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Abstract. The Knaster continuum Kp is defined as the inverse limit of the pth degree
tent map. On every composant of the Knaster continuum we introduce an order and we
consider some special points of the composant. These are used to describe the structure of
the composants. We then prove that, for any integer p ≥ 2, all composants of Kp having
no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case
p = 2.

1. Introduction. For an integer p ≥ 2, let fp : [0, 1]→ [0, 1] be the pth
degree tent map, shown in Fig. 1.

Fig. 1
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The inverse limit Kp of the tent map fp is given by

Kp = lim←−{[0, 1], fp} = {(. . . x−3x−2x−1) ∈ [0, 1]N : x−i = fp(x−i−1), i ∈ N}.
Although this notation may seem somewhat unusual, it will turn out to be
useful later on. The spaces Kp are often called Knaster continua since K2

is, in fact, the Knaster “bucket handle” ([N], [W]). The bucket handle K2

was constructed in 1922. Kuratowski attributed the idea to Knaster ([K1]).
In the same volume of Fundamenta Mathematicae, Knaster gave credit to
Kuratowski for the corresponding construction of K3. In connection with
dynamical systems, the space K2 and related spaces have become known in
the sixties as the “horseshoe”—the attractor of a suitably chosen nonlinear
map.

Fig. 2

For every integer p ≥ 2, the Knaster continuum Kp is an indecomposable
continuum. There are uncountably many arcwise connected components of
Kp which coincide with its composants, and with the unstable manifolds in
the dynamical setting. The Knaster continuum Kp is not arcwise connected.
All continua Kp contain one special composant, that of the point zero, i.e.,
0∞. This composant is a one-to-one continuous image of the half-line, and
the point zero is its endpoint. If p ≥ 2, and p is odd, the continuum Kp

contains one more special composant, that of the point one, i.e., 1∞. It is
also a one-to-one continuous image of the half-line, and the point one is its
endpoint. All other composants of Kp are one-to-one continuous images of
the whole straight line and contain only cut points ([K2], [N]).

In the fifties or even earlier, Knaster asked at his seminar whether all
non-zero composants of K2 are homeomorphic. In 1994, C. Bandt answered
Knaster’s question by proving the following theorem: All non-zero com-
posants of K2 are homeomorphic ([B]). In this paper we prove the following
generalization of Bandt’s result:
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Theorem. Let p ≥ 2 be an integer. All composants of Kp having no
endpoints are homeomorphic.

The key step in both proofs consists in exhibiting suitable descriptions of
the composants of Kp. These descriptions are different. Bandt [B] describes
points of K2 as two-sided sequences, and composants of K2 as copies of the
real line consisting of some special intervals. These intervals are described
by one-sided sequences. The structure of a particular composant is given
by relations between intervals, i.e., between the corresponding one-sided
sequences. Using some special properties of the structure of a composant,
the homeomorphism is constructed.

We take advantage of Bandt’s idea to represent Kp as a quotient space
of the space of two-sided sequences of p symbols by a certain equivalence re-
lation. We define an order on every composant of Kp. This makes possible a
description of the structure of composants by relations between some special
points, called i-points. When the structure of composants is given, the con-
struction of the homeomorphism is a rather straightforward generalization
of Bandt’s construction.

In the remaining part of the introduction, we set up our notation and
give some preliminaries.

Let Im = [m/p, (m + 1)/p], m ∈ {0, . . . , p − 1}. The tent map fp is a
Markov map, i.e. fp is surjective, C1 and monotone on each of the open
intervals int Im, and has the following additional properties:

(i) There exists α > 1 such that |f ′p(x)| ≥ α for each x ∈ Im, m ∈
{0, . . . , p− 1}.

(ii) If fp(int Ii)∩int Ij 6= ∅ then fp(int Ii) ⊃ int Ij , for i, j ∈ {0, . . . , p−1}
(see [P-Y], p. 39).

