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The covering number for category
and partition relations on Pω(λ)

by

Pierre Matet (Caen)

Abstract. We show that cov(M) is the least infinite cardinal λ such that Pω(λ) (the
set of all finite subsets of λ) fails to satisfy a certain natural generalization of Ramsey’s
Theorem.

0. Introduction. The covering number for category (cov(M)) is known
to play an important part in the study of partition properties of ideals on
ω. Namely, we have K+ → (K+)2 for every ideal K on ω with less than
cov(M) generators (see [14]). On the other hand, there exists an ideal K
on ω generated by cov(M) sets such that K+ 9 (K+, ω)2 (see [10]). In the
present paper, we investigate the relationship between cov(M) and partition
properties for ideals on Pω(λ), λ an infinite cardinal. The partition relation
we are mostly interested in, J+ ω→ (J+)2, is of a mixed type, in the sense

that its definition involves functions F : ω×Pω(λ)→ 2. We show, as above,
that J+ ω→ (J+)2 for every fine ideal J on Pω(λ) generated by less than

cov(M) sets. In particular, I+
ω,λ

ω→ (I+
ω,λ)2 for every λ < cov(M), where

Iω,λ denotes the smallest fine ideal on Pω(λ). Observe that for λ = ω,
I+
ω,λ

ω→ (I+
ω,λ)2 is just a reformulation of Ramsey’s Theorem [13]. We also

show that I+
ω,λ

ω9 (I+
ω,λ)2 for all λ ≥ cov(M). This result emphasizes the

heterogeneity of Iω,λ, i.e. the fact that the members of I+
ω,λ are not all alike,

since it was shown in [8] that for every λ, there is a fine ideal J on Pω(λ)
such that J+ ω→ (J+)2.

The paper is organized as follows. The two results mentioned above are
to be found in Sections 3 and 4. Section 1 deals with notation and basic
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definitions. It is shown in Section 2 that Iω,λ is a weak χ-point if and only
if λ < cov(M). We prove in Section 5 that cov(M) = 2λ if and only if every
fine ideal J on Pω(λ) with less than 2λ generators can be extended to a
prime ideal K on Pω(λ) such that K+ ω→ (K+)2. A companion result deals

with extension to a prime χ-point. Finally, in Section 6 we derive another
remarkable property shared by all fine ideals J on Pω(λ) which are generated
by less than cov(M) sets.

1. Notation. In this section we review some basic definitions.
Given an infinite set S, an ideal on S is a collection J of subsets of S such

that (i) {s} ∈ J for every s ∈ S, (ii) P (A) ⊆ J for all A ∈ J , (iii) A∪B ∈ J
whenever A,B ∈ J , and (iv) S 6∈ J .

Let J be an ideal on S.

• cof(J) denotes the least cardinality of any X ⊆ J such that J =⋃
A∈X P (A).
• J is prime if J ∩ {A,S − A} 6= ∅ for all A ⊆ S.
• J+ = P (S)− J and J∗ = {A ⊆ S : S −A ∈ J}.
• J |A = {B ⊆ S : B ∩ A ∈ J} for all A ∈ J+.

Let K be an ideal on ω.

• K is weakly selective if given A ∈ K+ and Bn ∈ K for n ∈ ω, there is
C ∈ K+ ∩ P (A) such that m 6∈ Bn for all n,m ∈ C with n < m.
• K is a P -point if given Bn ∈ K for n ∈ ω, there is C ∈ K∗ such that

C ∩Bn is finite for every n ∈ ω.
• K is a Q-point if given g : ω → ω, there is A ∈ K∗ such that g(n) ≤ m

for all n,m ∈ A with n < m.
• K+ → (K+)2 asserts that given A ∈ K+ and F : ω × ω → 2, there is

B ∈ K+ ∩ P (A) such that F is constant on {(n,m) ∈ B ×B : n < m}.
• K+ 9 (K+)2 means that K+ → (K+)2 does not hold.
• For each ordinal α with 2 ≤ α ≤ ω, K+ → (K+, α)2 means that given

