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Decidability and definability results
related to the elementary theory of ordinal multiplication

by

Alexis Bès (Créteil)

Abstract. The elementary theory of 〈α;×〉, where α is an ordinal and × denotes ordi-
nal multiplication, is decidable if and only if α < ωω. Moreover if |r and |l respectively de-

note the right- and left-hand divisibility relation, we show that Th〈ωωξ ; |r〉 and Th〈ωξ; |l〉
are decidable for every ordinal ξ. Further related definability results are also presented.

1. Introduction. The study of decidability and definability issues re-
lated to ordinal theories was initiated by Mostowski and Tarski who proved
by means of quantifier-elimination that the class of well-ordered structures
has a decidable elementary theory ([13, 4]; see also [16] where the result is
obtained as a corollary of Rabin’s binary tree theorem).

In the sixties, Büchi ([2], see also [10]) proved that for any ordinal α,
the weak monadic second-order theory of 〈α;<〉 is decidable, from which he
deduced decidability of the elementary theory of 〈2α; +〉, where the ordinal
power 2α is identified with the set of smaller ordinals and + denotes the
graph of ordinal addition restricted to those ordinals (actually the latter
result holds for any ordinal in place of 2α—see Section 3).

In this paper we consider the theory of 〈α;×〉 for an ordinal α, where
× stands for (usual) ordinal multiplication. The decidability of Th〈ω;×〉,
announced by Skolem in [18], was proved by Mostowski [12] as a direct
consequence of his results on direct products of structures and Presburger’s
decidability result for Th〈ω; +〉. Other proofs can be found in [3] and [7].
We prove here that the theory of 〈α;×〉 is decidable if and only if α < ωω.
The undecidability result is obtained by interpreting the theory of the free
monoid with two generators. We also investigate definability of elements in
〈α;×〉.
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We next consider weaker theories (in terms of expressibility), namely
theories of structures 〈α; |r〉 and 〈α; |l〉, where x |r y (resp. x |l y) means that
x is a right-hand (resp. left-hand) divisor of y. We show, using the Feferman–
Vaught technique, that Th〈ωωξ ; |r〉 and Th〈ωξ; |l〉 are decidable for every
ordinal ξ.

2. Ordinal arithmetic. In this section we recall some useful results
on ordinal arithmetic; all of them can be found in Sierpiński’s book [17,
Chap. XIV].

Proposition 1 (Cantor’s normal form for ordinals). Every ordinal
α > 0 can be uniquely written as

α = ωα1a1 + . . .+ ωαkak

where α1, . . . , αk is a decreasing sequence of ordinals, and 0 < ai < ω.

Throughout the paper, we will use the abbreviation “CNF” for “in Can-
tor’s normal form”. The exponent α1 is the degree of α and will be denoted
by deg(α).

Proposition 2. Let α = ωα1a1 + . . .+ωαkak and β = ωβ1b1 + . . .+ωβlbl
be two ordinals > 0 (CNF ).

• If α1 < β1 then α+ β = β.
• If α1 ≥ β1 and αj = β1 for some j, then

α+ β = (ωα1a1 + . . .+ ωαj−1aj−1) + ωαj (aj + b1) + (ωβ2b2 + . . .+ ωβlbl).

• If α1 ≥ β1 and αj 6= β1 for every j, then

α+ β = (ωα1a1 + . . .+ ωαmam) + (ωβ1b1 + . . .+ ωβlbl)

where m is the greatest index for which αm > β1.

In what follows we shall use the following corollary of Proposition 1.

Corollary 3. Every ordinal α > 0 can be uniquely written as α =
ωα0α1 where α1 is a successor ordinal.

We say that an ordinal α > 0 is prime if α cannot be written as the
product of two ordinals< α; an equivalent definition is that α admits exactly
two right-hand divisors. One proves that there are three kinds of prime
ordinals: natural prime numbers < ω, ordinals of the form ωλ + 1 for some
λ > 0, and ordinals of the form ωω

η
for some ordinal η.

The unique factorization theorem for natural numbers no longer holds
for ordinals (we have e.g. (ω+ 1) · ω = ω · ω); however, if we add conditions
on the succession of prime factors we get the following result, due to Jacobs-
thal [9]:
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Proposition 4. Every ordinal α > 0 can be written in a unique way as

α = (ωω
τ1 )n1 . . . (ωω

τs )nsmt(ωλt +1)mt−1 . . . (ωλ2 +1)m1(ωλ1 +1)m0(1)

where s, t < ω, τ1, . . . , τs is a decreasing sequence of ordinals, 0 < ni < ω,
0 < mi < ω and λi > 0.

