V-infinite if and only if
P(X ∪ {y}) is V-infinite; one of the directions uses the fact that if 2a = 2b
then a = b for all infinite cardinals a, b; this theorem can be proved without
AC (see Jech [Jec73, Thm. 11.9]). Consequently, X is V′′-infinite if and only
if X ∪ {y} is V′′-infinite.
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It should be remarked, though, that many other reasonable properties
(like closure under unions, products, etc.) fail for at least some of the notions
of finiteness considered in this paper.

3. Axioms of choice for finite families. In this section we define two
kinds of principles of choice, stated as axioms of choice for families that are
finite according to one of the notions introduced in the previous section.

3.1. Definitions and basic properties. Given a family X of non-empty
sets (that is, neither ∅ nor any atom is a member of X), a choice function
is a function f : X → ⋃

X such that

∀x ∈ X (f(x) ∈ x).

For an indexed family {xj : j ∈ J} of non-empty sets, we will also call choice
function a function f with domain J such that for all j ∈ J , f(j) ∈ xj , as
long as f(j) = f(j′) whenever xj = xj′ .

A partial choice function for an infinite family X is a choice function for
a infinite subfamily of X.

Definition 10. Let Q be a notion of finiteness. The principle C(Q) is
the sentence:

∀X (X is a Q-finite family of non-empty sets → X has a choice function).

The principle C−(Q) is the sentence:

∀X (X is a Q-finite but infinite family of non-empty sets

→ X has a partial choice function).

Remarks 4. The following are all theorems of ZFA:

1. C(I) is true (this is just a restatement of (1) from the Introduction);
it can be proved by an induction argument. Also, C−(I) is vacuously true.

2. If Q is a notion of finiteness, then C(Q) implies C−(Q).
3. If Q1,Q2 are notions of finiteness and Q1 → Q2, then C(Q2) implies

C(Q1) and C−(Q2) implies C−(Q1).
4. The principle E(I,Q) implies C(Q) for every notion of finiteness Q.

Lemma 11. If C(Q) holds and P(X) is Q-finite, then X is well order-
able.

Proof. By Lemma 9, P(X) r {∅} is Q-finite. Once we have a choice
function for P(X) r {∅}, it is enough to repeat the usual proof of the fact
that AC implies the Well Ordering Principle.

Corollary 12. C(VII) and C(VII′′) are equivalent to AC.

Proof. Clearly, AC implies C(VII′′) and C(VII′′) implies C(VII). Now
assume C(VII) and suppose X is a non-well-orderable set; then P(X) is also
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non-well-orderable, and by Lemma 11 we conclude that X is actually well
orderable, a contradiction.

Corollary 13. If Q is one of the notions of finiteness in Figure 1, and
C(Q) holds, then we have E(I,Q′′).

Proof. Suppose C(Q) holds and that X is Q′′-finite but infinite. Since
P(X) is Q-finite, Lemma 11 guarantees that X is well orderable.

Being infinite and well orderable,X cannot be VII-finite, and therefore, it
is not finite according to any of the other definitions in Figure 1, except VII′′.
Therefore, the only case when this can happen is when Q is VII. However,
the assumption C(VII) is equivalent to AC, and this implies E(I,VII′′).

3.2. Additional implications. We begin with an easy result:

Lemma 14. C(Ia) and C−(Ia) are equivalent.

Proof. We know that C(Ia) implies C−(Ia). To prove the converse im-
plication, assume that X is an infinite Ia-finite family of non-empty sets and
let f be a partial choice function for X with (infinite) domain X ′ ⊂ X. Since
X rX ′ is finite, it has a choice function g. Then f ∪ g is a choice function
for X.

The preceding result can be proved in ZFA. However, it is vacuously true
in ZF, as the next two results show. We will see in Section 4 that it is not
vacuously true in ZFA, by establishing that Theorem 15 and Corollary 16
cannot be proved in ZFA.

Theorem 15 (ZF). Let X be an infinite set. If every family of non-
empty sets indexed by X has a partial choice function, then X is partible
(that is, Ia-infinite).

Proof. For the sake of a contradiction, suppose that X is Ia-finite. Since
every subset of X is either finite or the complement of a finite set, when a
formula holds for infinitely many elements of X, we will say that the formula
is true “for almost all x ∈ X” or “almost everywhere”.

