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The isomorphism relation on countable torsion free
abelian groups

by

Greg Hjorth (Los Angeles, CA)

Abstract. The isomorphism relation on countable torsion free abelian groups is non-
Borel.

1. Introduction. This note makes a comment on the isomorphism re-
lation of countable torsion free abelian groups of infinite rank. We show that
any Borel isomorphism relation on a class of countable structures may be
embedded into the isomorphism relation of countable torsion free abelian
groups.

In [3] a stronger result was announced, to the effect that we may actually
embed the isomorphism relation of an arbitrary class of countable structures.
A proof was there promised to be given in [5].

That proof, alas, was mistaken. This note instead gives a weaker result,
which as it turns out is now irrelevant to the main direction of [5].

Before going further into the details we need to recall a basic concept
for this area:

Definition. Let E and F be Borel equivalence relations on Polish
spaces X and Y . We write

E ≤B F

if there is a Borel function θ : X → Y such that for all x1, x2 ∈ X,

x1Ex2 ⇔ θ(x1)Fθ(x2).

For L a countable language we can form, as described in [7], the Polish
space XL of L structures with underlying set N. For L consisting of a single
binary operation, +, the torsion free abelian groups form a closed invariant
subset TFA ⊂ XL.

Our main result is:
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242 G. Hjorth

Theorem 1.1. For L′ a countable language and C ⊂ XL′ a Borel set
such that the isomorphism relation on C, ∼= |C , is Borel , we always have

∼= |C ≤B ∼= |TFA.

In particular this implies that ∼= |TFA is non-Borel, answering a question
raised in [2]. However we leave open the question which the authors of [2]
correctly identify as most fundamental:

Question. Let L′ be a countable language. Do we necessarily have
∼= |L′ ≤B ∼= |TFA?

In this present paper I will largely skip over giving a detailed intro-
duction or providing extensive motivation. I feel that such an introduction
has already been given in [7] and [6]. Between them, these papers should
also provide the technical background and an explanation of notation not
adequately defined below.

2. Group eplags. This section is devoted to a painful and detailed
development of a new class of infinite rank torsion free abelian groups. The
central technical lemma appears at 2.5, giving an analysis of when a given
element from one of these group eplags is infinitely divisible by a given
prime. This technical lemma enables the section after to embed countable
iterations of the power set of N into torsion free abelian groups considered
up to isomorphism.

Although 2.5 and the coding techniques of §3 defy easy summary, it
might be helpful to make a couple of brief remarks about the philosophy of
the proof. This can be most easily described by considering the case of just
embedding Pℵ0(P(N)) into the isomorphism relation on torsion free abelian
groups.

A way in which we might effect such an encoding is to first enumerate
infinitely many distinct primes, (pn)n∈N. Then given {an : n ∈ N} ⊂ P(N)
we can describe a subgroup of QN, where the element δn (the function taking
value 1 at n and zero elsewhere) is infinitely divisible by a prime p if and
only if p = pi for some i with i ∈ an. With suitable care this can be done
so that the isomorphism type of the corresponding group only depends on
the set {an : n ∈ N} and so that for each non-zero g in the group, the set
of primes infinitely dividing g will either be empty or equal to {pi : i ∈ an},
for some n ∈ N.

The case of Pℵ0(P(N)) is misleadingly simple, because at this level every
object being coded is a subset of some predetermined countable set. In the
general case we need to be able to build up sets of sets, and sets of sets of sets,
and so on, without any previously described limitations. The complications
required for this further coding are reflected in 2.5 and 3.1 below.
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Definition. A graph is a pair (V,E) where V is a set and E is a subset
of the unordered pairs {{v, w} : v, w ∈ V, v 6= w} of elements in V .

Notation. P denotes the set of primes.

Definition. A prime labeled graph is a triple (V,E, f) where (V,E) is
a graph and f : V ∪E → P. It is said to be excellent if

(i) f [V ]∩f [E] = ∅; that is to say, vertices and edges are always assigned
distinct primes;

(ii) for any p ∈ P, (V, f−1[{p}]) contains no cycles; in other words, if we
restrict our attention to edges labeled by a single prime then the resulting
graph is a union of disjoint trees.

