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On fractals which are not so terrible

by

António M. Caetano (Aveiro)

Abstract. The notion of NST domain and the closely related notion of ball condition,
both topological in nature and quite useful within the theory of function spaces, are
compared with each other (and with the older concept of porosity) and also with other
notions of interest, like those of d-set and of interior regular domain, which have a measure-
theoretical nature. Also, after extending the idea of NST (not so terrible) to a larger class
of sets, the property is studied in the context of anisotropic self-affine fractals.

1. Introduction. In [3, pp. 143–144] Frazier and Jawerth introduced
the concept of NST (not so terrible) domain in order to characterize a prop-
erty of certain functions belonging to Triebel–Lizorkin spaces. This follows a
long trend, not to be discussed here, of imposing conditions on (or near the
boundary of) domains in order to guarantee certain properties for function
spaces on those domains. The interested reader may want to consult [7], [8]
and [5], as well as the references given there, for the older material.

One of our points here is that the main idea underlying the concept
of NST domain has been repeatedly introduced after the work [3] (and
even before it, under the name of porosity—cf. Section 3 below), maybe in
disguised form. So, for example, under mild hypotheses on a (fractal-to-be)
set Γ , saying that Γ satisfies the so-called ball condition considered in [9, p.
142] is equivalent to saying that Γ c is a NST domain. We shall detail this
below, which will eventually lead us to define what should be meant by a
not so terrible (NST) fractal.

Afterwards we give a direct proof that d-sets in Rn (see [5, pp. 28–32] or
[9, p. 5]) are not so terrible fractals (or, what is the same, satisfy the ball
condition) when d < n.

Next we study a subclass of the family of self-affine fractals and give
sufficient conditions for an element of the subclass to be NST. Finally, we
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exhibit an example of a self-affine fractal which is really terrible (that is,
which is not NST), though it might not look like that at first glance.

2. Preliminary discussion

Definition 2.1 ([3, pp. 143–144]). A domain (i.e., a non-empty open
set) Ω of Rn is said to be NST (not so terrible), or to be in NST (thinking
about NST as a denomination for the class of all NST domains in Rn, for
some fixed n ∈ N) if there exists µ ∈ N with the property that for any dyadic
cube Q with side-length `(Q) ≤ 1 and Q ∩ ∂Ω 6= ∅, there exists a dyadic
cube P ⊂ Q with `(P ) = 2−µ`(Q) such that P̊ ∩ ∂Ω = ∅.

Of course, we will rule out, because of lack of interest, the case when
Ω = Rn, that is, we shall only consider proper domains.

In the above definition, P̊ , Q and ∂Ω stand, respectively, for the interior
of P , the closure of Q and the boundary of Ω, as usual. A dyadic cube Q in
Rn is a cube

Qνk ≡ {(x1, . . . , xn) : 2−νki ≤ xi < 2−ν(ki + 1) for i = 1, . . . , n}
for some ν ∈ Z and k ∈ Zn. In particular, for each such ν, the family
{Qνk : k ∈ Zn} constitutes a tessellation (without intersections) of Rn.

In this paper, the word cube, even if not dyadic, is always used in the
sense of cube with sides parallel to the axes.

The simplest examples of proper NST domains are the domains Ω where
∂Ω has just a finite set of points. On the other hand, if ∂Ω is “too crowded”
then surely Ω is not NST. However, NST domains do not have a clear
relationship with the cardinality of their boundaries: for example, as will
become clear along this paper, if ∂Ω is the Cantor set, then Ω is NST,
though the Cantor set is uncountable; nevertheless, there are domains Ω
not in NST for which ∂Ω is countable. We give an example in R:

Let ∂Ω ≡ {0} ∪ {1/m : m ∈ N}. Then Ω 6∈ NST. In fact, assume that
such an Ω were in NST. Consider the sequence of dyadic cubes Qν1, ν ∈ N,
which clearly intersect ∂Ω, and a corresponding sequence of dyadic cubes
P (ν) ⊂ Qν1 with `(P (ν)) = 2−µ`(Qν1) and ˚P (ν) ∩ ∂Ω = ∅. It is clear from
the structure of ∂Ω that `(P (ν)) must not exceed 1/2ν−1 − 1/(2ν−1 + 1),
that is, 2−ν+1/(2ν−1 + 1), while `(Qν1) = 2−ν . Therefore 0 < 2−µ =
`(P (ν))/`(Qν1) ≤ 2/(2ν−1 + 1)→ 0 as ν goes to infinity, which is absurd!