The prime ordinals ωω
τi , ωλt + 1, and the primes < ω which divide at

least one of the mi will be called prime factors of α.
The form (1) can be easily deduced from the normal form of α:

Proposition 5. If α = ωα1a1+. . .+ωαkak and αk = ωτ1n1+. . .+ωτsns
then

α = (ωω
τ1 )n1 . . . (ωω

τs )nsak(ω
αk−1−αk + 1)ak−1

· (ωαk−2−αk−1 + 1)ak−2 . . . (ω
α1−α2 + 1)a1.

The next proposition gives the normal form of βγ from those of β and γ.

Proposition 6. Let β = ωβ1b1 + . . .+ωβkbk and γ = ωγ1g1 + . . .+ωγlgl
be two ordinals > 0.

• If γ is finite then βγ = ωβ1b1gl + ωβ2b2 + . . .+ ωβkbk.
• If γ is a transfinite successor ordinal then

βγ = ωβ1+γ1g1 +ωβ1+γ2g2 + . . .+ωβ1+γl−1gl−1 +ωβ1b1gl+ωβ2b2 + . . .+ωβkbk.

• Otherwise γ is a limit ordinal , and then

βγ = ωβ1+γ1g1 + ωβ1+γ2g2 + . . .+ ωβ1+γlgl.

3. The theory of ordinal multiplication. Let us specify our logi-
cal conventions and notations. We work within first-order predicate calcu-
lus without equality, and confuse (most of the time) formal symbols and
their interpretations. We shall consider structures with domain an ordinal
α, identified with the set of ordinals β < α, and predicates that correspond
to restrictions to α of relations defined on the class of ordinals, such as +
and ×, interpreted as the graph of ordinal addition and multiplication, or
x |r y and x |l y which are interpreted as “x is a right-hand divisor of y” and
“x is a left-hand divisor of y”, respectively. For simplicity we will use a single
symbol for each restriction of a relation, e.g. we simply write 〈α;×〉.

The choice to consider × as a ternary relation yields slightly more general
results, because if × was considered as a binary function then α must be
closed under this function, which holds if and only if α is of the form ωω

ξ
.

Given an L-structure 〈α;L〉, and an n-ary relation R over an ordinal α,
recall that R is elementary definable (briefly: definable) in 〈α;L〉 if there
exists an L-formula ϕ with n free variables such that R = {(a1, . . . , an) :
〈α;L〉 |= ϕ(a1, . . . , an)}. Given a structureM, we denote by Df(M) the set
of elements definable in M, and by Th(M) the elementary theory of M.
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Let us explain the remark of our Introduction, that Büchi’s decidability
result for Th(2α; +) for every ordinal α still holds for any ordinal
β > 0 in place of 2α. Indeed, let β = ωβ1b1 + . . . + ωβnbn be an ordinal
> 0 (CNF). Proposition 2 allows us to show first that Th(β; +) reduces to
Th(

∏n
i=1〈ωβibi; +〉) (by induction on n), and then that Th(ωβibi; +) reduces

to Th(ωβi ; +) (i = 1, . . . , n). Thus it suffices to prove that Th(ωγ; +) is de-
cidable for every ordinal γ; this is obvious for γ = 0, and for γ > 0 we can
use Büchi’s result since ωγ = 2ωγ.

We first recall some of Ehrenfeucht’s results [5] on ordinal theories.
Given α, β, γ > 0, we say that α and β are congruent modulo γ, and

write α ∼γ β if either (α = β and α < γ), or (α = γ ·α′+δ and β = γ ·β′+δ
for some α′, β′ > 0, δ < γ).

We say that an ordinal β is definable in the class of L-structures {〈α;L〉 :
α ordinal} if there exists an L-formula ϕ(x) such that for every α > β,
〈α;L〉 |= ϕ(x) if and only if x = β.

Theorem 7 ([5], see also [19]). (i) Let α, β > 0 be two ordinals. If α
∼ωω β then 〈ωωα ; +,×〉 ≡ 〈ωωβ ; +,×〉.

(ii) An ordinal β is definable in {〈α; +〉 : α ordinal} if and only if
β < ωω

ω
.

(iii) An ordinal β is definable in {〈α; +,×〉 : α ordinal} if and only if
β < ωω

ωω

.

