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Abstract. We develop a dimer model for the Alexander polynomial of a knot. This
recovers Kauffman’s state sum model for the Alexander polynomial using the language
of dimers. By providing some additional structure we are able to extend this model to
give a state sum formula for the twisted Alexander polynomial of a knot depending on a
representation of the knot group.

1. Introduction. A dimer is an edge in a bipartite graph, and a dimer
covering is a perfect matching for that graph. The study of dimer coverings
started in the 1960’s with the work of Kasteleyn [Kas63] and Temperley–
Fisher [TF61] who used it as a tool for studying statistical physics. Kasteleyn
showed that the partition function on weighted bipartite planar graphs can
be expressed as the determinant of a suitable matrix. The last ten years
have seen a resurgence of the study of dimers and the application of this
theory to many other areas of mathematics.

Our interest is in exploring the opposite direction. We have a given ma-
trix, and we want to find the corresponding dimer model that expresses
the determinant of the matrix as the partition function on the graph. Two
well-known polynomial knot invariants, the classical Alexander polynomial
and Xiao-Song Lin’s twisted Alexander polynomial, are defined as deter-
minants. The goal of the current work is to use the language of dimers to
find a combinatorial model for the Alexander polynomial and the twisted
Alexander polynomial.

Given a knot K in S3 and some generic diagram for the knot we construct
an associated bipartite planar graph with one set of vertices corresponding
to crossings and the other set corresponding to faces. Edges signify incidence
between crossings and faces. Using this graph along with a certain weighting
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of the edges we provide a state sum model for the Alexander polynomial in
terms of dimer coverings. This model recovers Kauffman’s state sum model
for the Alexander polynomial [Kau87].

Consider a representation ρ of the fundamental group of the knot com-
plement. Associated to this representation one defines the twisted Alexander
polynomial ∆ρ,K , which is an invariant of the knot together with the rep-
resentation ρ. We extend our dimer model for the Alexander polynomial to
provide a state sum model for the twisted Alexander polynomial.

In Section 2 we review some basic definitions and theorems dealing with
dimer coverings. In Section 3 we recall the definition of the Alexander poly-
nomial and show how to translate it into a dimer model. We will see that it
is equivalent to Kauffman’s state sum model. Section 4 begins with the defi-
nition of the twisted Alexander polynomial and shows how the dimer model
can be augmented to provide a twisted dimer model. We provide examples
throughout.

2. Dimer background. In this section we review some facts and results
about dimer coverings of graphs. For the interested reader, Kenyon provides
an excellent introductory set of lectures on this subject [Ken09]. We will
also need to recall some results of Kasteleyn [Kas63], a good explanation of
which can be found in Kuperberg’s work [Kup94, Kup02, Kup98].

Let Γ = (V1, V2, E) be a bipartite graph with V1 and V2 the two vertex
sets and E the collection of edges in Γ each of which has one endpoint in
V1 and one endpoint in V2.

Definition 2.1. A dimer is an edge in E. A dimer covering is a subset
m of E such that each vertex in Γ is an endpoint of exactly one edge in m.
In other words a dimer covering is a perfect matching on Γ . Let M be the
set of all dimer coverings of Γ ; note that M = ∅ whenever |V1| 6= |V2|.

Let µ : E → C[t] be a weighting of the graph Γ , and denote the weighted
graph by Γµ. Then we consider the following partition function Z(Γµ) which
is of particular interest in statistical physics:

Z(Γµ) =
∑
m∈M

∏
e∈m

µ(e).

Definition 2.2. Given a weighting µ of Γ and an ordering of the vertex
sets

V1 = {v1,1, . . . , v|V1|,1} and V2 = {v1,2, . . . , v|V2|,2},
construct the matrix M(Γµ) of dimension |V1| × |V2| with entries specified
by the weight function µ as follows: The ijth entry of M(Γµ) is given by the
sum of all weights µ assigned to edges between vi,1 and vj,2. We call this the
weight matrix for Γµ. Figure 1 gives an example.
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M(Γµ) =


a b 0 0 0

e 0 i j 0

d 0 h k 0

0 f 0 l m

0 c 0 0 g

 , K(Γµ) =


a b 0 0 0

e 0 −i j 0

d 0 h k 0

0 f 0 l −m
0 c 0 0 g


Fig. 1. A weighted bipartite graph, a Kasteleyn weighting, the weight matrix M(Γµ) and
the Kasteleyn matrix K(Γµ)