A ∈ K+ and F : ω × ω → 2, there is either B ∈ K+ ∩ P (A) such that F is
identically 0 on {(n,m) ∈ B × B : n < m}, or else ni ∈ A for i < α such
that nj < ni for all j < i, and F is identically 1 on {(nj , ni) : j < i < α}.
• K+ 9 (K+, α)2 is the negation of K+ → (K+, α)2.
• For any set A, Pω(A) denotes the collection of all finite subsets of A.
• λ is a fixed infinite cardinal.
• â = {b ∈ Pω(λ) : a ⊆ b} for every a ∈ Pω(λ).
• Iω,λ denotes the set of all A ⊆ Pω(λ) such that A ∩ â = ∅ for some

a ∈ Pω(λ).
• An ideal J on Pω(λ) is fine if Iω,λ ⊆ J . It is easy to see that cof(J) ≥ λ

for every fine ideal J on Pω(λ). As is readily verified, Iω,λ is a fine ideal on
Pω(λ) and cof(Iω,λ) = λ.
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• Given two sets X and Y , Y X denotes the set of all functions from X
to Y . We endow the set 2ω with the product topology, where 2 is given the
discrete topology.
• Os = {f ∈ 2ω : s ⊂ f} for all s ∈ ⋃n∈ω 2n.
• M denotes the collection of all meager subsets of 2ω.
• cov(M) is the least cardinality of any X ⊆M such that 2ω = ∪X.
• d is the least cardinality of any F ⊆ ωω with the property that for

every g ∈ ωω, there is f ∈ F such that g(n) ≤ f(n) for all n ∈ ω. It is well
known (see e.g. [15]) that ω1 ≤ cov(M) ≤ d.
• dωω,λ is the least cardinality of any family F of functions from ω to

Pω(λ) with the property that for every g : ω → Pω(λ), there is f ∈ F such
that g(n) ⊆ f(n) for all n ∈ ω. It is shown in [12] that dωω,ω = d, and that
dωω,λ = max{d, u(ω1, λ)} if λ > ω, where u(ω1, λ) is the least cardinality of
any family X of countable subsets of λ such that for every countable a ⊆ λ,
there is b ∈ X with a ⊆ b.

2. Weak χ-points. In this section we introduce the property of being
a weak χ-point and determine when Iω,λ has this property.

An ideal J on Pω(λ) is a weak χ-point if given A ∈ J+ and g : ω → Pω(λ),
there is C ∈ J+ ∩ P (A) such that g(max(a ∩ ω)) ⊆ b for all a, b ∈ C with
max(a ∩ ω) < max(b ∩ ω).

Lemma 2.1. Let J be a fine ideal on Pω(λ) such that cof(J) < cov(M).
Then J is a weak χ-point.

Proof. Fix A ∈ J+ and g : ω → Pω(λ). Set

An = {a ∈ A : max(a ∩ ω) = n}
for each n ∈ ω. Pick Bα ∈ J for α < cof(J) so that J =

⋃
α<cof(J) P (Bα).

For α<cof(J) and n ∈ ω, let Dn
α be the set of all s ∈ 2n+1 such that s(n) = 1

and there is a ∈ An − Bα with the property that g(m) ⊆ a for all m < n
with s(m) = 1. Given α < cof(J), let Dα =

⋃
n∈ωD

n
α and Uα =

⋃
s∈Dα Os.

Let us show that the open set Uα is dense. Thus let k ∈ ω and p ∈ 2k.
Put y = {m < k : p(m) = 1}. Pick b ∈ A − Bα so that

⋃
m∈y g(m) ⊆ b

and k ≤ max(b ∩ ω). Now define q ⊃ p by dom(q) = max(b ∩ ω) + 1,
q(max(b ∩ ω)) = 1 and q(i) = 0 for all i with k ≤ i < max(b ∩ ω). Then
clearly q ∈ Dmax(b∩ω)

α .
Now select f ∈ ⋂α<cof(J) Uα. For each α < cof(J), pick sα ∈ Dα with

sα ⊂ f . Put
Y = {max(dom(sα)) : α < cof(J)}

and let m0,m1, . . . be the increasing enumeration of Y . Set E0 = Am0 and
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for each l ∈ ω,

El+1 =
{
a ∈ Aml+1 :

⋃

i≤l
g(mi) ⊆ a

}
.

Finally define C =
⋃
l∈ω El. Given α < cof(J), let l be such that

max(dom(sα)) = ml. Then El−Bα 6= ∅ since sα ∈ Dml
α and sα(mi) = 1 for

all i < l. Thus C ∈ J+.

We will need the following result from [10].

Lemma 2.2. cov(M) is the least cardinal µ with the property that there
is an ideal K on ω such that cof(K) = µ and K is not weakly selective.