Let us now turn to the theory of 〈α;×〉 for an ordinal α. As an immediate
consequence of Theorem 7(i), we get the following.

Corollary 8. Given two ordinals α, β > 0, if α ∼ωω β then 〈ωωα ;×〉
≡ 〈ωωβ ;×〉.

Proposition 7(iii) states in particular that for any ordinal α, every con-
stant c < min(α, ωω

ωω

) is definable in the structure 〈α; +,×〉. As one could
expect, the situation changes if we remove +:

Proposition 9. (i) For every ordinal ξ, let Cξ denote the set of ordinals
< ωξ of the form ωβ1 + . . .+ ωβk with β1 > . . . > βk. Then Df(ωξ;×) ⊆ Cξ,
and Df(ωξ;×) ∩ ωωω

ω

= Cξ ∩ ωω
ωω

.
(ii) For every ordinal α ≥ ω, there exists c < ω which is not definable in

〈α;×〉.
Proof. (i) First consider an ordinal β < min(ωξ, ωω

ωω

) such that β 6∈ Cξ.
This means that β = ωβ1b1 + . . . + ωβkbk (CNF) with bi ≥ 2 for some i.
Let us show that β is not definable in 〈ωξ;×〉. Let p, q < ω be two distinct
primes such that p | bi and q - bi. Consider f : ωξ → ωξ defined as follows:
for every γ = ωγ1g1 + . . .+ ωγkgk < ωξ (CNF), f(γ) is the ordinal obtained
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from γ by permuting the p- and q-valuation in each gi. One checks that f is
a permutation of ωξ, and Proposition 6 yields that f(xy) = f(x)f(y) for all
ordinals x, y < ωξ. Therefore f is an automorphism of the structure 〈ωξ;×〉;
however, the very definition of p and q shows that f(β) 6= β, thus β is not
definable in 〈ωξ;×〉.

Now consider an ordinal β < min(ωξ, ωω
ωω

) in Cξ. One has β = ωβ1 +
. . .+ ωβk with β1 > . . . > βk. Let us prove that β is definable in 〈ωξ;×〉. It
follows from Proposition 5 that one can write β as

β = ωβ0(ωλt + 1) . . . (ωλ2 + 1) · (ωλ1 + 1)

with all λi > 0. Therefore it suffices to show that every ordinal of the
form ωα with α < min(ξ, ωω

ω
), and every ordinal of the form ωλ + 1 with

1 ≤ λ < min(ξ, ωω
ω
), are definable in 〈ωξ;×〉.

In order to do this, we shall define in 〈ωξ;×〉 auxiliary relations and
constants. Indeed, one first defines |r and |l, the equality relation, then the
constants 0 and 1, and then:

• “x is a prime” (using the fact that x has exactly two right-hand divi-
sors),
• “x is of the form ωω

ξ
” (x is a prime with at least three left-hand

divisors),
• the constant ω (the only prime which is both a left-hand and right-hand

divisor of all primes ωω
ξ
),

• “x is a power of ω” (every prime which is a left divisor of x is an ωω
ξ
),

• “x is a prime < ω” (which is equivalent to “x is a prime 6= ω and
x |l ω”) ,
• “x is a prime of the form ωλ+1 for some λ > 0” (other kinds of primes

were defined above).

Now by Theorem 7(ii), every ordinal α < min(ξ, ωω
ω
) is definable in

〈ξ; +〉, thus one can define each ωα using the relation “x is a power of ω”
and ×.

If ξ is a limit ordinal then for every λ such that 1 ≤ λ < min(ξ, ωω
ω
), the

ordinals ωλ and ωλ+1 are definable in 〈ωξ;×〉, and ωλ + 1 can be defined as
the unique ordinal γ of the form ωλ

′
+1 (for some λ′ > 0) such that γ |l ωλ+1

and γ -l ωλ.
If ξ is a successor ordinal, say ξ = ξ′+ 1, then the same arguments show

that every ordinal ωλ + 1 with 1 ≤ λ < min(ξ′, ωω
ω
) is definable. Moreover

if ξ′ < ωω
ω

then ωξ
′
+ 1 can be defined as the unique ordinal of the form

ωλ
′
+ 1 (for some λ′ > 0) which is not a left-hand divisor of any power of ω.
(ii) Let α = ωα1a1 + . . . + ωαkak (CNF). Consider the mapping f we

defined in (i), with ξ = α1 + 1, and with two primes p, q chosen such that
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max(ai) < p < q < ω; this condition ensures that the restriction of f to α is
one-one. We have f(p) = q 6= p thus p (and q) is not definable in 〈α;×〉.

