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An infinite torus braid yields a categorified
Jones–Wenzl projector

by

Lev Rozansky (Chapel Hill, NC)

Abstract. A sequence of Temperley–Lieb algebra elements corresponding to torus
braids with growing twisting numbers converges to the Jones–Wenzl projector. We show
that a sequence of categorification complexes of these braids also has a limit which may
serve as a categorification of the Jones–Wenzl projector.

1. Introduction. The Jones–Wenzl projector Pn is a special idempo-
tent element of the n-strand Temperley–Lieb algebra TLn, whose defining
property is the annihilation of cap and cup tangles. The coefficients in its
expression in terms of Temperley–Lieb tangles are rational (rather than
polynomial) functions of q. This suggests that the categorification Pn of Pn
in the universal tangle category TLn constructed by D. Bar-Natan [BN05]
should be presented by a semi-infinite chain complex. In fact, there are two
mutually dual categorifications: the complex Pn which is bound from above
and the complex P−n which is bound from below. We will consider only Pn

in detail, since the story of P−n is totally similar.

The construction of P−n by B. Cooper and S. Krushkal [CK12] is based
upon the Frenkel–Khovanov formula for Pn and requires the invention of
morphisms between constituent TL tangles as well as non-trivial ‘thickening’
of the complex. An alternative ‘representation-theoretic’ approach to the
categorification of the Jones–Wenzl projector is developed by Igor Frenkel,
Catharina Stroppel, and Joshua Sussan [FSS12].

Our approach is rather straightforward: the categorified projector Pn is
a direct limit of appropriately shifted categorification complexes of torus
braids (i.e. braid analogs of torus links) with high clockwise twist (the other
projector P−n comes from high counterclockwise twists). The limit Pn can
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be presented as a cone:

Pn ∼ Cone
(
Oc(2m(n− 1))→

〈〈 ...

m

n
〉〉s)

,(1.1)

where
...

m

n is a torus braid with m full clockwise rotations of n strands,
〈〈−〉〉s is the categorification complex with a special grading shift, and Oc(k)
denotes a chain complex which ends at the homological degree k. Theo-
rem 2.8 imposes even stronger restrictions on the complex Oc(2m(n − 1))
in (1.1).

The advantage of our approach is that one can use torus braids with high
twist as approximations to Pn in a computation of Khovanov homology of a
spin network which involves Jones–Wenzl projectors: if a spin network ν is
constructed by connecting Pn to an (n, n)-tangle τ such that 〈〈τ〉〉 ∼ Oc(k),

while a spin network νm is constructed by replacing Pn in ν with
...

m

n,
then the homology of 〈〈ν〉〉 coincides with the shifted homology of 〈〈νm〉〉 in
all homological degrees i such that i > k + 2m(n − 1). Thus one may say
that there is a stable limit

〈〈ν〉〉 = lim
m→∞

〈〈νm〉〉s .(1.2)

We will define homological limits more precisely in Subsection 2.2.2.

The practical importance of the relation between 〈〈ν〉〉 and 〈〈νm〉〉 stems
from the fact that νm is an ordinary link and its homology can be computed
with the help of existing efficient computer programs even for high values ofm.

The simplest example of a spin network is the unknot ‘colored’ by the
(n+1)-dimensional representation of SU(2) with the help of the projector Pn.
Its Khovanov homology is approximated by the homology of torus links

Tn,−mn which appear as cyclic closures of
...

m

n. The Khovanov homology
of torus links has been studied by Marko Stošić [Sto07], who observed that
it stabilizes at lower degrees as m grows. This is a particular case of the
‘stable limit’ (1.2).

In Section 2 we explain all notations and conventions which are used
in the paper. In particular, in Subsection 2.1.4 we define a non-traditional
grading of Khovanov homology, which is convenient for our computations.
Then we formulate our results.

In Section 3 we review basic facts about homological ‘calculus’ required
to work with limits of sequences of complexes in a homotopy category. In
Section 4 we construct a sequence of categorification complexes of torus
braids related by special chain morphisms. This sequence yields Pn as its
direct limit. In Section 5 we use the homological calculus of Section 3 in
order to prove that Pn is a categorification of the Jones–Wenzl projector.
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2. Notations and results

2.1. Notations

2.1.1. Tangles and Temperley–Lieb algebra. All tangles in this paper
are framed and we assume the blackboard framing in pictures. We use the

symbol ◦ k to indicate an addition of k framing twists to a tangle strand:

= ◦ 1(2.1)

A tangle is called planar if it can be presented by a diagram without
crossings. A planar tangle is called connected or Temperley–Lieb (TL) if
it does not contain disjoint circles. Let Tng denote the set of all framed
tangles, Tngm,n the set of (m,n)-tangles and Tngn the set of (n, n)-tangles.
We adopt similar notations for the set TL of TL-tangles.

We use the symbol ◦ to denote the composition of tangles, τ1 ◦ τ2. The
same symbol is used to denote multiplication in a Temperley–Lieb algebra
and the composition bifunctor in the category TL.

A Temperley–Lieb algebra TL over the ring of Laurent polynomials
Z[q, q−1] (1) is a quiver ring. The vertices vn of the quiver are indexed by
non-negative integers n, and each pair of vertices vm, vn such that m− n is
even is connected by an edge emn. To a vertex vn we associate a ring TLn,n
(also denoted as TLn) and to an edge emn we associate a TLn⊗TLop

m -module
TLm,n. As a module, TLm,n is generated freely by elements 〈λ〉 correspond-
ing to TL (m,n)-tangles λ, while ring and module structures come from the
composition of tangles modulo the relation〈 〉

= −(q + q−1),(2.2)

which is needed to remove disjoint circles that may appear in the composi-
tion of Temperley–Lieb tangles.