Proposition 2.3. Iω,λ is a weak χ-point if and only if λ < cov(M).

Proof. The right-to-left direction is immediate from Lemma 2.1. For the
other implication, assume λ > ω and Iω,λ is a weak χ-point. We will show
that every ideal K on ω such that cof(K) ≤ λ is weakly selective. This will
give λ < cov(M) by Lemma 2.2.

Thus let K be a fixed ideal on ω with cof(K) ≤ λ, and let A ∈ K+.
Pick x ⊆ λ − ω with |x| = cof(K), and a one-to-one h : x → K with the
property that K =

⋃
β∈x P (h(β)). For each n ∈ A, let Xn be the set of all

a ∈ Pω(λ) such that a ∩ ω = n+ 1 and a ∩ x ⊆ {α ∈ x : n 6∈ h(α)}. We let
B =

⋃
n∈AXn. Given d ∈ Pω(λ), we have

⋃
β∈d∩x h(β) ∈ K and therefore

there is k ∈ A such that k ≥ max(d ∩ ω) and k 6∈ ⋃β∈d∩x h(β). Setting
c = (k + 1) ∪ (d− ω), we have d ⊆ c and c ∈ Xk. Hence B ∈ I+

ω,λ.
Now let En ∈ K for n ∈ ω. Define p : ω → x so that En ⊆ h(p(n))

for all n ∈ ω. Since Iω,λ is a weak χ-point, there is C ∈ I+
ω,λ ∩ P (B) such

that p(max(b ∩ ω)) ∈ e for all b, e ∈ C with max(b ∩ ω) < max(e ∩ ω). Set
D = {max(a ∩ ω) : a ∈ C}. Given α ∈ x, there is a ∈ C such that α ∈ a.
Then max(a ∩ ω) 6∈ h(α). Hence D ∈ K+. Moreover, D ⊆ A. Finally let
b, e ∈ C with max(b ∩ ω) < max(e ∩ ω). As p(max(b ∩ ω)) ∈ e, we have
max(e ∩ ω) 6∈ h(p(max(b ∩ ω))) and therefore max(e ∩ ω) 6∈ Emax(b∩ω).

3. J+ ω→ (J+)2. We now introduce the partition property J+ ω→ (J+)2

and show that it is satisfied whenever J has a small (meaning < cov(M))
number of generators. We start with a few definitions.

Let J be an ideal on Pω(λ).

• J+ ω→ (J+)2 asserts that given A ∈ J+ and F : ω × Pω(λ)→ 2, there

is B ∈ J+ ∩ P (A) such that F is constant on

{(max(a ∩ ω), b) ∈ ω ×B : a ∈ B and max(a ∩ ω) < max(b ∩ ω)}.
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• J is almost (ω, 2)-distributive if given A ∈ J+ and Bn ⊆ Pω(λ) for
n ∈ ω, there is C ∈ J+ ∩ P (A) such that

{C −Bmax(a∩ω), C ∩Bmax(a∩ω)} ∩ J 6= ∅
for all a ∈ C.
• J is a weak π-point if given A ∈ J+ and Bn ∈ J for n ∈ ω, there is

C ∈ J+ ∩ P (A) such that C ∩Bn ∈ Iω,λ for all n ∈ ω.

Lemma 3.1. Let J be a fine ideal on Pω(λ). Then the following are equiv-
alent :

(i) J+ ω→ (J+)2.

(ii) J is almost (ω, 2)-distributive and both a weak χ-point and a weak
π-point.

Proof. (i)⇒(ii). Assume J+ ω→ (J+)2. Then given A ∈ J+ and Bn ⊆
Pω(λ) for n ∈ ω, there is C ∈ J+ ∩ P (A) such that either b ∈ Bmax(a∩ω)
for all a, b ∈ C with max(a ∩ ω) < max(b ∩ ω), or else b 6∈ Bmax(a∩ω) for all
a, b ∈ C with max(a ∩ ω) < max(b ∩ ω). It easily follows that (ii) holds.