I will use the acronym eplag for excellent prime labeled graph.

Definition. Given an eplag (V,E, f) we define the corresponding group
eplag , denoted by G(V,E, f). We first consider the group consisting of all
formal sums ∑

v∈V0

qv · v,

where V0 is a finite subset of V and (qv)v∈V0 is a corresponding array of
non-zero rationals; we add elements in this group in the obvious way, and
thus it becomes a torsion free abelian group. We then let G(V,E, f) be the
abelian group consisting of all elements that may be represented in the form

g =
∑

v∈V0

kv · v
f(v)lv

+
∑

{v,w}∈E0

n{v,w} · (v + w)

f({v, w})m{v,w} ,

where V0 is a finite subset of V , E0 is a finite subset of E, with each
kv, n{v,w} ∈ Z and lv,m{v,w} ∈ N.

In other words, G(V,E, f) can be thought of as isomorphic to a subgroup
of the direct sum ⊕

V

Q,

with the product group structure, where we insist that each χ{v} (the char-
acteristic function of {v}, taking χ{v}(w) = 1 when w = v, and assuming
value 0 otherwise) is divisible by all powers of f(v) while each χ{v} + χ{w}
is divisible by all powers of f({v, w}) for {v, w} ∈ E. In particular every
element of G(V,E, f) can be written in the form

∑

v∈V1

qv · v

for some finite V1 ⊂ V and associated collection {qv : v ∈ V1} of rationals.
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Definition. Let (V,E, f) be an eplag and % : V → {−1, 0, 1} a function.
We define a resulting homomorphism ϕ% : G(V,E, f)→ Q by

ϕ%

( ∑

v∈V0

qv · v
)

=
∑

v∈V0

qv%(v).

Definition. Let G(V,E, f) be a group eplag and let p be a prime. A
homomorphism ψ : G(V,E, f)→ Q is p-mindful if ψ = ϕ% as above for some
% : V → {−1, 0, 1} with

%(w0) = −%(w1) for all {w0, w1} ∈ E ∩ f−1[{p}].
Lemma 2.1. If C ⊂ V is a connected component of (V, f−1[{p}]) con-

taining some given vertex v and ϕ0, ϕ1 : G(V,E, f) → Q are p-mindful ho-
momorphisms with ϕ0(v), ϕ1(v) both non-zero, then for any g ∈ G(V,E, f)
of the form

g =
∑

v∈C0

qv · v

with C0 a finite subset of C, we have

ϕ0(g) = 0 if and only if ϕ1(g) = 0.

Proof. The point is that there are only two possible two-colorings of
(C, f−1[{p}]) by {−1, 1}, and hence only two possible non-trivial p-mindful
homomorphisms for the subgroup of G(V,E, f) generated by {w : w ∈ C}.
Each of these homomorphisms is the mirror image of the other, in the sense
that ϕ0(g) = −ϕ1(g) for all g in their common domain.

Lemma 2.2. Suppose C1, . . . , Ck are distinct connected components of
(V, f−1[{p}] ∩E) and for each i ≤ k we have

gi =
∑

v∈Vi
rv · v

for some Vi ⊂ Ci. Suppose g = g1 + . . .+ gk. Then the following statements
are equivalent :

(I) ϕ(g) = 0 for each p-mindful ϕ.
(II) ϕ(gi) = 0 for each i and each p-mindful ϕ.

Proof. This follows since if F enumerates the components of (V, f−1[{p}]
∩ E), then any p-mindful ϕ may be written as a sum ϕ : g 7→∑

C∈F ϕC(g)
where each ϕC is p-mindful and assumes the value 0 outside of C.

Lemma 2.3. Let G(V,E, f) be a group eplag , p ∈ P, v ∈ V . Then there
is a function % : V → {−1, 0, 1} such that

(i) %(w) 6= 0 if and only if there are v0, v1, . . . , vk ∈ V with each {vi, vi+1}
∈ f−1[{p}]∩E, and v0 = v, vk = w; in other words, % takes non-zero values
exactly on the component of (V, f−1[{p}] ∩ E) containing v;
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(ii) for {w0, w1} ∈ f−1[{p}] ∩ E we have

%(w0) = −%(w1);

in other words, % provides a two-coloring of the component on which it is
non-zero.

