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Abstract. The formula is

∂e = (ade)b +

∞∑
i=0

Bi

i!
(ade)i(b− a),

with ∂a + 1
2
[a, a] = 0 and ∂b + 1

2
[b, b] = 0, where a, b and e in degrees −1, −1 and 0 are

the free generators of a completed free graded Lie algebra L[a, b, e]. The coefficients are
defined by

x

ex − 1
=

∞∑
n=0

Bn

n!
xn.

The theorem is that

• this formula for ∂ on generators extends to a derivation of square zero on L[a, b, e];
• the formula for ∂e is unique satisfying the first property, once given the formulae

for ∂a and ∂b, along with the condition that the “flow” generated by e moves a to
b in unit time.

The immediate significance of this formula is that it computes the infinity cocommutative
coalgebra structure on the chains of the closed interval. It may be derived and proved
using the geometrical idea of flat connections and one-parameter groups or flows of gauge
transformations. The deeper significance of such general DGLAs which want to combine
deformation theory and rational homotopy theory is proposed as a research problem.

1. Introduction. This paper fits into the general framework of con-
structions of algebraic models of cell complexes using differential graded
Lie algebras and, conversely, topological and algebraic interpretations of
DGLAs. We give some background.

Let L be a free Lie algebra on a graded vector space over Q provided
with a derivation of degree plus one (or of degree minus one).

The choice of a differential of degree −1 with L concentrated in non-
negative degrees is natural for the interpretation of these objects in topology.
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If X is a cell complex with one 0-cell and only 2-, 3-, 4-, . . . cells, the rational
homotopy theory of Quillen [Q] assigns a free differential Lie algebra L with
one generator in degree k for each k + 1-cell (k > 0). The homology of L
is the Whitehead Lie algebra of homotopy groups tensor Q shifted down
by one degree. The homology of L/[L,L] is the ordinary reduced homology
(Q coefficients) of the space shifted down by one degree. One imagines that
enlarging this discussion to allow cells in degree 1 would be related to some
Lie algebras associated to non-trivial fundamental groups, but little is known
here, to our knowledge.

The choice of a differential of degree +1 with L concentrated in non-
negative degrees is natural for the interpretation of such differential Lie al-
gebras controlling the deformation theory of some mathematical structure.
In this case one considers elements in degree 1 satisfying dx + 1

2 [x, x] = 0.
One also makes sense of the expression x′ = dy.y−1 + yxy−1 (gauge trans-
formation) for y in (some completion of) degree 0 and declares y to be an
equivalence between x and x′. The set of equivalence classes is a formal ver-
sion of the moduli space of the structure whose deformations are controlled
by L. One imagines that enlarging the discussion with elements in degrees
−1,−2, . . . would involve degree −1 elements acting as equivalences between
equivalences, degree −2 elements as equivalences between equivalences be-
tween equivalences etc., but little is known, to our knowledge.

The geometric or topological interpretation of a general differential Lie
algebra is a mixed object which combines both of the above discussions: ho-
motopy theory of spaces and moduli spaces of deformations of some structure.

One knows that free Lie algebras arise from a standard (“bar”) con-
struction starting from any differential cocommutative and coassociative
coalgebra over Q. In this instance the generators are those of the coalgebra
shifted down by one. The differential is the original differential extended to
a derivation plus the original comultiplication extended to a derivation. The
square of this derivation being zero is equivalent to coassociativity. Then
one may extend the notion of a cocommutative coassociative coalgebra on a
graded space to be any derivation of square zero on the free Lie algebra (pos-
sibly completed) generated by the graded space shifted down by one. This
defines the notion of an infinity differential graded cocommutative, coasso-
ciative coalgebra. The higher terms beyond quadratic of the differential are
chain homotopies restoring coassociativity up to homotopy to the coproduct
determined by the quadratic term.

Now one also knows that for any chain complex the cellular approxima-
tions to the diagonal are homotopic, any two homotopies between two of
them are themselves homotopic, etc. It follows that there is on the chains
an infinity cocommutative, coassociative coalgebra structure.



A formula for topology/deformations 231

Problem. Study this free differential Lie algebra attached to a cell com-
plex, determine its topological and geometric meaning as an intrinsic object.
Give closed form formulae for the differential and for the induced maps as-
sociated to subdivisions.