3. NST and the ball condition

Definition 3.1. A non-empty subset Γ of Rn such that Γ̊ = ∅ is said
to satisfy the ball condition if

∃η ∈ ]0, 1[ : ∀x ∈ Γ, ∀r ∈ ]0, 1[, ∃y ∈ Rn :

B(y, ηr) ⊂ B(x, r) and B(y, ηr) ∩ Γ = ∅,



On fractals which are not so terrible 251

where B(z, s) stands for the closed (Euclidean) ball centred at z with ra-
dius s.

This is a slight modification of the definition presented in [9, p. 142],
where Γ was assumed to be Borel with zero Lebesgue measure. We decided
to strip the definition off of any allusion to measure theory (and, since
|Γ | = 0⇒ Γ̊ = ∅, we are retaining all the sets considered to satisfy the ball
condition according the definition given in [9]). Observe that the assumption
Γ̊ = ∅ is quite natural, because if Γ̊ 6= ∅ then the statement with quantifiers
in the definition cannot be fulfilled. Actually, it can even be proved that this
statement also implies that |Γ | = 0. This is an immediate consequence of
the fact that such a Γ has Hausdorff dimension strictly less than n, which
in turn follows from the fact that Γ has strong porosity bounded away from
0 at all of its points, in the sense explained in [6, p. 156].

We also mention that a set satisfying the ball condition is a particular
kind of strongly porous set (cf. [6, p. 156]) and that, according to [6, p. 158],
the notion of porosity goes back, at least in its weakest forms, to a 1920
work of Denjoy.

The following result can be proved by straightforward arguments:

Proposition 3.2. Let Γ be a non-empty closed subset of Rn with Γ̊ =∅.
Then Γ satisfies the ball condition if , and only if , Γ c ∈ NST.

Remark 3.3. Actually, the above statement is valid even without the
assumption that Γ is closed, as long as we replace “Γ c ∈ NST” by

“there exists µ ∈ N with the property that for any dyadic cube Q with
side-length `(Q) ≤ 1 and Q ∩ Γ 6= ∅, there exists a dyadic cube P ⊂ Q

with `(P ) = 2−µ`(Q) such that P̊ ∩ Γ = ∅”,

where we can, alternatively, write ∂(Γ c) or ∂Γ for Γ .

The similarity between the quotation written above (with the possibility
of replacing Γ by ∂Γ ) and the definition of a NST domain prompts the
following extension of Definition 2.1:

Definition 3.4. Let Γ be a non-empty subset of Rn such that either
Γ̊ = Γ or Γ̊ = ∅. The set Γ is said to be NST (not so terrible), or to be
in NST, if there exists µ ∈ N with the property that for any dyadic cube
Q with side-length `(Q) ≤ 1 and Q ∩ ∂Γ 6= ∅, there exists a dyadic cube
P ⊂ Q with `(P ) = 2−µ`(Q) such that P̊ ∩ ∂Γ = ∅.

Remark 3.5. (i) Of course, in the case of Γ̊ = ∅ we already know that
∂Γ in the above definition can be replaced by ∂(Γ c) or Γ . Also in that case,
the remark above shows that Γ ∈ NST if, and only if, Γ satisfies the ball
condition.
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(ii) With the above definition it is easy to see that a proper domain
belongs to NST if, and only if, its boundary does; or, equivalently, if, and
only if, its boundary satisfies the ball condition.

We do not want to go into details, but we exhibit the relationship between
the concept of NST set just introduced and the concept of open set condition
as given in [10] (see there for the definition): it is not difficult to see that
a non-empty subset Γ of Rn with Γ̊ = ∅ belongs to NST if, and only if,
it satisfies that open set condition (except possibly the assumption that
Γ is Borel, made in [10]). Be aware, however, that the notion of open set
condition used in [10] is different from the notion with the same name which
we are going to consider later in this paper.

4. NST and d-sets. We recall the notion of d-set [5, pp. 28–32]:

Definition 4.1. Let Γ be a non-empty closed subset of Rn and d ∈
]0, n]. Γ is said to be a d-set if

∃c1, c2 > 0 : ∀γ ∈ Γ, ∀0 < r ≤ 1, c1r
d ≤ Hd(B(γ, r) ∩ Γ ) ≤ c2r

d,(1)

where Hd stands for the d-dimensional Hausdorff measure on Rn.

Remark 4.2. (i) A d-set has Hausdorff dimension equal to d.
(ii) It does not matter whether we use the Euclidean balls above or balls

for the infinity norm (i.e., cubes), or substitute 0 < r ≤ 1 by 0 < r ≤ r0, for
some fixed r0 > 0, in the sense that these modifications do not change the
class of sets to which the definition applies.

This concept of d-set has been found very convenient when dealing with
function spaces on closed sets (see, for example, [5] and [9]). Be aware that
the expression “d-set” has also been used with a different meaning in Fractal
Geometry (cf., for example, [1]).