The transition matrix A of the Markov map fp is defined by

A(i, j) =
{

1 if fp(int Ii) ⊃ int Ij ,
0 if fp(int Ii) ∩ int Ij = ∅,

0 ≤ i, j ≤ p − 1. In our case A(i, j) = 1 for all 0 ≤ i, j ≤ p − 1. In general,
one defines the space X+

A of sequences by

X+
A =

{
x = (xi)i∈Z+ ∈

∏

Z+

{0, . . . , p− 1} : A(xi, xi+1) = 1 for i ≥ 0
}
.

Hence, denoting in our caseX+
A by X+

p , we see thatX+
p =

∏
Z+{0, . . . , p−1}.

The one-sided shift σ : X+
p → X+

p is given by σ((xi)i∈Z+) = (xi+1)i∈Z+ .
Applying a known result on Markov maps (see [P-Y], pp. 41–43), we

obtain the following lemma:
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Lemma 1.1. There exists a continuous mapping π : X+
p → [0, 1] having

the following properties:

(1) π is a semi-conjugacy , i.e. π is surjective and π ◦ σ = fp ◦ π,
(2) points y ∈ [0, 1] have exactly one or two pre-images in X+

p , i.e. for
every y ∈ [0, 1] the set E(y) = {x ∈ X+

p : π(x) = y} consists of either one
or two points,

(3) the set of points y ∈ I such that E(y) consists of two points is equal
to the countable set

⋃
i∈Z+ f−ip {1/p, 2/p, . . . , (p− 1)/p}.

The mapping π can be defined by π(x) =
⋂∞
i=0 f

−i
p (Ixi), where x =

(xi)i∈Z+ ∈ X+
p , i.e. π(x) corresponds to the only point y ∈ [0, 1] such that

f ip(y) ∈ Ixi for i ≥ 0.
Let Xp =

∏
Z{0, . . . , p − 1} denote the space of all two-sided sequences

of p symbols. To avoid confusion, we denote left-infinite sequences by ←−x =
(x−i)i∈N = . . . x−3x−2x−1, right-infinite sequences by −→x = (xi)i∈Z+ =
x0x1x2 . . . , and two-sided sequences by x = (xi)∈Z = . . . x−2x−1x0x1x2 . . .
The metric d on Xp is given as follows: For x = (xi)i∈Z and y = (yi)i∈Z, let
l(x, y) = min{l ∈ N0 : xl 6= yl or x−l 6= y−l}. Then

d(x, y) =
{

2−l(x,y) if x 6= y,
0 otherwise.

2. Structure of composants. In order to describe the structure of
composants we code the Knaster continuum by means of two-sided se-
quences. We start by defining an equivalence relation ∼ on the space X+

p .
Let p be odd. Two sequences −→x ,−→y ∈ X+

p , −→x = (xi)i∈Z+ , −→y = (yi)i∈Z+ are
equivalent if there is an l ∈ Z+ such that

(1) xi = yi for 0 ≤ i < l,
(2) |xl − yl| = 1,
(3) for i > l,

xi = yi =
{
p− 1 if min{xl, yl} is even,
0 if min{xl, yl} is odd.

When p is even condition (3) should be modified as follows:

(3′) xl+1 = yl+1 =
{
p− 1 if min{xl, yl} is even,
0 if min{xl, yl} is odd,

and xi = yi = 0 for i > l + 1.

The quotient map π̃ : X+
p /∼ → [0, 1] is defined by π̃([−→x ]) = π(−→x ). Note

that −→x and −→y are equivalent if and only if π(−→x ) = π(−→y ). In particular,
π̃ is a homeomorphism. This enables us to use Bandt’s [B] Propositions 2
and 3 to obtain the following assertions.
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• Kp = Xp/≈ where (xi)i∈Z ≈ (yi)i∈Z if there is m with xi = yi for
i ≤ m and xm+1xm+2 . . . ∼ ym+1ym+2 . . .

• Each left-infinite sequence←−s = . . . s−3s−2s−1 describes one composant
in Kp which is just the set of two-sided sequences having a left tail common

to ←−s . Two sequences ←−s and
←−
t describe the same composant if and only

if they have a common left tail.

