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Heisenberg algebra and a graphical calculus
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Abstract. A new calculus of planar diagrams involving diagrammatics for biadjoint
functors and degenerate affine Hecke algebras is introduced. The calculus leads to an
additive monoidal category whose Grothendieck ring contains an integral form of the
Heisenberg algebra in infinitely many variables. We construct bases of the vector spaces
of morphisms between products of generating objects in this category.
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1. Introduction. In this paper we propose a graphical calculus for a
categorification of the Heisenberg algebra. The one-variable Heisenberg al-
gebra has generators p, q, one defining relation pq − qp = 1, and appears
as the algebra of operators in the quantization of the harmonic oscilla-
tor. A fundamental role in quantum field theory is played by its infinitely
generated analogue, the algebra with generators pi, qi for i in some infinite
set I, and relations

(1) piqj = qjpi + δi,j1, pipj = pjpi, qiqj = qjqi.
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In Section 2 we define a strict monoidal category H′ with two generating
objects Q+ and Q−, and morphisms between tensor products of these ob-
jects given by linear combinations of certain planar diagrams modulo local
relations. The category is k-linear over a ground commutative ring k, and
we specialize k to a field of characteristic 0. The endomorphism rings of the
tensor powers Q⊗n

+ and Q⊗n
− contain the group algebra k[Sn] of the sym-

metric group. The symmetrization and antisymmetrization idempotents in
k[Sn] produce objects in the Karoubi envelope H of H′. These objects can
be viewed as symmetric and exterior powers of the generating objects Q+

and Q−. Consequently, we denote them by

(2) Sn
+ := Sn(Q+), Λn

+ := Λn(Q+), Sn
− := Sn(Q−), Λn

− := Λn(Q−),

and call them the symmetric and exterior powers of Q+ and Q−. When
n = 0,

S0
+
∼= S0

−
∼= Λ0

+
∼= Λ0

−
∼= 1,

where 1 is the identity object of the monoidal category H, with 1⊗M =M
for any M . We also set

Sn
+ = Sn

− = Λn
+ = Λn

− = 0 if n < 0.

Proposition 1. There are canonical isomorphisms in H:

Sn
− ⊗ Λm

+
∼= (Λm

+ ⊗ Sn
−)⊕ (Λm−1

+ ⊗ Sn−1
− ),

Sn
− ⊗ Sm

−
∼= Sm

− ⊗ Sn
−,

Λn
+ ⊗ Λm

+
∼= Λm

+ ⊗ Λn
+.

These isomorphisms are constructed in Section 2.2. Since H is monoidal,
its Grothendieck group K0(H) is a ring. It has generators [M ] for all ob-
jects M of H and relations [M1] = [M2] + [M3] whenever M1

∼= M2 ⊕M3.
Multiplication is defined by [M1][M2] := [M1 ⊗M2].

Corollary 1. The following equalities hold in K0(H):

[Sn
−][Λ

m
+ ] = [Λm

+ ][Sn
−] + [Λm−1

+ ][Sn−1
− ],

[Sn
−][S

m
− ] = [Sm

− ][Sn
−],

[Λn
+][Λ

m
+ ] = [Λm

+ ][Λn
+].

Let HZ be the unital ring with generators an, bn, n ≥ 1 and defining
relations

anbm = bman + bm−1an−1,(3)

anam = aman,(4)

bnbm = bmbn.(5)

Here we have simply rewritten the relations in Corollary 1 using an in place
of [Sn

−] and bm instead of [Λm
+ ]. Also set a0 = b0 = 1, an = bn = 0 for n < 0,
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and require that the above relations hold for any n,m ∈ Z. Any product
of a’s and b’s can be converted into a linear combination with nonnegative
integer coefficients of monomials in b’s times monomials in a’s,

(6) bm1
. . . bmk

an1
. . . anr

with 1 ≤ m1 ≤ · · · ≤ mk, 1 ≤ n1 ≤ · · · ≤ nr. The Bergman diamond
lemma [4] tells us that this set of elements is a basis of HZ viewed as a free
abelian group. Let H = HZ ⊗C be the C-algebra with the same generators
and relations as HZ.

Forming the generating functions

A(t) = 1 + a1t+ a2t
2 + · · · , B(u) = 1 + b1u+ b2u

2 + · · · ,

we can rewrite relation (3) as

A(t)B(u) = B(u)A(t)(1 + tu).

Let

Ã(t) = 1 + tA′(−t)A(−t)−1, Ã(t) = 1 + ã1t+ ã2t
2 + · · · .

It is easy to check that ã1, ã2, . . . generate the same subalgebra of H as
a1, a2, . . . , and that

Ã(t)B(u) = B(u)Ã(t) +
tu

1− tu
B(u).

Defining
B̃(u) = 1 + uB′(−u)B(−u)−1,

we see that

(7) [ãn, b̃m] = (−1)n−1nδn,m,

so that H is isomorphic to the usual Heisenberg algebra.

Corollary 1 gives a ring homomorphism

(8) γ : HZ → K0(H)

that takes an to [Sn
−] and bn to [Λn

+].

Theorem 1. The map γ is injective.

This theorem is proved in Section 3.3.

Conjecture 1. The map γ is an isomorphism.

If true, this conjecture would allow us to view the additive monoidal
category H as a categorification of the integral form HZ of the Heisenberg
algebra.

The degenerate affine Hecke algebra, which we call degenerate AHA fol-
lowing a suggestion of Etingof, was introduced by Drinfeld [14] in the GL(n)
case and by Lusztig [27] in the general case. Cherednik [9] classified finite-
dimensional irreducible representations of degenerate AHA; its centralizing
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properties were studied by him and Olshanski in [10, 36]. We denote by DHn

the degenerate AHA for GL(n), over the base field k. Under the canonical
homomorphism [9, 14] from DHn to the group algebra k[Sn] of the sym-
metric group, the polynomial generators of DHn go to the Jucys–Murphy
elements. Okounkov and Vershik [34, 35] presented a detailed derivation of
the basic representation theory of the symmetric group via these elements
(see also [25, Chapter 2] and [8, 13]). For some other uses of Jucys–Murphy’s
elements and degenerate AHA we refer the reader to [20, 29, 33, 40].

We will prove in Section 4 that the ring of endomorphisms of the object
Q⊗n

+ in our category is isomorphic to the tensor product of DHn and the
polynomial algebra in infinitely many variables. Thus, the degenerate AHA
for GL(n) emerges naturally in our approach as part of a larger structure.
The polynomial generators of DHn acquire graphical interpretation in our
calculus as right-twisted curls on strands. We also describe a basis, given di-
agrammatically, of the vector spaces of morphisms between arbitrary tensor
products of the generators Q+ and Q− of H′.

To prove our results, we construct a family of functors from H′ to the
category S ′ whose objects are compositions of the induction and restriction
functors between the group algebras k[Sn] of the symmetric group, and
morphisms are natural transformations between these functors. The image
under these functors of the endomorphism of Q+ given by the right curl
diagram is the Jucys–Murphy element. The image of the counterclockwise
circle diagram with k right curls is the kth moment of the Jucys–Murphy
element. Products of these moments were investigated in [20, 33, 38, 40]
in relation to the asymptotic representation theory of the symmetric group
and free probability. It also seems that our construction should be related to
the circle of ideas considered by Guionnet, Jones and Shlyakhtenko [19] that
intertwine planar algebras and free probability. In addition, one would hope
for a relation between our calculus and the geometrization of the Heisenberg
algebra via Hilbert schemes by Nakajima [31, 32] and Grojnowski [18], and
for a possible link with Frenkel, Jing and Wang [16].

We discovered the monoidal category H′ by considering compositions of
the induction and restriction functors for the standard inclusions of the sym-
metric group algebras k[Sn] ⊂ k[Sn+1]. The induction and restriction func-
tors for inclusions of finite groups are biadjoint, and biadjointness natural
transformations can be depicted via cap and cup planar diagrams. Further-
more, the composition of two induction functors admits a natural endotrans-
formation given by right multiplication by the transposition (n + 1, n + 2),
an endomorphism of k[Sn+2] viewed as a left k[Sn+2]-module and a right
k[Sn]-module. We denote this natural transformation by the crossing of two
upward-oriented strands. Relations for compositions of the crossing, cup,
and cap transformations that hold for all n (universal relations) are given
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by equations (9)–(11). These relations together with isotopies of diagrams
are exactly the defining relations for the additive monoidal category H′.

Cautis and Licata [7] introduced graded relatives of H′ and H associated
to finite subgroups of SU(2), identified their Grothendieck rings with certain
quantized Heisenberg algebras, and constructed an action of their categories
on derived categories of coherent sheaves on Hilbert schemes of points on
the ALE spaces. Hom spaces in Cautis–Licata monoidal categories carry a
natural grading (absent in our case) with finite-dimensional homogeneous
terms and vanishing negative degree homs on certain objects, leading to a
proof that their analogue of the map γ is an isomorphism.

By themselves, Heisenberg algebras are rather simple constructs. Their
value is in the structures that quantum field theory builds on top of them,
for instance, the structures of vertex operator algebras. The problem posed
by Igor Frenkel [15] to categorify just the simplest vertex operator algebra
remains wide open—perhaps our paper will serve as a small step towards
this goal.

2. A new graphical calculus

2.1. Local moves and their consequences. Fix a commutative ring k
and consider the following additive k-linear monoidal category H′ generated
by two objects Q+ and Q−. An object of H′ is a finite direct sum of tensor
productsQǫ1⊗· · ·⊗Qǫm , denoted Qǫ, where ǫ = ǫ1 . . . ǫm are finite sequences
of signs. Thus, Qǫǫ′

∼= Qǫ ⊗ Qǫ′ for sequences ǫ, ǫ′ and their concatenation
ǫǫ′. The unit object corresponds to the empty sequence: 1 = Q∅.