The following result can be derived from an assertion presented (without
proof) in [4, Prop. 2]. We give a direct proof below.

Proposition 4.3. Let Γ be a d-set with d < n. Then Γ ∈ NST.

Proof. From the properties of Hausdorff measure, it is clear that Γ̊ = ∅.
Let Qν be a dyadic cube with side-length 2−ν ≤ 1 (that is, with ν ∈ N0)

and withQν∩Γ 6= ∅. For each % ∈ N consider the tessellation of Qν by dyadic
subcubes q with side-length 2−(ν+%). Clearly, there are 2%n such subcubes.

Pick up only the subcubes q of that tessellation such that q ∩Γ 6= ∅ and
put them in some order: q1, . . . , qn% . In particular, n% stands for the number
of such smaller cubes. Next form a subsequence (qσ(r))r using the following
criteria (where cq stands for the cube with the same centre of q but with c
times its side-length):

(i) q1 is the first element of the subsequence;
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(ii) if qσ(r) is an element of the subsequence and

Jr ≡ {j ∈ N : ∀s = 1, . . . , r, 3q̊σ(s) ∩ qσ(r)+j = ∅} 6= ∅,
then qσ(r+1) ≡ qσ(r)+minJr ;

(iii) the subsequence terminates when Jr = ∅.

Denote by m% the number of cubes in this subsequence. It is clear that,
for each cube q of the original sequence which remains in the subsequence,
we may be throwing away as many cubes as the number of cubes of the
tessellation which are neighbours of q (but no more than that). Since the
number of such neighbours is at most 3n − 1, we can write

n% ≤ m% +m%(3n − 1) = 3nm%.(2)

Recall that each qσ(r) contains an element of Γ . Fix one such element
(call it xr) in each qσ(r) and denote by Kr the closed cube centred at xr
and with side-length 2−(ν+%+1). Observe that Kr ⊂ 2q̊σ(r) and the m% cubes
2q̊σ(r) are pairwise disjoint.

Fix also a point in Qν∩Γ and consider the closed cube K centred at that
point and with side-length 3× 2−ν , so that, in particular,

⋃m%
r=1 2q̊σ(r) ⊂ K.

Now we use the hypothesis that Γ is a d-set in order to write

c2(3× 2−ν−1)d ≥ Hd(K ∩ Γ )

≥ Hd
( m%⋃

r=1

2q̊σ(r) ∩ Γ
)

=
m%∑

r=1

Hd(2q̊σ(r) ∩ Γ )

≥
m%∑

r=1

Hd(Kr ∩ Γ ) ≥
m%∑

r=1

c12−(ν+%+2)d

= m%c12−νd2−(%+2)d,

from which it follows, by (2), that

n% ≤ c32%d,(3)

where c3 > 0 depends only on n, d and Γ .
Since there are exactly 2%n dyadic cubes of side-length 2−(ν+%) in Qν , the

number of such cubes q with q ∩ Γ = ∅ is 2%n − n%. Using (3) we can then
guarantee that the number of such cubes is bounded below by 2%n − c32%d.
As this goes to infinity with % (here we have used the hypothesis d < n),
we can be sure that there is a value %0 of % (depending only on n, d and Γ )
such that there is at least one dyadic subcube q of side-length 2−%0`(Qν) in
Qν such that q̊ ∩ Γ = ∅.

This completes the proof that Γ ∈ NST (with µ = %0 in Definition 3.4).
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Remark 4.4. Even if one considers only not so terrible sets Γ which are
closed, there are some which are not d-sets, for any d. Take, for example,
Γ = {0} ∪ {2−m : m ∈ N0} in R. Of course, no open NST set can be a d-set
with d < n (even if we omit the assumption of being closed in the definition
of d-set, as we will do whenever necessary). Observe also that there are open
NST sets which are not open n-sets (consider, for example, a domain with
an outward cusp, as in Fig. 5 of [11, p. 657]). On the positive side, it is not
difficult to see that, given a NST domain Ω, the domain (∂Ω)c is an open
n-set.

Clearly, an n-set might not be a NST set in the sense of Definition 3.4:
a simple example is given by a closed cube in R3, just because it is neither
an open set nor has empty interior. However, the difference between the two
concepts is deeper: if one tries to apply (1) to open instead of closed sets, one
might find open sets which are n-sets in this modified sense but which do
not belong to NST: a simple example is given by the open Γ in R such that
Γ c = ∂Γ = {0} ∪ {1/m : m ∈ N} (recall that we have already proved that
such a Γ is not NST—see Section 2). We give a more complicated example
in two dimensions later on. As for n-sets (closed or not) Γ such that Γ̊ = ∅,
they cannot be in NST: on the one hand, being n-sets, they must satisfy
|Γ | > 0; on the other hand, if this is true then Γ cannot satisfy the ball
condition (see comments after Definition 3.1); since Γ̊ = ∅, it follows then
by Remark 3.5(i) that Γ 6∈ NST.