Proof. This is essentially a restatement of the well known fact that every
tree admits a two-coloring.

Lemma 2.4. Let (V,E, f) be an eplag. Suppose p ∈ P and (T, f−1[{p}]∩
{{v, w} : v, w ∈ T}) is a finite subtree of (V, f−1[{p}] ∩ E) and g ∈
G(V,E, f) has the form

g =
∑

v∈T
rv · v

for rationals {rv : v ∈ T}. Suppose ϕ(g) = 0 for every p-mindful homomor-
phism ϕ : G(V,E, f)→ Q. Then g is divisible by every power of p.

Proof. We prove the lemma by induction on the cardinality |T | of T . If
this is 1, then g would have to be the zero element of the group, since for
g = q · v we can always define a p-mindful homomorphism ϕ which assumes
a value ϕ(v) = 1; and certainly zero is divisible by all powers of p.

So now suppose
g =

∑

v∈T
rv · v,

|T | = n+ 1 ≥ 2, and that the lemma has been proved for any trees T ′ with
|T ′| ≤ n. Then we may choose a node v0 ∈ T that is terminal; let v1 be the
unique vertex in T with {v0, v1} ∈ f−1[{p}]. We can let

h = rv0 · v0 + rv0 · v1;

it follows from the definition of G(V,E, f) that h is divisible by all powers of
p; and it follows from the definition of mindfulness that ϕ(h) = 0 for every
p-mindful homomorphism ϕ. Thus by assumption on g,

ϕ(g − h) = 0

for every p-mindful homomorphism ϕ : G(V,E, f)→ Q, and so by inductive
assumption g − h is divisible by every power of p. But then g must also be
divisible by every power of p.

In the proof of the following proposition we use without explicit men-
tion this consequence of unique factorization: If p, p0, p1, . . . , pk are non-zero
primes, n, n0, . . . , nk are non-zero integers, with n not divisible by p, and
m,m0, . . . ,mk are positive integers and

n

pm
=
∑

i≤k

ni
pmii

,

then pi = p for some i ≤ k.
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Proposition 2.5. Let G(V,E, f) be a group eplag , p ∈ P, V0 ⊂ V finite,
and g ∈ G(V,E, f) of the form

g =
∑

v∈V0

qv · v

with each qv 6= 0. Then g is divisible by all powers of p in G(V,E, f) if and
only if either :

(i) V0 ⊂ V ∩ f−1[{p}], or
(ii) ϕ(g) = 0 for each p-mindful homomorphism ϕ : G(V,E, f)→ Q.

Proof. For notational simplicity let us assume each qv ∈ Z. We can make
this simplifying assumption since the euclidean algorithm shows that g is
divisible by every power of p if and only if every integer multiple of g is
divisible by every power of p.

(⇐): First suppose (i) holds. Then it is immediate from the definitions
that for each v ∈ V0 and n ∈ N we have p−n · v ∈ G(V,E, f), and hence g is
indeed divisible by every power of p.

So instead suppose (ii) holds. Note that we can find finitely many com-
ponents W1, . . . ,Wk of (V,E ∩ f−1[{p}]) such that

g = g1 + . . .+ gk

where each gi is a rational linear combination of {v : v ∈ Wi}. Then g will
be divisible by all powers of p if each gi is divisible by each power of p. Thus
by 2.2 we may as well assume that k = 1; that is to say, g is contained in a
single component of (V,E ∩ f−1[{p}]).

With this in hand, we can write

g =
∑

v∈T
lv · v

where T ⊂ V is finite and (T, f−1[{p}] ∩ {{v, w} : v, w ∈ T}) forms a tree.
And then we are done by appealing to 2.4.

(⇒): Assume for a contradiction that (i) and (ii) both fail.