We now fix a left-infinite sequence ←−s = . . . s−3s−2s−1. Denote the
corresponding composant of Kp by I. The composant I consists of unit
length arcs I0

v , v = v−k . . . v−1, v−i ∈ {0, . . . , p − 1}, 1 ≤ i ≤ k, given
by I0

v = {(xi)i∈Z : x−i = s−i for i > k, x−i = v−i for i = 1, . . . , k} and
I0 = {(xi)i∈Z : x−i = s−i for i > 0}. Longer arcs Inv and In, of length
pn, are given by Inv = {(xi)i∈Z : x−i = s−i for i > k + n, x−i−n =
v−i for i = 1, . . . , k} and In = {(xi)i∈Z : x−i = s−i for i > n}. We can
require v−k 6= s−k−n, but whenever we handle two arcs Inv and Inw, for
simplicity, we will suppose that v and w have the same number of dig-
its. This is possible because, if v = v−k1 . . . v−1, w = w−k2 . . . w−1 and
k1 ≥ k2, we require additionally w−i = s−i−n for k2 < i ≤ k1. Two arcs
Inv , v = v−k . . . v−1, and Inw, w = w−k . . . w−1, are neighboring arcs if they
have a common endpoint. Therefore Inv and Inw are neighboring if and only
if there is m ∈ N, m ≤ k, such that:

(1) v−i = w−i for m < i ≤ k,
(2) |v−m − w−m| = 1,
(3) for 1 ≤ i < m,

v−i = w−i =
{
p− 1 if min{v−m, w−m} is even,
0 if min{v−m, w−m} is odd,

for p odd. When p is even condition (3) should be modified as follows:

(3′) v−m+1 = w−m+1 =
{
p− 1 if min{v−m, w−m} is even,
0 if min{v−m, w−m} is odd,

and v−i = w−i = 0 for 1 ≤ i < m− 1.

Definition 2.1. Fix n ∈ N0. Let

P (n) = card{s−i : s−i is odd, 1 ≤ i ≤ n}.
If n = 0 let P (0) = 0. We say that an arc In is even (respectively odd) if P (n)
is even (respectively odd). An arc Inv , v = v−k . . . v−1, v−k 6= s−k−n, is even
(respectively odd) if (−1)P (n+k) =

∏k
i=1(−1)v−i (respectively (−1)P (n+k) 6=∏k

i=1(−1)v−i).

We will now introduce an order structure on the composant I. For x =
(xi)i∈Z, y = (yi)i∈Z ∈ I let

k = k(x, y) = max{i ∈ N : x−i 6= s−i or y−i 6= s−i}.
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If x−i = s−i and y−i = s−i for all i ∈ N, let k = 0.

Definition 2.2. The generalized lexicographical ordering ≺ on I is de-
fined as follows: We say that x ≺ y if either (−1)P (k)x−k < (−1)P (k)y−k or
there exists l ∈ Z, l > −k, such that xi = yi for −k ≤ i < l and

(−1)P (k)
( l−1∏

i=−k
(−1)xi

)
xl < (−1)P (k)

( l−1∏

i=−k
(−1)xi

)
yl.

We also say x � y if x ≺ y or x = y.

Note that the order depends on the chosen left-infinite sequence ←−s .
Choosing another representative of this particular composant would lead
either to the same, or to the opposite order.

Remark 2.3. The ordering � on the composant I is natural because
there exists an order-preserving bijection ϑ between the real line endowed
with its natural order and I endowed with the ordering �. Note that ϑ is
continuous but its inverse is not.

Since we are interested only in composants without endpoints let us
assume the following additional condition on the left-infinite sequence ←−s =
. . . s−3s−2s−1: for p odd, there is no m ∈ N such that either s−i = 0 for all
i ≥ m or s−i = p− 1 for all i ≥ m; for p even, there is no m ∈ N such that
s−i = 0 for all i ≥ m.