Let Perm(M(Γµ)) denote the permanent (or unsigned determinant) of
M(Γµ). Thus, we see that Z(Γµ) = Perm(M(Γµ)). In the case that |V1| 6=
|V2| both values are 0. A natural question to ask is: Under what conditions
can the weighting µ be modified to get a new weighting µ′ with the property
that the partition function for Γµ′ is the determinant of the weight matrix
for Γµ. In other words does there exist a weighting µ′ : E → C[t] such that
Z(Γµ′) = Det(M(Γµ))? In the case that Γ is planar, Kasteleyn proves that
such a modification is always possible. He accomplishes this by using what
is now called a Kasteleyn weighting.

Definition 2.3. Let Γ be a bipartite planar graph, that is, a bipartite
graph together with a fixed embedding of that graph in the plane. A Kaste-
leyn weighting ε : E → {±1} is a choice of ±1 for each edge with the
property that each bounded face with 0 mod 4 edges has an odd number
of −1 assignments and each bounded face with 2 mod 4 edges has an even
number of −1 assignments.

Proposition 2.4 (Kasteleyn). Every bipartite planar graph Γ has a
Kasteleyn weighting.

Proof. We can prove this fact by providing an algorithm for finding a
Kasteleyn weighting. Begin by choosing a spanning tree T = (V1, V2, ET )
⊂ Γ . If Γ̄ is the dual planar graph of Γ (with vertices given by faces of Γ ,
edges transverse to edges of Γ , and faces given by vertices of Γ ) then there
is an associated spanning tree T̄ ⊂ Γ̄ which is disjoint from T . Consider T̄
to be rooted at the vertex corresponding to the unbounded face.
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Let ε : ET → {±1} be arbitrarily given. Choose a valence 1 vertex v1

of T̄ that is not the root vertex. This vertex represents a face of Γ that
has all but one bounding edge present in the tree T . Let e1 be the edge
that is missing in that face of Γ . Since all other edges bounding the face
have been assigned weights, the choice of value for ε(e1) that will satisfy the
properties of a Kasteleyn weighting is forced. Remove the vertex v and the
edge incident on v from T̄ , and define ε(e1) as necessary.

Repeat this process, pruning the non-root valence 1 vertices and their
edges as you go. Eventually a single edge connecting a vertex v to the root
is all that remains in T̄ . This represents a single edge e in Γ shared by a
bounded face and the unbounded face. Assign the necessary value to ε(e) in
order to complete to a Kasteleyn weighting.

Definition 2.5. Let Γµ be a weighted bipartite planar graph. We call
the weight matrix M(Γε·µ) the Kasteleyn matrix, and we give it the special
notation K(Γµ). See Figure 1 for a calculation of a Kasteleyn matrix.

A proof of the following result, which again is due to Kasteleyn, can be
found in [Kup98].

Theorem 2.6 (Kasteleyn). Let Γµ be a weighted bipartite planar graph.
Then

Z(Γε·µ) = Perm(K(Γµ)) = ±Det(M(Γµ)),

or equivalently

Z(Γµ) = Perm(M(Γµ)) = ±Det(K(Γµ)).

Remark 2.7. It is known that Kasteleyn’s theorem does not hold in
general for non-planar graphs. In fact, it holds if and only if the graph does
not have K3,3 as a minor [LP09].

3. The Alexander polynomial. We begin by giving a determinant
definition of the Alexander polynomial due to Fox, which can be found
in [CF77]. By using Kasteleyn’s theorem we will construct a bipartite pla-
nar graph such that the partition function of this graph is the Alexander
polynomial. Finally, we will show that this approach yields Kauffman’s state
sum model [Kau87].

While it might initially seem strange to express a determinant by a
partition function, this combinatorial model proved to be useful, for example
in the study of Ozsváth–Szabó knot Floer homology theory; see e.g. [OS03,
Low08] and compare with [DL10].

Moreover, some properties of the Alexander polynomial follow directly
from this approach; for instance, it is an easy exercise to show that the
Alexander polynomial of an alternating knot has coefficients of alternating
signs.
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3.1. The Alexander polynomial as a determinant. Consider a
knot K ⊂ S3 along with some fixed generic diagram DK . Label the faces of
DK with a0, . . . , am, where a0 is the unbounded face. Choose some base point
above the plane of projection. Let A0, . . . , Am be loops in π := π1(S3 −K)
given by passing through face ai and returning through a0 to the base point.
Thus, the loop A0 is trivial in π. Using this notation we have the Dehn
presentation for the knot group:

π = 〈A0, . . . , Am|r1, . . . , rm−1, A0〉,
where the ri are relations coming from the crossings in DK . In particular
the Dehn relation for a crossing shown in Figure 2 is r : A4A

−1
2 = A3A

−1
1 .