Given any function f defined almost everywhere on X, we define %(f) as
the unique ordinal α such that rank(f(x)) = α for almost all x ∈ X (such α
exists because any well ordered partition of X has exactly one infinite part).
If f, g are functions defined almost everywhere on X, we will write g ≺ f if
g(x) ∈ f(x) for almost all x ∈ X. Clearly, if g ≺ f , then %(g) < %(f).

Choose a function f0 with minimum % such that range(f0) is infinite
(there is at least one such function with infinite range, namely, the identity
function on X); we can assume that ∅ 6∈ range(f0).

Let K = {c : c ∈ f0(x) for almost all x ∈ X}, and let f1(x) = f0(x)4K
for all x ∈ dom(f0) (4 is the symmetric difference). If f1(x) = ∅ for almost
every x ∈ X, then f0(x) = K for almost all x ∈ X, contradicting the fact
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that range(f0) is infinite. Therefore, f1 is a family of non-empty sets defined
almost everywhere on X.

Since we can see f1 as a family of sets indexed by X (by taking any
undefined values of f1 to be an arbitrary non-empty set), by hypothesis
there exists a partial choice function g1 defined almost everywhere on X;
that is, g1 ≺ f1.

Now, for all c ∈ K we have rank(c) < %(f0). Therefore %(g1) < %(f0),
since the images of g1 are either in K or in f0(x) for some x ∈ X. Thus,
g1 has finite range, and consequently it is constant almost everywhere with
value, say, c1.

We arrive at a contradiction as follows: c1 ∈ K if and only if c1 ∈ f0(x)
for almost all x ∈ X. Therefore, c1 6∈ f0(x) 4 K = f1(x) for almost all
x ∈ X. This is not possible, since g1 ≺ f1.

Corollary 16 (ZF). C−(Ia) is equivalent to E(I, Ia).

Proof. As we have already seen, if E(I, Ia) holds, then C−(Ia) is vacu-
ously true. Suppose that C−(Ia) holds and that X is an infinite Ia-finite set.
By Theorem 15, there exists a family f : X → V of non-empty sets indexed
by X with no partial choice function.

If f is constant almost everywhere with value, say, c, and d ∈ c, then
the function g, constantly equal to d and with domain equal to f−1(c),
would be a partial choice function for f . Thus, f cannot be constant almost
everywhere, and therefore it must have an infinite range. But then range(f)
is a Ia-finite set, since any partition of range(f) in two infinite sets induces
a partition of X in two infinite sets. The hypothesis of this corollary implies
that the set range(f) has a partial choice function, which means that the
family f has a partial choice function, a contradiction.

Unlike the previous result, the next two theorems can be proved in ZFA.

Theorem 17. C(IV) is equivalent to E(I, IV).

Proof. Suppose that C(IV) holds, and that X is an infinite, IV-finite
set. Consider the set X<ω

∗ of all finite sequences from X that do not repeat
elements.

It was proved by Tarski (see Lévy [Lév65, p. 225]) that X<ω
∗ is IV-finite.

Therefore, the family

F = {Xs = (X r range(s))× {s} : s ∈ X<ω
∗ }

is also IV-finite, because the map s 7→ Xs is one-to-one. Therefore, by hy-
pothesis, F has a choice function f .

We find a contradiction by defining a non-repeating ω-sequence from
elements of X, thereby showing that it cannot be IV-finite. Choose an initial
element x0 ∈ X; the rest of the sequence is defined by recursion. Assuming
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that 〈x0, . . . , xk〉 has already been defined, we define xk+1 by

xk+1 =
(
f(X〈x0,...,xk〉)

)
1
.

The same result can be obtained for ∆3, using the same proof. In this
case, the fact that X<ω

∗ is ∆3-finite whenever X is ∆3-finite is due to
Truss [Tru74].

Theorem 18. C(∆3) is equivalent to E(I,∆3).

The implications found in this section are summarized in Figure 2.

4. Independence results for axioms of choice for finite fami-
lies. Our independence results come from three sources: the Basic Fraenkel
Model, the Basic Cohen Model, and the Jech–Sochor embedding models for
several permutation models.