In the next definition we have to treat the cases of p odd and p even
separately. This is a consequence of the difference in the definition of the
equivalence relation between sequences in these two cases.

Definition 2.4. Let p be odd (respectively even). Let x be a sequence
such that there is m ∈ N with x−i = 0 for all i < m, or x−i = p − 1
for all i < m (respectively x−i = 0 for all i < m, or x−m+1 = p − 1 and
x−i = 0 for all i < m − 1). Such an x will be called an identification point
or briefly an i-point. Fix n ∈ N0. Let x be an i-point and m ∈ N be such
that n + m = max{j : x−i = 0 for all i < j or x−i = p − 1 for all i < j}
(respectively n + m = max{j : x−i = 0 for all i < j, or x−j+1 = p − 1 and
x−i = 0 for all i < j − 1}). Define the n-level of x by Ln(x) = m.

The geometrical meaning of the n-level of x is visible from the following
remark:

Remark 2.5. Fix n ∈ N0. Let Inv and Inw be two neighboring arcs. Let
m ∈ N be such that v−m 6= w−m. Let x be the common endpoint of Inv and
Inw. Then Ln(x) = m. Note that a similar definition can be found in [KL1]
and [KL2], but these papers take a topological approach to this concept.
For fixed n ∈ N0 and m ∈ N there are countably many x ∈ I such that
Ln(x) = m.
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From now on until the end of this section, we assume that p is odd. The
case of p even can be treated analogously.

Lemma 2.6. Fix n ∈ N0 and m ∈ N, m > 1. Let x, y ∈ I be two i-points
such that :

(1) Ln(x) = m and Ln(y) ≥ m,
(2) there is no i-point z between x and y such that Ln(z) ≥ m.

Then x and y are the endpoints of an arc In+m−1
v and there are exactly

p − 1 i-points z1, . . . , zp−1 between x and y such that Ln(zi) = m − 1 for
1 ≤ i ≤ p− 1.

Proof. Since there is no i-point z between x and y with Ln(z) ≥ m, we
have x−i = y−i for i ≥ m. Since x 6= y, if xi = 0 for i > m, then yi = p− 1
for i > m, and vice versa. Therefore x and y are the endpoints of the arc
In+m−1
v of length pn+m−1 with v = x−m−k . . . x−m, where k is the largest

integer such that x−m−k 6= s−m−k. Suppose that the arc In+m−1
v is even.

The i-points
z1 = . . . x−m−1x−m0(p− 1)∞ ∼ . . . x−m−1x−m1(p− 1)∞ ≺
z2 = . . . x−m−1x−m10∞ ∼ . . . x−m−1x−m20∞ ≺
...

zp−1 = . . . x−m−1x−m(p− 2)0∞ ∼ . . . x−m−1x−m(p− 1)0∞

are the only i-points with zi ∈ int In+m−1
v and Ln(zi) = m− 1. If In+m−1

v

is odd, the conclusion is the same with zp−1 ≺ zp−2 ≺ . . . ≺ z1.

A direct consequence of the previous lemma is the following remark:

Remark 2.7. Each arc In+1 of length pn+1 consists of p arcs In0 , . . . , I
n
p−1

of length pn and one of them is In. The arcs I0, I1, I2, . . . form a nested se-
quence. If sn+1 6= 0 and sn+1 6= p − 1, then In is one of the middle arcs of
In+1. Hence, if there is no m ∈ N such that either s−i = 0 for all i ≥ m or
s−i = p− 1 for all i ≥ m, the union of all In is all of the composant I.

Lemma 2.8. Fix n ∈ N0 and m ∈ N. Let x, y ∈ I be two i-points such
that :

(1) Ln(x) = m and Ln(y) = l > m,
(2) there is no i-point u between x and y such that Ln(u) ≥ Ln(y).