�
�

�
�

@
@

@
@

a1

a2 a3

a4

Fig. 2. A crossing with labeled faces

Setting A0 = 1 and incorporating that change in the relations ri we get
a presentation of π with m generators and m− 1 relations:

π = 〈A1, . . . , Am : r1, . . . , rm−1〉.

Let Fm be the free group on m generators A1, . . . , Am. Then the free
derivative ∂

∂Ai
is a map from Fm to Z[Fm] recursively defined by

• ∂
∂Ai

(1) = 0,

• ∂
∂Ai

(Aj) = δij ,

• ∂
∂Ai

(−Aj) = −δijA−1
j , and

• ∂
∂Ai

(wAj) = ∂
∂Ai

(w) + w ∂
∂Ai

(Aj) for any word w ∈ Fm.

Consider the map φ : Fm → π defined by φ(Ai) = Ai. We can extend this
to a map φ : Z[Fm]→ Z[π], and the kernel of this map will be generated by
the relations ri in Fm. Let ψ : Z[π]→ Z[t±1] be the abelianization mapping
which will take meridians positively linking the knot to the variable t.

Let MK be the (m− 1)×m matrix with ijth entry given by ψ ◦φ
(
∂ri
∂Aj

)
.

Remove any one column corresponding to a face of the diagram DK that is
adjacent to the unbounded face, obtaining a square matrix M ′K . Up to sign
and multiplication by a power of t±1, the determinant of M ′K is independent
of the choice of the adjacent face and it is invariant under Reidemeister
moves. Thus we define the Alexander polynomial K, denoted ∆K(t), to be

∆K(t) =̇ det(M ′K),

where =̇ means equality up to multiplication with ±tk for some power k.
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It will turn out that the entries of the matrix MK are all either 0 or ±1
or ±t. More specifically, the free derivatives of all the relations ri will end
up being 0 or 1 or meridians in π. In other words, while we form the matrix
MK using the Dehn presentation for the knot group, the free derivatives of
the relations are up to a sign the so-called Wirtinger generators. Since it
will become important in Section 4.1 we recall the Wirtinger presentation
for π and then show the calculation of the free derivatives.

Given the diagram DK we can label the arcs of the knot c1, . . . , c`. Again
choose some base point above the plane of projection. For 1 ≤ i ≤ ` let
the loop xi be the meridian that leaves the base point, positively links the
arc ci, and returns to the base point. We again get a relation r′j at each
crossing. Using these generators and relations we get another presentation
for π known as the Wirtinger presentation:

π = 〈x1, . . . , x` | r′1, . . . , r′`−1〉.

Under abelianization we see that ψ(xi) = t for all i.

Lemma 3.1. The free derivatives of Dehn relations are either 0, ±1 or,
up to a sign, Wirtinger generators. Thus the matrix M ′K has entries either 0,
±1 or ±t. By multiplying suitable rows and colums with −1 we can assume
that M ′K has only non-negative entries 0, 1 or t.

Proof. As we noted above, the Dehn relation coming from the cross-
ing in Figure 2 has the form A4A

−1
2 = A3A

−1
1 . Furthermore if x is the

Wirtinger generator assigned to the overcrossing strand in Figure 2 then we
have A4A

−1
2 = x.

Now we take the free derivatives of the relation r with respect to each
variable and see that the results can be written completely in terms of x
and 1. Indeed, we get

∂

∂A1
(r) = A4A

−1
2 = x,

∂

∂A2
(r) = −A4A

−1
2 = −x,

∂

∂A3
(r) = −1,

∂

∂A4
(r) = 1.

It remains to show that the matrix can be transformed into a matrix with
only non-negative entries by multiplying suitable rows or columns by −1.
For that, color the faces of the diagram black/white so that no two adjacent
faces have the same color. We see that locally the partial derivatives are
negative at the two generators corresponding to either the black faces or
the white faces. By multiplying all entries locally by −1, i.e. multiplying a
row by −1, we can assume that the partial derivatives are negative at, say,
the black faces. By multiplying all columns corresponding to black faces we
obtain the result.
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3.2. The dimer state sum. Using Kasteleyn’s Theorem 2.6 we get the
following construction which expresses the Alexander polynomial, given as
a determinant, as a partition function of a certain bipartite graph.