The space of homomorphisms HomH′(Qǫ, Qǫ′) for sequences ǫ, ǫ′ is the
k-module generated by suitable planar diagrams, modulo local relations.
The diagrams consist of oriented compact one-manifolds immersed into the
plane strip R× [0, 1], modulo rel boundary isotopies. The relations are

==(9)

==(10)

= 0= 1(11)

We require that the endpoints of the one-manifold are located at {1, . . . ,m}
× {0} and {1, . . . , k} × {1}, and call these the lower and upper endpoints,
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respectively, where m and k are the lengths of the sequences ǫ and ǫ′. More-
over, orientation of the one-manifold at the endpoints must match the signs
in the sequences ǫ and ǫ′. For instance, the diagram

+

++

is a morphism from Q++−− to Q−+. A diagram without endpoints is an
endomorphism of 1. Composition of morphisms is given by concatenating
the diagrams. The sequence of n pluses is denoted +n, the sequence of
n minuses −n.

We have the Heisenberg relation

Q−+
∼= Q+− ⊕ 1.

This isomorphism is canonical and comes from the maps between these
objects encoded in the following diagram:

(12) Q+−

Q−+

Q−+

1

The four arrows are given by four morphisms, two of which are crossings
and two are U-turns. The condition that these maps describe a decomposi-
tion of Q−+ as the direct sum of Q−+ and 1 is equivalent to (9) and (11),
modulo the condition that an isotopy of a diagram does not change the mor-
phism. The latter condition is equivalent to the biadjointness of the functors
of tensoring with Q+ and Q−, with the biadjointness transformations given
by the four U-turns

(see Section 3.1 for details).
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Moving the lower endpoints of a diagram up via a multiple cups diagram
leads to canonical isomorphisms

(13) HomH′(Qǫ, Qǫ′) ∼= HomH′(1, Qǫǫ′) ∼= HomH′(1, Qǫ′ǫ),

related to the biadjointness of tensoring with Qǫ and Qǫ. Here ǫ is the se-
quence ǫ with the order and all signs reversed. Biadjointness natural trans-
formations satisfy the cyclicity condition [1, 2, 11, 26], which follows at once
from the definition of H′.

The two relations in (9) allow simplification of a double crossing for op-
positely oriented intervals. The first relation in (11) says that a counterclock-
wise-oriented circle equals one. Thus, an innermost counterclockwise circle
can be erased from the diagram without changing the value of the diagram
viewed as an element of the hom space between the functors.

There are two possible types of curls on strands: a left curl and a

right curl . The second relation in (11) says that a diagram that contains

a left curl subdiagram is zero.

The defining local relations in H′ imply the following relations:

+= =

The second relation, jointly with the original ones, implies that the triple
intersection move holds for any orientation of the three strands:

=

Furthermore, right curls can be moved across intersection points, modulo
simpler diagrams:

=

=

+

+

It will be convenient to denote a right curl by a dot on a strand, and kth
power of a right curl by a dot with k next to it:
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The above relations can be rewritten as
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=

=

+

+

Together with the earlier ones, these relations show that there is a homo-
morphism from the degenerate affine Hecke algebra DHn with coefficients
in k to the k-algebra of endomorphisms of the object Q+n . The permuta-
tion generator si of DHn goes to the permutation diagram of the ith and
(i + 1)st strands, and the polynomial generator xi goes to the dot on the
ith strand:

�
�
�
�

si xi

11 2 ii i+ 1 nn

Note that = 0. Indeed, the figure eight diagram, for any orien-
tation, contains both left and right curls, and therefore equals zero in our
calculus.

A strand with k dots can be closed into either a clockwise-oriented or
a counterclockwise-oriented circle with k dots. Denote these circles by ck
and c̃k, respectively:

ck := �
�
�
�
k c̃k :=

�
�
�
�k

Counterclockwise circles can be expressed as linear combinations of prod-
ucts of clockwise circles. For the first few values of k, these are

c̃0 = 1, c̃3 = c1,

c̃1 = 0, c̃4 = c2 + c20,

c̃2 = c0, c̃5 = c3 + 2c1c0.

These equations are obtained by expanding each dot into a left curl and then
operating on the resulting diagram via the rules of the graphical calculus.
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A counterclockwise circle with one dot expands into the figure eight diagram,
which is 0. For another example,

c̃3 = == = c1

Proposition 2. For k > 0 we have

(14) c̃k+1 =

k−1∑

a=0

c̃ack−1−a.

Proof. We compute

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

=

=

k−1∑

a=0

k−1∑

a=0

k − 1− a

k − 1− a

a

a

k

k

kk + 1

+

=

=

In the second equality, we converted a dot into a right curl, and in the third
equality, we moved k dots through a crossing. The first term on the second
line equals 0, since it contains a left curl.

Iterating this formula, one obtains an expression for c̃k as a polynomial
function of cm,m ≤ k−2. Vice versa, each cm can be written as a polynomial
in c̃k, k ≤ m+ 2. Let t be a formal variable and write

c(t) =

∞∑

i=0

cit
i, c̃(t) =

∞∑

i=0

c̃it
i.

Formula (14) turns into t2c(t)c̃(t) = c̃(t)− 1, so that

c̃(t) =
1

1− t2c(t)
.
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The following identities, called bubble moves by analogy with [26], hold:

��
��
��
��

��
��
��
��

�
�
�
�−

k−2∑

b=0

(k − b− 1)=
k

k k

bk − b− 2
+ (k + 1)

��
��
��
��

��
��
��
��

��
��
��
��

=

=0

bk k

k − b− 2
−

k−2∑

b=0

(k − b− 1)

A closed diagramD defines an endomorphism of the object 1 ofH′. Using
the local moves, such a diagram D can be converted into a linear combina-
tions of crossingless diagrams that consist of nested dotted circles. Further-
more, bubble moves can be used to split apart nested circles. Lastly, convert
counterclockwise circles into linear combinations of products of clockwise
circles. Therefore, a closed diagram can be written as a linear combination
of products of dotted clockwise circles. We see that the endomorphism alge-
bra EndH′(1) is a quotient of the polynomial algebra Π := k[c0, c1, c2, . . . ]
in countably many variables via the map

(15) ψ0 : Π = k[c0, c1, c2, . . . ] → EndH′(1)

that takes ck to the clockwise circle with k dots (we took the liberty of using
ck to denote both a formal variable and its image in the endomorphism
algebra).

Proposition 3. The map ψ0 is an isomorphism.

This proposition will be proved in Section 4.

The endomorphism algebra of Q+m is spanned by all diagrams that have
m upper and m lower endpoints and are such that at each endpoint the
strand is oriented upward. A homomorphism from the degenerate affine
Hecke algebra DHm to EndH′(Q+m) was described earlier. Placing a closed
diagram to the right of a diagram representing an element of DHm gives a
homomorphism

(16) ψm : DHm⊗Π → EndH′(Q+m).

It is easy to see that ψm is surjective, by taking a diagram representing an
element on the right hand side, and inductively simplifying it to a linear
combination of diagrams that come from a standard basis of the left hand
side. Namely, any diagram representing an endomorphism of Q+m is a com-
bination of diagrams that consist of a permutation σ ∈ Sm, some number
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(possibly zero) of dots on each strand above the permutation diagram, and
a monomial in dotted clockwise circles to the right:

��
��
��
��

����

�
�
�
�

������

�
�
�
�
��

��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��

�
�
�
�

�
�
�
�

We write these basis elements as xa11 . . . xamm · σ · cb00 c
b1
1 . . . cbkk . In the above

example, the element is x31x
2
2x

3
4 · (1324) · c0c

2
2c3.

Surjectivity of ψm can be strengthened to the following result.

Proposition 4. The map ψm is an isomorphism.

Injectivity of ψm is proved in Section 4.
We now describe a spanning set in the k-module HomH′(Qǫ, Qǫ′) for any

sequences ǫ, ǫ′. Denote by 〈ǫ〉 the difference between the number of pluses
and the number of minuses in ǫ (the weight of ǫ). The hom space is nontrivial
iff 〈ǫ〉 = 〈ǫ′〉, which we assume to be the case. Let k be half the sum of the
lengths of ǫ and ǫ′. The spanning set, denoted B(ǫ, ǫ′), is obtained by forming
all possible oriented matchings of the sequences ǫ, ǫ′ of signed points via k
oriented segments in the plane strip R× [0, 1]. We assume that the sequences
ǫ and ǫ′ are written at the bottom and top of the strip, the segments are
embedded in the strip, and their orientations at the endpoints match the
corresponding elements of ǫ and ǫ′. Any two segments intersect at most once,
and no triple intersections are allowed; see the example below for ǫ = −−+
and ǫ′ = +−−−+.

+

++ −

−

− −

−

Select an interval disjoint from intersections near the out endpoint of
each interval and put any number (perhaps zero) of dots on it. In the right-
most region of the diagram, draw some number of clockwise-oriented dis-
joint nonnested circles with no dots, some number of such circles with one
dot, two dots, etc., with finitely many circles in total. The resulting set of
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diagrams B(ǫ, ǫ′) is parametrized by k! possible matchings of the 2k ori-
ented endpoints, by a sequence of k nonnegative integers describing the
number of dots on each interval, and by a finite sequence of nonnegative
integers listing the number of clockwise-oriented circles with no dots, one
dot, and so on. An example of a diagram in B(−−+,+−−−+) is depicted
below:

2

2

3

4

7

In this picture, we put no dots, one dot, three dots, and four dots on the
four arcs of the matching, and added one bubble with no dots, two with two
dots and one with five dots.

It is rather straightforward to check that B(ǫ, ǫ′) is a spanning set of the
k-vector space HomH′(Qǫ, Qǫ′).