Then there is an i-point z ∈ I, z 6= x, such that :
(i) Ln(z) = m,

(ii) there is no i-point u between z and y with Ln(u) ≥ Ln(y),
(iii) d(x, y) = d(y, z), where d is the natural inner metric on In+l

v ,
v = y−n−l−k . . . y−n−l−1, and k is the largest integer such that y−n−l−k 6=
s−n−l−k.
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Proof. The i-points x, y belong to the arc In+l−1
w , w = y−n−l−k . . . y−n−l,

k is the largest integer such that y−n−l−k 6= s−n−l−k, and y is an endpoint
of In+l−1

w . Let In+l−1
v be a neighboring arc of In+l−1

w with the common
endpoint y. Since Ln(x) < Ln(y), the point x is not an endpoint of In+l−1

w .
Since fp is symmetric on the open interval 〈(m − 1)/p, (m + 1)/p〉, m ∈
{1, . . . , p− 1}, neighboring arcs have symmetric interiors with the common
endpoint as their center of symmetry. Therefore, there is an i-point z ∈
In+l−1
v which is symmetric to the point x, and (i)–(iii) are satisfied.

The next remark is a direct consequence of the previous lemma:

Remark 2.9. Fix n ∈ N0 and m ∈ N. Let w = w−m . . . w−1, w−i ∈
{0, . . . , p − 1}, 1 ≤ i ≤ m. Among any 2pm consecutive arcs Inv there are
exactly two of type Inw, and they have different parity.

Let 0 = n1 < n2 < . . . be a sequence of integers. Let dk = nk+1−nk. By
Lemma 2.6, between any two consecutive points x and y with Lnk(x) ≥ dk
and Lnk(y) ≥ dk (respectively Lnk(x) ≥ dk + dk+1 and Lnk(y) ≥ dk +
dk+1), there is an arc Inkv with v−dk . . . v−1 = s−nk+1 . . . s−nk−1 (respec-
tively v−dk−dk+1 . . . v−1 = s−nk+2 . . . s−nk−1). With respect to the sequence
n1, n2, . . . , the arc Inkv is called a return arc of order nk (respectively a close
return arc of order nk). By Lemma 2.6, each arc Ink+2

v contains pdk+dk+1

arcs Inkw ; pdk+1 of them are return arcs of order nk, and exactly one of them
is a close return arc of order nk.

Fix n ∈ N0 and m ∈ N. For v = v−m . . . v−1, v−i ∈ {0, . . . , p − 1},
1 ≤ i ≤ m, define a map φnv : In → Inv as follows: For x ∈ In, x =
. . . x−2x−1x0x1x2 . . . , let φnv (x) = . . . x−m−1v−m . . . v−1x0x1 . . . ∈ Inv . Let
us describe sequences (xi)i∈N in I which converge to a given x. The conver-
gence on I is the coordinatewise convergence of sequences up to identification
of equivalent i-points. For given x there is n ∈ N with x ∈ int In. A sequence
(xi)i∈N in I converges to x if and only if the following two conditions are
satisfied:

(1) For each nj > n, the points of the sequence (xi)i∈N eventually belong
to return arcs, i.e., there is an i0 ∈ N such that for each i ≥ i0 there is a
finite sequence v(i) such that xi ∈ Injv(i), and I

nj
v(i) is a return arc.

(2) The position of xi stabilizes, i.e., limi→∞(φnjv(i))
−1(xi) = x in Inj .

3. Construction of the homeomorphism. Having described the
structure of a composant, we are ready to prove the following theorem.

Theorem 3.1. Let p ≥ 2 be an integer. All composants of Kp having no
endpoint are homeomorphic.

To prove the theorem, we construct a homeomorphism h from an arbit-
rary composant I with characteristic left-infinite sequence←−s = . . . s−3s−2s−1
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to the particular composant J characterized by the left-infinite sequence(
p−1

2

)∞
= . . . p−1

2
p−1

2
p−1

2 if p is odd, and
(
p
2

)∞
= . . . p2

p
2
p
2 if p is even.