In this note we will say something about the interval, the circle and the
real line. We use the Maurer–Cartan idea to find an explicit formula involv-
ing Bernoulli numbers. We will see that the subdivision map corresponding
to splitting an interval into two by adding a midpoint is described by the
Baker–Campbell–Hausdorff formula.

Previous work. The abstract picture about the diagonal goes back
to Steenrod’s construction of cohomology operations mod p. The infinity
coalgebra story was known for a long time by Hinich et al. In the appendix
to [TZ] there is a cell-by-cell canonical construction which is not explicit.
In [CG], there is an explicit sum-over-trees construction based on Chen’s
iterated integrals and Whitney forms but not a closed form expression.

2. Preliminaries on flows on pre-DGLAs

General DGLAs. Recall that a DGLA is a vector space A over a
field k with grading A =

⊕
n∈ZAn along with a bilinear map [·, ·] : A×A→A

(bracket) and a linear map ∂ : A→A (differential) for which ∂2 = 0 while

(1) (symmetry of bracket) [b, a] = −(−1)|a||b|[a, b],

(2) (Jacobi identity) [[a, b], c] = [a, [b, c]]− (−1)|a||b|[b, [a, c]],

(3) (Leibniz rule) ∂[a, b] = [∂a, b] + (−1)|a|[a, ∂b].

Note that the three properties above are valid only for homogeneous
elements a, b and c of A (that is an element of

⋃
nAn), and |a| ∈ Z denotes

the grading. The bracket and differential are required to respect the grading,
in that for homogeneous elements, |[a, b]| = |a|+ |b| while |∂a| = |a|−1. The
adjoint action of A on itself is given by ade a = [e, a] and acts on the grading
by ade : An→An+|e|. In this notation (2) and (3) can be rewritten as

(2′) (Jacobi identity) ad[a,b] = [ada, adb],

(3′) (Leibniz rule) [∂, ada] = ad∂a,

in which the brackets on the right-hand side refer to the (signed) commu-
tator of operators defined by [x, y] = xy − (−1)|x||y|yx where the product is
composition of operators, and the grading |x| of a (homogeneous) operator
is the shift in grading which x induces. Thus the gradings of ade and ∂ are
|e| and −1, respectively.

When the condition ∂2 = 0 is removed, the resulting algebraic structure
will be called a pre-DGLA.
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Auxiliary spaces over Q[t]. For simplicity we will work over k = Q,
though the discussion also holds for any field of characteristic 0. Assume now
that A is a free Lie algebra on a finite-dimensional graded vector space V ,
so it has generators x1, . . . , xk where xi label a basis for V . In order to deal
with convergence issues which otherwise would arise, we will need to work
in certain finite-dimensional quotients of A. There is an additional grading
on A by the number of Lie brackets,

A =
∞⊕
n=0

A(n),

in which A(n) is the finite-dimensional vector space generated by expressions
involving exactly n Lie brackets in elements of V , so that it is spanned by
all words of the form

[xi0 , [xi1 , . . . , [xin−1 , xin ] . . .]]

where i0, . . . , in ∈ {1, . . . , k} label (not necessarily distinct) basis elements
of V , and there may be relations between them induced by (1), (2). The
grading is well-defined since it is respected by (1), (2) and A is free as a Lie
algebra.

For non-negative integers N , set B(N) =
⊕N

n=0A
(n); it has a natural

Lie algebra structure induced from A, and as such can be identified as the
(graded) Lie algebra quotient in which the vanishing of all expressions in-
volving exactly N +1 Lie brackets is imposed as relations (as a consequence,
all expressions with more than N brackets must also vanish). Then we have
a tower of Lie algebra homomorphisms

A→ B(N) → B(N−1) → · · · → B(0) = A(0) = V,

with B(N) → B(N−1) mapping all elements of A(N) to zero.

Define U (N)=
⊕N

n=0(A
(n)⊗Q[t]). Picking a basis {en,r | 1≤r≤dimA(n)}

for each A(n), a typical element x ∈ U (N) can be written as

x =

N∑
n=0

dimA(n)∑
r=1

pn,r(t)en,r

for some polynomials pn,r(t) ∈ Q[t]. Since such an element involves only a
finite number of such polynomials, one can equivalently think of elements of
U (N) as

x =

∞∑
m=0

tmxm

where only a finite number of the vectors xm ∈ B(N) are non-zero. That is,
an element of U (N) is a formal polynomial in t with coefficients in B(N).