The map Tng
〈−〉−−→ TL associates an element 〈τ〉 to a tangle τ with the

help of (2.2) and the Kauffman bracket relation〈 〉
= q1/2

〈 〉
+ q−1/2

〈 〉
.(2.3)

This relation removes crossings and disjoint circles from the diagram of τ ,

(1) It is clear from our normalization of the Kauffman bracket relation (2.3) that we
should rather use the ring Z[q1/2, q−1/2]. However, in all expressions in this paper the
half-integer power of q appears only as a common factor, so the terms with integer and
half-integer powers of q do not mix. Hence we refer to Z[q, q−1], while keeping in mind
that q1/2 may appear as a common factor in some expressions.
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hence

〈τ〉 =
∑

λ∈TLn

aλ(τ) 〈λ〉, aλ(τ) =
∑
i∈Z

aλ,i(τ) qi(2.4)

with only finitely many coefficients aλ,i(τ) being non-zero.
If two tangles differ only by the framing of their strands, then the cor-

responding algebra elements differ by the q-power factor coming from the
following relation associated with the first Reidemeister move:〈

◦ 1

〉
= −q3/2

〈 〉
(2.5)

A (0, 0)-tangle L is a framed link, so 〈L〉 is the framing dependent Jones
polynomial defined by the Kauffman bracket.

We use the notations QTL and TL+ for Temperley–Lieb algebras defined
over the field Q(q) of rational functions of q and over the field Z[[q, q−1] of
Laurent power series. A sequence of injective homomorphisms Z[q, q−1] ↪→
Q(q) ↪→ Z[[q, q−1], the latter generated by the expansion in powers of q, pro-
duces a sequence of injective homomorphisms of the corresponding Temper-
ley–Lieb algebras.

2.1.2. The Jones–Wenzl projector. Let
i

n ∈ TLn−2,n and
i

n ∈TLn,n−2,
1 ≤ i ≤ n− 1, denote the following TL tangles:

i

n = · · · · · ·
i i+11 n

and
i

n = · · · · · ·
i i+11 n

Their compositions Un,i =
i

n ◦
i

n are standard generators of the Tem-
perley–Lieb algebra TLn.

The Jones–Wenzl projector Pn ∈ QTLn is the unique non-trivial idem-
potent element satisfying the condition

(2.6)
〈 i

n
〉
◦ Pn = 0, 1 ≤ i ≤ n− 1.

The Jones–Wenzl projector also satisfies the relation

(2.7) Pn ◦
〈 i

n
〉

= 0, 1 ≤ i ≤ n− 1.

We denote the idempotent element of TL+
n corresponding to Pn as P+

n .

2.1.3. Basic notions of homological algebra. Let Ch(A) be a category
of chain complexes associated with an additive category A. An object of
Ch(A) is a chain complex

(2.8) A = (· · · → Ai
di−→ Ai−1 → · · · ),

and a morphism between two chain complexes is a chain morphism defined
as a multi-map
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(2.9)

A

f

��

· · ·
di+1 // Ai

di //

fi
��

Ai−1
di−1 //

fi−1

��

· · ·

B · · ·
d′i+1 // Bi

d′i // Bi−1
d′i−1 // · · ·

which commutes with the chain differential: d′i fi = fi−1 di for all i. The cone

of a chain morphism A
f−→ B is a complex

Cone(f) =


· · ·

((

// Ai
⊕

−di //
−fi

((

Ai−1
⊕

//

((

· · ·

· · · // Bi+1
d′i+1

// Bi // · · ·


in which the object Ai−1⊕Bi has homological degree i. There are two special

chain morphisms B
ιf−→ Cone(f) and Cone(f)

δf−→ A[1] associated to the cone:

B

ιf

��

· · · // Bi+1
//

0⊕1
��

Bi //

0⊕1
��

· · ·

Cone(f)

δf
��

· · · // Ai ⊕Bi+1
//

1⊕0
��

Ai−1 ⊕Bi //

1⊕0
��

· · ·

A[1] · · · // Ai // Ai−1 // · · ·

These complexes and chain morphisms form a distinguished triangle:

(2.10) A
f−→ B

ιf−→ Cone(f)
δf−→ A[1].

The homotopy category of complexes Kom(A) has the same objects as
Ch(A) and the morphisms are the morphisms of Ch(A) modulo homotopies.
We denote homotopy equivalence by the sign ∼.

In this paper a symbol A often refers to a chain complex as an object of
Kom(A), that is, up to homotopy. We use a ‘sharp’ notation A] if we have
in mind a particular representative of A in the category Ch(A), that is, the
complex A] is defined up to isomorphism rather than up to homotopy.

The notion of a cone extends to Kom(A) and there are additional rela-
tions in that category: Cone(ιf ) ∼ A[1] and Cone(δf ) ∼ B[1], so all vertices
of a distinguished triangle have equal properties.

2.1.4. A categorification of the Jones polynomial with modified grading.
In his famous paper [Kho00], M. Khovanov introduced a categorification
of the Jones polynomial of links. To a diagram L of a link he associates a
complex of graded modules

(2.11) 〈〈L〉〉 = (· · · → Ci → Ci−1 → · · ·)
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so that if two diagrams represent the same link then the corresponding
complexes are homotopy equivalent, and the graded Euler characteristic of
〈〈L〉〉 is equal to the Jones polynomial of L.

Thus, overall, the complex (2.11) has two gradings: the first one is the
grading related to the powers of q and the second one is the homological
grading of the complex itself, the corresponding degree being equal to i. In
this paper we adopt a slightly different grading convention which is con-
venient for working with framed links and tangles. It is inspired by matrix
factorization categorification [KR08] and its advantage is that it is no longer
necessary to assign orientation to link strands in order to obtain the grading
of the categorification complex (2.11) which would make it invariant under
the second Reidemeister move.

To a framed link diagram L we associate a Z⊕Z-graded complex (2.11)
with h-degree (degh) and q-degree (degq). The corresponding shift functors

are denoted as h and q, so hlqm denotes a shift of h-degree by l and a shift
of q-degree by m.

Observe that q-degree is homological and its parity determines the sign
factors. On the other hand, h-degree is just a Z-grading, it may take both
integer and half-integer values and it has no relation to homological sign
factors. However, the index i in Khovanov’s complex (2.11) reflects h-degree
rather than q-degree: deghCi = i, hence we call h-degree ‘pseudo-homo-
logical’.