This construction is a rather straightforward generalization of Bandt’s con-
struction. We give some details for reader’s convenience, but omit the proofs
which can be easily reconstructed from [B]. Again, we restrict ourselves to
the case of p odd, since the case of p even is analogous.

We denote arcs of J by Jnw and the corresponding maps by ψnw : Jn → Jnw.
Since there is no m ∈ N with either si = 0 for all i ≥ m, or si = p − 1 for
all i ≥ m, it is easy to choose a sequence 0 = n1 < n2 < . . . with

(i) dj = nj+1 − nj ≥ 10 + j for j ≥ 1,
(ii) s−njs−nj+1 6= 00 and s−njs−nj+1 6= (p− 1)(p− 1) for j ≥ 2.

Let h : I → J be a one-to-one map with the following properties, with
respect to the chosen sequence:

(a) h maps Inj continuously onto Jnj for all j.
(b) h maps each close return arc Injv onto a return arc Jnjw in the same

way as Inj is mapped onto Jnj , i.e., hφnjv (z) = ψ
nj
w h(z) for z ∈ Inj .

(c) h−1 maps each close return arc Jnjv onto a return arc Injw in the same
way as it maps Jnj onto Inj .

Then h is a homeomorphism.

Lemma 3.2. Let m ≥ 2. Let Ĩ be a union of c consecutive arcs of order
nm in I, and J̃ a union of d consecutive arcs of order nm in J , and let
the length ratio of these two arcs be q = max{c/d, d/c} < p2. Assume that
between any return arc of order nm and an endpoint in Ĩ and J̃ there are
at least pdm−2 arcs of order nm. Then there are partitions of Ĩ and J̃ into
finitely many subarcs and a correspondence between the first , second, . . . ,
kth element (counted from the 0-endpoint) of these partitions such that :

(1) Each close return arc of order nm−1 in Ĩ or J̃ is a partition element
and corresponds to a return arc of order nm−1 in the other partition which
has the same parity (respectively opposite parity) if Inm−1 and Jnm−1 are of
the same parity (respectively opposite parity).

(2) The other partition elements are unions of consecutive arcs of order
nm−1. Between an endpoint of a partition arc and the next return arc of
order nm−1 inside that arc, there are at least pdm−1−2 other arcs of order
nm−1. The length ratio of two corresponding partition elements is at most
q + p−m.

Proof. Consider the smaller endpoint of Ĩ (with respect to the general-
ized lexicographical ordering) and the smaller endpoint of J̃ as 0-endpoints.
Moreover, consider arcs of order nm as units of measurement. In this way
we define a linear scale on Ĩ and J̃ . There is a unique linear orientation-
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preserving map χ from Ĩ into J̃ . Assume that c > d. Let x1, . . . , xt and
y1, . . . , yr be the smaller endpoints of the close return arcs of order nm−1

in Ĩ and J̃ , respectively. Let y′i = χ(xi) for i = 1, . . . , t and x′i = χ−1(yi)
for i = 1, . . . , r. Also, denote the endpoints of Ĩ by x0 and xt+1, and the
endpoints of J̃ by y0 and yr+1.

Two close return arcs of order nm−1 are contained in different return arcs
of order nm, each of which is one of the middle arcs of two different arcs of
order nm+1. So, between xi+1 and xi, i = 1, . . . , t−1, there are at least pdm−2

arcs of order nm. The assumption of the lemma implies that this remains
true for i = 0 and i = t. Similarly, between y′i+1 and y′i, i = 1, . . . , t − 1,
there are at least pdm−2 arcs of order nm.

Let P be the partition of Ĩ with vertices xi, i = 0, . . . , t + 1, and y′i,
i = 1, . . . , t. Then at least one of any two neighboring arcs of P is longer
than pdm−3. For the partition Q of J̃ , induced by yi and x′i, at least one of
any two neighboring arcs is longer than pdm−3/q.