From Proposition 9(ii) we deduce the following.

Corollary 10. For every ordinal α ≥ ω, the relations < and + are not
definable in 〈α;×〉.

We now state the main result of the section.

Theorem 11. Given an ordinal α, the elementary theory of 〈α;×〉 is
decidable if and only if α < ωω.

Proof. Case 1: α < ωω. We show that Th〈α;×〉 is reducible to Th〈ω;
×, (n)n<w〉 (by “(n)n<w” we mean that we add a constant symbol n for each
n < ω), which was shown to be decidable by Mostowski [12].

For this let us write α = ωnan + ωn−1an−1 + . . .+ ω0a0 with all ai < ω
and an > 0. To each β < α, written β = ωnbn + ωn−1bn−1 + . . . + ω0b0
(bi < ω), we associate the (n+1)-tuple of integers ψ(β) = (b0, . . . , bn). Then
we shall prove the following two facts:

(1) There exists a formula ϕ(x0, . . . , xn) in the language {×, (n)n<w}
such that

〈ω;×, (n)n<w〉 |= ϕ(b0, . . . , bn)

if and only if (b0, . . . , bn) = ψ(β) for some β < α.
(2) There exists a formula ϕ′(x0, . . . , xn, y0, . . . , yn, z0, . . . , zn) in the lan-

guage {×, (n)n<w} such that

〈ω;×, (n)n<w〉 |= ϕ′(b0, . . . , bn, g0, . . . , gn, d0, . . . , dn)

if and only if (b0, . . . , bn) = ψ(β), (g0, . . . , gn) = ψ(γ) and (d0, . . . , dn)
= ψ(δ) for some ordinals β, γ, δ < α such that βγ = δ.

These two facts will ensure that to each sentence θ in the language
{×} one can associate in an effective way a sentence θ∗ in the language
{×, (n)n<w} such that 〈α,×〉 |= θ if and only if 〈ω;×, (n)n<w〉 |= θ∗ (this
construction is rather classical and will be omitted).

To prove (1) one uses the fact that β < α if and only if ψ(β) <lex ψ(α)
where <lex denotes lexicographical order; from this observation one easily
gets the required formula ϕ(x0, . . . , xn) (using only constants).

For (2), the formula ϕ′ expresses Proposition 6 in terms of (b0, . . . , bn),
(g0, . . . , gn) and (d0, . . . , dn). We let the reader convince himself that this
can be done within the language {×, (n)n<w}; observe that the cases “γ
finite”,“γ successor ordinal” and “γ limit ordinal” in Proposition 6 can be
easily expressed in terms of (g0, . . . , gn) using × and the constant 0, and
moreover that the formulas of Proposition 6 show that each di can be ob-
tained from (b0, . . . , bn) and (g0, . . . , gn) by shifting and multiplying coeffi-
cients.
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Case 2: α ≥ ωω. We interpret in Th〈α;×〉 the theory of concatenation
of words over the alphabet Σ = {1, 2}, which was shown to be undecidable
by Quine [15]. We denote by Σ∗ the set of finite words over Σ, by Λ the
empty word and by • the concatenation operation.

Consider the function ϕ : Σ∗ → α which maps every nonempty word
m = m0 •m1 • . . . •mn (with mi ∈ Σ) to

ϕ(m) = (ωm0 + 1)(ωm1 + 1) . . . (ωmn + 1).

Moreover set ϕ(Λ) = 1. It follows from Proposition 4 that ϕ is an isomor-
phism from 〈Σ∗; •〉 to 〈ϕ(Σ∗);×〉. Thus we only need to define the set ϕ(Σ∗)
in 〈α;×〉 (note that ϕ(Σ∗) ⊂ α).

From the proof of Proposition 9(i) we know that the constants ω+1 and
ω2 + 1 are definable in 〈α;×〉. Now we can define the binary relation “x is
a successor ordinal and y is a prime factor of x” (which is equivalent to “y
is prime, ω is not a left-hand divisor of x, and there exists z such that z |l x
and y |r z), and finally ϕ(Σ∗), as the set of successor ordinals admitting only
ω + 1 and ω2 + 1 as prime factors.