The categorification formulas of [Kho00] with new grading conventions
take the following form: the module associated with an unknot is stillZ[x]/(x2)
but with a different degree assignment:

〈〈 〉〉
= q−1 Z[x]/(x2) ∼= q−1 Z⊕ qZ,(2.12)

degq 1 = 0, degq x = 2, degh 1 = 0,(2.13)

and the categorification complex of a crossing is the same as in [Kho00] but
with a different degree shift:

(2.14)
〈〈 〉〉

= h1/2
( 〈〈 〉〉

1

d−−−−→
〈〈 〉〉

0

)
.

The differential f is either a multiplication or a comultiplication of the ring
Z[x]/(x2) depending on how the arcs in the r.h.s. are closed into circles,
and in our grading conventions degh d = −1, degq d = 1. The resulting cat-
egorification complex (2.11) is invariant up to homotopy under the second
and third Reidemeister moves, but it acquires a degree shift under the first
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Reidemeister move:

(2.15)
〈〈
◦ 1

〉〉
= h1/2q

〈〈 〉〉
.

The Khovanov homology of a framed link L,

HKh(L) =
⊕
i,j

HKh
i,j (L), degh HKh

i,j = i, degq HKh
i,j = j,

is defined as the homology of the complex (2.11), and its graded Euler
characteristic or, rather, restricted Poincaré polynomial is related to the
Kauffman bracket, i.e. the Jones polynomial, of L,

〈L〉 =
∑
i,j

(−1)jqi+j dim HKh
i,j .

Note that both q-degree and h-degree contribute to the power of q.

2.1.5. A universal categorification of the Temperley–Lieb algebra. D. Bar-
Natan [BN05] described the universal category TL, whose Grothendieck
K0-group is TL considered as a Z[q, q−1]-module. We will use this category
with obvious adjustments required by the new grading conventions.

Let T̃L be an additive category whose objects are in one-to-one cor-
respondence with Temperley–Lieb tangles, morphisms being generated by
tangle cobordisms (see [BN05] for details). The universal category TL is

the homotopy category of bounded complexes associated with T̃L. In other
words, an object of TL is a complex

(2.16) C = (· · · → Ci+1 → Ci → · · ·), Ci =
⊕
j

⊕
λ∈TLn

cλi,j q
j 〈〈λ〉〉 ,

where non-negative integers cλi,j are multiplicities; since the complex is
bounded, they are non-zero for only finitely many values of i.

A categorification map Tng
〈〈−〉〉−−−→ TL turns a framed tangle diagram τ

into a complex 〈〈τ〉〉 according to the rules (2.12) and (2.14), the morphism d
in the complex (2.14) being the saddle cobordism. A composition of tangles
becomes a composition bi-functor TL×TL→ TL if we apply the categorified
version of the rule (2.2) in order to remove disjoint circles:

(2.17)
〈〈
τ t

〉〉
= q−1 〈〈τ〉〉 ⊕ q 〈〈τ〉〉 ,

the tangle in the l.h.s. being a disjoint union of a tangle λ and a circle (cf.
(2.12)).

A complex 〈〈τ〉〉 associated to a tangle τ is defined only up to homo-
topy. We write 〈〈τ〉〉] for a particular complex with special properties which
represents 〈〈τ〉〉.
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Overall, we have the following commutative diagram:

(2.18)

TL

K0

��
Tng

〈〈−〉〉 55

〈−〉
))
TL

where the map K0 turns the complex (2.16) into the sum (2.4):

(2.19) K0(C) =
∑

λ∈TLn

∑
i

aλ,i q
i〈λ〉, aλ,i =

∑
j,k

j+k=i

(−1)k cλj,k.

This map is well-defined because the sum in the expression for aλ,i is finite
for bounded complexes and if complexes C and C′ are homotopy equivalent,
then K0(C) = K0(C

′) (see [Ros] for the proof).
Since the complex is bounded, the sum in the expression for aλ,i is finite.
In addition to TL we consider the category TL+ of complexes bounded

from below, that is, the multiplicity coefficients in the sum (2.16) are zero
if i is less than certain value. Define the q+ order of a chain ‘module’
Ci: |Ci|q = inf{i + j : cλi,j 6= 0}. A complex C in TL+ is q+-bounded if

limi→∞ |Ci|q = ∞. For a q+-bounded complex, the sum in the expres-
sion (2.19) for aλ,i is finite, hence the element K0(C) is well-defined.

2.2. Results. From now on we assume that n ≥ 2.

2.2.1. Infinite torus braid as a Jones–Wenzl projector in a Temperley–
Lieb algebra. A braid with n strands is a particular example of a (n, n)-
tangle. A torus braid is a braid that can be drawn on a cylinder S1 × [0, 1]
without intersections. In fact, all torus braids have the form βmcyl,n, m ∈ Z,
where βcyl,n is the elementary clockwise winding torus braid:

(2.20) βcyl,n =
· · ·

· · ·
1 n−1 n

1 2 n

We introduce a special notation for the torus braid which corresponds to m
full rotations of n strands:

...

m

n = βmncyl .

Let O+(qm) denote any element of TL+ of the form∑
λ∈TLn

∑
j≥m

aλ,j q
j 〈λ〉.

We define a q-order of an element α ∈ TL+ as |α|q = sup{m : α = O+(qm)}.
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Definition 2.1. A sequence of elements α1, α2, . . . ∈ TL+ has a limit
limk→∞ αk = β if limi→∞ |β − αk|q =∞.

The following theorem may be known, so we do not claim credit for it.
It appears here as a by-product and it is an easy corollary of (2.28).

Theorem 2.2. The TL element corresponding to the infinite torus braid
equals the Jones–Wenzl projector:

(2.21) lim
m→∞

q
1
2
mn(n−1)〈 ...

m

n
〉

= P+
n ,

where P+
n ∈ TL+

n corresponds to the Jones–Wenzl projector Pn ∈ QTLn.

In fact, a more general statement is also true:

(2.22) lim
m→∞

q
1
2
m(n−1)〈βmcyl,n〉 = P+

n ,

but its proof is more technical and we omit it here.