For this we take a knot diagram and choose two adjacent faces that we
disregard. As in Lemma 3.1 the Alexander polynomial is the determinant of
a matrix M ′K that is indexed by the remaining faces and the relations which
correspond to the crossings of the diagram. For each relation (i.e. crossing)
locally the entries in the matrix are described by the picture in Figure 3 as
proven in Lemma 3.1.
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@
@

t

t 1

1

Fig. 3. Local weights at a crossing

Thus we obtain:

Algorithm 3.2 (The dimer state sum model).

(D1) Construct a bipartite planar graph Γ = (V1, V2, E) as follows:

• The vertex set V1 is the set of crossings of the diagram.
• The vertex set V2 is the set of faces of the diagram.
• Given vertices x ∈ V1 and y ∈ V2, the edge (x, y) is in the set E

if and only if the crossing x is incident on the face y.

We will call it the Alexander graph.
(D2) Use the weighting system of Figure 3 to define a weighting α : E →

C[t] on Γ .
(D3) Choose a Kasteleyn weighting. The next paragraph will describe a

particular weighting due to Kauffman.
(D4) Calculate the partition function Z(Γα) =

∑
m∈M

∏
e∈m α(e).

3.2.1. Kauffman’s Kasteleyn weighting. The following proposition de-
scribes a way to choose a Kasteleyn weighting which is due to Kauffman.
The proof that it gives a Kasteleyn weighting is an easy exercise.

Proposition 3.3. The assignments of weights given by Figure 4 form
a Kasteleyn weighting.
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−1

+1 +1

+1

Fig. 4. Kauffman’s Kasteleyn weighting
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The next result immediately follows by construction and Kasteleyn’s
Theorem 2.6.

Proposition 3.4. The dimer state sum model described in Algorithm 3.2
calculates the Alexander polynomial. In other words for the weighted graph
Γα we have ∆L(t) =̇Z(Γα).

Example 3.5. Consider the trefoil given in Figure 5.

t 1

t1
1

1
1 1 1

1−1
1

1
−1

Fig. 5. Local weights and Kauffman’s Kasteleyn weights for the trefoil

Associated to that diagram we have the following bipartite planar graph
where the black vertices correspond to the faces and the white vertices to
the crossings of the diagram. This graph has three dimer coverings.

t 1 −1

1 1

−1 t

M =

{
, ,

}

Then we calculate the Alexander polynomial using Algorithm 3.2 as follows:

Z(Γα) = α

( )
+ α

( )
+ α

( )
= t2 − t+ 1.

3.3. Kauffman’s state sum. It turns out that with the dimer state
sum model described in the previous section we recover the state sum model
of Kauffman for the Alexander polynomial. We will briefly describe this
model here.

Again let DK be a generic diagram of a knot K. Choose the unbounded
face of DK and one other face that is adjacent to the unbounded face. We
will disregard these faces in our calculation. A simple Euler characteristic
argument tells us that the number of crossings of the diagram is equal to
the number of faces remaining. Say this number is m.

Algorithm 3.6 (Kauffman state sum model).

(K1) Decorate the diagram DK with the product of the two weights
around each crossing that are depicted in Figures 3 and 4.
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(K2) Find all possible ways to distribute m markers on the diagram so
that each remaining face and each crossing has exactly one marker.
Each of these configurations is called a state. Denote the set of all
states by S.

(K3) For each s ∈ S let w(s) be the product of the weights associated
to the state. Then

∆K(t) =̇
∑
s∈S

w(s).

The weights given in the lefthand diagram in step (K1) are encoding the
free derivatives described in the previous section. The values shown are not
exactly ψ ◦ φ

(
∂ri
∂Aj

)
, but simple matrix operations discussed in [Kau87] give

us these unsigned weights, which are more convenient for calculation.

Example 3.7. Consider the following weighted diagram of the trefoil
and its three states. (The two starred regions are the disregarded faces.)
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1
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Then using Algorithm 3.6 we calculate the Alexander polynomial as follows:

∆K(t) =̇w

(
�
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�
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)
+ w

(
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�
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)
+ w

(
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��
��
��
��

��
��
��

��
��
��

)
= t2 − t+ 1.