Claim (1). There is h ∈ G such that ϕ(h) = 0 for every p-mindful
homomorphism ϕ : G(V,E, f)→ Q and such that if

h+ g =
∑

v∈W
rv · v

is a representation of g + h with each rv 6= 0 for v ∈ W , then for each
connected component C of (V, f−1[{p}]) there is at most one v ∈W ∩ C.

Proof of claim. For each connected componentC of (V, f−1[{p}]∩E) that
meets V0 choose some single vC ∈ C and a two-coloring %C : C → {−1, 1}
of the tree

(C, f−1[{p}] ∩ {{w1, w2} ∈ E : w1, w2 ∈ C})
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with %C(vC) = 1. We then let

hC =
∑

v∈C∩V0

−qv · v +
∑

v∈C∩V0

qv%C(v) · vC .

By 2.1 we find that ϕ(hC) = 0 for any p-mindful homomorphism ϕ. Thus
if we let F enumerate the connected components of (V, f−1[{p}]∩E) meet-
ing V0, then h =

∑
C∈F hC is as required. Claim

Thus by the already proved direction ⇐ of the proposition we see that
h is divisible by every power of p. And hence so is g + h. Moreover g + h
fails (ii) since g fails (ii). In particular, g + h 6= 0.

Hence, after possibly replacing g by g + h we may make the simplifying
assumption that for each connected component C of (V, f−1[{p}]∩E) there
is at most a single vertex wC with wC ∈ V0 ∩ C in the representation of g.
Thus for some finite collection H of connected components of (V, f−1[{p}])
and some finite collection (aC)C∈H of integers we have

g =
∑

C∈H
aC ·wC .

Choose some sufficiently large n that no aC is divisible by pn—and thus
the coefficient of aC appearing in g/pn must have a power of p in its denom-
inator. Now g is divisible by pn in G(V,E, f), and thus we may write

g

pn
=
∑

v∈V1

kv · v
f(v)lv

+
∑

{v,w}∈E1

n{v,w} · (v + w)

f({v, w})m{v,w} ,

for finite V1 ⊂ V , E1 ⊂ E, each m{v,w} > 0, each n{v,w} indivisible by
f({v, w}). For each C ∈ H let TC ⊂ C be the smallest possible subtree of
(V, f−1[{p}]) such that if {v0, v1} ∈ E1 with v0, v1 ∈ C then v0, v1 ∈ TC .

Claim (2). f−1[{p}] ∩ V = ∅.
Proof of claim. Inspecting the definition of G(V,E, f) we see that every

h in the group may be written in the form

h =
∑

v∈W1

bv · v
(f(v)f({w0,v, v})f({w1,v, v}) . . . f({wk(v),v, v}))cv

with each {wi,v, v} ∈ E, each bv ∈ Z, and each cv ∈ N. In particular then
the assumption of g’s unlimited divisibility by p along with our hypothesis
that some v ∈ V0 has f(v) 6= p implies that there is some w with

{w, v} ∈ E, f({w, v}) = p.

Then by the definition of excellent prime labeled graph we must have
f−1[{p}] ∩ V = ∅. Claim

Claim (3). For no C ∈ H do we have TC = ∅; that is to say , for every
C ∈ H there is some v0, v1 ∈ C with {v0, v1} ∈ E1.
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Proof of claim. Since for each C ∈ H we may write
g

pn
=
aC · wC
pn

+
∑

v∈V0, v 6=wC

qv · v
pn

and
g

pn
=
∑

v∈V1

kv · v
f(v)lv

+
∑

{v,w}∈E1

n{v,w} · (v + w)

f({v, w})m{v,w} ,

and since each aC is indivisible by pn, we see that for any C ∈ H there is
some v with

{v, wC} ∈ E1, f({v, wC}) = p. Claim

So let us choose C0 ∈ H and v0 ∈ TC0 with v0 6= wC0 but v0 terminal
in TC0—that is to say, there is exactly one other v1 ∈ TC0 with {v0, v1} ∈ E.
This is possible since TC0 is a finite tree and since, by the above claim, it
has at least two elements. Referring back to the representation

g

pn
=
∑

C∈H

aC ·wC
pn

,

and using the fact that v0 6= wC for all C ∈ H we see that

kv0 · v0

f(v0)lv0
+

∑

{v0,w}∈E1

n{v0,w} · (v0 + w)

f({v0, w})m{v0,w}

can be expressed as a linear combination of {w ∈ V : w 6= v0}, and thus

kv0

f(v0)lv0
+

∑

{v0,w}∈E1

n{v0,w}
f({v0, w})m{v0,w}

= 0.