Proposition 5. For any sign sequences ǫ, ǫ′ the set B(ǫ, ǫ′) constitutes
a basis of the k-vector space HomH′(Qǫ, Qǫ′).

Proof. We claim that the set B(ǫ, ǫ′) is linearly independent. The propo-
sition holds as well for k being any commutative ring rather than a field,
with B(ǫ, ǫ′) being a basis of the free k-module HomH′(Qǫ, Qǫ′).

Notice that Proposition 4 is a special case of this proposition, for ǫ =
ǫ′ = +m. Proposition 5 follows from Proposition 4, the functor isomor-
phisms Q−+

∼= Q+− ⊕ Id and arguments similar to the ones in [24, Section
2.2]. First, canonical isomorphisms (13) take the set B(ǫ, ǫ′) to B(∅, ǫǫ′) and
B(∅, ǫ′ǫ), respectively, and it is then enough to show that B(∅, ǫ) is linearly
independent for any sequence ǫ with k pluses and k minuses.

Proposition 4 implies linear independence for k = 0, 1, and for the se-
quence +k−k for any k. Assume that ǫ = ǫ1 − + ǫ2 for some sequences
ǫ1, ǫ2. Assume by induction on k and by induction on the lexicographic or-
der among length 2k sequences that the sets B(∅, ǫ1ǫ2) and B(∅, ǫ1 + − ǫ2)
are linearly independent in their respective hom spaces.

The two upper arrows in the diagram (12) lead to a canonical decompo-
sition

Qǫ1−+ǫ2
∼= Qǫ1+−ǫ2 ⊕Qǫ1ǫ2 .

Under this isomorphism the sets B(∅, ǫ1ǫ2) and B(∅, ǫ1 +− ǫ2) get mapped
to two subsets of HomH′(1, Qǫ1−+ǫ2). Denote by B the union of these two
subsets. It is easy to see that linear independence of B(∅, ǫ1−+ ǫ2) is equiva-
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lent to linear independence of B, which we know by induction. Proposition 5
follows.

By the thickness of a diagram in B(ǫ, ǫ′) we understand the number of
arcs connecting lower and upper endpoints. The diagram depicted earlier has
thickness one. For any k and ǫ, the subset of diagrams of thickness at most
k is a 2-sided ideal in the endomorphism ring of Qǫ, since thickness cannot
increase upon composition. For ǫ = +n−m and k = n +m − 1 we denote
the corresponding ideal by Jn,m. It is spanned by diagrams with at least one
arc connecting a pair of upper endpoints (and, necessarily, at least one arc
connecting a pair of lower endpoints). It is easy to see that the quotient of
the endomorphism ring of Q+n−m by this ideal is naturally isomorphic to
the tensor product DHn ⊗DHop

m ⊗Π, and the short exact sequence

(17) 0 → Jn,m → EndH′(Q+n−m) → DHn⊗DHop
m ⊗Π → 0

admits a canonical splitting. Notice also that DHop
m

∼= DHm.
We now list some obvious symmetries of H′. The map that assigns

(−1)w(D)D to a diagram D, where w(D) is the number of crossings plus
the number of dots of D, extends to an involutive autoequivalence ξ1 of H′.
We have ξ21 = Id (equality and not just isomorphism). The autoequivalence
ξ1 exchanges Sn

+ with Λn
+ and Sn

− with Λn
−.

Denote by ξ2 the symmetry of the category H′ given on diagrams by
reflecting about the x-axis and reversing orientation. This symmetry is an
involutive monoidal contravariant autoequivalence of H′.

Denote by ξ3 the symmetry of the category H′ given on diagrams by
reflecting about the y-axis and reversing orientation. This symmetry is an
involutive antimonoidal autoequivalence of H′. Being antimonoidal means
reversing the order of elements in the tensor product: ξ3(M ⊗ N) =
ξ3(N)⊗ ξ3(M).

The symmetries ξ1, ξ2, ξ3 pairwise commute and generate an action
of (Z/2)3.

2.2. Karoubi envelope and projectors. The two relations in (10)
tell us that upward-oriented crossings satisfy the symmetric group relations
and give us a canonical homomorphism

k[Sn] → EndH′(Q+n)

from the group algebra of the symmetric group to the endomorphism ring
of the nth tensor power of Q+. Turning the diagrams by 180 degrees, we
obtain a canonical homomorphism

k[Sn] → EndH′(Q−n).

Assume that k is a field of characteristic 0. Then we can use symmetrizers
and antisymmetrizers, and more generally, Young symmetrizers, to produce
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idempotents in EndH′(Q+n). At this point it is convenient to introduce the
Karoubi envelope of H′, the category H whose objects are pairs (P, e), where
P is an object of H′ and e : P → P is an idempotent endomorphism, e2 = e.
Morphisms from (P, e) to (P ′, e′) are maps f : P → P ′ in H′ such that
e′fe = f . It is immediate that H is a k-linear additive monoidal category.

To the complete symmetrizer

e(n) ∈ k[Sn], e(n) =
1

n!

∑

σ∈Sn

σ

we assign the object Sn
+ := (Q+n , e(n)) in H. Following Cvitanović [12],

which contains diagrammatics for Young symmetrizers and antisymmetriz-
ers, we depict Sn

+ as a white box labelled n. The inclusion morphism Sn
+ →

Q+n is depicted by a white box with n upward-oriented lines emanating
from the top. The projection Q+n → Sn

+ is depicted by a white box with n
upward-oriented lines at the bottom. The composition Q+n → Sn

+ → Q+n

is depicted likewise.

n

To the complete antisymmetrizer

e′(n) ∈ k[Sn], e′(n) =
1

n!

∑

σ∈Sn

sign(σ)σ

we assign the object Λn
+ := (Q+n , e′(n)) in H and depict it and related

inclusions and projections to and from Q+n by black boxes with up arrows

n

Define the objects S−
n := (Q−n , e(n)) and Λ−

n := (Q−n , e′(n)) as the
subobjects of Q−n associated to the symmetrizer e(n) and the antisym-
metrizer e′(n) idempotents, respectively, under the canonical homomor-
phism k[Sn] → EndH′(Q−n). We draw S−

n and Λ−
n as white, respectively

black, boxes, but with the lines at the boxes oriented downward.

We plan to develop the graphical calculus of these diagrams elsewhere.
Part of the calculus that deals with the lines oriented only upwards (or only
downwards) is the graphical calculus of symmetrizers and antisymmetrizers
in the symmetric group, and can be found in [12]. The latter calculus implies
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the second and third isomorphisms from Proposition 1 in the introduction.
For instance, the second isomorphism is realized by the diagram

m

m

n

n

The first family of isomorphisms in Proposition 1 is realized by the maps

Sn
− ⊗ Λm

+

Λm
+ ⊗ Sn

−

Λm−1
+ ⊗ Sn−1

−

α1

α2

β1

β2

m

m m

m

m

m

n

n

n

n

n

nm− 1

m− 1

n− 1

n− 1

A straightforward manipulation of diagrams shows that

α1β1 = Id, α1β2 = 0, α2β2 =
1

mn
Id, α2β1 = 0.

Let β′2 = mnβ2. Then the maps

Λm
+ ⊗ Sn

−

α1

⇆

β1

Sn
− ⊗ Λm

+

α2

⇆

β2

Λm−1
+ ⊗ Sn−1

−
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satisfy

α1β1 = Id, α1β
′
2 = 0, α2β

′
2 = Id, α2β1 = 0, β1α1 + β′2α2 = Id.

The last equality follows from a direct diagrammatic manipulation as well.
Thus, there is an isomorphism

Sn
− ⊗ Λm

+
∼= (Λm

+ ⊗ Sn
−)⊕ (Λm−1

+ ⊗ Sn−1
− ),

concluding the proof of Proposition 1 and Corollary 1.

There is a natural bijection between partitions λ of n and (isomor-
phism classes of) irreducible representations of k[Sn]. To each partition
λ = (λ1, . . . , λk) with |λ| = λ1 + · · ·+ λk = n there corresponds the unique
common irreducible summand Lλ of the representation induced from the
trivial representation of the parabolic subgroup Sλ = Sλ1

× · · · × Sλk
⊂ Sn

and the representation induced from the sign representation of the parabolic
subgroup Sλ∗ = Sλ∗

1
×· · ·×Sλ∗

m
, where λ∗ is the dual partition. Let eλ ∈ k[Sn]

be the Young idempotent, so that e2λ = eλ and Lλ
∼= k[Sn]eλ.

We denote by Q+,λ := (Q+n , eλ) the object of H which is the direct sum-
mand of Q+n corresponding to the idempotent eλ, where we view the latter
as an idempotent in the endomorphism ring via the standard homomorphism
k[Sn] → EndH(Q+n). Likewise, let Q−,λ := (Q−n , eλ) be the corresponding
direct summand of Q−n , where we view eλ as an endomorphism of the latter
object. In particular,

Sn
+ = Q+,(n), Λn

+ = Q+,(1n), Sn
− = Q−,(n), Λn

− = Q−,(1n).

The Grothendieck ring K0(H) is the abelian group with generators the
symbols [M ] for all objects M of H, and defining relations [M1] = [M2] +
[M3] whenever M1

∼= M2 ⊕ M3. The monoidal structure on H descends
to an associative multiplication on K0(H), with [1] being the identity for
multiplication. Hence, K0(H) is an associative unital ring.

Recall the ring HZ from the introduction. We can now define the homo-
morphism γ : HZ → K0(H) discussed there:

γ(an) = [Q−,(n)] = [Sn
−], γ(bm) = [Q+,(1m)] = [Λm

+ ].

If we identify the subring of HZ generated by the an’s with the ring
Sym of symmetric functions so that an corresponds to the nth complete
symmetric function hn, then γ will take the Schur function associated to
the partition λ to [Q+,λ]. This function is often denoted sλ; for us it is
convenient to call it aλ, so that a(n) = an.