A formula for topology/deformations 233

There is an obvious linear operator of differentiation by t defined on U (N)

by

d

dt

( M∑
m=0

tm.xm

)
=

M−1∑
m=0

tm.(m + 1)xm+1.

Differential structures over a free Lie algebra. For arbitrary el-
ements v1, . . . , vk ∈ A, there is defined a unique linear map ∂ : A → A
satisfying ∂(xi) = vi for all i, along with the Leibniz rule, that is, giving A
the structure of a pre-DGLA. The condition that this defines the structure
of a DGLA on A is that ∂ ◦ ∂ = 0, that is, that ∂2(x) = 0 for all x ∈ A. Ap-
plying the Leibniz rule twice gives ∂2[u, v] = [∂2u, v] + [u, ∂2v], from which
inductively it follows that a sufficient condition on vi for them to generate
a DGLA structure on A is that ∂2xi = 0 for all i, that is, ∂vi = 0 for all i.

From freeness of A, it can inductively be deduced that any such pre-
DGLA structure has ∂(A(n)) ⊂

⊕
m≥nA

(m), so that it also induces a well-

defined pre-DGLA structure on B(N) which will be a full DGLA structure
so long as ∂2 vanishes on A to order at least N in the Lie bracket grading.

Flatness and flows in a pre-DGLA. For any v ∈ A0, consider the
“formal” ordinary differential equation

du

dt
= ∂v − adv(u)

for u ∈ U (N), where both sides are considered as elements of U (N). Writing
u(t) in the form

∑∞
n=0(t

n.xn) where xn ∈ B(N), we break the differential
equation into the recurrence relation

(n + 1)xn+1 = − adv(xn), n > 0, x1 = ∂v − adv(x0)

from which we see that (n ≥ 1)

xn =
(−adv)n−1

n!
x1 =

(−adv)n−1

n!
(∂v) +

(−adv)n

n!
x0,

giving a unique solution for u(t) ∈ U (N) once the initial condition x0 =
u(0) ∈ B(N) is fixed. Note that xn = 0 ∈ B(N) for all n > N + 1, so that
indeed u(t) is polynomial in t, for every choice of initial condition.

The differential equation, and hence also the solution space, is invariant
under time-translation and so is said to define the flow on U (N) generated
by v. By evaluation at a given t = t0 ∈ Q, this flow defines an action of
(Q,+) on U (N) by

t0.x0 ≡ u(t0),

namely the action of t0 on an element x0 ∈ U (N) is given by “flowing ac-
cording to the flow generated by v for time t0”. Observe that despite the
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intuition based on a continuous model and derivatives, the formal defini-
tions are only valid at rational “times” t, and that this works because of the
rationality of coefficients in all the expansions. Explicitly,

t0.x0 = x0 +
N+1∑
n=1

tn0

(
(− adv)n−1

n!
(∂v) +

(− adv)n

n!
x0

)
.

An element x ∈ A−1 is said to be flat if ∂x + 1
2 [x, x] = 0. Similarly, if

this equality holds up to order N brackets, then x is a flat element of B
(N)
−1 .

3. The DGLA model for the interval. The interval consists of two
points and a single 1-cell. Its model should therefore have two generators
in degree −1 (corresponding to its endpoints) and a single generator in
degree 0.

Theorem 1. There is a unique completed free differential graded Lie
algebra, A, with generating elements a, b and e, in degrees −1, −1 and 0
respectively, for which a and b are flat while the flow generated by e moves
from a to b in unit time. The differential is specified by

∂e = ade b +

∞∑
i=0

Bi

i!
(ade)

i(b− a),

where Bi denotes the ith Bernoulli number defined as coefficients in the
expansion

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
.