But now the assumption on v0 gives us a single w0 with

{v0, w0} ∈ E1, f({v0, w0}) = p.

Thus we obtain primes p1, . . . , pN distinct from p with
kv0

f(v0)lv0
+

n{w0,v0}
pm{w0,v0}

+
∑

i≤N

ni
pmii

= 0.

Since f(v0) 6= p we have at last reached a contradiction.

3. Coding hereditarily countable sets

Definition. Following [7], we define Pα(N) by induction on α < ω1.
We begin with P0(N) = N and then inductively define Pα(N) for α > 0 to
be
⋃
β<α Pβ(N) along with the set of all countable subsets of

⋃
β<α Pβ(N).

For A ∈ ⋃α<ω1
Pα(N) we let Rk(A) be the least α such that A ∈ Pα(N).

We also define TC(A) in the following way. If A = m ∈ P0(N) we define
TC(A) to be the set {n : n < m}. We then continue inductively, so that
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when A ∈ Pα(N) for some α > 0 then

TC(A) = A ∪
⋃

B∈A
TC(B).

Notation. For the rest of this section fix a countable ordinal α and a
collection of distinct primes

{pβ : β ≤ α, β 6= 0}∪{qn : n ∈ N}∪{q̂γ,β : γ < β ≤ α}∪{pγ,β : γ < β ≤ α}.
The goal of this section is to show that given this ordinal α and this

collection of primes we can canonically associate to each A ∈ Pα(N) a
corresponding torsion free abelian group HA such that

A0 = A1 if and only if HA0
∼= HA1.

In this section we simply concentrate on describing the construction. It is
only in the following two sections that any significance can be attached to
the endeavor—the next section observes this particular construction to be
suitably “Borel”, and the section after notes consequences for the isomor-
phism relation on torsion free abelian groups. This present section should
really be thought of as one long definition.

We first build a group GA, for each A ∈ Pα+1(N), and verify that

TC(A1) 6= TC(A2) implies GA1 6∼= GA2 .

We can then define HA = G{A}∪TC(A) for A ∈ Pα(N) and check that indeed
A1 = A2 ⇔ HA1

∼= HA2 .

Definition. For A ∈ Pα+1(N) we let VA consist of all 〈A1, . . . , An〉
where

(i) n ∈ N;
(ii) each Ai ∈ TC(A);

(iii) Rk(xi+1) < Rk(xi) for each i < n.

We let EA consist of all pairs

{〈A1, . . . , An〉, 〈A1, . . . , An, An+1〉},
where 〈A1, . . . , An, An+1〉 ∈ VA. We define a prime labeling fA : VA∪EA → P
as follows:

f(〈A1, . . . , An〉) =
{
qm if Rk(An) = 0 and An is the natural number m;
pβ if Rk(An) = β > 0;

f({〈A1, . . . , An〉, 〈A1, . . . , An, An+1〉})

=
{
q̂γ,β if Rk(An) = β, Rk(An+1) = γ, and An+1 ∈ An;
pγ,β if Rk(An) = β, Rk(An+1) = γ, and An+1 6∈ An.

Thus (VA, EA, fA) is an eplag for any A ∈ Pα+1(N); and from this eplag
we can pass to the corresponding group.
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Definition. For any A ∈ Pα+1(N) we let

GA = G(VA, EA, fA),

as defined in the last section.

Definition. For any A ∈ Pα+1(N) and β < α we define the notions of
β-good and a corresponding βth evaluation function πβ by a simultaneous
induction.