4. The twisted dimer model. We begin with a brief description of
the twisted Alexander polynomial. This polynomial was originally described
by Lin [Lin01] using the Seifert matrix, and has also been described by Kirk
and Livingston [KL99] using the language of Reidemeister torsion. Our de-
scription is adapted from Wada’s exposition in [Wad94] which defines the
twisted Alexander polynomial for all finitely presented groups. We choose
this description because it most clearly shows the generalization of the ma-
trix described in Section 3.1. The polynomial that Wada defines to be the
twisted Alexander polynomial is a certain quotient. At this point we de-
part from Wada’s terminology and follow the work of Lin who refers to the
numerator of Wada’s quotient as the twisted Alexander polynomial.

4.1. The twisted Alexander polynomial for knots. Recall the
maps φ : Z[Fm] → Z[π] and ψ : Z[π] → Z[t±1] from Section 3.1. Let
R be an integral domain, and let ρ be a finite-dimensional representation
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of π, where ρ : π → GLn(R). We can extend ρ to a ring homomorphism
ρ : Z[π]→Mn(R).

We put these maps together to define

Φ = (ρ⊗ ψ) ◦ φ : Z[Fm]→Mn(R[t±1]).

Now using this map we construct a block matrix MK,ρ with ijth block entry

Φ
(
∂ri
∂Aj

)
. Wada calls it the Alexander matrix associated to the representa-

tion ρ. The matrix has dimensions n(m− 1)× nm. Consider the submatrix
M ′K,ρ that comes from deleting any block column corresponding to a face of
DK that is adjacent to the unbounded face.

Up to sign and multiplication by a power of t±1 the determinant of M ′K,ρ
is well-defined and invariant under Reidemeister moves. Thus we define the
twisted Alexander polynomial of the pair K, ρ, denoted ∆K,ρ(t), to be

∆K,ρ(t) =̇ det(M ′K,ρ).

Given the trivial representation ρ : π → C we see that ∆K,ρ(t) =̇∆K(t).
In general the rows in the twisted Alexander matrix replace occurrences
of 1 in Algorithms 3.6 and 3.2 with Id ∈ GLn(R), and occurrences of t with
tX where X is the element of GLn(R) assigned to the Wirtinger generator
linking the overstrand at the associated crossing.

We conclude this subsection with an example calculation of the twisted
Alexander polynomial.

Example 4.1. Consider the following diagram of the trefoil. We have
labeled the regions of the diagram that give the Dehn generators as well as
the arcs of the knot that give the Wirtinger generators.

a0

a1
a2

a4

a3

c1

c2c3

As noted by Lemma 3.1 we only need to know what our representation
ρ does to Wirtinger generators. We consider the coloring representation
ρ : π → GL3(Z) given by

ρ(C1) =

 0 1 0

1 0 0

0 0 1

 , ρ(C2) =

 1 0 0

0 0 1

0 1 0

 , ρ(C3) =

 0 0 1

0 1 0

1 0 0

 .

We set A0 = 1 in the knot group, and we have three relations remaining:

(r1) A2A
−1
1 = A4 = C1,
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(r2) A2A
−1
4 = A3 = C2,

(r3) A2A
−1
3 = A1 = C3.

Now we build a block matrix with entries Φ
(
∂ri
∂Aj

)
. The map Φ will assign

identity matrices to occurrences of 1, and various representation matrices
scaled by t when Wirtinger generators occur. We get the matrix

0 −t 0 1 0 0 0 0 0 −1 0 0

−t 0 0 0 1 0 0 0 0 0 −1 0

0 0 −t 0 0 1 0 0 0 0 0 −1

0 0 0 1 0 0 −1 0 0 −t 0 0

0 0 0 0 1 0 0 −1 0 0 0 −t
0 0 0 0 0 1 0 0 −1 0 −t 0

−1 0 0 1 0 0 0 0 −t 0 0 0

0 −1 0 0 1 0 0 −t 0 0 0 0

0 0 −1 0 0 1 −t 0 0 0 0 0


.

Finally we remove the last block column corresponding to the face a4, and
we take the determinant. We get ∆Tref,ρ(t) = −t6 + t5 + t4−2t3 + t2 + t−1 =
−(−1 + t)2(1 + t)2(1− t+ t2).