Similarly, we identify the subring generated by the bm’s with Sym by
taking bm to the mth elementary symmetric function em. Denote by bλ the
polynomial in bm’s that corresponds to the Schur function sλ under this
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identification. In particular, b(1m) = bm. We have

γ(aλ) = [Q−,λ], γ(bλ) = [Q+,λ∗ ].

The Littlewood–Richardson coefficients rνλ,µ that appear in decomposi-
tions of the product of the Schur functions

aλaµ =
∑

ν

rνλ,µaν , bλbµ =
∑

ν

rνλ,µbν

also appear in the following isomorphism formulas in H:

Q+,λ ⊗Q+,µ
∼=

⊕

ν

(Q+,ν)
rν
λ,µ , Q−,λ ⊗Q−,µ

∼=
⊕

ν

(Q−,ν)
rν
λ,µ .

Descending to the Grothendieck ring, we have

[Q+,λ][Q+,µ] =
∑

ν

rνλ,µ[Q+,ν ], [Q−,λ][Q−,µ] =
∑

ν

rνλ,µ[Q−,ν ].

The ring HZ has a basis {bµaλ}λ,µ over all partitions λ, µ. Consequently,
the elements [Q+,µ][Q−,λ] over all λ, µ span the subring γ(HZ) of K0(H).

Remark. The symmetries ξ1, ξ2, ξ3 of H′ extend to self-equivalences of
the category H, also denoted ξ1, ξ2, ξ3. On objects Q+,λ ⊗Q−,µ they act as
follows:

ξ1(Q+,µ ⊗Q−,λ) = Q+,µ∗ ⊗Q−,λ∗ ,

ξ2(Q+,µ ⊗Q−,λ) = Q+,µ ⊗Q−,λ,

ξ3(Q+,µ ⊗Q−,λ) = Q+,λ ⊗Q−,µ.

These self-equivalences induce involutions [ξ1], [ξ2] and an antiinvolution [ξ3]
on K0(H). The involution of HZ corresponding to [ξ2] is the identity. We do
not know whether [ξ2] is the identity involution on the entire K0(H); this
would follow from Conjecture 1.

3. Diagrammatics for induction and restriction functors

3.1. Biadjoint functors. Recall [28] that a functor L : A → B between
categories A and B is left adjoint to a functor R : B → A whenever there
are natural transformations

(18) α : LR⇒ IdB, β : IdA ⇒ RL

that satisfy the relations

(19) (α ◦ IdL)(IdL ◦ β) = IdL, (IdR ◦ α)(β ◦ IdR) = IdR.

Assume that L is both left and right adjoint to R, and the second ad-
junction maps

(20) α : RL⇒ IdA, β : IdB ⇒ LR



186 M. Khovanov

are fixed as well. They satisfy

(21) (α ◦ IdR)(IdR ◦ β) = IdR, (IdL ◦ α)(β ◦ IdL) = IdL.

Out of α,α, β, β one can construct more general natural transformations
between compositions of functors L and R by placing the basic four trans-
formations in various locations in the composition of functors, and then
composing several such transformations. It is convenient to draw these com-
positions via planar diagrams, with transformations (18), (20) depicted as
U-turns:

α

β
A

A

A

A

B

B

B

B

(k

R

R

R

R

L

L

L

L

β

α

General diagrams are built of U-turns and vertical lines, the latter de-
noting identity natural transformations of R and L. For instance,

A A

B

B

B

is the following natural transformation from RLR to R:

(α ◦ Id)(Id ◦ α ◦ Id⊗2)(Id ◦ β ◦ Id⊗2)(β ◦ Id)α

The four biadjointness equations (19), (21), which can be drawn as

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

==

==
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are equivalent to the condition that the lines and circles can be isotoped
without changing the natural transformation associated to the diagram.
This was observed in [11, 30].

The graphical calculus of biadjoints can be further enhanced. Assume
given a collection of categories and a collection of functors between them
such that each functor has a biadjoint, which is also in the collection, and the
biadjointness transformations are fixed. Natural transformations generated
by the biadjointness ones can be drawn via diagrams on the plane strip
R× [0, 1], with lines and circles labelled by functors and regions labelled by
categories, with arbitrary rel boundary isotopies allowed.

Furthermore, any element z in the centre of a category A (i.e. z is the
endomorphism of the identity functor IdA) can be shown as freely floating
in a region labelled A. Two such central elements can freely move past each
other.

Given two functors F,G : A → B in the collection, a natural transfor-
mation a : F → G can be depicted as a labelled dot on a line separating a
segment labelled F from a segment labelled G:

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A Ba

F

G

When a is dragged through a U-turn, it can change in two possible
ways, depending on the type of the U-turn, into natural transformations
a∗, ∗a : G′ → F ′, where F ′, G′ are the biadjoints of F and G. If ∗a = a∗, we
say that the biadjointness data is cyclic. For more on the cyclicity condition
see [1, 2, 11, 26].

Biadjoint functors appear throughout categorification and TQFTs, see
discussions in [21, Section 5], [22] and references therein, also [6].

3.2. Induction and restriction between finite groups in pictures.

We fix a commutative ring k and denote by kG the group algebra of finite
group G with coefficients in k. We denote by (G) the group algebra kG
viewed as a (kG,kG)-bimodule. If H is a subgroup of G and we view kG
as a (kG,kH)-bimodule via the left action of kG and the right action of
kH, we denote it by (GH ). When viewing kG as a kH-bimodule, denote
it by (HGH), etc. Similar shortcut notation is adopted for tensor products
of bimodules. For instance, (GHG) denotes the kG-bimodule kG ⊗kH kG,
while (HGHG) denotes the same space, but viewed as a (kH,kG)-bimodule.

Start with the 2-category BFin whose objects are finite groups G, mor-
phisms fromG toH are (kH,kG)-bimodules, and 2-morphisms are bimodule
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homomorphisms. Consider the 2-subcategory IRFin′ of BFin with the same
objects as BFin, while morphisms are finite direct sums of tensor products
of bimodules (GH ) and (HG) corresponding to the induction and restriction
functors between categories of H- and G-modules. Thus, a 1-morphism from
G to G′ is a finite direct sum of bimodules isomorphic to

(Gn Hn−1
Gn−1 Hn−2

. . .H2
G2 H1

G1)

where G′ = Gn ⊃ Hn−1 ⊂ Gn−1 ⊃ · · · ⊂ G2 ⊃ H1 ⊂ G1 = G is a zigzag of
inclusions between finite groups. The 2-morphisms in IRFin′ are bimodule
homomorphisms. Alternatively, we can think of 1-morphisms in IRFin′ as
given by compositions of induction and restriction functors between cate-
gories of (left) G-modules, over finite groups G.

In this section, we develop basics of a graphical calculus for studying
2-morphisms in IRFin′. In general, given a unital inclusion of rings B ⊂ A,
the induction functor Ind : B-mod → A-mod that takes M to A ⊗B M
is left adjoint to the restriction functor. An inclusion ι : H ⊂ G of finite
groups produces an inclusion kH ⊂ kG of group algebras, with the induction
functor

IndGH : kH-mod → kG-mod

being both left and right adjoint (i.e. biadjoint) to the restriction functor

ResHG : kG-mod → kH-mod.

The biadjointness endomorphisms are given by the following four bimodule
maps:

1) (GHG) → (G), x⊗ y 7→ xy, x, y ∈ (G),

2) (H) → (HGGGH), x 7→ x⊗ 1 = 1⊗ x, x ∈ (H),

3) (HGGGH) ∼= (HGH) → (H), g 7→ g if g ∈ H, g 7→ 0 if g ∈ G \H.

We denote this projection map by pH : (HGH) → (H), pH(g) = g if g ∈ H
and pH(g) = 0 if g ∈ G \H, extended by k-linearity. Clearly, pH is a map
of kH-bimodules.

4) Let G =
⊔m

i=1Hgi be a decomposition of G into left H-cosets, so that
m = [G : H] is the index of H in G. Notice that the element

m∑

i=1

g−1
i ⊗ gi ∈ (GHG)

does not depend on the choice of coset representatives {gi}
m
i=1 of H in G: if

g′i = higi then

m∑

i=1

g′−1
i ⊗ g′i =

m∑

i=1

g−1
i h−1

i ⊗ higi =
m∑

i=1

g−1
i ⊗ gi,
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since the tensor product is over k[H], and hi can be moved through the
tensor product sign. Define a bimodule map

(22) (G) → (GHG)

by the condition that

1 7→
m∑

i=1

g−1
i ⊗ gi,

so that

g 7→
m∑

i=1

g−1
i ⊗ gig =

m∑

i=1

gg−1
i ⊗ gi.

The second equality, needed to ensure that one does get a bimodule map,
follows from the following computation: gig = higi′ for some hi ∈ H and
i′ ∈ {1, . . . ,m}. The assignment i 7→ i′ is a bijection of {1, . . . ,m}. We have

m∑

i=1

g−1
i ⊗ gig =

m∑

i=1

g−1
i ⊗ higi′ =

m∑

i=1

g−1
i hi ⊗ gi′ =

m∑

i′=1

gg−1
i′ ⊗ gi′

=

m∑

i=1

gg−1
i ⊗ gi.

Combining this with the earlier remark, we see that (22) is a bimodule map
which does not depend on the choices of H-coset representatives gi.

We associate to these four bimodule maps the following four pictures:

−

G
G GG

GG

HH

HH H
H

Thus:

k−∑

GG

H
, denoted αG

H , is the map

(GHG) → (G), x⊗ y 7→ xy, x, y ∈ (G).

G

HH
, denoted βGH , is the map

(H) → (HGGGH) ∼= (HGH), x 7→ x⊗ 1 = 1⊗ x, x ∈ (H).