We say that g ∈ GA is 0-good if for some m ∈ N, g is divisible in GA by
all powers of qm; we then let

π0(g) = m;

note that by construction there is at most one such m, and hence π0(g) is
well defined for g 0-good. For β > 0 we say that g is β-good if it is divisible
by all powers of pβ and for all γ < β and all γ-good h we have either

(a) there is a γ-good h′ with πγ(h) = πγ(h′) and g + h′ divisible by all
powers of q̂γ,β, or

(b) there is a γ-good h′ with πγ(h) = πγ(h′) and g + h′ divisible by all
powers of pγ,β .

We then let πβ(g) be the set of all πγ(h) such that γ < β, h is γ-good,
and g + h is divisible by all powers of q̂γ,β.

Literally of course all these definitions should be made with explicit ref-
erence to A. We should define β-good in GA and we should write something
like πGA,γ to show the dependence of the evaluation map on the group GA.

In practice the intention will be clear.

Lemma 3.1. (a) Suppose

g =
∑

i≤k
ri · vi ∈ GA

is β-good with each ri ∈ Q, ri 6= 0, vi 6= vj for i 6= j, and vi = 〈Ai1, . . . , Ail(i)〉.
Then for all i, j ≤ k,

Ail(i) = Aj
l(j), Rk(Ail(i)) = β,

and for A∗ the common value of the Ail(i) we have

πβ(g) = A∗.

(b) If 〈A1, . . . , Al〉 ∈ VA with Rk(Al) = β, then 〈A1, . . . , Al〉 is β-good
and

πβ(〈A1, . . . , Al〉) = Al.

Proof. We prove these by simultaneous induction. The base case β = 0
follows quickly from the definitions and 2.5. So assume that β > 0 and that
the lemma is established for all γ < β.
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First suppose that g =
∑

i≤k ri · vi ∈ GA is β-good, each ri a non-zero
rational, each vi = 〈Ai1, . . . , Ail(i)〉, with vi 6= vj for i 6= j, and assume for a

contradiction that Â ∈ A0
l(0)\A1

l(1). It follows from the definition of goodness

that each 〈Ai0, . . . , Ail(i)〉 is divisible by all powers of pβ , and hence, by 2.5,

at each i we have Rk(Ail(i)) = β.

Thus Â must have Rk(Â) = γ for some γ < β. And then by the inductive
assumption 〈Â〉 is γ-good with πγ(〈Â〉) = Â. Then by the definition of β-
goodness of g there is some γ-good h with πγ(h) = Â and g + h either
divisible by every power of q̂γ,β or divisible by every power of pγ,β . Assume
for simplicity that it is divisible by every power of q̂γ,β; the other case is
similar. We can write

h =
∑

i≤k′
si · wi,

with each wi ∈ VA, si a non-zero rational, wi 6= wj for i 6= j. Then by the
inductive assumption applied to the γ-goodness of h each wi is of the form

wi = 〈Bi
1, . . . , B

i
l′(i), Â〉.

At this point we can define % : VA → {−1, 0, 1} by

%(〈A1
0, . . . , A

1
l(1)〉) = 1,

%(〈A1
0, . . . , A

1
l(1), B〉) = −1 for any B ∈ A1

l(1),

%(v) = 0 for all other v ∈ VA.

Then ϕ% defined by ∑
qv · v 7→

∑
qv%(v)

provides a q̂γ,β-mindful homomorphism which assumes the value ϕ%(g+h) =
r1 6= 0, contradicting Proposition 2.5’s criteria for infinite q̂γ,β divisibility.

To complete the inductive step we also need to note that (b) holds for
any 〈A1, . . . , Al〉 ∈ VA with Rk(Al) = β. This follows routinely from the
definition of β-good and the inductive assumption.

Corollary 3.2. TC(A1) 6= TC(A2) implies GA1 6∼= GA2.

Proof. This follows since

{πβ(g) : g ∈ GA1 , g is β-good, β ≤ α} = TC(A1),

{πβ(g) : g ∈ GA2 , g is β-good, β ≤ α} = TC(A2),

and for any group G the set {πβ(g) : g ∈ G, g is β-good, β ≤ α} is an
invariant of the isomorphism type of G.