(ii)⇒(i). Assume (ii), and fix A ∈ J+ and F : ω × Pω(λ) → 2. For
n ∈ ω and i < 2, set Bin = {b ∈ A : F (n, b) = i}. Since J is almost (ω, 2)-
distributive, there are C ∈ J+∩P (A) and h : {max(a∩ω) : a ∈ C} → 2 with
C − Bh(max(a∩ω))

max(a∩ω) ∈ J for all a ∈ C. Set Ci = {a ∈ C : h
(
max(a ∩ ω)

)
= i}

for each i < 2. Pick j < 2 so that Cj ∈ J+. Since J is a weak π-point and
a weak χ-point, there is D ∈ J+ ∩ P (Cj) such that b ∈ Bjmax(a∩ω) for all
a, b ∈ D with max(a∩ω) < max(b∩ω). Then F takes the constant value j on

{(max(a ∩ ω), b) ∈ ω ×D : a ∈ D and max(a ∩ ω) < max(b ∩ ω)}.
The following is proved in [11].

Lemma 3.2. Let J be a fine ideal on Pω(λ) such that cof(J) < dωω,λ.
Then J is almost (ω, 2)-distributive and a weak π-point.

Proposition 3.3. Let J be a fine ideal on Pω(λ) such that cof(J) <
cov(M). Then J+ ω→ (J+)2.

Proof. By Lemmas 2.1, 3.1 and 3.2.

The following is immediate from Proposition 3.3.

Corollary 3.4. If λ < cov(M), then I+
ω,λ

ω→ (I+
ω,λ)2.

4. I+
ω,λ

ω→
ω

(I+
ω,λ, α)2. This section deals with negative partition proper-

ties. Let J be an ideal on Pω(λ) and α an ordinal with 2 ≤ α ≤ ω.
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• J+ ω→
ω

(J+, α)2 means that for all A ∈ J+ and f : ω × ω → 2, either

there is B ∈ J+ ∩ P (A) such that f is identically 0 on

{(max(a ∩ ω),max(b ∩ ω)) : a, b ∈ B and max(a ∩ ω) < max(b ∩ ω)},
or there are an ∈ A for n < α such that max(am ∩ ω) < max(an ∩ ω) for all
m < n, and f is identically 1 on {(max(am∩ω),max(an∩ω)) : m < n < α}.
• J+ ω9

ω
(J+, α)2 means that J+ ω→

ω
(J+, α)2 does not hold.

Lemma 4.1. Let α be such that 2 ≤ α ≤ ω and I+
ω,λ

ω→
ω

(I+
ω,λ, α)2, and

let K be an ideal on ω with cof(K) ≤ λ. Then K+ → (K+, α)2.

Proof. Fix A ∈ K+ and f : ω× ω → 2. Let B be defined as in the proof
of Proposition 2.3. If f is identically 0 on

{(max(a ∩ ω),max(b ∩ ω)) : a, b ∈ C and max(a ∩ ω) < max(b ∩ ω)}
for some C ∈ I+

ω,λ∩P (B), then settingD = {max(a∩ω) : a ∈ C}, we see that
D ∈ K+∩P (A) and f is identically 0 on {(n,m) ∈ D×D : n < m}. On the
other hand, if f is identically 1 on {

(
max(ap∩ω),max(aq∩ω)

)
: p < q < α},

where {aq : q < α} ⊆ B and max(ap∩ω) < max(aq∩ω) whenever p < q < α,
then setting E = {max(aq ∩ ω) : q < α}, we find that E ⊆ A, |E| = α and
f is identically 1 on {(n,m) ∈ E × E : n < m}.

The following result is folklore. As we do not know any explicit reference
for it, a proof is provided.

Lemma 4.2. Given an ideal K on ω, the following are equivalent :

(i) K is weakly selective.
(ii) K+ → (K+, ω)2.

Proof. (i)⇒(ii). Assume (i) and fix A ∈ K+ and F : ω×ω → 2. Set En =
{m > n : F (n,m) = 1} for all n ∈ ω. First suppose there is B ∈ K+ ∩P (A)
such that B ∩ En ∈ K for every n ∈ B. Pick C ∈ K+ ∩ P (B) so that
m 6∈ B ∩ En for all n,m ∈ C with n < m. Then F takes the constant value
0 on {(n,m) ∈ C × C : n < m}. Now suppose there is ϕ : K+ ∩ P (A)→ A
such that ϕ(D) ∈ D and D ∩ Eϕ(D) ∈ K+ for all D ∈ K+ ∩ P (A). Define
ni ∈ A for i < ω by n0 = ϕ(A) and ni+1 = ϕ(A ∩ ⋂j≤i Enj ). Then F is
identically 1 on {(nj , ni) : j < i < ω}.