G

HH , denoted αH
G , is the map pH described earlier,

(HGGGH) ∼= (HGH) → (H), x 7→ pH(x), x ∈ (G).

α

GG

H , denoted β
H
G , is the k-linear map (22),

(G) → (GHG), g 7→
m∑

i=1

g−1
i ⊗ gig, g ∈ G.
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Theorem 2. These four bimodule maps turn the induction and restric-

tion functors IndGH and ResHG into a cyclic biadjoint pair.

Proof. First, we check that the adjointness equations (19) and (21) hold
for these maps. The bimodule map (GH) → (GHGH) → (GH) corresponding
to the left hand side of the first equation in (19) is given by g 7→ g ⊗ 1 7→
g1 = g, hence the map is the identity:

G
G

H

H

=

The bimodule map (HG) → (HGHG) → (HG) for the left hand side of
the second equation in (19) is given by g 7→ 1 ⊗ g 7→ 1g = g, and the map
is the identity:

G

G

H

H=

The bimodule map (HG) → (HGHG) → (HG) for the left hand side of
the first equation in (21) is given by

g 7→
m∑

i=1

gg−1
i ⊗ gi 7→

m∑

i=1

pH(gg−1
i )gi.

Notice that pH(gg−1
i ) = 0 iff g /∈ Hgi, and pH(hgig

−1
i ) = h. Therefore,

g 7→ g under the map, and the first equation in (21) holds:

G

G

H

H=

The bimodule map (GH) → (GHGH) → (GH) for the left hand side of
the second equation in (21) is given by

g 7→
m∑

i=1

g−1
i ⊗ gig 7→

m∑

i=1

g−1
i p(gig) = g

by a similar computation, so that

G

G
H

H=



Heisenberg algebra and a graphical calculus 191

and the four bimodule maps above determine biadjointness morphisms for
induction and restriction functors between H and G.

Consider the k-algebra

kGH := {a ∈ kG | ha = ah ∀h ∈ H}

of H-invariants in kG with respect to the conjugation action. This algebra
is canonically isomorphic to the endomorphism ring of the bimodule (HG),
and therefore to the endomorphism ring of the functor ResHG , via the map
that assigns to a ∈ kGH the endomorphism ′a(x) := ax, where x ∈ (HG).
Likewise, the opposite algebra of kGH is canonically isomorphic to the en-
domorphism ring of the bimodule (GH), and therefore to that of the functor
IndGH , via the map that assigns to a ∈ kGH the endomorphism a′(x) := xa,
where x ∈ (GH ).

Thus, to a ∈ kGH we assign endomorphisms a′ and ′a of IndGH and ResHG
and depict them by

��
��
��
��

��
��
��
��
aa GG HH

Lemma 1. For any a ∈ kGH there are equalities of bimodule homomor-

phisms

��
��
��
��

��
��
��
��=a a

GG

HH αG
H(a′ ◦ Id) = αG

H(Id ◦ ′a),(23)

��
��
��
��

��
��
��
��

=a aGG

HH

(′a ◦ Id)βGH = (Id ◦ a′)βGH ,(24)

��
��
��
��

��
��
��
��=

k

aa GG

HH

αH
G (′a ◦ Id) = αH

G (Id ◦ a′),(25)

��
��
��
��

��
��
��
��

=a aGG

HH

(a′ ◦ Id)β
H
G = (Id ◦ ′a)β

H
G .(26)

The left hand side of the first equality is a map (GHG) → (G) given by
g1⊗g2 7→ g1a⊗g2 7→ g1ag2. The right hand side is g1⊗g2 7→ g1⊗ag2 7→ g1ag2,
and the equality is obvious.

The second equality follows from an equally trivial computation.
The third equality is the equation pH(ga) = pH(ag) for g ∈ G and

a ∈ kGH . It suffices to check it when k = Z and a =
∑

h∈H hkh−1 for some
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k ∈ G. The equation becomes

(27)
∑

h∈H

pH(ghkh−1) =
∑

h∈H

pH(hkh−1g).

The left hand side equals
∑

h∈H

pH(ghk)h−1 =
∑

h−1g−1u=k

pH(u)pH(h−1) =
∑

hg−1u=k

pH(u)pH(h),

where in the first equality we set u = ghk, the sum being over all u, h ∈ G
with h−1g−1u = k. For the second equality, we converted h to h−1.

The right hand side of (27) equals
∑

h∈H

hpH(kh−1g) =
∑

ug−1h=k

pH(h)pH(u),

where we set u = kh−1g and the sum is over all u, h ∈ G. Interchanging h
and u, we see that (27) holds.

For the last of the four equations, it suffices to check that the image of
1 ∈ G is the same under these two bimodule homomorphisms. For the one
on the left,

1 7→
m∑

i=1

g−1
i ⊗ gi 7→

m∑

i=1

g−1
i ⊗ agi.

For the one on the right,

1 7→
m∑

i=1

g−1
i ⊗ gi 7→

m∑

i=1

g−1
i a⊗ gi.

Again, we can assume k = Z and a =
∑

h∈H hkh
−1 for some k ∈ G. The

equation becomes

(28)
∑

i,h

g−1
i ⊗ hkh−1gi =

∑

i,h

g−1
i hkh−1 ⊗ gi,

with sum over 1 ≤ i ≤ m and h ∈ H. We have∑

i,h

g−1
i ⊗ hkh−1gi =

∑

i,h

g−1
i h⊗ kh−1gi =

∑

u∈G

u⊗ ku−1,

where, in the first equality, h is moved to the left (the tensor product is over
kH), and in the second equality, u = g−1

i h runs over all elements of G as
i changes from 1 to m and h runs over all elements of H. Likewise,

∑

i,h

g−1
i hkh−1 ⊗ gi =

∑

i,h

g−1
i hk ⊗ h−1gi =

∑

u∈G

uk ⊗ u−1.

Equation (28) and Lemma 1 follow.

Since the box labelled by a ∈ kGH can be dragged through any U-turn,
we see that the biadjointness maps have the cyclic property—dragging the
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box labelled a all the way along a circle brings us back to the original
diagram. This concludes the proof of Theorem 2.

There are obvious simplification relations

=
G

GG H

HH

[G : H]=

The first relation says that a counterclockwise bubble with G inside and
H outside can be erased. The second relation allows us to remove a clockwise
bubble at the cost of multiplying the diagram by the index of H in G.

For each inclusion of finite groups H ⊂ K ⊂ G there is a canonical
isomorphism between the induction functors IndGH

∼= IndGK ◦ IndKH which
corresponds to the canonical isomorphism of bimodules (G)H ∼= (G)K(K)H .
Likewise, the canonical isomorphism between restrictions ResHG

∼= ResHK ◦
ResKG is given by the natural isomorphism of bimodules H(G) ∼= H(K)K(G).
We draw these isomorphisms via trivalent diagrams

GG GG HH HH
KK

KK

Since the isomorphisms are mutually inverse, we have, for the first two
isomorphisms,

== GGG G HHH H K

K

K

K

Mutual inversion of the other two isomorphisms can be similarly depicted.
These definitions are compatible with isotopies—we have the identities

==

G

G

G

H

H
H

KKK

(likewise for the other pair of isomorphisms). These identities imply that
various definitions of trivalent vertices in other positions relative to the
y-coordinate are all the same. For instance, if we define

GG

HH KK :=
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then

=
GG

H
H

K
K

The associativity relation for the inclusions of four groups L ⊂ H ⊂ K ⊂ G
has the form

=
LL GG

H

H K
K

The induction and restriction functors for H and G depend on the in-
clusion ι : H →֒ G. Conjugating the inclusion by an element g ∈ G, so
that ι′(h) = ghg−1, ι′ : H →֒ G, leads to induction and restriction functors
isomorphic to the original ones, via bimodule maps

(G)ι(H) → (G)ι′(H), f 7→ fg−1, f ∈ G,

ι(H)(G) → ι′(H)(G), f 7→ gf, f ∈ G.

We depict these conjugation isomorphisms via a mark on a line with g next
to it:

ι

ι′

G Hg

The Mackey induction-restriction theorem says that, given subgroups
H,K of a finite group G, there is an isomorphism

(29) ResKG ◦ IndGH
∼=

⊕

i∈I

IndK
K∩giHg−1

i

◦ Res
K∩giHg−1

i

H ,

where the sum is over representatives gi of (K,H)-cosets of G,

G =
⊔

i∈I

KgiH.

Let Li = K ∩ giHg
−1
i . The diagrams

gig−1

i

G

G

HH KK

Li

Li
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define (K,H)-bimodule maps

αi : (K)Li

′(H) → K(G)H , βi : K(G)H → (K)Li

′(H).

Here (K)Li
′(H) is k[K]⊗k[Li] k[H], with x ∈ Li acting on H by right mul-

tiplication by g−1
i xgi.

Proposition 6. The maps
∑

i∈I αi and
∑

i∈I βi are mutually inverse

isomorphisms of the bimodules
⊕

i∈I(K)Li
′(H) and K(G)H .

This proposition is a pictorial restatement of the Mackey theorem. The
proof is left to the reader and amounts to checking the following relations:

gi

g−1

i

∑
i∈I=G

G

G

H HK K Li

gi

g−1

i

= GH HK KLi

Li

Li

g−1

i

gj

if i 6= j=G HK

Li

Lj

0

3.3. Induction and restriction between symmetric groups. We
now specialize the earlier construction to the case of the symmetric group
Sn, viewed as the permutation group of {1, . . . , n}, and induction/restriction
functors for inclusions Sn ⊂ Sn+1, where Sn is identified with the stabilizer
of n+1 in Sn+1. Notations for bimodules will be further simplified, so that,
for instance, n(n + 1)n−1 stands for k[Sn+1], viewed as a (k[Sn],k[Sn−1])-
bimodule for the standard inclusions Sn ⊂ Sn+1 ⊃ Sn−1, and n(n+1)n(n+2)
stands for k[Sn+1]⊗k[Sn]k[Sn+2], viewed as a (k[Sn],k[Sn+2])-bimodule. The
regions of the strip R× [0, 1] are now labelled by nonnegative integers n. An
upward-oriented line separating regions labelled n and n+ 1:
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nn+ 1

denotes the identity endomorphism of the induction functor

Indn+1
n : k[Sn]-mod → k[Sn+1]-mod.