4. The theories of 〈ωωξ ; |r〉 and 〈ωωξ ; |l〉. Theorem 11 can be sharp-
ened in the following sense:

Theorem 12. Given an ordinal α, the elementary theory of 〈α; |r, |l〉 is
decidable if and only if α < ωω.

Proof (sketch). The case α < ωω is obvious, as |l and |r are definable
in 〈α;×〉. The undecidability for α ≥ ωω can be proved by interpreting in
〈α; |r, |l〉 the behaviour of a two-counter automaton whose halting problem
is undecidable ([11], see also [8, Sec. 7.8]). Indeed, consider a sequence of
successive configurations of such a machine (we deal with a machine with
empty input, and counters with nonnegative values), say

(c0, c
′
0, q0), (c1, c

′
1, q1), . . . , (cn, c′n, qn)

where (ci, c′i, qi) is a triple of nonnegative integers such that ci, c′i correspond
to the content of the two counters and qi encodes the state of the machine
at the ith step. The idea is to encode this sequence by any ordinal of the
form

pc01 p
c′0
2 p

q0
3 (ω + 1)pc11 p

c′1
2 p

q1
3 (ω + 1) . . . (ω + 1)pcn1 p

c′n
2 p

qn
3

where p1, p2, p3 denote three distinct primes < ω.

The above result suggests the question whether undecidability could oc-
cur even in the presence of a single relation |r or |l. The aim of this section
is to show this is not the case: we prove that for every ordinal ξ, Th〈ωωξ ; |r〉
and Th〈ωξ; |l〉 are decidable.
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We shall use the notion of generalized weak power of structures, which
was introduced by Feferman and Vaught [6, Section 9]. Let us recall some
related notations and results.

Let A,B be two nonempty sets, and let e ∈ A. We denote by S+(B)
(respectively S∗(B)) the set of finite (resp. finite or cofinite) subsets of B. We
denote by A(B)

e the set of functions f : B → A such that {b ∈ B : f(b) 6= e}
is finite.

Let A = 〈A;RA, e〉 be a structure in the language LA = {RA, e} where
e is interpreted as the constant e, and RA is a set of relations over A (A is
the “factor structure”).

Let B = 〈S∗(B);⊆,FIN,RB〉 be a structure in the language LB =
{⊆,FIN,RB} where ⊆ and FIN are interpreted respectively as the inclusion
relation and the relation “to be a finite set”, and RB is a set of relations
over S∗(B) (B is the “index structure”).

Definition 13. Let R be a k-ary relation over A(B)
e ; we say that R

is accessible in (A,B) if there exist an LB-formula G(X1, . . . ,Xl) and l
LA-formulas F1, . . . , Fl with k free variables such that for every k-tuple
(f1, . . . , fk) of elements of A(B)

e , R(f1, . . . , fk) holds if and only if

B |= G(T1, . . . , Tl)

where

Ti = {x ∈ B : A |= Fi(f1(x), . . . , fk(x))} for every i ∈ {1, . . . , l}.
With the above notations, if R is a set of relations over A(B)

e , we say
that the structure 〈A(B)

e ;R〉 is a generalized weak power of A relative to B
if every relation of R is accessible in (A,B).

Remark. Mostowski’s notion of weak power [12] corresponds to the case
B = 〈S∗(B);⊆,FIN〉, i.e. to the “simplest” index structure.

Theorem 14 ([6]). (i) With the above notations, if Th(A) and Th(B)
are decidable and C is a generalized weak power of A relative to B then the
elementary theory of C is decidable.

(ii) The decision problem for Th(B) reduces to the one for Th(S+(B);
⊆,R′B) where R′B corresponds to the relations of RB restricted to S+(B).

In what follows we shall deal with a single class of index structures,
namely the structures

Iα = 〈S∗(α);⊆,FIN,=,SINGL, ISEG,≺,U,EMPTY〉
where

• α is an ordinal,
• Iα |= SINGL(X) iff X is a singleton;
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• Iα |= ISEG(X) iff X is an initial segment of α;
• Iα |= X ≺ Y iff (either X or Y is empty, or X,Y are nonempty finite

sets and Sup(X) < Inf(Y ));
• Iα |= U(X,Y,Z) iff X ∪ Y = Z;
• Iα |= EMPTY(X) iff X is empty.

Proposition 15. The elementary theory of Iα is decidable for every
ordinal α.