2.2.2. A bit of homological calculus. Consider the chain category Ch(A)
over an additive category A. Define a chain order of a complex (2.8) by
|A|c = inf{m : Am 6= 0}. Let Oc(m) be a generic notation of a complex
of chain order m. Define the homotopic order of a complex A by |A|h =
sup{m : A ∼ Oc(m)}. If A is contractible, then |A|h =∞.

A complex A is called chain (homotopically) small if it has high chain

(homotopic) order. Two complexes connected by a chain morphism A
f−→ B

are considered homotopically if Cone(f) is homotopically small. In partic-
ular, if f is a homotopy equivalence, then Cone(f) is contractible, hence it
has infinite homological order.

A direct system is a sequence of complexes connected by chain mor-
phisms:

(2.23) A = (A0
f0−→ A1

f1−→ · · · ).
Definition 2.3. A direct system A is Cauchy if limi→∞ |Cone(fi)|h=∞.

Definition 2.4. A direct system has a limit (2) : lim
−→
A = A, where A

is a chain complex, if there exist chain morphisms Ai
f̃i−→ A that form

commutative triangles

(2.24) Ai
fi
//

f̃i

((
Ai+1

f̃i+1

// A , f̃i ∼ f̃i+1fi,

and limi→∞ |Cone(f̃i)|h =∞.

(2) This definition differs from the standard categorical definition of a direct limit,
but Theorem 3.9 indicates that our definition implies the standard one. We expect that
both definitions are equivalent.
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In Section 3 we prove the following homology versions of standard the-
orems about limits (Theorem 3.7, Propositions 3.12 and 3.13):

Theorem 2.5. A direct system A has a limit if and only if it is Cauchy.

Theorem 2.6. The limit of a direct system is unique up to homotopy
equivalence.

Now consider the homotopy category Kom(A) (we have in mind the
particular case of Kom(A) = TL+). The notion of homotopic order of a
chain complex, Cauchy property of a direct system and Definition 2.4 of a
limit transfer to Kom(A) for obvious reasons.

2.2.3. Infinite torus braid as a Jones–Wenzl projector in the universal
category. For a tangle diagram τ let 〈〈τ〉〉s denote the categorification com-
plex 〈〈τ〉〉 with h-degree shift proportional to the number n×(τ) of crossings
in the diagram τ :

(2.25) 〈〈τ〉〉s = h
1
2
n×(τ) 〈〈τ〉〉 .

In Subsection 4.2 we define a direct system of categorification complexes
of torus braids connected by special chain morphisms

(2.26) Bn =
(〈〈 ... n

〉〉 f0−→
〈〈 ...

1

n
〉〉s f1−→ · · ·

· · · fm−1−−−→
〈〈 ...

m

n
〉〉s fm−→

〈〈 ...

m+1

n
〉〉s fm+1−−−→ · · ·

)
.

We prove that |Cone(fm)|h ≥ 2m(n− 1) + 1, so Bn is a Cauchy system and
by Theorem 2.5 it has a unique limit: lim

−→
Bn = Pn ∈ TL+n .

Theorem 2.7. The limiting complex Pn has the following properties:

(1) A composition of Pn with cap- and cup-tangles is contractible:〈〈 i

n
〉〉
◦Pn ∼ Pn ◦

〈〈 i

n
〉〉
∼ 0.

(2) The complex Pn is idempotent with respect to tangle composition:
Pn ◦Pn ∼ Pn.

We provide a glimpse into the structure of Pn. A complex C in TLn is

called 1-cut if
... n never appears in chain ‘modules’ Ci. A complex C in

TLn is called angle-shaped if the multiplicities cλi,j of (2.16) satisfy

(2.27) cλi,j 6= 0 only if i ≥ 0 and 0 ≤ j ≤ i.

Let
〈〈 ...

m

n
〉〉s f̃m−→ Pn be chain morphisms associated with the limit

lim
−→
Bn = Pn in accordance with Definition 2.4.
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Theorem 2.8. There exist 1-cut angle-shaped complexes C̃m,n such that

Cone(f̃m) ∼ h2m(n−1)+1 q2m C̃m,n.

In other words, there exists a distinguished triangle

h2m(n−1) q2m C̃m,n

δf̃m−−→
〈〈 ...

m

n
〉〉s f̃m−→ Pn → h2m(n−1)+1 q2m C̃m,n,

in which all morphisms have zero bidegree, and a presentation

(2.28) Pn ∼ Cone
(
h2m(n−1) q2m C̃m,n

δf̃m−−→
〈〈 ...

m

n
〉〉s)

,

where the complex C̃m,n is 1-cut and angle-shaped.

At m = 0 the formula (2.28) becomes

(2.29) Pn ∼ Cone
(
C̃0,n

δf̃0−−→
〈〈 ... n

〉〉)
,

where the complex C̃0,n is 1-cut and angle-shaped.

Since C̃0,n is angle-shaped, the complex Cone(δf̃0) is also angle-shaped

and consequently q+-bounded. Hence K0(Pn) is well-defined. Also K0(Pn)

6= 0, because it contains
〈〈 ... n

〉〉
with coefficient 1. Theorem 2.7 indicates

that K0(Pn) has the defining properties of the Jones–Wenzl projector, hence
by uniqueness it is the Jones–Wenzl projector:

Corollary 2.9. The complex Pn categorifies the Jones–Wenzl projec-
tor in TL+:

(2.30) K0(Pn) = Pn.

3. Elementary homological calculus

3.1. Limits in the category of complexes. Consider a category
Ch(A) of chain complexes associated with an additive category A. The ith

truncation t≤iA of a chain complex A is the chain complex Ai
di−→ Ai−1

→ · · · . The ith truncation of a chain morphism f is defined similarly.

Define the isomorphism order |f |∼= of a chain map A
f−→ B as the largest

number i for which the truncated chain morphism t≤if is an isomorphism
of truncated complexes.

Remark 3.1. Consider a distinguished triangle (2.10). If A ∼= Oc(m),
then |ιf |∼= ≥ m− 1.