Proof. Let A be the free graded Lie algebra generated by a, b and e. For
any non-negative integer N , define the derived spaces B(N) and U (N) as in
the previous section. We prove the result of the theorem on the truncated
free Lie algebra B(N) for all N and see that the corresponding differentials

are compatible for all N . For any x ∈ B
(N)
−1 , define a map ∂x : A→A by its

action on the generators,

∂xa = −1
2 [a, a], ∂xb = −1

2 [b, b], ∂xe = x,

extended to the whole of A via linearity and the Leibniz rule. (Here ∂x is
well-defined since derivation by the Leibniz rule preserves (1) and (2).) This
defines a pre-DGLA structure on B(N).

The flow on B(N) generated by e ∈ U
(N)
−1 has du/dt = x−ade(u). For the

particular solution with u(0) = a, the solution is given as in the previous
section by

u(t) = a +
N+1∑
n=1

tn
(

(−ade)
n−1

n!
x +

(−ade)
n

n!
a

)
= e−t.adea +

e−t.ade − 1

(−ade)
x
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where as always the operator exponential is defined by its series expansion
eX =

∑∞
n=0X

n/n! so that the operator acting on x is defined by its series
expansion

∞∑
n=1

tn

n!
(−ade)

n+1.

Observe that although there are formally infinite series in the expression for
u(t), as elements of U (N) they are finite sums. The condition that u(1) = b
is precisely that

x =
(−ade)

e−ade − 1
(b− e−adea) = (ade)b +

ade

eade − 1
(b− a),

that is, the value of ∂e given in the theorem (compatible elements of B(N)

for different N). This proves uniqueness.
It only remains to verify existence, in other words to show that the

pre-DGLA structure is in fact a full DGLA structure, that is, ∂2
x = 0 for

this particular value of x. From the Leibniz rule for ∂x, it follows that for
all p, q ∈ B(N), ∂2

x[p, q] = [∂2
xp, q] + [p, ∂2

xq], so that it is only necessary to
check that ∂2

x = 0 on the generators. For the generator a, we have

∂2
x(a) = ∂x

(
−1

2 [a, a]
)

= [a, ∂xa] =
[
a,−1

2 [a, a]
]

= 0,

the final equality following from the Jacobi identity. Similarly ∂2
x(b) = 0.

To prove that ∂2
x(e) = 0, consider the flow u generated by e for which

u(0) = a as above. By our choice of x, this flow also has u(1) = b. Consider

the function f(t) = ∂xu + 1
2 [u, u] (the curvature), taking values in B

(N)
−2 at

rational t; equivalently, f defines an element of U
(N)
−2 . Its derivative is

df

dt
= ∂x

du

dt
+

[
u,

du

dt

]
= ∂x(x− ade u) + [u, x− ade u]

= ∂2
x(e)− (ad∂xe(u) + ade ∂xu) + ([u, x]− [u, ade u])

= ∂2
x(e)− ade(f(t))

where we have used the Leibniz rule and the fact that [u, ade u] = 1
2 ade[u, u]

from the Jacobi identity. Thus f satisfies a first-order linear differential equa-
tion with constant (operator) coefficients of the same form as that satisfied
by u where now x is replaced by ∂2

xe, while f(0) = f(1) = 0 (since a and b

are flat). It follows that ∂2
xe = 0 in U

(N)
−2 (for all N), as required.

Remark. From the last calculation in the proof, it can be seen that in

the DGLA of Theorem 1, a flow u defined by an arbitrary element v ∈ B
(N)
0

on B
(N)
−1 has curvature f ∈ U

(N)
−2 satisfying df/dt = − adv f , so that if u(0)

is flat (hence f(0) = 0) then f is identically zero. That is, the flow on A−1
defined by an arbitrary element of A0 preserves flatness.



236 R. Lawrence and D. Sullivan

Remark. The vanishing of odd Bernoulli numbers after the first is ex-
actly the condition to make the formula for ∂e in terms of a, b display the
symmetry of the interval, that is, be anti-invariant under interchange of a, b
accompanied by a sign change of e,

∂e = (b− a) +
1

2
ade(a + b) +

1

12
(ade)

2(b− a)− 1

720
(ade)

4(b− a) + · · · .

In other words, if a flow in direction e moves a to b in unit time, then −e
moves b to a in unit time.

Differential geometric interpretation. We would like to push the
language of ‘flatness’ and ‘flows’ used in the above formal proof a little
further. The real differential geometric meaning of these constructions is
however yet to be understood.