Proof. By Theorem 14(ii) it suffices to show that the theory of

I ′α = 〈S+(α);⊆,=,SINGL, ISEG,≺,U,EMPTY〉
is decidable. Now by Büchi [1, 2] the weak monadic second-order theory of
〈α,<〉 is decidable for every ordinal α, and it is not difficult to check that
Th(I ′α) is reducible to the latter theory.

We first deal with the theory of 〈ωξ; |l〉 (for any ordinal ξ).

Lemma 16. Let β =
∑k

i=1 ω
βibi > 0 (CNF ). An ordinal α > 0 is a

left-hand divisor of β if and only if either

(i) deg(α) < βk, or
(ii) α = ωβjc+

∑k
i=j+1 ω

βibi with c | bj.
Proof. Let us write α = ωα0α1 where α1 is a successor ordinal, and let

β′ be such that β = ωβkβ′. One has α |l β if and only if there exist an ordinal
γ0 and a successor ordinal γ1 such that

ωα0α1ω
γ0γ1 = ωβkβ′.(2)

If γ0 ≥ 1 then (2) is equivalent to

ωα0+deg(α1)+γ0γ1 = ωβkβ′,

i.e. to
ωdeg(α)+γ0γ1 = ωβkβ′,

which has a solution if and only if deg(α) < βk.
If γ0 = 0 then (2) is equivalent to

ωα0α1γ1 = ωβkβ′,

which has a solution if and only if α0 = βk and α1 |l β′. Now from β = ωβkβ′

it follows that

β′ = bk(ωβk−1−βk + 1)bk−1(ωβk−2−βk−1 + 1)bk−2 . . . (ωβ1−β2 + 1)b1,

which, by Proposition 4, yields that α1 must have the form

α1 = bk(ω
βk−1−βk + 1)bk−1(ωβk−2−βk−1 + 1)bk−2 . . . (ω

βj−βj+1 + 1)c
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for some c < ω which divides bj . This together with α = ωβkα1 leads to

α = ωβjc+
k∑

i=j+1

ωβibi.

Proposition 17. For every ordinal ξ, 〈ωξ; |l〉 is isomorphic to a weak
generalized power of 〈ω; |〉 relative to Iξ.

Proof. Denote by Nξ the set of functions f : ξ → ω such that f(γ) = 0

for all but finitely many γ (i.e. Nξ = ω
(ξ)
0 with the previous notations).

Consider c : ωξ → Nξ which maps every α < ωξ to the function c(α) ∈ Nξ

defined as follows: for every γ < ξ, [c(α)](γ) is the coefficient of ωγ in the
normal form of α. The mapping c is 1-1, thus there exists a binary relation
DIVL on Nξ such that 〈ωξ; |l〉 and 〈Nξ; DIVL〉 are isomorphic. Let us show
that 〈Nξ; DIVL〉 is a generalized weak power of 〈ω; |〉 relative to Iξ. For
this one must prove that DIVL is accessible in (〈ω; |〉, Iξ). This is done by
translating, via the mapping c, the conditions given by the previous lemma.
For f, f ′ ∈ Nξ, we have

〈Nξ; DIVL〉 |= DIVL(f, f ′)

if and only if

Iξ |=
¬EMPTY(X1) ⇒
{¬EMPTY(X2)∧

[X2 ≺ X1
}

case(i)

∨
(U(X2,X4,X5) ∧X2 ≺ X3 ∧X4 ≺ X5

∧ ¬EMPTY(X5) ⇒ SINGL(X5))]}

}
case (ii)

where
X1 = {γ < ξ : f ′(γ) 6= 0},
X2 = {γ < ξ : f(γ) 6= 0},
X3 = {γ < ξ : f(γ) = 0 ∧ f ′(γ) 6= 0},
X4 = {γ < ξ : f(γ) = f ′(γ) ∧ f(γ) 6= 0},
X5 = {γ < ξ : f(γ)|f ′(γ) ∧ f(γ) 6= f ′(γ) ∧ f ′(γ) 6= 0}.

Moreover one easily finds formulas F1, . . . , F5 in the language {|} such that
Xj = {γ < ξ : 〈ω; |〉 |= Fj(f(γ), f ′(γ))} for j = 1, . . . , 5.

Theorem 18. For every ordinal ξ, Th 〈ωξ; |l〉 is decidable.

Proof. By Proposition 15, Th(Iξ) is decidable; moreover Th(ω; |) is de-
cidable as it is reducible to Th(ω;×) which is decidable by [12]. Thus by
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Proposition 17 and Theorem 14 we see that Th(Nξ; DIVL) is decidable, from
which the result follows.