Definition 3.2. A direct system A = (A0
f0−→ A1

f1−→ · · · ) in Ch(A) is
stabilizing if limi→∞ |fi|∼= =∞.



316 L. Rozansky

Definition 3.3. A direct system A in Ch(A) has a chain limit limChA

= A if there exist chain morphisms Ai
f̃i−→ A such that f̃i = f̃i+1 fi and

limi→∞ |f̃i|∼= =∞.

The following two theorems are easy to prove:

Theorem 3.4. A direct system has a chain limit if and only if it is
stabilizing. If a chain limit exists then it is unique.

Theorem 3.5. Suppose that limChA = A. Then for a complex B and

chain morphisms Ai
gi−→ B such that gi = gi+1fi, there exists a unique chain

morphism A
g−→ B such that gi = gf̃i.

Definition 3.6. A sequence of chain morphisms A
f0,f1,...−−−−→ B has a

chain limit limi→∞ fi = f if for any N there exists N ′ such that t≤N fi =
t≤N f for any i ≥ N ′.

3.2. Limits in the homotopy category. A stabilizing direct system
is Cauchy, while limChA = A implies lim

−→
A = A, hence Definitions 2.3

and 2.4 are expanded versions of stabilization and chain limit which are
flexible enough to be transferred to Kom(A).

Theorem 3.7. A Cauchy direct system has a limit.

Proof. Consider a Cauchy system A = (A0
f0−→ A1

f1−→ · · · ) in Ch(A).
We construct another homotopic direct system A] ∼ A which is stabilizing.
Roughly speaking, we take A],0 = A0 and then use the cone construction
in Ch(A) in order to attach to A],0 chain-small representatives of the cones
Cone(fi), one by one. As a result, the sequence A] is stabilizing, hence it
has a chain limit limChA] = A], and this means that lim

−→
A = A].

Here is a detailed explanation. By Definition 2.3, there exist complexes
Ci such that

(3.1) Cone(fi) ∼ Ci[−1], |Ci|c = mi, lim
i→∞

mi =∞.

The complexes Ai, Ai+1 and Ci form exact triangles:

Ci

δfi−→ Ai
fi−→ Ai+1 → Ci[1]

and Ai+1 ∼ Cone(δfi). We define recursively a new sequence of complexes

A] = (A],0
ιg0−−→ A],1

ιg1−−→ · · · ) by the relations A],0 = A0, A],i ∼ Ai and

A],i+1 = Cone(gi), where the chain morphism Ci
gi−→ A],i is homotopy
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equivalent to the chain morphism δfi . In other words,

(3.2) A],i+1

= Cone
(
Ci

gi−→ Cone
(
Ci−1

gi−1−−−→ · · · g2−→ Cone(C1
g1−→ Cone(C0

δf0−−→ A0)︸ ︷︷ ︸
A],1

)

︸ ︷︷ ︸
A],2

)

︸ ︷︷ ︸
A],i

)

According to Remark 3.1, |ιgi |∼= ≥ mi, hence the sequence A] is sta-
bilizing, so there exists a chain limit limChA] = A] and consequently
lim
−→
A = A].

Simply saying, the complex A] is an infinite multi-cone extension of the
complex (3.2):

(3.3) A] = · · · g3−→ Cone
(
C2

g2−→ Cone(C1
g1−→ Cone(C0

δf0−−→ A0))
)
.

By Definition 2.4, the limit lim
−→
A = A] implies the existence of mor-

phisms f̃i of equation (2.24). For our applications it is important to express
Cone(f̃0) up to homotopy in terms of the complexes Ci. This can be done
by rearranging the infinite multi-cone (3.3) with the help of associativity of
cone formation, which exists even within the category Ch(A):

(3.4) A] = Cone(C̃
g̃−→ A0),

C̃ = · · · h2−→ Cone(C2[−1]
h1−→ Cone(C1[−1]

h0−→ C0)),

so that f̃0 ∼ ιg̃, and Cone(f̃0) ∼ C̃[1] is expressed in terms of the complexes

Ci arranged into the infinite multi-cone C̃. Here is a more formal statement.

Theorem 3.8. For a Cauchy system A there exists a stabilizing system

C̃ = (C0
h′0−→ C̃1

h′1−→ · · · ) in Ch(A) and chain morphisms Ci[−1]
hi−→ C̃i such

that Cone(hi) = C̃i+1, h′i = ιhi and for the limiting complex C̃ = limCh C̃
there exists a chain morphism C̃

g̃−→ A0 such that A] = Cone(g̃), f̃0 ∼ ιg̃
and consequently Cone(f̃0) ∼ C̃[1].

Proof. Let us recall the associativity of cones in a general setting. For

a chain morphism A
f−→ B, a chain morphism C

g−→ Cone(f) is a sum:
g = gA ⊕ gB,

A[1]

f
��

C

gA

==

gB

// B
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where C
gA−−→ A[1] is a chain morphism and C

gB−−→ B is a multi-map. Now
it is obvious that

(3.5) Cone(C
g−→ Cone(A

f−→ B)) = Cone(Cone(C[1]
gA−−→ A)

gB⊕f−−−→ B).

We apply the associativity relation (3.5) to multi-cones (3.2) consecutively

for i = 1, 2, . . . in order to rearrange them, so A],i = Cone(C̃i
g̃i−→ A0), while

the complexes C̃i and chain morphisms g̃i are defined recursively: C̃0 = C0,

g̃0 = δf0 , C̃i+1 = Cone(hi), and the chain morphisms Ci[−1]
hi−→ C̃i and

C̃i+1
g̃i+1−−−→ A0 are defined by applying the associativity relation (3.5) to the

double cone on the second line of the following equation:

A],i+1 = Cone(Ci
gi−→ A],i)(3.6)

= Cone(Ci
gi−→ Cone(C̃i

g̃i−→ A0))

= Cone(Cone(Ci[−1]
hi−→ C̃i)

g̃i+1−−−→ A0)

= Cone(C̃i+1
g̃i+1−−−→ A0).