4.1. The Basic Fraenkel Model (BFM). It is established by Spǐsiak and
Vojtáš [SV88] and Spǐsiak [Spi93] that for most pairs Q,Q′ of different no-
tions of finiteness from Figure 1, there is a set in BFM that is finite according
to one of the two notions, but not according to the other. Two exceptions
are the pairs VII,VII′′ (see Corollary 20) and II, III (see Corollary 22.3);
this second exception answers a question of Spǐsiak [Spi93]. Below we will
establish two results about principles from Section 3 which hold in BFM.
First, we need some lemmas. The first one contains well known properties
of permutation models defined using supports:

Lemma 19. Let N be a permutation model defined using supports. Then:

1. If E supports x, and π, π′ are permutations of A such that π�E = π′�E,
then πx = π′x.

2. For all x ∈ N , x is well orderable in N if and only if there exists
E ∈ I that supports every element of x.

3. For every set x ∈ N , if x is well orderable, then P(x) is well order-
able.

Corollary 20. BFM satisfies E(VII,VII′′).

Lemma 21. The model BFM has the following property : Suppose that
E∪{a} is a support for some object x, and suppose that there is a permuta-
tion π of A such that π ∈ fix(E), πx = x, and πa 6= a. Then E is a support
for x.

Proof. Let σ ∈ fix(E). If σa = a, then σx = x; assume then that σa 6= a.
Therefore, since πa, σa 6∈ E∪{a}, the transposition (πa, σa) is in fix(E∪{a});
also, σ�E ∪ {a} = (πa, σa)π�E ∪ {a}, so, by Lemma 19.1,



68 O. De la Cruz

σx = (πa, σa)πx = (πa, σa)x = x.

Therefore, fix(E) ⊂ (x).

Corollary 22. The following hold in BFM :

1. (Blass [Bla77]) Every non-well-orderable set contains a one-to-one
image of an infinite subset of A.

2. If a set can be linearly ordered , then it can be well ordered.
3. E(II, III) and E(∆3, IV).

Proof. For clause 1, let X be a non-well-orderable set in BFM, E a sup-
port for X, and x0 an element of X not supported by E (see Lemma 19.2).
Take E′ ∪ {a0} to be a support for x0 of minimum size containing E, with
a0 6∈ E. Then {〈πa0, πx0〉 : π ∈ fix(E′)} is a function with domain ArE ′,
and Lemma 21 guarantees that it is one-to-one. Clause 2 is obtained directly
from 1. Clause 3 follows from 2: if a set has no infinite well orderable parti-
tions, then it has no infinite linearly orderable partitions; and a set contains
an infinite linearly orderable subset if and only if it contains an infinite well
orderable subset.

Theorem 23. C−(VII′′) holds in BFM.

Proof. By Corollary 20, it is enough to prove C−(VII).
Let X be a non-well-orderable (that is, VII-finite but infinite) family of

non-empty sets; we want to prove that there exists an infinite subset X ′ ⊂ X
with a choice function.

Let E be a support for X. By Lemma 19.2, there exists x0 ∈ X that is
not supported by E; let E0 be a support for x0 of minimum size such that
E ⊂ E0.

Since x0 6= ∅, we can choose an element y0 ∈ x0; let E1 be a support
for y0 such that E0 ⊂ E1. Pick a0 ∈ E0rE, and set E2 = E1r {a0}. Define

f = {〈πx0, πy0〉 : π ∈ fix(E2)}.
Claim. f is a function.

Indeed, if πx0 = π′x0 but πy0 6= π′y0, that means that πa0 6= π′a0, and
then π−1◦π′x0 = x0, but π−1◦π′a0 6= a0. Since π−1◦π′ ∈ fix(E0r{a0}), we
can apply Lemma 21 to conclude that E0r{a0} supports x0; this contradicts
the choice of E0 as a support for x0 of minimum size.

Claim. dom(f) ⊂ X, and it is infinite.

In fact, for all π ∈ fix(E2), we have πx0 ∈ πX = X. Also, for every
b, b′ 6∈ E2, b 6= b′, the elements (a0, b)x0 and (a0, b

′)x0 must be different:
Suppose they are not, and take π = (a0, b

′)(a0, b). We have πx0 = x0, while
πa0 = b 6= a; then, using Lemma 21, we can conclude that E0r{a0} supports
x0, and again this is a contradiction.
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Finally, we have

Claim. f is a choice function for its domain.

Clearly, for all π ∈ fix(E2), πy0 ∈ πx0.

This result shows that both Corollary 16 and Theorem 15 cannot be
proved in ZFA.