(ii)⇒(i). Assume (ii) and fix A ∈ K+ and Bi ∈ K for i < ω. We must
find H ∈ K+ ∩ P (A) such that m 6∈ Bn for all n,m ∈ H with n < m.
If A − ⋃i<ω Bi ∈ K+, we can set H = A − ⋃i<ω Bi. Otherwise we put
C = A∩⋃i<ω Bi and define h : C → ω by h(n) = the least i such that n ∈ Bi.
Now define F : C × C → 2 by F (n,m) = 1 precisely when h(n) > h(m).
Then clearly, there is D ∈ K+ ∩ P (C) such that F is identically 0 on
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{(n,m) ∈ D×D : n < m}. Notice that D ∩Bi is finite for each i < ω, since
D ∩Bi ⊆ m whenever m ∈ D −⋃j≤iBj . Finally, define G : D ×D → 2 by
G(n,m) = 1 if and only if m ∈ Bn. Clearly, there is H ∈ K+ ∩ P (D) such
that F takes the constant value 0 on {(n,m) ∈ H ×H : n < m}. Then H is
as desired.

The following shows that Proposition 3.3 is optimal.

Proposition 4.3. If λ ≥ cov(M), then I+
ω,λ

ω9
ω

(I+
ω,λ, ω)2.

Proof. By Lemmas 2.2, 4.1 and 4.2.

For each ordinal α with 3 ≤ α ≤ ω, let parα be the least cardinal µ
with the property that there is an ideal K on ω such that cof(K) = µ and
K+ 9 (K+, α)2.

It follows from Lemmas 2.2 and 4.2 that parω = cov(M). The exact value
of par3 is not known, but one has the following upper bound (see [4], p. 63,
and [2], p. 7).

Proposition 4.4. par3 ≤ d.

Proof. Fix a bijection j : ω × ω × ω → ω, and let K be the set of all
B ⊆ ω such that

{m ∈ ω : {n ∈ ω : {p ∈ ω : j(m,n, p) ∈ B} is infinite} is infinite} is finite.

It is easy to check that K is an ideal on ω. To see that K+ 9 (K+, 3)2,
consider F : ω×ω → 2 defined by F (j(m,n, p), j(m′, n′, p′)) = 1 if and only
if m < n < m′ < p < n′ < p′.

It remains to check that cof(K) ≤ d. Select X ⊆ ωω so that for every
f ∈ ωω, there is g ∈ X with the property that f(n) ≤ g(n) for all n ∈ ω.
Fix a bijection k : ω × ω → ω. For m ∈ ω and f, g ∈ X, set

Am = j[m× ω × ω],

Bm,f =
⋃

n≥m
j[{n} × f(n)× ω],

Cm,f,g =
⋃

n≥m

⋃

p≥f(n)

j[{n} × {p} × g(k(n, p))],

Dm,f,g = Am ∪Bm,f ∪ Cm,f,g.
It is readily verified that K =

⋃{P (Dm,f,g) : m ∈ ω and f, g ∈ X}.
Jörg Brendle has shown that the inequality in Proposition 4.4 can con-

sistently be strict. His result is included here with his kind permission.

Proposition 4.5. It is consistent with ZFC that par3 < d.

Proof. Let V � ZFC + GCH. By a result of Baumgartner and Taylor
(Corollary 4.12 in [3]), there is in V a prime P -point ideal K on ω such
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that K+ 9 (K+, 3)2. Now let Q be an ω2-stage countable-support iteration
of Miller’s rational perfect set forcing. In V Q the following hold (see [5]):
(a) d = ℵ2 = 2ℵ0 , and (b) J =

⋃
B∈K P (B) is a prime ideal on ω. Clearly,

cof(J) = ℵ1. Moreover, J+ 9 (J+, 3)2.

Proposition 4.6. If λ ≥ par3, then I+
ω,λ

ω9
ω

(I+
ω,λ, 3)2.

Proof. By Lemma 4.1.

5. Extending ideals. Suppose we are given a property P of ideals and
a cardinal µ > λ. Then one might ask whether it is possible to extend every
fine ideal J on Pω(λ) such that cof(J) < µ to an ideal K on Pω(λ) with the
property P . In this section we will consider several questions of this type.
We start with a lemma.

Lemma 5.1. There is a fine ideal J on Pω(λ) such that cof(J) =
max{λ, cov(M)} and J+ ω9

ω
(J+, ω)2.