We shall now consider the theory of 〈ωωξ ; |r〉 for an ordinal ξ, and prove
that it is decidable. The proof shares some ideas with the previous one for
〈ωξ; |l〉.

Lemma 19. Let α = ωα0α1, β = ωβ0β1, where α1, β1 are successor ordi-
nals. Then α |r β if and only if one of the following conditions holds:

(i) α0 = 0 and α1 |r β1;
(ii) α0 > 0, β0 = γ + α0 for some γ, and α1 = β1.

Proof. One has α |r β if and only if

ωβ0β1 = ωγ0γ1ω
α0α1(3)

for some ordinal γ0 and some successor ordinal γ1.
If α0 = 0 then (3) is equivalent to ωβ0β1 = ωγ0γ1α1, which by Corollary 3

admits a solution if and only if α1 |r β1.
Now if α0 > 0 then (3) is equivalent to ωβ0β1 = ωγ0+deg(γ1)+α0α1, which

has a solution if and only if β0 = γ + α0 for some γ, and α1 = β1.

Lemma 20. For every ordinal ξ, the decision problem for Th(ωω
ξ
; |r)

reduces to the one for Th([ωω
ξ
]S; |r), where [ωω

ξ
]S denotes the set of succes-

sor ordinals < ωω
ξ
.

Proof. A first observation is that the decision problem for Th(ωω
ξ
; |r)

reduces to the one for Th(ωω
ξ \ {0}; |r). Indeed using the logical equiva-

lences (0 |r x ⇔ 0 |r 0) and (x |r 0 ⇔ x = 0), one shows rather easily that
any {|r}-sentence θ is logically equivalent to a {|r}-sentence θ′ in which all
quantifications are relativized to the (definable) set ωω

ξ \{0}. Moreover one
can obtain θ′ from θ in a recursive way.

Now observe that the function τ : ωω
ξ \ {0} → ωξ × [ωω

ξ
]S which maps

any ordinal α = ωα0α1 > 0, where α1 is a successor ordinal, to the couple
(α0, α1), is one-one. This together with the “simple” conditions of the pre-
vious lemma allows us to see 〈ωωξ \ {0}; |r〉 as a product of two structures,
in the following sense: let R1, R2 be two binary relational symbols, and let
M1,M2 be two {R1, R2}-structures with respective domains ωξ and [ωω

ξ
]S,

and where R1, R2 are interpreted as follows:

• M1 |= R1(x, y) if and only if x = 0,
• M2 |= R1(x, y) if and only if x |r y,
• M1 |= R2(x, y) if and only if there exists γ < ωξ such that x+ γ = y,
• M2 |= R2(x, y) if and only if x = y.
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Let N = M1 × M2. It follows from the previous lemma that given any
c1, c2 ∈ |N |,

N |= R1(c1, c2) ∨R2(c1, c2)

if and only if
〈ωωξ \ {0}; |r〉 |= τ−1(c1) |r τ−1(c2).

Thus Th(ωω
ξ \ {0}; |r) reduces to Th(N ), which is decidable if Th(M1)

and Th(M2) are (by [12]). The theory of M1 is an unessential exten-
sion of Th(ωξ; +) which is decidable by [2], and Th(M2) is interpretable
in Th([ωω

ξ
]S; |r).

We shall use again the Feferman–Vaught theorem, with the following
class of factor structures: for every ordinal ξ, set

Eξ = 〈ωξ × (ω \ {0}); =1,ZERO1, |2,ONE2〉
where

• Eξ |= h =1 h′ if and only if π1(h) = π1(h′) (πi denotes the ith pro-
jection),
• Eξ |= ZERO1(h) if and only if π1(h) = 0,
• Eξ |= h |2 h′ if and only if π2(h) |π2(h′)
• Eξ |= ONE2(h) if and only if π2(h) = 1.

Proposition 21. For every ordinal ξ, Th([ωω
ξ
]S; |r) can be interpreted

in a weak generalized power of Eξ relative to Iω.