Another consequence of Theorem 23 is that C−(VII) does not imply
C(II) in ZFA, as can be seen from the following lemma:

Lemma 24. C(II) does not hold in BFM.

Proof. We claim that the set [A]2 of all 2-element subsets of A is II-finite.
Suppose it is not; then by Remark 3.2 there exists an infinite linearly ordered
partition of [A]2. Let E be a support for the partition and its linear order,
and take a1, a2, a3, a4 6∈ E such that {a1, a2} and {a3, a4} are in different
elements of the partition. Assuming that either element of the partition
precedes the other leads to a contradiction, by using a permutation that
interchanges the pairs {a1, a2} and {a3, a4} while leaving E fixed.

However, [A]2 has no choice function, as can be seen by an easy argument
showing that a choice function for [A]2 cannot be supported by a finite set.

Corollary 25. For all notions Q1,Q2 of finiteness in Figure 1 differ-
ent from I and Ia, C−(Q1) does not imply C(Q2) in ZFA.

4.2. The Basic Cohen Model. The model BCM has been well studied,
and there are many consequences of AC that have been proved to hold in
it. Two of them are listed in the next theorem. Notice that in this section
A will stand for a set of reals, and that there are no atoms in BCM.

Theorem 26. The following are true in the Basic Cohen Model N :

1. (Cohen) There exists a set A ∈ N of reals which is Dedekind finite.
2. (Halpern and Lévy) The Boolean Prime Ideal Theorem holds in

BCM.

It is a consequence of Theorem 26.2 that every set can be linearly or-
dered in BCM. A proof of that weaker result can be found in Jech [Jec73,
Section 5.5]); we will borrow the notation and some of the lemmas used
there for the proof of our main result about BCM (the reader can find in
that book the details we skip here).

BCM is constructed from a standard model M of ZFC by adding inde-
pendent Cohen reals xn, n ∈ ω (using the forcing notion P = {p : p is a
finite partial function from ω × ω to 2}), and then passing to a symmetric
submodel N of the generic extensionM[G] using a group of automorphisms
of P obtained from the group of all permutations of ω, together with the nor-
mal filter obtained by using finite subsets of ω as supports. The enumeration
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n 7→ xn is not in N , which makes it possible for the set A = {xn : n ∈ ω}
to be Dedekind finite.

Like in Jech [Jec73, Section 5.5], we will assume that there is a well order
of M in M; that is, that there is a bijection between M and the class of
ordinals inM which is a definable class inM. This assumption is not really
necessary, since all the uses of this well order of the universe can be rela-
tivized to some set large enough to contain all the objects studied; however,
this form of global choice allows the arguments to run more smoothly.

We say that e ⊂ ω is a support for a name ẋ if fix(e) ⊂ (ẋ). It can be
checked that the intersection of two supports for a name is also a support
for that name; therefore, for each name ẋ there exists a least support s(ẋ).
Notice that if π�s(ẋ) = %�s(ẋ), then π(ẋ) = %(ẋ), since %−1π ∈ fix(s(ẋ)).

For each finite subset E ⊂ A we have a canonical name Ė: Ė(ẋn) = 1
for all xn ∈ E. We say that Ė is a support for ẋ if E = {xn1 , . . . , xnk}
and {n1, . . . , nk} supports ẋ. It can be checked that the class ∆̇ = {(Ė, ẋ). :
Ė supports ẋ} is a symmetric class, and therefore its interpretation is a class
∆ in N . This way we can say, in N , that E is a support of x if ∆(E, x).

Lemma 27. Every x ∈ N has a minimum support.

Lemma 28. In N , there is a one-to-one function F : N → [A]<ω×Ord.

Sketch of proof . We take F = (F1,F2), where F1 assigns to x its min-
imum support and F2 assigns to x the minimum ordinal corresponding to
a name ẏ such that iG(πẏ) = x for some permutation π of ω (in a fixed
enumeration in M of the class of names, constructed using the well order
of M).

Lemma 29. For every formula ϕ and sets y1, . . . , yk, there exists m ∈ ω
such that , if

E =
k⋃

j=1

F1(yj) = {x1, . . . , xn},

then for every permutation π of A which satisfies

πxi ∩m = xi ∩m, i = 1, . . . , n,

there exist y′1, . . . , y
′
k such that :

1. F(y′j) = (π“F1(yj),F2(yj)) for j = 1, . . . , k.
2. N � ϕ[y1, . . . , yk]↔ ϕ[y′1, . . . , y

′
k].