This is the functor of tensoring with the bimodule (n + 1)n.

A downward-oriented line separating regions n+ 1 and n:

n n+ 1

denotes the identity endomorphism of the restriction functor

Resnn+1 : k[Sn+1]-mod → k[Sn]-mod.

The bimodule for this functor is n(n+ 1).

The four U-turns are given by the following bimodule maps:

n

−

n+ 1
(n+ 1)n(n+ 1) → (n+ 1), g ⊗ h 7→ gh, g, h ∈ Sn+1,(30)

n

n+ 1 (n) → n(n+ 1)n, g 7→ g, g ∈ Sn(31)

n
n+ 1 pn : n(n+ 1)n → (n), pn(g) =

{
g if g ∈ Sn,

0 otherwise,
(32)

n

n+ 1
qn : (n+ 1) → (n + 1)n(n+ 1),(33)

where the bimodule map qn is determined by the condition

qn(1) =
n+1∑

i=1

sisi+1 . . . sn ⊗ sn . . . si+1si, si = (i, i+ 1).

Notice that {sn . . . s2s1, sn . . . s3s2, . . . , snsn−1, sn, 1} are n + 1 coset repre-
sentatives of Sn ⊂ Sn+1, and

qn(g) =

n+1∑

i=1

gsisi+1 . . . sn ⊗ sn . . . si+1si

=
n+1∑

i=1

sisi+1 . . . sn ⊗ sn . . . si+1sig, g ∈ Sn+1.

The bimodule maps pn and qn are the second adjointness maps for the group
inclusion Sn ⊂ Sn+1. For an arbitrary inclusion of finite groups H ⊂ G these
maps were described in the previous subsection.
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Denote by an upward-pointing crossing n the endomorphism of

(n+2)n given by right multiplication by sn+1, so that g 7→ gsn+1, g ∈ Sn+2.

Denote by a downward-pointing crossing n the endomorphism of

n(n+ 2) given by left multiplication by sn+1, so that g 7→ sn+1g, g ∈ Sn+2.

Denote by a right-pointing crossing n the bimodule endomorphism

(n)n−1(n) → n(n+ 1)n that takes g ⊗ h for g, h ∈ Sn to gsnh ∈ Sn+1.

Denote by a left-pointing crossing n the bimodule endomorphism

n(n+1)n → (n)n−1(n) that takes g ∈ Sn ⊂ Sn+1 to 0 and gsnh for g, h ∈ Sn
to g ⊗ h ∈ (n)n−1(n).

These four definitions-notations are compatible with the isotopies of di-
agrams in the plane strip—there are equalities of bimodule endomorphisms

=

=

=

=

nn

nn

n

n

n

n

They can be checked by direct computations.

Proposition 7. The following relations hold for any n ∈ Z:

(34)

=

=

= =

n

n nn

nn

nn

n

nn

= 1

= 0

Here and further we follow the convention that a diagram equals 0 if
it has a region labelled by a negative number. Notice that the top two
relations in (34) come from the relations in the symmetric groups: s2n+1 = 1
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and sn+1sn+2sn+1 = sn+2sn+1sn+2, and follow at once from the definition
of the bimodule homomorphism associated to an upward-pointing crossing.
The four remaining relations encode the bimodule decomposition

n(n + 1)n ∼= (n)n−1(n)⊕ (n)

giving an isomorphism

Resnn+1 ◦ Ind
n+1
n

∼= Indnn−1 ◦Res
n−1
n ⊕ Id

of endofunctors in the category k[Sn]-mod. This is a special case of the
Mackey decomposition theorem which was given a diagrammatic interpre-
tation in an earlier section. The relations in Proposition 7 are identical to
the ones in the definition of the category H′ (see Section 2.1).

Let S ′ be the category whose objects are compositions of induction
and restriction functors between symmetric groups for standard embeddings
Sk ⊂ Sk+1. The morphisms are natural transformations of functors (again,
we work over a field k of characteristic 0). The category S ′ is the sum of
categories S ′

k over k ≥ 0; in the latter the first induction or restriction

starts from Sk. For instance, Ind
k+2
k+1 ◦ Ind

k+1
k ◦Reskk+1 ◦ Ind

k+1
k is an object

of S ′
k. Morphisms in S ′

k are natural transformations of functors and can be
identified with homomorphisms of associated bimodules.

Thus, for each k ≥ 0, there is a functor F ′
k : H′ → S ′

k that takes Qǫ

to the corresponding composition of induction and restriction functors. For
instance,

F ′
k(Q++−+) = Indk+2

k+1 ◦ Ind
k+1
k ◦Reskk+1 ◦ Ind

k+1
k .

If, for some m, the last m terms of ǫ contain at least k + 1 more minuses
than pluses, then F ′

k(Qǫ) = 0. On morphisms, F ′
k is defined as follows. It

takes a diagram representing a morphism in H′, labels the rightmost region
of the diagram by k, and views the diagram as a natural transformation
between compositions of induction and restriction functors. The functor F ′

k

is not monoidal, since S ′
k does not have a monoidal structure matching that

of H′.

Let S, respectively Sk, be the Karoubi envelope of S ′, respectively S ′
k.

The functor F ′
k induces a functor on Karoubi envelopes Fk : H → Sk. We

summarize relevant categories and functors below:

S = Kar(S ′), Sk = Kar(S ′
k), F ′

k : H′ → S ′
k, Fk : H → Sk.

S ′
⊕

k≥0S
′
k

Kar

y
yKar

S
⊕

k≥0Sk

H′ F ′
k−−−−→ S ′

k

Kar

y
yKar

H
Fk−−−−→ Sk
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The functor Fk induces a homomorphism of abelian groups

(35) [Fk] : K0(H) → K0(Sk).

Notice that K0(H) is a ring, while K0(Sk) is only an abelian group.

An object of Sk is a direct summand of a finite sum of compositions
of induction and restriction functors that start with the category of k[Sk]-
modules, thus it takes any finite-dimensional k[Sk]-module to a module over⊕

m≥0 k[Sm]. Descending to Grothendieck groups, we obtain a homomor-
phism

θk : K0(Sk) → HomZ

(
K0(k[Sk]),

⊕

m≥0

K0(k[Sm])
)
.

From now on until the end of this paper we assume that char(k) = 0.
Consider the composite homomorphism

θk[Fk] : K0(H) → HomZ

(
K0(k[Sk]),

⊕

m≥0

K0(k[Sm])
)
.

This homomorphism takes [Q+,µ] to a map that assigns to [M ] ∈ K0(k[Sk]),

for a k[Sk]-moduleM , the symbol [Ind
S|µ|+k

S|µ|×Sk
(Lµ⊗M)] of the induced mod-

ule over k[S|µ|+k]. In other words, tensor M with Lµ, producing a module
over k[S|µ|]× Sk, induce to k[S|µ|+k], then pass to the Grothendieck group.

Likewise, θk[Fk] takes [Q−,λ] to the zero map if |λ| > k, and if k ≥ |λ|,
to the map that assigns to [M ] as above the symbol of the module

Homk[S|λ|](Lλ,M) ∈ k[Sk−|λ|]-mod.

In other words, restrict M to being a module over the group algebra of
S|λ|×Sk−|λ| ⊂ Sk, and form homs from the simple module Lλ over S|λ|. The
result is a representation of the symmetric group Sk−|λ|.

Now consider the composition

θk[Fk]γ : HZ → HomZ

(
K0(k[Sk]),

⊕

m≥0

K0(k[Sm])
)
.

We claim that the sum of these maps, over all k ≥ 0, is injective. Let

y =
∑

λ,µ

yλ,µbµaλ, yλ,µ ∈ Z,

be an arbitrary nonzero element of HZ. We have

γ(y) =
∑

λ,µ

yλ,µ[Q+,µ∗ ][Q−,λ].

When |λ| = k, the map

θk[Fk]γ(aλ) = θk[Fk]([Q−,λ])
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takes [Lν ] to 0 if |ν| = k and ν 6= λ. The same map takes [Lλ] to [L∅], the
symbol of the simple module over k[S0] = k.

Choose k such that yλ,µ 6= 0 for some λ with |λ| = k and some µ, while
yλ,µ = 0 for all µ whenever |λ| < k. Also choose ν with |ν| = k and yν,µ 6= 0
for some µ. The map θk[Fk]γ(y) takes [Lν ] to∑

µ

yν,µ[Lµ∗ ] 6= 0.

Therefore, θk[Fk]γ(y) is a nonzero map, and γ(y) 6= 0. This concludes the
proof that γ is injective (Theorem 1).

4. The size of morphism spaces in H′. In this section we will prove
Propositions 3 and 4. Consider the right curl with the rightmost region
labelled n (also recall the shorthand of denoting this curl by a dot). This
curl can be realized as the composition of a cup with a crossing with a cap:

=
nn

The corresponding endomorphism of the bimodule (n+ 1)n takes 1 to

Jn :=
n∑

i=1

si . . . sn−1snsn−1 . . . si = (1, n + 1) + (2, n + 1) + · · ·+ (n, n+ 1).

This endomorphism of (n+ 1)n is right multiplication by Jn:

g 7→ gJn, g ∈ Sn+1.

Notice that Jn is the Jucys–Murphy element, ubiquitous in the representa-
tion theory of the symmetric group. Our diagrammatics realizes it via the
right curl and interprets the endomorphism of multiplication by Jn as the
composition of three natural transformations, two of which (cup and cap)
come from biadjointness of the induction and restriction functors.