Proof. By Proposition 4 every successor ordinal β < ωω
ξ

can be written
in a unique way as

β = (ωλn + 1)bn(ωλn−1 + 1)bn−1 . . . (ωλ0 + 1)b0(4)

with 0 < bi < ω (i = 0, . . . , n), λn ≥ 0, and λj > 0 whenever j < n.
Consider the set Mξ of functions from ω to the set of couples of ordinals

in ωξ × (ω \ {0}) such that f(n) 6= (0, 1) for finitely many n (i.e. Mξ =

(ωξ × (ω \ {0}))(ω)
(0,1) with our notations). Consider d : [ωω

ξ
]S → Mξ which

maps every β ∈ [ωω
ξ
]S to the function d(β) defined as follows: if β is in the

form (4) then we set [d(β)](i) = (λi, bi) for every i ≤ n and [d(β)](i) = (0, 1)
whenever i > n. The mapping d is not onto, but is injective, thus if we
denote by Dξ the range of d, there exists a binary relation DIVR such that
〈[ωωξ ]S; |r〉 ∼= 〈Dξ; DIVR〉. We shall prove that 〈Mξ;Dξ,DIVR〉 (where Dξ

is to be understood as a unary relation) is a weak generalized power of Eξ
relative to Iω, which will yield the required result. Note that it is sufficient to
show that DIVR is accessible in (Eξ, Iω), sinceDξ is definable in 〈Mξ; DIVR〉.

In order to show that DIVR is accessible in (Eξ, Iω), consider an ordinal
β ∈ [ωω

ξ
]S written in the form (4). Proposition 4 yields that α ∈ [ωω

ξ
]S is a
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right-hand divisor of β if and only if α can be written as

α = cj(ωλj−1 + 1)bj−1 . . . (ωλ0 + 1)b0(5)

where j ≤ n and cj | bj . Therefore α |r β if and only if d(α) and d(β) satisfy
the following conditions:

There exists j < ω such that [d(α)](i) = [d(β)](i) for every i < j, and
either

• [d(α)](k) = (0, 1) for every k ≥ j, or
• [d(α)](j) = (0, a), [d(β)](j) = (λ, b) with a | b and b 6= 1, and [d(α)](k)

= (0, 1) whenever k > j.

We now translate these conditions into the appropriate language: given
f, f ′ in Mξ, one has

〈Mξ; DIVR〉 |= DIVR(f, f ′)

if and only if

Iω |= U(T1, T2, T3) ∧ ISEG(T1) ∧ ISEG(T3) ∧ (SINGL(T2) ∨ EMPTY(T2))

∧U(T4, T5, T6) ∧ ISEG(T4) ∧ ISEG(T6) ∧ (SINGL(T5) ∨ EMPTY(T5))

with

T1 = {i < ω : f ′(i) = (a, b) for some a, b ≥ 1},
T2 = {i < ω : f ′(i) = (0, a) for some a ≥ 2},
T3 = {i < ω : f ′(i) 6= (0, 1)},
T4 = {i < ω : f(i) = f ′(i) and f(i) 6= (0, 1)},
T5 = {i < ω : f(i) = (0, b), f ′(i) = (λ, a) with b | a and b 6= 1},
T6 = {i < ω : f(i) 6= (0, 1)}.

Moreover one easily finds formulas F1, . . . , F6 in the language of Eξ such
that Tj = {i < ω : Eξ |= Fj(g(i))} for j = 1, . . . , 6.

The first line in the above formula expresses that f ′ ∈ Dξ, and the sec-
ond one translates the above italic conditions (moreover the whole formula
implies f ∈ Dξ).

Proposition 22. The theory of Eξ is decidable.

Proof. One can use the same trick as in Lemma 20 and show that Th(Eξ)
is interpretable in the product of two structures with respective domains ωξ

and ω \ {0}. This allows us to reduce the problem to showing decidability
of Th(ωξ; =, 0) and Th(ω \ 0; |, 1). The first theory is, apart from the trivial
case ξ = 0, essentially the theory of equality over an infinite set, which is
decidable, and the second one reduces to Th(ω;×), which is again decidable
by [12].
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From the previous results and Theorem 14 we finally deduce:

Theorem 23. For every ordinal ξ, Th〈ωωξ ; |r〉 is decidable.

5. Conclusion. We shall conclude with two questions related to the
previous results.

First of all, while the spirit of the present paper is rather “syntactic”, it
would be interesting to exhibit convenient axiom systems for the previous
theories.

Another interesting related problem has to do with multiplicative equa-
tions over ordinals. An example is the equation xy = yx which was studied
by Sierpiński [17] (he proved that the solutions are: either x, y < ω, or
xn = ym for some m,n < ω). Is it decidable whether a finite system of
multiplicative equations (with constants) has a nontrivial solution?
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