We also mention that a domain Ω in Rn is an open n-set if, and only if,
it is an interior regular domain in the sense of [11], except that we do not

assume boundedness of Ω and the equality Ω = Ω̊, required there. More
explicitly, if, and only if, there exists a positive c with the property that
for any x ∈ ∂Ω and any cube Q centred at x with side-length at most 1,
|Ω ∩Q| ≥ c|Q|.

5. NST and self-affine fractals. Let N ≥ 2 be a natural number and
let A1, . . . , AN be affine contractions on Rn. That is, for each l = 1, . . . , N ,
Al is an affine map, i.e.,

Alx = Tlx+ bl, ∀x ∈ Rn,(4)

where bl ∈ Rn and Tl is a linear transformation on Rn, and Al is a contrac-
tion, i.e.,

∃0 < cl < 1 : |Alx− Aly| ≤ cl|x− y|, ∀x, y ∈ Rn.
Of course, in view of (4), the last property is equivalent to the existence of
0 < cl < 1 such that |Tlx| ≤ cl|x| for all x ∈ Rn, or just to the statement
that ‖Tl‖ < 1.
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Definition 5.1. Given N affine contractions A1, . . . , AN , the unique
non-empty compact subset Γ of Rn satisfying the equality

Γ =
N⋃

l=1

AlΓ(5)

is called the self-affine fractal generated by those N maps.

Remark 5.2. (i) The word “fractal” is being used loosely here—we
could as well have written “set” instead.

(ii) This definition includes a proposition, namely that there is one and
only one non-empty compact set Γ satisfying (5). This is indeed the case:
see [2, p. 114], where it is also shown that Γ can be obtained as

Γ =
∞⋂

k=1

AkE,(6)

for any non-empty compact subset E of Rn such that AlE ⊂ E for l =
1, . . . , N . In (6), AkE is defined in the following way:

A0E = E; AE =
N⋃

l=1

AlE; AkE = A(Ak−1E), ∀k ∈ N.(7)

(iii) For examples and pictures, the interested reader is referred to [2].

The case when the affine contractions A1, . . . , AN are similarities, that
is, satisfy

|Alx− Aly| = cl|x− y|, ∀x, y ∈ Rn,(8)

for some 0 < cl < 1, l = 1, . . . , N , is well studied, mainly if those affine
contractions are also supposed to satisfy the open set condition, which means
that there exists a non-empty open set U in Rn such that

AU ⊂ U , AlU ∩AhU = ∅ for l 6= h(9)

(with A as defined in (7)). Thus, the following is known (see [6, p. 67]):

Proposition 5.3. Let A1, . . . , AN be similarities satisfying the open set
condition. Then the self-affine fractal generated by these contractions is a
d-set , where d is the unique positive number satisfying

N∑

l=1

cdl = 1

(cl as in (8)).

In the case when d < n we can immediately conclude, on the basis of
Proposition 4.3, that a self-affine fractal as in the preceding proposition is
NST.
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Our next aim is to consider a class of self-affine fractals of sufficient
interest (and where the contractions are not necessarily similarities) and es-
tablish easily verifiable conditions which guarantee that a particular element
of that class is NST. Since we shall also show that not all elements of such
a class are NST, what follows can also be considered as a contribution to
understand how far the class of self-affine fractals is from the class NST.

Let Q be the closed unit cube in Rn:

Q ≡ {x ≡ (xj)nj=1 : 0 ≤ xj ≤ 1, ∀j = 1, . . . , n}.
Our class of self-affine fractals should contain only those which are gen-
erated by surjective (⇔ injective in this context) affine contractions Al,
l = 1, . . . , N , such that

AlQ ⊂ Q, l = 1, . . . , N,(10)

AlQ̊ ∩AmQ̊ = ∅ if l 6= m; l,m = 1, . . . , N,(11)

and
N∑

l=1

|AlQ| < 1,(12)

where here | · | stands for Lebesgue measure in Rn.
According to our Remark 5.2(ii) and (10), the self-affine fractal generated

by a family of Al as above is Γ given by

Γ =
∞⋂

k=1

AkQ,

where Ak has the same meaning as in (7). In particular,

AkQ =
⋃

1≤l1,...,lk≤N
Al1 . . . AlkQ, k ∈ N.

Note that the hypotheses on Al also imply that Γ satisfies the open set
condition (9) with U = Q̊.

Lemma 5.4. Each self-affine fractal of the class introduced above has
zero Lebesgue measure.