The distinguished triangles

Ci[−1]
hi−→ C̃i

ιhi−−→ C̃i+1 → Ci

determine chain morphisms h′i = ιhi of the direct system C̃ = (C̃0
h′0−→

C̃1
h′1−→ · · · ). By Remark 3.1 it has a chain limit: limCh C̃ = C̃, which is

an infinite multi-cone of (3.4). The chain morphisms C̃i
h′i−→ C̃i+1 satisfy

g̃i = g̃i+1 h′i, so by Theorem 3.5 there exists a unique chain morphism

C̃
g̃−→ A0 such that g̃i = g̃ h̃′i.

It is easy to show that A] = Cone(C̃
g̃−→ A0), and f̃0 = ιg̃, hence

Cone(f̃0) ∼ C̃[1].

It is easy to prove the analog of Theorem 3.5:

Theorem 3.9. Suppose that a direct system (2.23) has a limit lim
−→
A

=A]. For a complex B and chain morphisms Ai
gi−→ B such that gi ∼ gi+1fi,

there exists a unique (up to homotopy) chain morphism A]
g−→ B which forms

commutative triangles

(3.7) Ai
f̃i

//

gi

((
Ai+1 g

// B , gi ∼ gf̃i.

In order to complete the proof of Theorems 2.5 and 2.6, we need two
simple propositions. The first one establishes a triangle inequality for homo-
logical orders of cones.
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Proposition 3.10. If three chain morphisms form a commutative tri-
angle

(3.8) A
fAB

//

fAC

''
B

fBC

// C , fAC ∼ fBCfAB.

then the homological orders of their cones satisfy the inequalities

|Cone(fAB)|h ≥ min(|Cone(fAC)|h, |Cone(fBC)|h − 1),(3.9)

|Cone(fBC)|h ≥ min(|Cone(fAB)|h + 1, |Cone(fAC)|h).(3.10)

Proof. If chain morphisms form a commutative triangle (3.8), then their
cones form a distinguished triangle

Cone(fAB)
g1−→ Cone(fAC)

g2−→ Cone(fBC)
g3−→ Cone(fAB)[1],

so the first inequality follows from the relation Cone(fAB) ∼ Cone(g2)[−1]
and the second from Cone(fBC) ∼ Cone(g1).

The second proposition says that if a complex is homologically infinitely
small then it is contractible.

Proposition 3.11. If |A|h =∞ then A is contractible.

Proof. Since |A|h = ∞, there exist complexes Ai ∼ A such that Ai =
Oc(mi) and limi→∞mi = ∞. Consider a sequence of chain morphisms es-
tablishing homotopy equivalence between the complexes:

A
f0 //

A1g0

oo
f1 //

A2g1

oo // · · ·oo //
Aioo

fi //
Ai+1gi

oo // · · ·oo , 1Ai−gifi = dihi+hidi,

where 1Ai is the identity chain morphism of Ai, while Ai[1]
hi−→ Ai is a

homotopy chain morphism (it does not commute with the chain differential
di in the complex Ai).

Consider the compositions f̂i = fi · · · f1f0, ĝi = g0g1 · · ·gi and ĥi =
ĝi−1hif̂i−1. It is easy to see that ĝi−1f̂i−1−ĝif̂i = dĥi+ĥid, hence 1A−ĝif̂i =
dȟi+ ȟid, where ȟi = ĥ0 + ĥ1 + · · ·+ ĥi. There is a limit (cf. Definition 3.6)

limi→∞ ȟi = ȟ, while limi→∞ ĝif̂i = 0, hence 1A = dȟ + ȟd, which means
that the complex A is contractible.

Proposition 3.12. If a direct system A has a limit, then it is Cauchy.

Proof. The inequality (3.9) applied to the commutative triangle (2.24)
says that

|Cone(fi)|h ≥ min(|Cone(f̃i)|h, |Cone(f̃i+1)|h − 1),

hence the limit limi→∞ |Cone(f̃i)|h =∞ implies the Cauchy property of A.

Proposition 3.13. If a direct system A has a limit, then it is unique.
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Proof. If A has a limit then by Proposition 3.12 it is Cauchy. Hence
it has a special limit A] described in the proof of Theorem 3.7. If A has

another limit A′ with chain morphisms Ai
f̃ ′i−→ A′ then by Theorem 3.9

there is a chain morphism A]
g−→ A′ with commutative triangles (3.7). The

inequality (3.10) says

|Cone(g)|h ≥ min
(
|Cone(f̃i)|h + 1, |Cone(gi)|h

)
.

Since both cones in the r.h.s. become homologically infinitely small as i→∞,
the cone Cone(g) is also homologically infinitely small. Then Proposition 3.11
says that Cone(g) is contractible; as a result A′ ∼ A].

We end this section with a theorem which follows easily from Defini-
tion 2.4.

Theorem 3.14. If a direct system A satisfies limi→∞ |Ai|h = ∞ then
its limit is contractible: lim

−→
A = 0.

4. A direct system of categorification complexes of torus braids

4.1. A special categorification complex of a negative braid. Let
σi denote an elementary negative n-strand braid:

σi = · · · · · ·
i i+11 n

Theorem 4.1. If an n-strand braid β can be presented as a product
of elementary negative braids: β = σik · · ·σi2σi1, then its categorification
complex has a special presentation 〈〈β〉〉]:

(4.1) 〈〈β〉〉s] =
(
· · · → C2 → C1 →

〈〈 ... n
〉〉)

such that the complex

(4.2) C = h−1(· · · → C2 → C1)

is 1-cut and angle-shaped.

More abstractly, the theorem says that there exists a 1-cut and angle-

shaped complex C and a chain morphism C→
〈〈 ... n

〉〉
such that 〈〈β〉〉s ∼

Cone
(
C→

〈〈 ... n
〉〉)

.

Remark 4.2. Theorem 4.1 implies that the special complex 〈〈β〉〉s] is
angle-shaped.

Proof of Theorem 4.1. First of all, we define a special complex 〈〈σi ◦ λ〉〉s]
for the composition of a TL (n, n)-tangle λ and an elementary negative
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braid σi, 1 ≤ i ≤ n−1. If the composition
i

n ◦λ does not contain a disjoint
circle, then, in accordance with (2.14), we define the special categorification
complex of σi ◦ λ as

(4.3) 〈〈σi ◦ λ〉〉s] = (〈〈Un,i ◦ λ〉〉1 → 〈〈λ〉〉0).