Commutativity of Jucys–Murphy elements now acquires a graphical in-
terpretation as isotopies of curls (or dots) on upward-oriented disjoint
strands past each other:

=
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For each n ≥ 0 the functor F ′
n, applied to 1 and its endomorphisms,

produces a homomorphism from EndH′(1) to Z(k[Sn]), the centre of the
group ring of the symmetric group. Composing with the homomorphism ψ0,
we obtain the homomorphism

ψ0,n : Π ∼= k[c0, c1, . . . ] → Z(k[Sn])

that takes ck to

ck,n =
n∑

i=1

si . . . sn−1J
k
n−1sn−1 . . . si

=
n∑

i=1

(i, i + 1, . . . , n)
(
(1, n) + · · ·+ (n− 1, n)

)k
(n, n− 1, . . . , i).

We would like to show that the union of ψ0,n over all n,

Π →
⊕

n≥0

Z(k[Sn]),

is injective. For the first few values of k we have

c0,n = n, c1,n = 2
∑

1≤i<j≤n

(i, j), c2,n = 3
∑

(i1, i2, i3) + n(n− 1),

where the last sum is over all 3-cycles. In general,

(36) ck,n = (k + 1)
∑

(i1, . . . , ik+1) + l.o.t.,

where the sum is over all k+ 1-cycles. For k > 0, the lower order terms is a
sum over permutations of disturbance less than k + 1, where we define the
disturbance of a permutation σ ∈ Sn as the number of elements moved by σ:

dist(σ) = |{i | 1 ≤ i ≤ n, σ(i) 6= i}|.

Notice that ck,n is the sum of conjugates of Jk
n−1 and contains terms of

disturbance at most k + 1, for k > 0.

Since char(k) = 0, the coefficient of the sum of k + 1-cycles in (36) is
nonzero. Consider an increasing filtration

Z0 = k ⊂ Z2 ⊂ Z3 ⊂ · · · ⊂ Zn = Z(k[Sn])

where Zi is the span of conjugacy classes that consist of permutations of
disturbance at most i. We make k[c0, c1, . . . ] graded by deg(c0) = 0 and
deg(ck) = k+1 for k > 0, and then consider the associated increasing filtra-
tion on k[c0, c1, . . . ], where the ith filtered terms is the sum of graded terms
of degree at most i. The homomorphism ψ0,n respects the two filtrations.

To show asymptotic faithfulness of ψ0,n as n → ∞ we examine the
induced homomorphism of adjoint graded rings. Assume that there is a
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universal relation ∑

I

aIcI = 0

in EndH′(1) which holds for all sufficiently large n. Here I = (a0, a1, . . . , ai)
is a finite sequence of nonnegative integers, aI ∈ k, and cI = ca00 c

a1
1 . . . caii is

the corresponding monomial in k[c0, c1, . . . ]. The sum is over finitely many
sequences I. This implies the relations

∑

I

aIcI,n = 0

for all n, where cI,n = ca00,nc
a1
1,n . . . c

ai
i,n. Choose any term from the sum cor-

responding to I = (a0, a1, . . . , ai) with the highest possible degree mono-
mial cI . The only terms in the sum

∑
I aIcI,n that contribute to the con-

jugacy class of type (a1 + 1, . . . , ai + 1) can come from sequences I ′ =
(a, a1, . . . , ai) that differ from I only in the first term. Since, for such I ′,

cI′,n = naca11,n . . . c
ai
i,n

the relation
∑

I aIcI,n = 0 implies
∑

a aI′n
a = 0, which, in turn, leads to

aI′ = 0 for all I ′ as above, since the only polynomial with infinitely many
positive integers n as roots is the zero polynomial. This contradiction implies
asymptotic faithfulness of ψ0,n. Therefore, ψ0 is injective, which concludes
the proof of Proposition 3 when char(k) = 0. Take k = Q, then pass to the
subring Z of Q. Our arguments imply that ψ0 is an isomorphism over Z,
and hence, over any commutative ring k, including any field.

We next prove injectivity of ψm (Proposition 4) (see equation (16)),
again first in the characteristic zero case. The algebra DHm⊗Π has a basis
of elements xa11 . . . xamm · σ · cb00 c

b1
1 . . . cbkk over permutations σ ∈ Sm and ai, bj

∈ Z+ (see discussion before Proposition 4).
Applying the functor F ′

n to Q+m and its endomorphism ring gives us a
homomorphism

EndH′(Q+m) → End((n +m)n)

to the endomorphism ring of the (k[Sn+m],k[Sn])-bimodule k[Sn+m], which
we also denote (n+m)n. The composite homomorphism

ψm,n : DHm⊗Π → End((n+m)n)

takes elements of DHm⊗Π to endomorphisms given by right multiplication
by suitable elements of k[Sn+m]. Namely, ψm,n(σ), for a permutation σ ∈
Sm ⊂ DHm, is right multiplication by σ, where we define the latter as the
translate of σ by n:

σ(i+ n) = σ(i) + n, 1 ≤ i ≤ m, σ(i) = i, 1 ≤ i ≤ n.

The map ψm,n(xi), with xi the diagram of m vertical lines with the dot
(right curl) on the ith strand from the left, is right multiplication by Jn+m−i,
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and ψm,n(ck) is right multiplication by ck,n. The map ψm,n is described by
the corresponding homomorphism ψ′

m,n from DHm⊗Π to the opposite of
the group algebra, k[Sn+m]op ⊃ End((n + m)n), with ψ′

m,n(xi) = Jn+m−i,
ψ′
m,n(ck) = ck,n, etc. We need to take the opposite algebra since the ring of

endomorphisms of a ring A viewed as a left A-module is naturally isomorphic
to the opposite of A: EndA(AA, AA) ∼= Aop.

Define the m-disturbance of a permutation σ ∈ Sn+m as the number of
integers between 1 and n that are moved by σ:

distm(σ) = |{i | 1 ≤ i ≤ n, σ(i) 6= i}|.

Notice that distm(στ) ≤ distm(σ)+distm(τ). On the group algebra k[Sn+m]
we can introduce an increasing filtration

k[Sm] = Zm
0 ⊂ Zm

1 ⊂ · · · ⊂ Zm
n = k[Sn+m]

where Zm
k is spanned by all permutations of disturbance at most k.

We turn DHm⊗Π into a filtered algebra by setting deg(c0) = 0, deg(ck)
= k + 1 if k > 0, deg(xi) = 1 and deg(σ) = 0, and then spanning the
kth term in the increasing filtration by the basis elements of total degree at
most k.

The homomorphism ψ′
m,n is that of filtered algebras, and we can pass

to a homomorphism of the associated graded algebras. To show asymptotic
faithfulness of ψ′

m,n we fix m and will be taking n large compared to m.
Assume that there exists a relation

(37)
∑

dσ,a,bx
a1
1 . . . xamm · σ · cb00 c

b1
1 . . . cbrr = 0

in EndH′(Q+m) for some dσ,a,b ∈ k \ {0}, with a = (a1, . . . , am), b =
(b1, . . . , br), the sum being over finitely many triples (σ,a,b). Let

x(σ,a,b) = xa11 . . . xamm · σ · cb00 c
b1
1 . . . cbrr

denote the elements of our basis of DHm⊗Π. The element ψ′
m,n(x(σ,a,b)) ∈

k[Sn+m] belongs to the kth term of the filtration of the latter, where

k = a1 + · · · + am + 2b1 + 3b2 + · · · + (r + 1)br,

but not to the (k− 1)st term. Among the terms x(σ,a,b) in the sum select
only those with the maximal possible k (denote such k by k0). It is enough to
show that, as we sum over only those terms, the image of

∑
ψ′
m,n(x(σ,a,b))

in the associated graded ring of k[Sn+m] relative to the above filtration is
nonzero. In other words, we need to show that the coefficients of permuta-
tions of disturbance k0 are not all zero for some sufficiently large n in the
expansion of ψm,n applied to the LHS of (37).

This is obtained by looking at the structure of these permutations. They
are disjoint unions of cycles, with some of the cycles containing one or more
elements of the set P = {n+1, . . . , n+m}. The relative positions of elements
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of P in the cycles, the lengths of the portions of the cycles between elements
of P , together with the number of cycles of each length without elements
of P uniquely determine σ, a1, . . . , am and c1, . . . , cr that can contribute to
the coefficient of the permutation. The coefficients at different powers of c0
are taken care of in the same way as in the m = 0 case. Linear independence
of our spanning set of EndH′(Q+m) and Proposition 4 follow when char(k)
= 0. The same argument as in the m = 0 case then implies that ψm is an
isomorphism over any commutative ring k.

The formula (36) implies that the natural homomorphism EndH′(1) →
Z(k[Sn]) from the endomorphisms of the identity object of H′ to the cen-
ter of the group algebra is surjective when the field k has characteristic 0.
Combining this with the result of Cherednik [10] and Olshanski [36], [8,
Theorem 3.2.6] that the centralizer algebra of k[Sn] in k[Sn+m] is gener-
ated by DHm and the center of k[Sn], we deduce that the homomorphism
DHm⊗Π → End((n+m)n) introduced above is surjective when char(k) = 0.

5. Remarks on the Grothendieck ring of H

5.1. Idempotented rings from H′. For a sequence ǫ of pluses and
minuses denote by 〈ǫ〉 the difference between the number of pluses and
minuses in ǫ (the weight of ǫ). Then HomH′(Qǫ, Qǫ′) = 0 if and only if
〈ǫ〉 6= 〈ǫ′〉. The “if” part of this observation implies that H′ and H, viewed
as additive categories, decompose into the direct sums of subcategories

H′ =
⊕

ℓ∈Z

H′
ℓ, H =

⊕

ℓ∈Z

Hℓ,

where H′
ℓ is a full subcategory of H′ which contains objects Qǫ over all

sequences of weight ℓ, and Hℓ is the Karoubi envelope of H′
ℓ.