Proof. We have

0 ≤ |Γ | ≤ |AkQ| ≤
∑

1≤l1,...,lk≤N
|Al1 . . . AlkQ|

=
∑

1≤l1,...,lk≤N
|detTl1 | . . . |detTlk |

=
( ∑

1≤l1≤N
|detTl1 |

)
. . .
( ∑

1≤lk≤N
|detTlk |

)
= rk
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where r ≡ ∑N
l=1 |AlQ| < 1 by (12). The conclusion follows immediately by

letting k go to ∞.

Remark 5.5. As a consequence, such sets Γ have empty interior. There-
fore, a set Γ of that class is NST if, and only if, it satisfies the ball condition
(cf. Remark 3.5(i)).

The above class is still too large for what we intend to do. We restrict
further attention to the so-called anisotropic fractals, in the sense of [9,
p. 14] (though here n can be any natural number). For these, the affine
contractions Al have the form

Al : (xj)nj=1 7→ (η(l)
j r

(l)
j xj)

n
j=1 + (b(l)j )nj=1,(13)

where η(l)
j ∈ {−1, 1}, r(l)

j ∈ ]0, 1[ and b
(l)
j , j = 1, . . . , n, are given constants

for each l = 1, . . . , N .

Theorem 5.6. Let Γ be an anisotropic self-affine fractal. Let Al, l =
1, . . . , N , denote the affine contractions (13) which generate Γ . Assume that
for every i ∈ {1, . . . , n}, every l ∈ {1, . . . , N} and every x ≡ (xj)nj=1 ∈ AlQ,
there exist y ≡ (x1, . . . , xi−1, yi, xi+1, . . . , xn) and an open cube q ⊂ Q such
that y ∈ q and

q ∩
N⋃

`=1

A`Q = ∅.

Then Γ is NST.

Proof. Step 1. Observe that there is a µ > 0 such that the side-length
of any q as above can be taken to be ≥ µ. Also, given that q is open, q ⊂ Q
is equivalent to q ⊂ Q̊.

According to Remark 5.5, we must prove that Γ satisfies the ball condi-
tion.

Consider any

x ≡ (xj)nj=1 ∈ Γ =
∞⋂

k=1

AkQ =
∞⋂

k=1

⋃

1≤l1,...,lk≤N
Al1 . . . AlkQ

and any closed ball B(x, r) with r ∈ ]0, 1[. Note that x ∈ AkQ for all
k ∈ N, and for each k considered, x belongs to some Al1 . . . AlkQ, where
1 ≤ l1, . . . , lk ≤ N .

Step 2. Let

α ≡ min{r(l)
j : j ∈ {1, . . . , n}, l ∈ {1, . . . , N}},

β ≡ max{r(l)
j : j ∈ {1, . . . , n}, l ∈ {1, . . . , N}},

θ ≡ (αβ)/(
√
nα+ β).
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Note that θ < α, whence r(l)
j > θr for all j ∈ {1, . . . , n} and l ∈ {1, . . . , N}.

On the other hand, the sequence (r(l1)
j . . . r

(lm)
j )m∈N, viewed as a sequence of

functions of (ls)s∈N and j, tends to zero uniformly on the set {((ls)s∈N, j) :
(ls)s∈N ⊂ {1, . . . , N}, j ∈ {1, . . . , n}}, which follows from the inequalities
0 < r

(l1)
j . . . r

(lm)
j ≤ βm and β < 1. Therefore it is possible to find k ∈ N

such that r(l1)
j . . . r

(lk)
j ≤ θr for any such j and (ls)s∈N.

Fix now l1, . . . , lk in such a way that for the given x we have

x ∈ Al1 . . . AlkQ.(14)

Since, for each j, r(l1)
j > θr and r

(l1)
j . . . r

(lk)
j ≤ θr, there is a first natural

kj ∈ [2, k] such that the product r(l1)
j . . . r

(lkj )
j becomes ≤ θr. Let k0 ≡

min1≤j≤n kj , so that r(l1)
j . . . r

(lk0−1)
j > θr for all j ∈ {1, . . . , n}. Among all

j’s such that r(l1)
j . . . r

(lk0)
j ≤ θr choose one—call it i—such that the product

is minimum. For convenience, we shall denote k0 again by k. So, in what
follows the k ∈ N and i ∈ {1, . . . , n} are chosen such that

r
(l1)
i . . . r

(lk)
i ≤ θr(15)

and

(16) ∀j ∈ {1, . . . , n}, r
(l1)
j . . . r

(lk−1)
j > θr, r

(l1)
j . . . r

(lk)
j ≥ r(l1)

i . . . r
(lk)
i .