If
i

n ◦ λ contains a disjoint circle, then λ must have the form
i

n ◦ λ′.

Hence σi ◦ λ = σi ◦
i

n ◦ λ′. The tangle σi ◦
i

n is the same as
i

n with a

positive framing twist, so according to (2.15),
〈〈
σi ◦

i

n
〉〉
∼ h1/2q

〈〈 i

n
〉〉

.

Hence in this case we define the special categorification complex of σi ◦ λ
simply as shifted 〈〈λ〉〉:

(4.4) 〈〈σi ◦ λ〉〉s] = hq 〈〈λ〉〉 .

Now we define a recursive algorithm for constructing the complex 〈〈β〉〉s].
For β =

... n we define 〈〈β〉〉s] =
〈〈 ... n

〉〉
. Suppose that we defined the

special complex 〈〈β〉〉s] for a braid β = σik ◦ · · · ◦ σi1 . We define the special

categorification complex of a braid β′ = σik+1
◦β by applying the rules (4.3)

and (4.4) to all constituent tangles λ in the complex 〈〈β〉〉] (see (2.16)).

We prove the properties of 〈〈β〉〉s] by induction over k. If k = 0 then

β =
... n and the properties of 〈〈β〉〉s] are obvious.

Suppose that the special categorification complex 〈〈β〉〉s] of a braid β =
σik ◦ · · · ◦ σi1 has the form (4.1) and its tail (4.2) is 1-cut and angle-shaped.

Consider a longer braid β′ = σik+1
◦ β. The object

〈〈 ... n
〉〉

may appear

in 〈〈β′〉〉s] if and only if λ =
... n and the extra crossing σik+1

is negatively

spliced in (4.3), hence 〈〈β′〉〉s] has the form (4.1) and its tail (4.2) is 1-cut.

If the negative crossing σik+1
is composed with the head

〈〈 ... n
〉〉

of

the complex (4.1), then the formula (4.3) applies and the tangle Un,ik+1

appearing in the tail of 〈〈β′〉〉s] satisfies (2.27).

If the crossing σik+1
is composed with a TL tangle λ from the ith chain

‘module’ Ci (see (2.16)) in the tail of the complex 〈〈β〉〉s] with the q-degree
shift j satisfying the inequality 0 ≤ j ≤ i−1, then the shifted objects in the
r.h.s. of (4.3) and (4.4) also satisfy this inequality.

The picture (2.20) presents a torus braid as a product of negative cross-
ings, hence we obtain
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Corollary 4.3. A torus braid
...

m

n has a special angle-shaped cate-

gorification complex
〈〈 ...

m

n
〉〉s
]
. In particular, for m = 1,

(4.5)
〈〈 ...

1

n
〉〉s
]

= Cone
(
C1,n →

〈〈 ... n
〉〉)

,

where the complex C1,n is 1-cut and angle-shaped.

4.2. Special morphisms between torus braid complexes. Rela-
tion (4.5) indicates that there is a distinguished triangle

C1,n →
〈〈 ... n

〉〉 f1−→
〈〈 ...

1

n
〉〉s → hC1,n

and

(4.6) Cone(f1) ∼ hC1,n.

Composing both sides of the morphism f1 with the torus braid complex〈〈 ...

m

n
〉〉s

, we get a morphism〈〈 ...

m

n
〉〉s fm−→

〈〈 ...

m+1

n
〉〉s

such that

(4.7) Cone(fm) ∼ Cone(f1) ◦
〈〈 ...

m

n
〉〉s
.

Theorem 4.4. The cone (4.7) can be presented by a shifted complex

Cone(fm) ∼ h (hn−1q)2m Cm,n

such that Cm,n is 1-cut and angle-shaped.

The proof is based on a simple geometric lemma:

Lemma 4.5. For n ≥ 2, the following two compositions of framed tangles
are isotopic:

(4.8)
i

n ◦ ...

1

n and
...

1

n−2 ◦
i

◦2 n

where
i

◦2 n is the tangle
i

n with double framing twist on the cap:
i

◦k n = · · · · · ·
i i+11 n

◦
k

Proof. This lemma is geometrically obvious: a cap on a pair of adjacent
strands slides down through the torus braid to the bottom.

An immediate corollary of (4.8) and of the framing change formula (2.15)
is the following relation:

(4.9)
〈〈 i

n ◦ ...

m

n
〉〉s ∼ (hn−1q)2m 〈〈 ...

m

n−2 ◦
i

n
〉〉s
.
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In order to prove Theorem 4.4, we need three simple propositions. For a
positive integer d ≤ n/2, let I = (i1, . . . , id) be a sequence of positive integer

numbers such that ik < n− 2k + 2 for all k ∈ {1, . . . , d}. A cap-tangle
I

n

is an (n, n− 2d)-tangle which can be presented as a product of d tangles of

the form
i

m:
I

n =
id

n−2d+2 ◦ · · · ◦
i2

n−2 ◦
i1

n.

A cup-tangle
I

n is defined similarly:

I

n =
i1

n ◦
i2

n−2 ◦ · · · ◦
id

n−2d+2 .

The first proposition is obvious:

Proposition 4.6. Every TL (n, n)-tangle λ has a presentation

(4.10) λ =
I′

n ◦
I

n, |I| = |I′|.

The number dλ = |I| = |I′| is determined by the tangle λ and we call it
the cap-degree (or cup-degree) of λ.

The second proposition is also obvious:

Proposition 4.7. If at least one of two complexes C1 and C2 in TLn
is 1-cut then their composition C1 ◦C2 is 1-cut.