Proof. Without loss of generality we can assume that N � ϕ[y1, . . . , yk]
(otherwise we can consider the formula ¬ϕ). Then there exist p ∈ G and
names ẏ1, . . . , ẏk (which we choose so that they have the smallest possible
supports) such that iG(ẏj) = yj for j = 1, . . . , k, and

p 
 ϕN [ẏ1, . . . , ẏk].
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Let e = s(ẏ1) ∪ . . . ∪ s(ẏk). By Lemma 5.24 in Jech [Jec73], we can assume
that dom(p) ⊂ e×ω. Let m ∈ ω be the least such that dom(p) ⊂ e×m. We
can assume that actually dom(p) = e×m.

Let E = {xi : i ∈ e}. It is clear that F1(yj) ⊂ E for j = 1, . . . , k. Let
also π be a permutation of A in N ; then there is a permutation σ of ω in
M[G] such that

πxi = xσi for all i ∈ ω
(it is not necessary to worry about which permutations of A exist in N ,
since we are always interested only in moving finitely many elements).

If πxi ∩ m = xi ∩ m, for i = 1, . . . , n, that fact must be forced by a
condition p′ ∈ G, and such a condition must extend σp; therefore, σp ∈ G.
Since

σp 
 ϕN [σẏ1, . . . , σẏk],

taking y′j = iG(σẏ′j), for j = 1, . . . , k, we have M[G] � ϕN [y′1, . . . , y
′
k]; in

other words,
N � ϕ[y1, . . . , yk]→ ϕ[y′1, . . . , y

′
k].

To complete the proof of clause 2, it is enough to repeat the argument above
starting with N � ϕ[y′1, . . . , y

′
k] and using π−1.

All that is left is to check that y′1, . . . , y
′
k satisfy the condition required

in clause 1. Indeed, for each j = 1, . . . , k we see that σẏj is in the same
orbit as ẏj , therefore F2(y′j) = F2(yj); also, the minimum support of σẏj
is the image under σ of the minimum support of ẏj , and consequently the
minimum support of y′j is the image under π of the minimum support of yj .

Now we can prove what will be the main property of BCM for us in this
section:

Theorem 30. C−(VII) holds in BCM.

Proof. This proof follows ideas similar to those of the proof of Theo-
rem 23.

Let Y be a non-well-orderable set in N . We want to show that there is
an infinite subset of Y with a choice function.

If for every y ∈ Y we have F1(y) ⊂ F1(Y ), then fixing a linear order for
F1(Y ) we obtain a well order for Y using the function F . Therefore, there
exists y0 ∈ Y such that F1(y0) 6⊂ F1(Y ). Since the empty set has empty
support, there exists z0 ∈ y0.

Consider the formula ϕ(v1, v2, v3) given by v1 ∈ v2 ∈ v3. Then N �
ϕ[z0, y0, Y ]; let m be the number obtained from Lemma 29. Choose xn0 ∈
F1(y0) r F1(Y ), and let E = F1(Y ) ∪ F1(y0) ∪ F1(z0) r {xn0}. Then, for
every x ∈ Ar E, define πx as the transposition (xn0 , x). Define

f = {〈F−1(πx“F1(y0),F2(y0)),F−1(πx“F1(z0),F2(z0))〉 : x∩m = xn0 ∩m}.
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By Lemma 29, for each such x,

F−1(πx“F1(z0),F2(z0)) ∈ F−1(πx“F1(y0),F2(y0)) ∈ Y
(in particular, the inverse images are defined). By a genericity argument,
there exist infinitely many sets x ∈ A such that x ∩m = xn0 ∩m. Since F
is one-to-one, if x 6= x′ and x′ ∩m = x ∩m = xn0 ∩m, then

F−1(πx“F1(y0),F2(y0)) 6= F−1(πx′“F1(y0),F2(y0)).

Therefore, f is a choice function with an infinite domain contained in Y .

Theorem 31. In ZF it cannot be proved that C−(VII), C(∆3), and
C(III), even jointly , imply C(∆5) or C−(VII′′).

Proof. We use BCM. By Theorem 30, C−(VII) holds in BCM; it is also
known that E(I, III) holds there (see Truss [Tru74]), as well as E(I,∆3), since
every set can be linearly ordered in BCM. Therefore C(∆3) and C(III) hold
in BCM.