Step 3. Note that (14) still holds for this new k (this is an easy con-
sequence of (10)), so that there exists x′ ≡ (x′j)

n
j=1 ∈ AlkQ such that x =

Al1 . . . Alk−1x
′. From the hypothesis, there exists y′ = (x′1, . . . , x

′
i−1, y

′
i, x
′
i+1,

. . . , x′n) and an open cube q′ ⊂ Q̊ such that y′ ∈ q′ and

q′ ∩
N⋃

l=1

AlQ = ∅,(17)

from which it follows that

Al1 . . . Alk−1q
′ ⊂ Al1 . . . Alk−1Q̊(18)

and

(Al1 . . . Alk−1q
′) ∩

N⋃

l=1

Al1 . . . Alk−1AlQ = ∅.(19)

As a consequence,
(Al1 . . . Alk−1q

′) ∩ Γ = ∅.(20)

In fact, if z ∈ Al1 . . . Alk−1q
′ then, by (18), z ∈ Al1 . . . Alk−1Q̊, and therefore

z 6∈ Ah1 . . . Ahk−1Q̊ for any (h1, . . . , hk−1) 6= (l1, . . . , lk−1)—this is an easy
consequence of (11).
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Step 4. Consider y ≡ Al1 . . . Alk−1y
′. Note that q′ = y′ + q′′, where

q′′ ≡ −y′ + q′ is also an open cube. Define

q′′′ ≡ {r(l1)
i . . . r

(lk−1)
i αβ−1(η(l1)

j . . . η
(lk−1)
j zj)nj=1 : (zj)nj=1 ∈ q′′},

which is also an open cube, now with side-length r
(l1)
i . . . r

(lk−1)
i αβ−1 times

that of q′. The open cube q ≡ y + q′′′ has the same side-length as q′′′. We
claim that

y ∈ q(21)
and

q ⊂ Al1 . . . Alk−1q
′.(22)

Assertion (21) is clear, as y′ ∈ q′ ⇒ 0 ∈ −y′ + q′ ⇒ 0 ∈ q′′′ ⇒ y ∈
y + q′′′. For (22), observe that, given z ∈ q, z = y + z′′′ for some z′′′ ∈ q′′′,
so z = Al1 . . . Alk−1y

′ + r
(l1)
i . . . r

(lk−1)
i αβ−1(η(l1)

j . . . η
(lk−1)
j z′′j )nj=1 for some

(z′′j )nj=1 ∈ q′′, that is,

z = (η(l1)
j . . . η

(lk−1)
j r

(l1)
j . . . r

(lk−1)
j y′j)

n
j=1 + cl1,...,lk−1

+ (η(l1)
j . . . η

(lk−1)
j r

(l1)
j . . . r

(lk−1)
j λjz

′′
j )nj=1,

where λj ≡ r
(l1)
i . . . r

(lk−1)
i αβ−1/(r(l1)

j . . . r
(lk−1)
j ) and cl1,...,lk−1 is the inde-

pendent vector of the affine map Al1 . . . Alk−1 (as the bl in (4)). That is, any
z ∈ q can be written as

z = (η(l1)
j . . . η

(lk−1)
j r

(l1)
j . . . r

(lk−1)
j (y′j + λjz

′′
j ))nj=1 + cl1,...,lk−1

= Al1 . . . Alk−1(y′ + (λjz′′j )nj=1)

for some z′′ ≡ (z′′j )nj=1 ∈ q′′. Since 0 < λj ≤ 1, j = 1, . . . , n (cf. (16) and the
definitions of α and β, given at the beginning of Step 2), z ′′ ∈ q′′ and 0 ∈ q′′,
it follows that (λjz′′j )nj=1 is also in q′′ (recall that we are only considering
cubes with sides parallel to the axes) and (22) now follows easily.

As a consequence of (20) and (22), we have

q ∩ Γ = ∅.(23)

Step 5. Observe now that, given any z ∈ q,
|z − x| ≤ |z − y|+ |y − x|

≤ √n r(l1)
i . . . r

(lk−1)
i αβ−1 + r

(l1)
i . . . r

(lk−1)
i |y′i − x′i|

≤ r(l1)
i . . . r

(lk−1)
i (

√
nαβ−1 + 1)

≤ r(l1)
i . . . r

(lk−1)
i r

(lk)
i α−1(

√
nαβ−1 + 1)

≤ θrα−1(
√
nαβ−1 + 1) = r
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(we have used (15) in the last inequality), so that

q ⊂ B(x, r).

Finally, let c stand for the centre of q. Then the ball B(c, `(q)/2) is in q,
therefore also in B(x, r), and has radius r(l1)

i . . . r
(lk−1)
i αβ−1`(q′)/2, which, by

(16) and the first phrase in Step 1, is strictly bounded below by θrαβ−1µ/2.
Hence

B(c, θαβ−1µr/2) ⊂ q ⊂ B(x, r)

and, due to (23),
B(c, θαβ−1µr/2) ∩ Γ = ∅.