Now for any A ∈ Pα(N) we can define

HA = G{A}∪TC(A)
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to obtain an assignment

Pα(N) ↪→ TFA/∼=, A 7→ HA,
which injects Pα(N) into the countable torsion free abelian groups consid-
ered up to isomorphism.

But of course the simple existence of such an injection amounts to noth-
ing more than |Pα(N)| ≤ 2ℵ0 . The important point is that this injection is,
in the sense made precise shortly, reasonably definable.

4. Coding. We recall a method of coding elements of Pα(N) by equiv-
alence classes in a Polish space.

Definition. Following [7] we let L(α) be the language generated by
unary relations (Rβ)β≤α, binary relations ε, E, F , and constant symbols
v0, (rn)n∈N. We let XL(α) be the Polish space of L(α) structures equipped
with the usual topology generated by quantifier free formulas. We then let
Pα be the subspace consisting of the structures

M = 〈N; r0, r1, . . . , v0, ε, E, F,R0, R1, . . . , Rβ, . . . , Rα〉,
where:

(i) N is partitioned by the relations (Rβ)β≤α; the constant terms (rn)n∈N
enumerate R0 without repetitions; Rα = {v0};

(ii) E is an irreflexive symmetric relation on N \R0;
(iii) E provides a tree structure on N\R0 with root v0; this tree structure

has the property that if we define x <∗ y if there is one-to-one f : k + 2→
N \R0 with f(0) = v0, f(k) = y, f(k + 1) = x, then the partial order <∗ is
wellfounded in the sense of having no infinite descending chain, and Rγ(x)
holds exactly when x has rank γ in this tree; in particular, v0 has rank α;

(iv) F ⊂ R0 ×R1.

With this all in place we can assign an evaluation ‖x‖ to each x ∈ N,
with

‖x‖ = n if x ∈ R0 and x = rn, while

‖x‖ = {n ∈ N : F (rn, x)} for x ∈ R1

(and hence x terminal in the tree structure on N \R0); and

‖x‖ = {‖y‖ : the shortest path from v0 to y passes through x}.
(v) We require that ε satisfy

xεy ⇔ ‖x‖ ∈ ‖y‖.
With all this in place we can finally define

‖M‖ = ‖v0‖.
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Some remarks.
First of all this definition suffers from the same formal defect as some

earlier definitions. We should literally be writing rM0 , rM1 , . . . , EM, . . . and
so on to distinguish the relation symbols from the relations which arise in
their interpretation inM. And again we should write ‖x‖M to indicate the
dependence of the evaluation on the structure M.

Hopefully the reader will forgive this ellipsis as well as all the earlier
defects.

The second remark is to give some motivation. The idea is that we want
to represent elements of Pα(N) by countable trees. We use the E relation to
describe this tree structure. The nodes of the trees correspond to the various
sets appearing in the transitive closure of some A ∈ Pα(N), and some repre-
sentative of B1 appears below a representative of B2 if and only if B1 ∈ B2;
we deliberately allow that a given B ∈ TC(A) may reappear in many differ-
ent branches of the tree. We give a special status to the natural numbers;
they comprise R0 and are individually named by the rn’s. The higher Rγ’s
layer M into sediments based on the rank of the represented sets.

The ε relation comes along for free, simply recapitulating the relation
‖y‖ ∈ ‖x‖. I leave it only because it appeared in [7].

Following 1.2–1.5 of [7] we conclude that P α is a Borel subset of XL(α),
and hence a standard Borel set in its own right, and that

{‖M‖ :M ∈ Pα} = Pα(N),

as well as that the set of (x, y,M) ∈ N × N × P α such that ‖x‖ = ‖y‖
(calculated from the point of view ofM) is Borel as a subset of N×N×XL(α).
If we let ∼=α be the isomorphism relation on elements of P α then for all
M,N ∈ Pα we have

M∼= N ⇔ ‖M‖ = ‖N‖.
Definition. For eachM∈ Pα let S0(M) be the set of x ∈ N such that

for all smaller natural numbers y ∈ N we have ‖x‖ 6= ‖y‖.
Thus (‖x‖)x∈S0(M) enumerates without repetitions the set {‖M‖} ∪

TC(‖M‖). From the above remarks we see that {(x,M) ∈ N × P α :
x ∈ S0(M)} is Borel as a subset of N×XL(α).