However, it is proved in Truss [Tru74] that A ∈ N is a ∆5-finite set.
Therefore the set {A ∩ (−∞, x) : x ∈ A} is also ∆5, but it has no choice
function (otherwise we can find a countable subset of A). This means that
C(∆5) fails in BCM. Also, ω is VII′′-finite in BCM; since partial choice for
countable families is equivalent to countable choice, and countable choice
fails in BCM, C−(VII′′) fails in BCM.

It is not clear at the moment whether C(V′′) or C(VI′′) hold in BCM or
not. An answer to these questions would refine the result above.

4.3. The embedding theorem. In this section we use Jech and Sochor’s
embedding theorem in an unorthodox way to obtain several results.

Given a set X, we define Pα(X) for every ordinal α by recursion: P0(X)
= X, Pν+1(X) = P(Pν(X)), and Pλ(X) =

⋃
ν<λ Pν(X). Now we state the

embedding theorem:

Theorem 32 (Jech–Sochor). Let U be a model of ZFA + AC, let A be
the set of atoms of U , let M be the kernel (the class of pure sets) of U ,
and let α be an ordinal in U . Then, for every permutation model V ⊂ U
(a model of ZFA), there exists a symmetric extension N ⊃M (a model of
ZF) and a set Ã ∈ N such that

(Pα(A))V is ∈-isomorphic to (Pα(Ã))N .

For a full proof, refer to Jech [Jec73]. Here we will briefly describe the
construction given there, and mention a property that is key for our pur-
poses.

The construction can be described as follows: using forcing, we add to
the kernelM (which is a model of ZFC) one generic set ã of generic subsets
of an ordinal κ for each a ∈ A; the set Ã = {ã : a ∈ A} plays the role of the
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set of atoms. κ is taken to be a regular cardinal such that κ > |Pα(A)| (in
U), and the generic M[G] extension is obtained using forcing conditions of
cardinality less than κ; this way it is guaranteed that the sets ã do not appear
in the first α levels of (Pα(Ã))M[G]. Then N is obtained as a symmetric
submodel ofM[G] defined using suitable adaptations of the group and filter
used to define U .

The reason why sets of sets of ordinals are used, instead of simply using
sets of ordinals, is that sets of ordinals have non-trivial definable relations
between them; for example, any two sets of ordinals can be compared lex-
icographically. For the same reason, there should be no choice function for
the set Ã, otherwise the structure from the sets of ordinals would be lifted
up to the elements of Ã. This fact is stated in the following lemma:

Lemma 33. Let N be the Jech–Sochor transfer of a permutation model
V, as defined above, with Ã being the set in correspondence with the set A of
atoms in V. Then there is no infinite subset of Ã with a choice function.

There is no point in giving here a proof for this lemma without having a
more detailed description of the construction of the embedding model. How-
ever, using the construction as presented in Jech [Jec73], it is not difficult
to write a proof.

Theorem 32 is commonly used through a lemma like the following:

Lemma 34. Let φ be a formula of the form ∃ν ψ(X, ν), where the only
quantifiers allowed in ψ are of the form ∃u ∈ Pν(X) and ∀u ∈ Pν(X).
If V is a permutation model such that V � ∃X φ(X), then there exists a
symmetric model N of ZF such that N � ∃X φ(X).

A sentence like ∃X φ(X) is called boundable. Lemma 34 establishes that
every boundable sentence is transferable, that is, if it is satisfied in a permu-
tation model, there exists a Jech–Sochor symmetric model that also satisfies
it. A few well known boundable sentences are the following:

1. ∃X (X is amorphous).
2. ∃X (X is an infinite II-finite set).
3. ∃X (X is an infinite III-finite set).
4. ∃X (X is an infinite IV-finite set).
5. ∃X (X is an infinite ∆5-finite set).

The examples above, from 1 to 4, appear in Jech [Jec73]. For example 5,
notice that if there is a surjection f from a set X onto X ∪ {X}, and the
rank of X is γ, then the rank of f is at most γ + 3, and f ∈ P3(X). Then
the statement “X is ∆5-finite” can be written as

∀f ∈ P3(X) (∃y ∈ X ∪ {X}, ∀x ∈ X (〈x, y〉 6∈ f)

∨ (∃y, y′ ∈ X ∪ {X}, ∃x ∈ X (〈x, y〉 ∈ f ∧ 〈x, y′〉 ∈ f))).
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More general classes of formulas are transferable. In particular, so-called
injectively and surjectively boundable statements are transferable; see Pincus
[Pin72] for the definitions and a thorough discussion of the subject. We will
not state those transfer theorems here for lack of space. However we will
mention what results are being used, and the relevant references.