Proof. By Lemmas 2.2 and 4.2, we can find an ideal K on ω with
cof(K) = cov(M), E ∈ K+ and f : ω × ω → 2 such that (a) there is no
B ∈ K+ ∩ P (E) such that f is identically 0 on {(n,m) ∈ B × B : n < m},
and (b) there is no infinite subset C of E such that f is identically 1 on
{(n,m) ∈ C ×C : n < m}. Define ϕ : E × P (Pω(λ))→ P (Pω(λ)) by letting
ϕ(n,A) = {b ∈ A : max(b ∩ ω) = n}. For a ∈ Pω(λ) and A ⊆ Pω(λ), set
Y aA = {n ∈ E : â∩ϕ(n,A) 6= ∅}. Now define J ⊆ P (Pω(λ)) by letting A ∈ J
if and only if Y aA ∈ K for some a ∈ Pω(λ). It is immediate from the following
easy facts that J is a fine ideal on Pω(λ):

(i) the set E − Y aPω(λ) is finite for all a ∈ Pω(λ);
(ii) Y aA ⊆ Y aB for all a ∈ Pω(λ) and A,B ⊆ Pω(λ) with A ⊆ B;
(iii) Y a∪bA∪B ⊆ Y aA ∪ Y bB for all a, b ∈ Pω(λ) and A,B ⊆ Pω(λ);
(iv) if A ∈ Iω,λ, then Y aA = ∅ for some a ∈ Pω(λ).

Set A = {a ∈ Pω(λ) : max(a ∩ ω) ∈ E}. Then A ∈ J∗, as Y ∅Pω(λ)−A = ∅.
Given B ∈ J+ ∩ P (A), set C = {max(a ∩ ω) : a ∈ B}. Then C ∈ K+ since
C = Y ∅B, and therefore f is not constantly 0 on

{(max(a ∩ ω),max(b ∩ ω)
)

: a, b ∈ B and max(a ∩ ω) < max(b ∩ ω)}.

It easily follows that J+ ω9
ω

(J+, ω)2.

It remains to compute cof(J). Given D ⊆ Pω(λ), we know that D ∈ J if
and only if there are a ∈ Pω(λ) and H ∈ K such that

D ⊆
(
Pω(λ)− â

)
∪ {b ∈ Pω(λ) : max(b ∩ ω) ∈ H ∪ (ω − E)}.
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It clearly follows that cof(J) ≤ max{λ, cof(K)}. On the other hand,
cof(J) ≥ cov(M) by Proposition 3.3. Hence cof(J) = max{λ, cov(M)}.

Ketonen [7] showed that if cov(M) = 2ℵ0 , then every ideal on ω generated
by less than 2ℵ0 sets can be extended to a prime ideal K on ω such that
K+ → (K+)2. The converse was proved by Canjar [6] and by Bartoszyński
and Judah [1]. The equivalence can be generalized as follows.

Proposition 5.2. The following are equivalent :

(i) cov(M) = 2λ.
(ii) If J is a fine ideal on Pω(λ) with cof(J) < 2λ, then there is a prime

ideal K on Pω(λ) such that J ⊆ K and K+ ω→ (K+)2.

(iii) If J is a fine ideal on Pω(λ) with cof(J) < 2λ, then there is an ideal
K on Pω(λ) such that J ⊆ K and K+ ω→

ω
(K+, ω)2.

Proof. (i)⇒(ii). Assume cov(M) = 2λ, and let J be a fine ideal on Pω(λ)
with cof(J) < 2λ. Let Fα for α < 2λ be an enumeration of the set of all
F : ω × Pω(λ)→ 2. Using Proposition 3.3, we define for each α < 2λ a fine
ideal Jα on Pω(λ) with cof(Jα) ≤ max{|α|, cof(J)}, and Aα ∈ J+

α so that

(0) J0 = J ;
(1) Fα is constant on

{(max(a ∩ ω), b) ∈ ω ×Aα : a ∈ Aα and max(a ∩ ω) < max(b ∩ ω)};
(2) Jα+1 = Jα|Aα;
(3) Jα =

⋃
β<α Jβ if α is a limit ordinal > 0.

Finally set K =
⋃
α<2λ Jα. Then clearly K is an ideal on Pω(λ) such

that J ⊆ K. Moreover, as Aα ∈ K∗ for every α < 2λ, we conclude that
K+ ω→ (K+)2 and K is prime.