4.2. The twisted Alexander graph. We want to build a graph that
encodes the Alexander matrix for a pair K, ρ. This graph, which we will
call the twisted Alexander graph, is a generalization of the Alexander graph
defined in the dimer state sum algorithm. The twisted Alexander graph
replaces single edges in the Alexander graph by “twisted edges”. For an
n-dimensional representation these “twisted edges” are each a copy of Kn,n

(the complete bipartite graph on 2n vertices) that will eventually encode
the associated block entry in the Alexander matrix.

Begin by fixing a knot K with diagram DK and representation ρ : π →
GLn(R). As with the original Alexander graph, choose two adjacent faces
of the diagram to disregard, one of which is the unbounded face.

Definition 4.2. Construct a bipartite graph Γ ′ = (V ′1 , V
′

2 , E
′) as fol-

lows.

• The vertex set V ′1 has n vertices for each crossing of the diagram.
• The vertex set V ′2 has n vertices for each face of the diagram.
• If a face and a crossing are incident, insert a copy ofKn,n going between

the vertices corresponding to that face and crossing. If the face and
crossing are not incident, no edges should connect their corresponding
vertex sets.

We will call this the twisted Alexander graph.
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Definition 4.3. Let M ∈ Mn(R([t±1])). The complete bipartite graph
K = Kn,n has all possible edges between two sets of Vr and Vc, each con-
sisting of n vertices. Let KM be the complete bipartite graph weighted ac-
cording to M . More precisely, begin by enumerating the vertices in Vr with
v1,r, . . . , vn,r and the vertices in Vc with v1,c, . . . , vn,c. Now the edge between
vi,r and vj,c gets the entry in the ijth position of M . If the entry in M is
zero, we do not include the edge. We will call the weighted graph KM the
graph encoding M .

Example 4.4. Let M =
(
a b 0
0 0 c
d 0 e

)
. Then the graph encoding M is

a

b

c

d

e

Enumerate the vertices at every crossing and every face of the twisted
Alexander graph Γ ′. We endow Γ ′ with the weighting αρ : E′ → R[t±1]
so that the copy of Kn,n (or the “twisted edge”) connecting the collection of
vertices for a crossing and a face is the graph encoding the matrix shown in
Figure 6. Here X is the element of GLn(R) assigned by ρ to the Wirtinger
generator corresponding to the overstrand in the figure.

�
�
�

�

@
@

@
@

tX

tX Id

Id

Fig. 6. Weights for the twisted Alexander graph

The following is an immediate consequence of our definitions of Γ ′ and αρ.

Proposition 4.5. The permanent of the matrix M ′K,ρ is equal to the

partition function of the graph Γ ′ weighted by αρ. In other words Z(Γ ′αρ) =

Perm(M ′K,ρ).

4.3. Kuperberg’s tricks. As we discussed at length in Section 2 we
would like to find a modification of the weighting αρ that would allow us
to encode the twisted Alexander polynomial directly. The problem is that
by replacing single edges in the Alexander graph by twisted edges, we no
longer necessarily have a planar graph.

We will use two techniques due to Kuperberg [Kup98] to solve this prob-
lem: edge tripling and butterflies. This will enable us to modify an embed-
ding of the graph Γ ′ and the weighting αρ to get a weighted planar graph
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that will encode the twisted Alexander polynomial as desired. For the re-
mainder of this section, fix an embedding of Γ ′.

In order to force planarity we need to require that each pair of edges
in Γ ′ intersects at most once. We can accomplish this by repeatedly tripling
edges as shown in Figure 7. If our weight function αρ assigns a ∈ R[t±1] to
the edge, we modify the weights as shown in the figure.

��������������������������������������������������������������������������

a

��������������������������������������������������������������������������

a −1 1

Fig. 7. Replace a single edge with three edges

Call the new graph obtained after tripling all necessary edges Γ ′′, and
call the updated weight function αρ,t. We denote the associated matrix by
M ′′K,ρ. Kuperberg argues that this operation changes the determinant at
most up to a sign. In other words

det(M ′′K,ρ) = ±det(M ′K,ρ).

Indeed, this is easy to see as the Alexander matrix for the pair K, ρ changes
as follows for each edge tripling:

(
a ∗
∗ ∗

)
tripling−−−−→



−1 a 0 · · · 0

1 0 ∗
0
... ∗ ∗
0


.