As a consequence of the previous lemmas, we obtain the following:

Theorem 35. In ZF:

1. C(Ia) does not imply C−(II),
2. C(∆3) does not imply C−(III),
3. C(III) does not imply C−(∆3),
4. C(III) does not imply C−(∆5),
5. C(IV) does not imply C−(V).

Proof. All five parts will be proved in a similar way. In order to obtain a
model of ZF where C(Q) holds but C−(Q′) fails, we start with a permutation
model V where E(I,Q) holds (and consequently C(Q) holds as well), while
A is an example of an infinite Q′-finite set. Then we take the Jech–Sochor
transfer model N ; in this case the set Ã is an example of an infinite Q′-finite
set without a partial choice function (by Lemma 33). The only detail is to
show that E(I,Q) still holds in N .

For part 1, consider a permutation model referred to as Mathias–Pincus
Model I in Howard and Rubin [HR98]. In the Jech–Sochor transfer of that
model there are no amorphous sets (for the transferability of this statement,
see Pincus [Pin72], 2B3), so C(Ia) holds; however, Ã is a II-finite family
without partial choice functions.

For part 2, consider Mostowski’s ordered model. In the Jech–Sochor
transfer of this model we find that every set is linearly orderable (for the
transferability, see Pincus [Pin72], 4B4), so E(∆3, I) and, consequently,
C(∆3) hold. Nevertheless, Ã is a III-finite family without a partial choice
function.

For parts 3 and 4, take the Second Fraenkel Model. That model satisfies
E(I, III), and this sentence transfers because it is surjectively boundable.
Therefore C(III) holds in N . Still, Ã is a ∆3- and ∆5-finite family without
a partial choice function.

Finally, for part 5, consider the modified Fraenkel model obtained from
a model of ZFA+AC with uncountably many atoms using the group of
all permutations of the set of atoms and countable supports. This model
satisfies E(I, IV), and this sentence transfers since it is injectively bounded.
Therefore, C(IV) holds in the Jech–Sochor transfer of the model. Of course,
Ã is a V-finite family without a partial choice function.



Finiteness and choice 75

C(VII′′)OO
��

// // C−(VII′′)

_����

���
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

AC C(VII)

�������������
//oo

��

�// // C−(VII)

��

��???????????

��

C(VI)

��

�// // C−(VI)

��

C(D)
�// //

��=========== C−(D)

�������������

C(V)

_����

��<<<<<<<<<<<
�// // C−(V)

��~~~~~~~~~~~
_����

E(I, IV) oo // C(IV)

K��������������������

��

�// //

22

C−(IV)

��

t�� ��
4444444444444444

C(VI′′)

������������������
// // C−(VI′′)

��5555555555555555

C(∆5)

��

�// // C−(∆5)

��

C(∆3) //

s�� ��
3333333333333333OO

�� ++

C−(∆3)

J����

















C(V′′)

��

// // C−(V′′)

��
E(I,∆3) C(III)

_����

// //

33

77

C−(III)

_����
C(II) // //

_����

C−(II)

_����
C(Ia) oo //

22

C−(Ia)
ZF // E(I, Ia)oooo

Fig. 2. Implications between principles. Solid arrows represent implications in ZFA. Dou-
ble headed arrows cannot be reversed in ZFA. Arrows with two heads and a bar cannot
be reversed in ZF. The dashed arrow represents an implication that cannot be proved in
ZFA. Dotted arrows represent implications that cannot be proved in ZF.

All the independence results in this section are summarized in Figure 2.
Relations not specified in Figure 2 are open questions; of particular interest
are the following: Does C−(VII) (or C−(VII′′)) imply C(V′′) (or C(∆3) or
C(VI′′))?
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[SV88] L. Spǐsiak and P. Vojtáš, Dependences between definitions of finiteness, ibid. 38
(113) (1988), 389–397.

[Tar24] A. Tarski, Sur les ensembles finis, Fund. Math. 6 (1924), 45–95.
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