The proof of Theorem 1 used the language of curvature and flatness of
connections, alluding to the interpretation of the Maurer–Cartan equation

∂a = −1
2 [a, a]

as the condition for a connection a (as given by its associated 1-form) to be
flat. However, there is also a deformation theory interpretation, namely that
the differential structure in a DGLA (A, ∂) can be deformed by replacing ∂
by ∂a ≡ ∂ + ada on condition that the Maurer–Cartan condition is satisfied.
Indeed, the deformed structure defines a DGLA so long as ad∂ax = [∂a, adx]
and ∂2

a = 0; we calculate

ad∂x+[a,x] = ad∂x + ad[a,x] = [∂, adx] + [ada, adx] = [∂ + ada, adx],

(∂ + ada)2 = ∂2 + ∂.ada + ada.∂ + (ada)2 = [∂, ada] + ad 1
2
[a,a] = ad∂a+ 1

2
[a,a]

(by repeated applications of the Jacobi identity and the Leibniz rule), so
that the first condition is automatic, while the vanishing of ∂2

a is guaranteed
by the Maurer–Cartan equation.

So we will think of any a ∈ A−1 as defining a “connection” ∂a = ∂+ada.
Furthermore, any e ∈ A0 generates a flow on u ∈ A−1, which we consider
as an “infinitesimal gauge transformation” flowing connections by du/dt =
∂e − ade u; as we saw from the proof of Theorem 1, this flow preserves
flatness of connections. In addition, e ∈ A0 also defines a flow on v ∈ A0 by
dv/dt = − ade v, for which

d

dt
(∂uv) =

d

dt
(∂v + aduv) = ∂

dv

dt
+ adu

dv

dt
+ addu/dtv

= ∂(−adev) + adu(−adev) + ad∂ev − adade uv

= −ade∂v − adeaduv = −ade(∂uv),

so that the condition ∂uv = 0 is preserved by the flow, that is, the flow e de-
fines a “parallel transport” between fibres ker ∂u⊂A0 over each “point” u(t).
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4. The DGLA model of the circle. To obtain a circle from an interval
we need only identify the endpoints. So we obtain a single 0-cell a and a
single 1-cell e. In our algebraic model, we impose the condition a = b and
immediately the differential of Theorem 1 collapses. The resulting model of
the circle is a free Lie algebra with two generators a and e in degrees −1
and 0, respectively, and differential ∂:

∂a = −1
2 [a, a], ∂e = ade a.

The twisted differential over the point a would then be just ∂a = ∂+ada and
here ∂ae = 0 so that the localization to a point (namely to a) would be just
generated by e in grading 0; this corresponds to the single generating loop e.

So our model now relates points to flat connections; in particular, the
endpoints of the interval correspond to a and b, while interior rational points
t0 give other flat elements u(t0). On the other hand, the 1-cell is represented
by e, which defines an infinitesimal gauge transformation flowing between all
these (rational) points (flat connections). Furthermore, as will be discussed
in a further paper, this model can be extended to higher dimensions, and
then it will become apparent that the algebraic analogue of localization to
a point a (corresponding to consideration of the loop space based at that
point) is the replacement of the whole complex with differential ∂ by the
complex truncated to non-negative degrees with degree 0 part restricted to
ker ∂a and with differential ∂a. A path connecting points then induces a flow
preserving the complexes.

5. Gluing intervals. Suppose X is any 1-complex. Using Theorem 1,
we can construct its DGLA model as a free Lie algebra on generators ai
in degree −1 for each 0-cell, and ei in degree 0 for each 1-cell, along with
a differential ∂ which is uniquely defined by its action on the generators
making ai flat, and giving ∂ei by the corresponding formula from Theorem 1
in which a and b are replaced by the algebra elements associated with the
endpoints of the interval labelled by ei.