This direct sum decomposition induces a grading on the Grothendieck
ring,

K0(H) =
⊕

ℓ∈Z

K0(Hℓ).

The Heisenberg algebra H and its integral form HZ are graded by deg(an) =
n = − deg(bn), and the homomorphism γ : HZ → K0(H) is that of graded
rings.

We can redefine the Grothendieck groups K0(H) and K0(Hℓ) via idem-
potented rings. For a sequence ǫ let

End(ǫ) := EndH(Qǫ)

denote the endomorphism algebra of Qǫ. Likewise, denote

Hom(ǫ, ǫ′) := HomH(Qǫ, Qǫ′).
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To the category H we can assign the idempotented ring of all homomor-
phisms between various tensor products of generating objects Q+ and Q−:

R :=
⊕

ǫ,ǫ′

Hom(ǫ, ǫ′),

the sum being over all sequences ǫ, ǫ′. The ring R is nonunital, but has a
family of idempotents 1ǫ = 1 ∈ End(ǫ).

The right projective R-modules 1ǫR correspond to the objects Qǫ, in the
sense that

(38) HomR(1ǫR, 1ǫ′R) = Hom(ǫ, ǫ′) = HomH′(Qǫ, Qǫ′),

and the Grothendieck group of finitely generated projective right R-modules
is canonically isomorphic to the Grothendieck group of H:

K0(R) ∼= K0(H).

This isomorphism takes [1ǫR] to [Qǫ]. Usually we use K0(A) to denote
the Grothendieck group of finitely generated projective left, not right, A-
modules. Here, because of (38), we use right R-modules in the definition of
K0(R). Alternatively, we could use left Rop-modules, or even left R-modules
after fixing an isomorphism R ∼= Rop (the involution ξ2 induces such an iso-
morphism). We have

R =
⊕

ℓ∈Z

Rℓ, Rℓ :=
⊕

〈ǫ〉=〈ǫ′〉=ℓ

Hom(ǫ, ǫ′).

Assume from now on that ℓ ≥ 0 (the other case can be treated similarly,
or by applying the symmetry ξ3 to reverse ℓ). Given a sequence ǫ with n+ ℓ
pluses and n minuses, the object Qǫ of Hℓ decomposes into the direct sum
of objects Q+k+ℓ−k with 0 ≤ k ≤ n with some multiplicities. Hence, Rℓ is
Morita equivalent to the idempotented ring

Rℓ =

∞⊕

k,k′=0

Hom(+k+ℓ−k,+k′+ℓ−k′),

and the inclusion Rℓ ⊂ Rℓ induces an isomorphism of Grothendieck groups
K0(Rℓ) ∼= K0(Rℓ). Let

Rℓ,m =

m⊕

k,k′=0

Hom(+k+ℓ−k,+k′+ℓ−k′).

The ring Rℓ is the union of rings in the increasing chain Rℓ,0 ⊂ Rℓ,1 ⊂ · · · .
Formation of Grothendieck group commutes with direct limits, implying
that K0(Rℓ) is the direct limit of K0(Rℓ,m) as m goes to infinity. Thus,
there is an isomorphism

K0(Hℓ) ∼= lim
m→∞

K0(Rℓ,m).
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For each k between 0 and m, the natural inclusion of rings End(+k+ℓ−k)
⊂ Rℓ,m induces a homomorphism of groups K0(End(+

k+ℓ−k)) → K0(Rℓ,m).
Conjecture 1 would follow from the following two conjectures:

Conjecture 1.1. The standard inclusion k[Sn × Sm] ⊂ End(+n−m)
induces an isomorphism of Grothendieck groups of these two rings.

Conjecture 1.2. The ring inclusion
m⊕

k=0

End(+k+ℓ−k) ⊂ Rℓ,m

induces an isomorphism on Grothendieck groups.

We do not know how to prove either statement, but will now present
some weak evidence in favor of Conjecture 1.1.

5.2. Grothendieck group of a degenerate affine Hecke algebra.

Here we prove Conjecture 5.1 in the case m = 0 (the n = 0 case follows
by symmetry). By Proposition 4, the endomorphism ring of the object Q+n

of H is isomorphic to the tensor product of the degenerate affine Hecke
algebra DHn and the polynomial algebra Π:

End(+n) ∼= DHn⊗Π.

The inclusion k[Sn] →֒ DHn is split, via the homomorphism τn : DHn →
k[Sn] which takes the generators si of DHi to the transpositions (i, i + 1)
and the generators xi to the Jucys–Murphy elements. The split inclusion
induces a split short exact sequence of two rings and an ideal

0 → ker(τn) → DHn → k[Sn] → 0,

which, in turn, induces a split short exact sequence of K0-groups

0 → K0(ker(τn)) → K0(DHn) → K0(k[Sn]) → 0,

(see [39, 41]). Introduce an increasing filtration

0 = Z−1DHn ⊂ Z0 DHn ⊂ Z1 DHn ⊂ · · ·

on DHn, where Zk DHn is spanned by elements of the form xa11 . . . xann σ over
all σ ∈ Sn and a1 + · · · + an ≤ k. Then Zk DHn×ZmDHn ⊂ Zk+mDHn

and Z0 DHn = k[Sn]. Let B = grDHn with respect to this filtration.
B is a graded algebra isomorphic to the cross-product of the polynomial
algebra on n generators with the group algebra of the symmetric group,
B ∼= k[x1, . . . , xn] ∗ k[Sn].

The algebra B is Koszul, with the Koszul dual algebra isomorphic to
the cross-product of the exterior algebra on n generators with the group
algebra of the symmetric group (recall that char(k) = 0). Hence, B has
finite Tor dimension and, in particular, Z0 DHn = k[Sn] has Tor dimension
n as a right B-module. Furthermore, B has Tor dimension 0 as a right
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Z0DHn-module, since k[Sn] is semisimple. We are in a position to invoke
Quillen’s theorem [37, Theorem 7, p. 112], [5].

Theorem. Let A be a ring equipped with an increasing filtration ZkA,
and such that Z0A is regular. Suppose that B = grA has finite Tor di-

mension as a right Z0A-module and that Z0A has finite Tor dimension as

a right B-module. Then the inclusion Z0A ⊂ A induces an isomorphism

Ki(Z0A) ∼= Ki(A).

In our case A = DHn. The regularity of Z0 DHn is obvious due to it
being semisimple (a regular ring is a noetherian ring such that every left
module has finite projective dimension). Applying the theorem in the i = 0
case we obtain

Proposition 8. The inclusion k[Sn] ⊂ DHn and the surjection DHn →
k[Sn] induce mutually inverse isomorphisms K0(k[Sn]) ∼= K0(DHn).

The same argument shows that the inclusion

k[Sn] ⊂ DHn⊗ k[c0, . . . , cr]

induces an isomorphism of Grothendieck groups

K0(k[Sn]) ∼= K0(DHn⊗ k[c0, . . . , cr]).

Formation of Grothendieck groups commutes with taking direct limits of
rings [39, Section 1.2], and Π is the limit of k[c0, . . . , cr] as r → ∞. We
obtain an isomorphism

K0(k[Sn]) ∼= K0(End(+
n))

proving Conjecture 1.1 when m = 0.

The induction and restriction functors for the inclusions

k[Sn]⊗ k[Sm] ⊂ k[Sn+m], DHn⊗DHm ⊂ DHn+m

induce “multiplication” and “comultiplication” maps on the Grothendieck
groups that turn

⊕

n≥0

K0(k[Sn]) and
⊕

n≥0

K0(DHn)

into graded birings (see Geissinger [17] for the symmetric group, Zelevin-
sky [42] for semisimple generalizations, and Bergeron and Li [3], Khovanov
and Lauda [23] for nonsemisimple ones). We write birings rather than bial-

gebras, since these K0 groups are abelian groups rather than vector spaces
over some field. Isomorphisms in the above proposition are compatible with
multiplication and comultiplication, and induce a biring isomorphism

⊕

n≥0

K0(DHn) ∼=
⊕

n≥0

K0(k[Sn]).
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The second biring can be canonically identified [17, 42] with an integral form
Sym of the ring of symmetric functions in infinitely many variables.

What can we say about K0 of End(+n−m) when n,m > 0? Recall (end
of Section 2.1) that End(+n−m) contains the 2-sided ideal Jn,m spanned by
the basis elements of thickness less than n+m, which fits into the split short
exact sequence

(39) 0 → Jn,m → End(+n−m) → DHn,m → 0,

where

DHn,m := DHn⊗DHm⊗Π

is the tensor product of two degenerate AHA with the polynomial algebra
in infinitely many generators. The earlier argument via Quillen’s theorem
shows that the inclusion

k[Sn]⊗ k[Sm] → DHn⊗DHm⊗ k[c0, c1, . . . , cr]

induces an isomorphism of K0-groups

K0(k[Sn]⊗ k[Sm]) ∼= K0(DHn⊗DHm⊗ k[c0, c1, . . . , cr]).

Passing to the limit as r → ∞, the inclusion

k[Sn]⊗ k[Sm] → DHn,m

induces an isomorphism of Grothendieck groups

(40) K0(k[Sn]⊗ k[Sm]) ∼= K0(DHn,m).

The split short exact sequence (39) gives rise to a split short exact se-
quence

0 → K0(Jn,m) → K0(End(+
n−m)) → K0(DHn,m) → 0

(for the definition of theK-group of a 2-sided ideal see [39, 41]) and canonical
decomposition

K0(End(+
n−m)) ∼= K0(DHn,m)⊕K0(Jn,m).

Conjecture 1.1 is equivalent to the vanishing of K0(Jn,m) for all n,m.
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