(ii)⇒(iii). Trivial.
(iii)⇒(i). Assume cov(M) 6= 2λ. Then cov(M) < 2λ because cov(M)

≤ 2ℵ0 . By Lemma 5.1 one can find a fine ideal J on Pω(λ) with cof(J) =
max{λ, cov(M)}, A ∈ J+ and F : ω × ω → 2 with the property that
(a) there is no C ∈ J+ ∩ P (A) such that F is constantly 0 on

{(max(a ∩ ω),max(b ∩ ω)
)

: a, b ∈ C and max(a ∩ ω) < max(b ∩ ω)},
and (b) there is no f ∈ Aω such that max(f(n) ∩ ω) < max(f(m) ∩ ω)
whenever n < m < ω, and F is identically 1 on

{(max(f(n) ∩ ω),max(f(m) ∩ ω)) : n < m < ω}.
We have cof(J |A) < 2λ. Moreover, K+ ω9

ω
(K+, ω)2 for every ideal K on

Pω(λ) with J |A ⊆ K.
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Canjar [6] showed that cov(M) = d if and only if every ideal on ω
generated by less than d sets can be extended to a Q-point. We will now
generalize his result.

An ideal J on Pω(λ) is a χ-point if for every g : ω → Pω(λ), there is
A ∈ J∗ such that g(max(a ∩ ω)) ⊆ b for all a, b ∈ A with max(a ∩ ω) <
max(b ∩ ω).

Notice that if an ideal J on Pω(λ) is a χ-point, then so is every ideal K
on Pω(λ) with J ⊆ K.

Proposition 5.3. Let J be a fine ideal on Pω(λ) that is a χ-point. Then
cof(J) ≥ dωω,λ.

Proof. Let X ⊆ J∗ be such that J =
⋃
A∈X P (Pω(λ)−A). Given A ∈ X,

we define fA : ω → Pω(λ) as follows. Let mA
0 ,m

A
1 , . . . be the increasing

enumeration of the elements of the set {max(a ∩ ω) : a ∈ A}. For each
n ∈ ω, pick aAn ∈ A with max(aAn ∩ ω) = mA

n . We put fA(n) = aAn+1 for all
n ∈ ω.

Now fix g : ω → Pω(λ). Define h : ω → Pω(λ) by h(m) =
⋃
n≤m g(n).

Select A ∈ X so that h(max(a ∩ ω)) ⊆ b for all a, b ∈ A satisfying
max(a ∩ ω) < max(b ∩ ω). For each n ∈ ω, we have g(n) ⊆ h(mA

n ) ⊆ fA(n).
Thus |X| ≥ dωω,λ.

The proof of the following shows that assuming λ < cov(M) = dωω,λ,
there is a fine ideal J on Pω(λ) such that J is a χ-point and cof(J) = dωω,λ.

Proposition 5.4. Assuming λ < dωω,λ the following are equivalent :

(i) cov(M) = dωω,λ.
(ii) If J is a fine ideal on Pω(λ) with cof(J) < dωω,λ, then there is a

χ-point ideal K on Pω(λ) such that J ⊆ K.

Proof. (i)⇒(ii). Assume (i), and let J be a fine ideal on Pω(λ) with
cof(J) < dωω,λ. Pick fα : ω → Pω(λ) for α < cov(M) so that for every
g : ω → Pω(λ), there is α < cov(M) such that g(n) ⊆ f(n) for all n ∈ ω.
Using Lemma 2.1, define for each α < cov(M) an ideal Jα on Pω(λ) with
cof(Jα) ≤ max{|α|, cof(J)}, and Aα ∈ J+

α so that

(0) J0 = J ;
(1) fα(max(a ∩ ω)) ⊆ b for all a, b ∈ Aα with max(a ∩ ω) < max(b ∩ ω);
(2) Jα+1 = Jα|Aα;
(3) Jα =

⋃
β<α Jβ if α is a limit ordinal > 0.