For example, a 1-complex consisting of two adjoining intervals,
[a0, a1] and [a1, a2] with corresponding 1-cells e1 and e2, is modelled by
the DGLA B, which, as a Lie algebra, is free on generators a0, a1, a2 in
degree −1 and e1, e2 in degree 0. The differential ∂ has

∂a0 = −1
2 [a0, a0], ∂a1 = −1

2 [a1, a1], ∂a2 = −1
2 [a2, a2],

∂e1 = ade1 a1 +

∞∑
i=0

Bi

i!
(ade1)i(a1 − a0),

∂e2 = ade2 a2 +

∞∑
i=0

Bi

i!
(ade2)i(a2 − a1).
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The geometric model is a subdivided interval. The previous discussion
defines a flow on B−1; the flow according to e1 flows from a0 to a1 in unit
time, and then the flow according to e2 flows from a1 to a2 in unit time.
That is, to any rational point p on either interval there corresponds a flat
element up ∈ A−1.

Removing the interior point a1 would give a single interval [a0, a2] with
1-cell e whose DGLA model, A, is a free Lie algebra on generators a0, a2 in
degree −1 and e in degree 0, along with the differential ∂ defined by

∂a0 = −1
2 [a0, a0], ∂a2 = −1

2 [a2, a2],

∂e = ade a2 +
∞∑
i=0

Bi

i!
(ade)

i(a2 − a0).

To parallel the geometric fact that the glued pair of intervals is just a sub-
division of a single interval, we have the following theorem.

Theorem 2. There is homomorphism p : A → B respecting the DGLA
structure, for which p(a0) = a0, p(a2) = a2 while p(e) is given by the Baker–
Campbell–Hausdorff formula on e1 and e2,

p(e) = e1 + e2 + 1
2 [e1, e2] + 1

12 [e1, [e1, e2]]− 1
12 [e2, [e1, e2]] + · · · .

Proof. Denote by BCH(e1, e2) the Baker–Campbell–Hausdorff formula
on e1 and e2. By the Jacobi identity, it follows that as operators, adBCH(e1,e2)

= BCH(ade1 , ade2) and hence that (again as operators) eadBCH(e1,e2) =
eade1eade2 .

By the Leibniz rule, to prove that p is a DGLA homomorphism, it is
enough to check compatibility of the action of the differential on generators,
that is, p(∂e) = ∂(p(e)). As we saw in the proof of Theorem 1, ∂e1, ∂e2
satisfy

a1 = e−ade1a0 +
e−ade1 − 1

−ade1

(∂e1), a2 = e−ade2a1 +
e−ade2 − 1

−ade2

(∂e2).

Substituting the first equation into the second gives the identity in B:

a2 = e−ade2e−ade1a0 + e−ade2
e−ade1 − 1

−ade1

(∂e1) +
e−ade2 − 1

−ade2

(∂e2).

On comparison with the identity a2 = e−adea0 + e−ade−1
−ade (∂e) in A, and

recalling from above that e−adp(e) = e−ade2e−ade1 , the theorem now follows
from Lemma 3 in the Appendix.

Remark. According to the previous discussion, e1 induces a flow on
B−1 (points/connections) and also on B0. If we think of B0 as being in
the fibre over the corresponding point, the flow on v ∈ B0 is defined by
the differential equation dv/dt = − ade1 v. This is a homogeneous linear
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differential equation, and so its solution is v(t) = e−t. ade1v(0), so that the
twisting in the fibre as we move along the edge e1 from a0 to a1 is e− ade1

and a ‘flat section’ has values v0, v1 over the endpoints of the interval [a0, a1]
related by v1 = e− ade1v0. Similarly e2 induces a flow from a1 to a2 as well
as on the corresponding “fibres” and in composition

v2 = e− ade2v1 = e− ade2e− ade1v0 = e−adp(e)v0.

Thus Theorem 2 implies that not only is the map A → B a DGLA ho-
momorphism, but it is also compatible with the induced “flow” structures
discussed previously.

6. Appendix: Some algebraic lemmas. We here give the proofs for
three lemmas used in the previous section.

Lemma 1. Let e and v be arbitrary elements of a DGLA with e of de-
gree 0. Then the following formula holds, where E denotes the operator ade:

∂(e−Ev) = e−E(∂v) + (−1)|v|e−E adv
eE − 1

E
(∂e).

Proof. By the definition of e−E ,

∂(e− adev) =
∞∑
n=0

(−1)n

n!
∂
(
(ade)

nv
)
.