For every point y′i in Ĩ let y′′i in Ĩ be the nearest point to y′i with the
following properties:

• y′′i is the smaller endpoint of a return arc of order nm−1 which has the
same parity (respectively, opposite parity) as the close return arc given by
yi, if Inm−1 and Jnm−1 are of the same parity (respectively, opposite parity),
• if y′i is the endpoint of a short arc, i.e., of an arc whose length is less

than or equal to pdm−3, then we choose y′′i inside this short arc.

By Remark 2.9, the distance between y′i and y′′i is at most two units.
Analogously, we choose points x′′i in J̃ , but now we require that if x′i is the

endpoint of an arc of length smaller than pdm−3/q, then x′′i is chosen outside
the short arc. Consider now xi and y′′i as vertices of a new partition P ′ of Ĩ,
and yi and x′′i as vertices of a new partition Q′ of J̃ . These partitions have
the same number of elements, and the first, second, . . . , kth arcs correspond
to each other. All pairs of corresponding arcs, except the first one, begin
with a close return arc in Ĩ and a return arc in J̃ , or conversely. Adding the
larger endpoints of these beginning arcs to the vertices of the partitions P ′
and Q′ one obtains the desired partitions of Ĩ and J̃ .

Now we have to show the last statement of (2). For all pairs of short arcs
the ratio of their lengths is smaller than q. For other pairs of arcs, the largest
relative increase is p2/pdm−3, and the largest relative decrease is qp2/pdm−3.
Since dm ≥ 10 +m we have

q′ ≤ q 1 + p2/pdm−3

1− qp2/pdm−3 ≤ q
1 + p−5−m

1− p−3−m = q + q
p2 + 1

p2(p3+m − 1)
≤ q + p−m.

Proof of Theorem 3.1. We are going to construct h by induction on the
intervals Inj such that properties (a)–(c) are valid.
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First we fix an order-preserving linear map h from I0 onto J0. By Re-
mark 2.7, Jn2 \ Jn1 consists of two arcs of length (pn2 − 1)/2 each. By the
same remark and by (ii) of Section 3, In2 \ In1 also consists of two arcs of
length at least pn2−2 and at most pn2 − pn2−2 each. We extend h to a hom-
eomorphism from In2 onto Jn2 in such a way that the two arcs of In2 \ In1

are mapped linearly onto the two corresponding arcs of Jn2 \ Jn1 . Thus
h : In2 → Jn2 is defined as a piecewise linear bijection.

Suppose h : Ink → Jnk has already been defined and satisfies (a)–(c).
We now define h on Ink+1 \ Ink so that (a)–(c) hold. We first apply Lemma
3.2 with m = k − 1, q = p2 − 1 and taking as Ĩ each of the two arcs of
Ink+1 \ Ink which are unions of arcs of order nk = nm+1. Since every return
arc of order nm is one of the middle arcs of a larger arc of order nm+1 (in
the same way as Inm is contained in Inm+1), there are at least pdm−2 arcs
of order nm between such a return arc and an endpoint of Ĩ. Lemma 3.2
gives a correspondence from close return arcs of order nm−1 = nk−2 of I to
return arcs of J and vice versa. The definition of h : Ink−2 → Jnk−2 is now
transferred to each pair of such arcs. So far, (a)–(c) are satisfied.

By (2), we may again apply Lemma 3.2 to each pair of the remaining
arcs, with m = k − 2 and q = p2 − 1 + p−(k−2), then with m = k − 3, and
by induction to all return arcs of orders down to n1 = 0. Since we have a
geometric series, q stays below p2. Therefore, h is defined on Ink+1 and by
induction on all of I in such a way that (a)–(c) hold. Thus h : I → J is a
homeomorphism.

Remark 3.3. Besides the tent maps fp one can consider analogous tent
maps gp, where gp(0) = 1. Note that the continuum defined as lim←−{[0, 1], gp}
is homeomorphic to the Knaster continuum Kp. This is so because the map-
pings g2

p and f2
p are conjugate. Indeed, g2

pϕ = ϕf2
p , where ϕ : [0, 1] → [0, 1]

is the homeomorphism given by ϕ(x) = 1− x.
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