This accomplishes the proof that Γ satisfies the ball condition, with
η = θαβ−1µ/2 in Definition 3.1.

Corollary 5.7. Let Γ be an anisotropic self-affine fractal. Let Al, l =
1, . . . , N , denote the affine contractions (13) which generate Γ . Assume
that there is k0 ∈ N such that for every i ∈ {1, . . . , n}, every l1, . . . , lk0 ∈
{1, . . . , N} and every x ≡ (xj)nj=1 ∈ Al1 . . . Alk0

Q, there exist y ≡ (x1, . . . ,
xi−1, yi, xi+1, . . . , xn) and an open cube q ⊂ Q such that y ∈ q and

q ∩Ak0Q = ∅.
Then Γ is NST.

Proof. Let Γ ′ be the self-affine fractal generated by the family {Al1...lk0
:

l1, . . . , lk0 ∈ {1, . . . , N}} of affine contractions Al1...lk0
≡ Al1 . . . Alk0

. It is
not difficult to see that Γ ′ satisfies the conditions of Theorem 5.6, so it is
NST. Now just note that Γ = Γ ′.

In the following examples of anisotropic self-affine fractals in R2, the
affine contractions Al are represented by means of the images AlQ, which,
in turn, are represented by the shaded rectangles in the corresponding figure.

Example 1. The anisotropic fractal generated by the affine contractions
represented in Figure 1 is NST.

10

1

Fig. 1
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Example 2. An anisotropic fractal to which the corollary (with k0
= 3)—but not the theorem—can be applied is generated by the affine con-
tractions represented in Figure 2.

10

1

Fig. 2

We can weaken the hypotheses of Theorem 5.6 if we deal with a special
subclass of anisotropic fractals. We start with some preparations:

With the same notations as in (13), given Al, l = 1, . . . , N , if i ∈
{1, . . . , n} is such that r(l)

i = min1≤j≤n r
(l)
j , we say that the i-axis is an

axis of strongest contraction (for the affine contraction Al).

Definition 5.8. An anisotropic fractal is called a CASC-fractal if the
affine contractions of a generating family {Al : l ∈ {1, . . . , N}} have a
Common Axis of Strongest Contraction, that is, if there is i ∈ {1, . . . , n}
such that for all l = 1, . . . , N, min1≤j≤n r

(l)
j = r

(l)
i .

Theorem 5.9. Let Γ be a CASC-fractal. Let Al, l = 1, . . . , N , denote
the affine contractions (13) which generate Γ and let the i-axis be a common
axis of strongest contraction. Assume that , for every l ∈ {1, . . . , N} and
every x ≡ (xj)nj=1 ∈ AlQ, there exist y ≡ (x1, . . . , xi−1, yi, xi+1, . . . , xn) and
an open cube q ⊂ Q such that y ∈ q and

q ∩
N⋃

`=1

A`Q = ∅.

Then Γ is NST.

Proof. Since the proof is very similar to the proof of Theorem 5.6, we
only point out the necessary modifications.

Step 1 is the same.
Step 2: To begin with, θ is now defined as α/(

√
n+ 1). The parameter α

can be defined more simply as min{r(l)
i : l ∈ {1, . . . , N}}, because of the role

played by the number i, which is here given from the very beginning. As to
β, it is enough now to define it by max{r(l)

i : l ∈ {1, . . . , N}}. Since i is given
a priori , in this step we can fix j = i, so that there is no point in considering
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k0—or, if one prefers, just take k0 = ki—and one should suppress the part
where the i is chosen. We again use the letter k to denote k0 (that is, ki),
and the last part of Step 2 should now read: in what follows the k ∈ N is
chosen such that

r
(l1)
i . . . r

(lk)
i ≤ θr(24)

and
r

(l1)
i . . . r

(lk−1)
i > θr.(25)

Step 3 is the same.
Step 4: Suppress the factor αβ−1 in all considerations. In particular, λj

now reads r(l1)
i . . . r

(lk−1)
i /(r(l1)

j . . . r
(lk−1)
j ). The justification that 0 < λj ≤ 1

must be accordingly modified (but it is trivial).
Step 5: Suppress the factor αβ−1 in all considerations.

Corollary 5.10. Let Γ be a CASC-fractal. Let Al, l = 1, . . . , N , de-
note the affine contractions (13) which generate Γ and let the i-axis be a
common axis of strongest contraction. Assume that there is k0 ∈ N such
that for every l1, . . . , lk0 ∈ {1, . . . , N} and every x ≡ (xj)nj=1 ∈ Al1 . . . Alk0

Q,
there exist y ≡ (x1, . . . , xi−1, yi, xi+1, . . . , xn) and an open cube q ⊂ Q such
that y ∈ q and

q ∩Ak0Q = ∅.
Then Γ is NST.