However

∂((ade)
nv) = ∂([e, [e, · · · [e, v] · · · ]])

= [∂e, [e, · · · [e, v] · · · ]] + [e, [∂e, · · · [e, v] · · · ]] + · · ·
+ [e, [e, · · · [∂e, v] · · · ]] + [e, [e, · · · [e, ∂v] · · · ]]

= (−1)|v|+1
(

ad(ade)n−1v(∂e) + E. ad(ade)n−2v(∂e) + · · ·
+ En−1 adv(∂e)

)
+ En(∂v).

By the Jacobi identity, the operator ad(ade)mv = ad[e,···[e,v]··· ] can be equiva-
lently written as the repeated commutator of operators [ade, · · · [ade, adv] · · · ]
= [E, · · · [E, V ] · · · ] where V ≡ adv. Since e is of degree zero, the grading on
the operator E is also zero and so these graded operator commutators are
all with standard sign, [A,B] = AB −BA. Inductively one obtains

adEmv = (adE)mV =

m∑
k=0

(−1)k
(
m

k

)
Em−kV Ek.

Substituting into the above expression we get

∂((ade)
nv) = (−1)|v|+1

(n−1∑
m=0

En−m−1 adEmv

)
(∂e) + En(∂v)
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= (−1)|v|+1

(n−1∑
m=0

m∑
k=0

(−1)k
(
m

k

)
En−k−1V Ek

)
(∂e) + En(∂v)

= (−1)|v|+1

(n−1∑
k=0

(−1)k
(

n

k + 1

)
En−k−1V Ek

)
(∂e) + En(∂v).

Combining over all n leads to

∂(e− adev)

=
∞∑
n=0

(−1)n

n!

(
(−1)|v|+1

( n−1∑
k=0

(−1)k
(

n

k + 1

)
En−k−1V Ek

)
(∂e) + En(∂v)

)

= (−1)|v|
( ∞∑

n=1

n−1∑
k=0

(−1)n−k−1

n!

(
n

k + 1

)
En−k−1V Ek

)
(∂e) + e−E(∂v)

= (−1)|v|e−EV
eE − 1

E
(∂e) + e−E(∂v).

Lemma 2. Let e and v be arbitrary elements of a DGLA with e of de-
gree 0. Then ade−Ev = e−EV eE where E ≡ ade, V ≡ adv.

Proof. From the expression for adEmv obtained in the proof of Lemma 1,

ade−Ev =

∞∑
n=0

(−1)n

n!
adEnv

=
∞∑
n=0

n∑
k=0

(−1)n+k

n!

(
n

k

)
En−kV Ek = e−EV eE .

Lemma 3. If e1 and e2 are elements of an arbitrary DGLA with f =
BCH(e1, e2), then

e−adf − 1

−adf
(∂f) = e−ade2

e−ade1 − 1

−ade1

(∂e1) +
e−ade2 − 1

−ade2

(∂e2).

Proof. We will derive this identity as a compatibility condition. It fol-
lows from Lemma 1, directly from the definition of the exponential and the
Leibniz rule, that for arbitrary elements e, v of a DGLA in which e has
degree 0,

∂(e−Ev) = e−E(∂v) + (−1)|v|e−E adv
eE − 1

E
(∂e),

where E denotes the operator ade. Applying this to evaluate ∂(e− adf v)
in two different ways, one directly from this formula, and the other as
∂(e− ade2e− ade1v) by applying the formula twice, and equating the results,
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shows that for all Lie algebra elements v, there is an identity

e−F adv
eF − 1

F
(∂f)

= e−E2e−E1 adv
eE1 − 1

E1
(∂e1) + e−E2 ade−E1v

eE2 − 1

E2
(∂e2),

where again we have denoted the operators ade1 , ade2 and adf by E1, E2

and F , respectively. Furthermore, by Lemma 2, ade−E1v = e−E1 adv e
E1 ,

while e−F = e−E2e−E1 is an invertible operator, so that the relation becomes

adv
eF − 1

F
(∂f) = adv

eE1 − 1

E1
(∂e1) + adv e

E1
eE2 − 1

E2
(∂e2).

Since this holds in all DGLAs, it holds in particular for the free DGLA on
three generators e1, e2, v (all in degree 0), and we can therefore remove the
adv operator from all terms, leaving an equality, which when multiplied by
e−F = e−E2e−E1 on the left, is the required identity.
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