Note that even if both complexes are angle-shaped, then their compo-
sition is not necessarily angle-shaped. Indeed, in contrast to the homologi-
cal degree, the q-degree is not additive with respect to the composition of
tangles: if the composition of two TL tangles contains a disjoint circle then
the q-degree shifts of the rule (2.17) violate additivity. However, if the upper
tangle in the composition has no caps or the lower tangle has no cups then
no circles are created and the angle shape is maintained:

Proposition 4.8. If a complex C in TLn−2dλ is angle-shaped, then the

complexes
〈〈 I

n
〉〉
◦C and C ◦

〈〈 I

n
〉〉

are also angle-shaped.

Proof of Theorem 4.4. In order to construct the 1-cut and angle-shaped
complex Cm,n, we use the presentation

(4.11) Cone(fm) ∼ hC1,n ◦
〈〈 ...

m

n
〉〉s
,

which follows from (4.7) and (4.6). We construct Cm,n by simplifying the

complexes
〈〈
λ ◦ ...

m

n
〉〉s

for TL (n, n)-tangles λ appearing in the chain
‘modules’ of C1,n, with the help of (4.9), thus creating the necessary degree
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shifts, and then using Corollary 4.3, which says that emerging torus braids
have angle-shaped categorification complexes.

Let hiqj 〈〈λ〉〉 be an object appearing in the ith chain ‘module’ of C1,n

with a non-zero multiplicity (we made its homological degree explicit by

including the shift hi). We apply (4.9) consequently to every cap
k

n ap-

pearing in the cap-tangle
I

n in the presentation (4.10) of λ:

(4.12) 〈〈λ〉〉 ◦
〈〈 ...

m

n
〉〉s ∼ (hn−1q)2m Cλ,m,n,

where

(4.13) Cλ,m,n = (hn−dλ−1qdλ−1)2m
(〈〈 I′

n
〉〉
◦
〈〈 ...

m

n−2dλ
〉〉s
]
◦
〈〈 I

n
〉〉)

.

The object 〈〈λ〉〉 comes from the 1-cut complex C1,n, hence dλ > 0 and
the complex in big brackets in the r.h.s. of (4.13) is 1-cut in view of Propo-
sition 4.7. Proposition 4.8 implies that the complex〈〈 I′

n
〉〉
◦
〈〈 ...

m

n−2dλ
〉〉s
]
◦
〈〈 I

n
〉〉

is also angle-shaped. It remains angle-shaped after the shift (hn−dλ−1qdλ−1)2m,
as well as after the shift hiqj which accompanies 〈〈λ〉〉 in C1,n, because the

latter complex is also angle-shaped. The complex C1,n ◦
〈〈 ...

m

n
〉〉s

in

the r.h.s. of (4.11) is composed of complexes (4.12) with shifts hiqj , hence
Theorem 4.4 is proved.

5. A categorified Jones–Wenzl projector. Consider the direct sys-
tem (2.26). Theorem 4.4 implies that |Cone(fm)|h ≥ 2m(n − 1) + 1, hence
Bn is Cauchy and it has a unique limit lim

−→
Bn = Pn ∈ TL+n .

Now we prove Theorems 2.7 and 2.8, which describe the properties of Pn.

Proof of Theorem 2.8. Consider a tail of the direct system (2.26):

Bm,n =
(〈〈 ...

m

n
〉〉s fm−→

〈〈 ...

m+1

n
〉〉s fm+1−−−→ · · ·

)
→ Pn.

According to Theorem 3.8, the limit Pn can be presented as a cone (2.28),
where C̃m,n is an infinite multi-cone:

C̃m,n = · · · → Cone(h−1(hn−1q)2k Cm+k,n → · · ·
→ Cone(h2n−3q2 Cm+1,n → Cm,n) · · · )

with 1-cut and angle-shaped complexes Cm,n introduced in Theorem 4.4.

Hence the complex C̃m,n itself is 1-cut and angle-shaped.
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Proof of part (1) of Theorem 2.7. The tangle composition with
〈〈 i

n
〉〉

is a ‘continuous’ functor, that is, it can be applied to both sides of lim
−→
Bn

= Pn, hence lim
−→

〈〈 i

n
〉〉
◦ Bn =

〈〈 i

n
〉〉
◦Pn. According to (4.9),〈〈 i

n
〉〉
◦ Bn

=
(〈〈 i

n
〉〉
◦
〈〈 ... n

〉〉
→ · · · →

〈〈 i

n
〉〉
◦
〈〈 ...

m

n
〉〉s → · · ·)

∼
(〈〈 i

n
〉〉
→ · · · → (hn−1q)2m

〈〈 ...

m

n−2
〉〉s ◦ 〈〈 i

n
〉〉
→ · · ·

)
.

Since ∣∣∣(hn−1q)2m
〈〈 ...

m

n−2
〉〉s ◦ 〈〈 i

n
〉〉∣∣∣

h
≥ 2m(n− 1) −−−−→

m→∞
∞,

according to Theorem 3.14, lim
−→

〈〈 i

n
〉〉
◦ Bn = 0, hence

〈〈 i

n
〉〉
◦ Pn is

contractible.

Remark 5.1. The contractibility of Pn ◦
〈〈 i

n
〉〉

is proved similarly.

Corollary 5.2. If C is a 1-cut complex in TL+n , then C ◦ Pn is con-
tractible.

Proof of part (2) of Theorem 2.7. According to (2.29),

Pn ◦Pn ∼ Cone
(
C̃0,n −→

〈〈 ... n
〉〉)
◦Pn

∼ Cone
(
C̃0,n ◦Pn −→

〈〈 ... n
〉〉
◦Pn

)
∼ Pn,

where we used the fact that C̃0,n is 1-cut and Corollary 5.2 in order to
establish the last homotopy equivalence.

Proof of Theorem 2.2. The complexes Pn, C̃m,n and
〈〈 ...

m

n
〉〉s

in
(2.28) are angle-shaped, hence they are q+-bounded and their K0 images are
well-defined. Applying K0 to this equation and taking into account (2.30)
and the definition (2.25), we find

Pn = q
1
2
mn(n−1)〈 ...

m

n
〉
− q2mn+1K0(C̃m,n).

The complex C̃m,n is angle-shaped, so |K0(C̃m,n)|q ≥ 0 and by Definition 2.1
there is a limit (2.21).
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