This follows just as Corollary 5.7, with Theorem 5.9 replacing Theo-
rem 5.6.

Example 3. A CASC-fractal to which Theorem 5.9—but not Theorem
5.6 nor Corollary 5.7—can be applied is generated by the affine contractions
represented in Figure 3.

10

1

Fig. 3

Example 4. A CASC-fractal to which Corollary 5.10—but not Theo-
rems 5.6 and 5.9 nor Corollary 5.7—can be applied is generated by the affine
contractions represented in Figure 4.
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10

1

Fig. 4

Of course, Theorems 5.6, 5.9 and Corollaries 5.7, 5.10 only give sufficient
conditions for an anisotropic fractal to be NST:

Example 5. The 2-dimensional Cantor set generated by the similarities
represented in Figure 5 is a CASC-fractal to which none of those results
apply; nevertheless, it is NST (cf. Proposition 5.3 and comments afterwards).

10

1

Fig. 5

Some conditions must, however, be imposed in order for an anisotropic
(even if CASC-) fractal to be NST, as the following example shows.

Example 6. Consider the anisotropic 2-dimensional Cantor-like set Γ
generated by the affine contractions represented in Figure 6.

10

1

Fig. 6
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Clearly, this is even a CASC-fractal. We shall see, however, that it is not
NST:

First observe that, denoting by R the free space open rectangle in the
middle of Q in Figure 6 (that is, R = Q̊ \⋃14

l=1AlQ), we have

Q̊ \ Γ = R ∪
∞⋃

k=1

⋃

1≤l1,...,lk≤14

Al1 . . . AlkR.

Calling Al1 . . . AlkR free space rectangles of the kth generation and using
the usual convention to denote coordinates in dimension 2, note that, be-
low the line y = 3−(k+1) in Figure 6 there can be no free space rectan-
gles of generation k popping in. On the other hand, the basis of each free
space rectangle of generation k has length (2/3)6−k, so that the higher
the generation, the smaller the length of the bases of its free space rectan-
gles.

Consider then the sequence ((1/3, 3−(k+1)))k∈N of points of Γ and the
sequence of closed balls Bk of radius 3−(k+1) centred at those points. Ob-
serve that each such ball is contained in Q and stays below the line y = 3−k.
Therefore, the only points of that ball which are not in Γ must be in free
space rectangles of kth or higher generation. Since these are pairwise dis-
joint, it is not possible to find a closed ball contained in Bk \ Γ and with
radius greater than (1/3)6−k. And since the ratio (1/3)6−k/3−(k+1), that
is, 2−k, tends to 0 as k goes to infinity, it is not possible to find η ∈ ]0, 1[
such that, for any k ∈ N and for some yk ∈ R2, B(yk, η3−(k+1)) ⊂ Bk and
B(yk, η3−(k+1)) ∩ Γ = ∅.

This shows that such a Γ does not satisfy the ball condition. That Γ is
not NST follows now from Remark 5.5.

Remark 5.11. (i) This also serves as an example of a fractal satisfying
the open set condition (see (9)) but which is not in NST, so that in this way
we complement what has been said after Remark 3.5.

(ii) The Γ of Example 6 is not a d-set. This is clear for d < n, due
to Proposition 4.3; for d = n it is also clear from the fact that |Γ | = 0
(Lemma 5.4).

(iii) Consider the open set Γ c, with Γ the fractal in Example 6. From
Proposition 3.2 it follows that Γ c 6∈ NST. Since |Γ | = 0, Γ c is an open
n-set and therefore we have found another example (less trivial than the
one exhibited after Remark 4.4) of an open n-set which is not NST.

Example 7. From Theorem 5.9 it is clear that the modification of Fig-
ure 6 given in Figure 7 yields, in the usual way, a representation of a CASC-
fractal which is NST.
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10

1

Fig. 7

Remark 5.12. This together with Example 6 shows that, for anisotropic
fractals, the property of being NST or not has nothing to do with the so-
called affine dimension of fractals, as defined in [9]. The fractals in Examples
6 and 7 have the same affine dimension (just because the number of shaded
rectangles of the same size is the same, irrespective of their positions)—
namely (2+2 log2 7)/(1+2 log2 3)—while one is NST and the other is not (the
results proved above show that the relative position of the shaded rectangles
can make a difference).

Acknowledgements. We would like to thank the referee for drawing
our attention to the notion of porosity and for the suggestions for the im-
provement of the text.
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