Now we assume that our graph Γ ′′ has edges which pairwise intersect
at most once. The final step in forcing planarity is to replace each pair of
crossing edges with what Kuperberg calls a butterfly. This object and the
necessary weight modifications are shown in Figure 8.

b a −1 1

a −b

1

−1

ab

Fig. 8. Replace crossing edges with the butterfly



70 M. Cohen et al.

Call the new graph obtained after inserting all necessary butterflies Γ ′′′αρ ,

and call the updated weight function αρ,b. The associated matrix is M ′′′K,ρ.

Again Kuperberg argues that det(M ′′′K,ρ) = ±det(M ′K,ρ). We can also see
this directly by examining the changes to the Alexander matrix for the pair
K, ρ:

 0 a
∗

b 0

∗ ∗

 butterfly−−−−−→



−1 −1 a 0 · · · 0

1 1 0

−b 0 ab ∗
0
... ∗ ∗
0


.

4.4. The twisted dimer model. We can now put together the last
two subsections to state the twisted dimer model. Fix a knot K, a generic
diagram DK , and a representation ρ : π → GLn(R).

Algorithm 4.6 (Twisted dimer model).

(T1) Build the twisted Alexander graph as described in Definition 4.2
with associated weight function αρ.

(T2) Choose an embedding of Γ ′ that minimizes the number of edge
crossings.

(T3) Triple any edges necessary so that each pair of edges intersects at
most once, and update the weight function as shown in Figure 7.
Call the new graph Γ ′′ and the new weight function αρ,t.

(T4) Replace any crossing pairs of edges with butterflies, and update
the weight function as shown in Figure 8. Call the resulting graph
Γ ′′′ and the new weight function αρ,b.

(T5) Use the algorithm described in the proof of Proposition 2.4 to get
a Kasteleyn weighting ε for Γ ′′′.

(T6) Calculate the partition function

Z(Γ ′′′ε·αρ,b) =
∑
m∈M

( ∏
e∈m

ε(e) · αρ,b(e)
)
.

Our main theorem follows by construction.

Theorem 4.7. The twisted dimer model described above calculates the
twisted Alexander polynomial for the pair K, ρ. In other words

Z(Γ ′′′ε·αρ,b) =̇∆K,ρ(t).

We conclude by applying the twisted dimer model to the pair Tref, ρ
from Example 4.1.
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Example 4.8. Recall that we are considering the following diagram for
the trefoil and the representation ρ : π → GL3(Z) that comes from a non-
trivial 3-coloring. We have labeled the diagram to indicate the weight func-
tion αρ that will be assigned to the twisted Alexander graph.

tX
Id

tZId
Id

Id
Id

Recall that the representation matrices are

ρ(c1) = X =

 0 1 0

1 0 0

0 0 1

 ,

ρ(c2) = Y =

 1 0 0

0 0 1

0 1 0

 , ρ(c3) = Z =

 0 0 1

0 1 0

1 0 0

 .

The twisted Alexander graph will have three times the number of vertices
in the original Alexander graph. Each edge in the original graph will be
replaced with a copy of K3,3. The following labeling of the Alexander graph
helps us to see what the twisted graph will look like:

tX Id Id

Id Id

Id tZ

Finally, then, we see that the twisted Alexander graph for the pair Tref, ρ
has the following form. To simplify the pictures, all thickened edges have
weight t, and all other edges have weight 1. As we mentioned in Definition 4.3,
we do not draw weight 0 edges since any perfect matching that includes a
weight 0 edge will not contribute to the value of the partition function.

We can see through the sequence of manipulations in Figure 9 that, in
this case, the twisted Alexander graph is a planar graph. While the embed-
ding has changed, on the level of abstract graphs we have Γ ′ = Γ ′′ = Γ ′′′

and αρ = αρ,t = αρ,b.
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(1) (2)

(3)

Fig. 9. Unraveling the twisted dimer graph

We then find a spanning tree in the graph Γ ′′′ by the solid line segments
transverse to the edges. We assign an ε-weighting of +1 to all of these edges.
This is shown in Figure 10.

Fig. 10. Finding a spanning tree

Finally, as is shown in Figure 11, we complete ε to a Kasteleyn weighting.
In the picture, −1 weights are indicated by double line segments. Calculating
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Fig. 11. A Kasteleyn weighting

the partition function one can see that the polynomial obtained is

∆Tref,ρ(t) = t6 − t5 − t4 + 2t3 − t2 − t+ 1,

which agrees up to multiplication by −1 with Example 4.1.
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