Setting K =
⋃
α<cov(M) Jα, we clearly find that K is a χ-point ideal on

Pω(λ) extending J .
(ii)⇒(i). Assume (i) does not hold. Then cov(M) < dωω,λ since cov(M) ≤

d ≤ dωω,λ. Hence by Lemma 5.1, there is a fine ideal J on Pω(λ) such that
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cof(J) < dωω,λ and J+ ω9 (J+)2. J is not a weak χ-point by Lemmas 3.1

and 3.2, and so we can find A ∈ J+ and g : ω → Pω(λ) with the prop-
erty that there is no B ∈ J+ ∩ P (A) such that g(max(a ∩ ω)) ⊆ b for
all a, b ∈ B with max(a ∩ ω) < max(b ∩ ω). Then there is no weak χ-
point ideal K on Pω(λ) extending J |A. We have cof(J |A) < dωω,λ since
cof(J |A) ≤ cof(J).

6. J+ ω→
≺

(J+)ω. For a, b ∈ Pω(λ), we let a ≺ b whenever a ⊆ b and

max(a ∩ ω) < max(b ∩ ω).
Given an ideal J on Pω(λ), J+ ω→

≺
(J+)2 means that for all A ∈ J+ and

F : ω × Pω(λ)→ 2, there is B ∈ J+ such that F is constant on

{(max(a ∩ ω), b) ∈ ω ×B : a ∈ B and a ≺ b}.

This partition property, which is studied in [11] and [9], is clearly weaker
than the property J+ ω→ (J+)2 considered above. The following shows that

if cof(J) < cov(M), then J+ ω→ (J+)2 and J+ ω→
≺

(J+)2 are equivalent in a

strong sense.

Proposition 6.1. Let J be a fine ideal on Pω(λ) with cof(J) < cov(M),
and let A ∈ J+. Then there is C ∈ J+ ∩ P (A) with the property that for all
a, b ∈ C with max(a ∩ ω) < max(b ∩ ω), one can find c ∈ C with c ≺ b and
max(c ∩ ω) = max(a ∩ ω).

Proof. Set An = {a ∈ A : max(a ∩ ω) = n} for each n ∈ ω. Define cn ∈
Pω(λ) for n ∈ ω as follows. If A0 6= ∅, let c0 be an arbitrary member of A0.
Otherwise let c0 = {0}. Suppose c0, . . . , cm have already been constructed.
If Am+1 = ∅, put cm+1 = {0, . . . ,m+ 1}. If Am+1 6= ∅ and Am+1 ∩ ĉ0 = ∅,
let am+1 be an arbitrary member of Am+1. Finally if Am+1 ∩ ĉ0 6= ∅, let
cm+1 be an arbitrary member of Am+1 ∩ ̂⋃

i≤r ci, where r is the greatest

j ≤ m such that Am+1 ∩ ̂⋃
i≤j ci 6= ∅.

Select Bα ∈ J for α < cof(J) so that J =
⋃
α<cof(J) P (Bα). For α <

cof(J) and n ∈ ω, let Dn
α be the set of all s ∈ 2n+1 such that s(n) = 1 and

there is b ∈ An−Bα with the property that cm ⊆ b whenever m is less than
or equal to some i < n with s(i) = 1. Given α < cof(J), let Dα =

⋃
n∈ωD

n
α

and Uα =
⋃
s∈Dα Os.

Let us prove that the open set Uα is dense. Thus let k ∈ ω and p ∈ 2k.
Pick b ∈ A − Bα so that

⋃
m<k cm ⊆ b and max(b ∩ ω) ≥ k. Define q ⊃ p

by dom(q) = max(b ∩ ω) + 1, q(max(b ∩ ω)) = 1 and q(i) = 0 for all i with
k ≤ i < max(b ∩ ω). Then q ∈ Dmax(b∩ω)

α .
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Select f ∈ ⋂α<cof(J) Uα. For each α < cof(J), pick sα ∈ Dα with sα ⊂ f .
Put

Y = {max(dom(sα)) : α < cof(J)}
and let m0,m1, . . . be the increasing enumeration of the elements of Y . Set
E0 = Am0 and for each l ∈ ω,

El+1 =
{
a ∈ Aml+1 :

⋃

i≤l
cmi ⊆ a

}
.

Finally set C =
⋃
l∈ω El. If α < cof(J) and l ∈ ω are such that

max(dom(sα)) = ml, then sα ∈ Dml
α and sα(mi) = 1 for all i < l, and

therefore there is b ∈ Aml − Bα such that
⋃
j≤mi cj ⊆ b for all i < l.

It clearly follows that C ∈ J+ and cml ∈ El for all l ∈ ω. Finally given
d, e ∈ C with max(d ∩ ω) < max(e ∩ ω), we have cmax(d∩ω) ⊆ e.
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