Definition. Let π : N<N ↪→ N be the usual Gödel pairing function,
providing a bijection between N<N and N. Then for M∈ Pα we let

S1(M) = {π(x1, . . . , xn) :

each xi ∈ S0(M), and Rk(‖xi‖) > Rk(‖xi+1‖) for i < n}.
Again the set {(a,M) ∈ N× Pα : a ∈ S1(M)} is Borel as are

{(π(x1, . . . , xn), π(x1, . . . , xn, xn+1),M) ∈ N × N× Pα :

π(x1, . . . , xn), π(x1, . . . , xn, xn+1) ∈ M, ‖xn+1‖ ∈ ‖xn‖}
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and

{(π(x1, . . . , xn), π(x1, . . . , xn, xn+1),M) ∈ N× N× Pα :

π(x1, . . . , xn), π(x1, . . . , xn, xn+1) ∈ M, ‖xn+1‖ 6∈ ‖xn‖}.
And clearly from the definition of Pα we see that for each β ≤ α the set

{(π(x1, . . . , xn),M) ∈ N× Pα : π(x1, . . . , xn) ∈ S1(M), Rk(‖xn‖) = β}
is Borel for any β ≤ α.

And thus all the sets of the form

{(p, a,M) : a ∈ S1(M), a = π(x1, . . . , xn) for some n, x1, . . . , xn

with Rk(‖xn‖) = β for some pβ = p},
{(p, a,M) : a ∈ S1(M), a = π(x1, . . . , xn) for some n, x1, . . . , xn

with Rk(‖xn‖) = 0, ‖xn‖ = m, qm = p},
{(p, a, b,M) : a, b ∈ S1(M), a = π(x1, . . . , xn), b = π(x1, . . . , xn, xn+1)

for some n, x1, . . . , xn, xn+1 with Rk(‖xn‖) = β,Rk(‖xn+1‖) = γ,

and ‖xn+1‖ ∈ ‖xn‖, q̂γ,β = p},
and

{(p, a, b,M) : a, b ∈ S1(M), a = π(x1, . . . , xn), b = π(x1, . . . , xn, xn+1)

for some n, x1, . . . , xn, xn+1 with Rk(‖xn‖) = β, Rk(‖xn+1‖) = γ,

and ‖xn+1‖ 6∈ ‖xn‖, pγ,β = p},
are Borel.

Thus it follows that the set M of all sequences

(M, (r1, a1), (r2, a2), . . . , (rl, al)) ∈ Pα × (Q× N)<N

such that

(i) (a1, . . . , al) is a strictly increasing sequence of integers;
(ii) each ai = π(xi1, . . . , x

i
N(i)) for some N(i), xi1, . . . , x

i
N(i) ∈ N;

(iii)
∑

i≤l ri · 〈‖xi1‖, . . . , ‖xiN(i)‖〉 ∈ G{‖M‖}∪TC(‖M‖)

is Borel. Moreover we deduce then that the induced group structure on the
fibers gives rise to a Borel subset of M ×M ×M , in the sense that the set
of all

(M, (a1, r1), . . . , (al, rl), (b1, s1), . . . , (bk, sk), (c1, t1), . . . , (cm, tm))

satisfying (i)–(iii) below is Borel:

(i) (M, (a1, r1), . . . , (al, rl)), (M, (b1, s1), . . . , (bk, sk)), (M, (c1, t1), . . .
. . . , (cm, tm)) are in M ;
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(ii) each ai = π(xi1, . . . , x
i
N(i)) for some N(i), xi1, . . . , x

i
N(i) ∈ N, each bi =

π(yi1, . . . , y
i
M(i)) for some M(i), yi1, . . . , y

i
M(i) ∈ N, each ci = π(zi1, . . . , z

i
L(i))

for some L(i), yi1, . . . , y
i
L(i) ∈ N;

(iii)
∑

i≤l
ri · 〈‖xi1‖, . . . , ‖xiN(i)‖〉+

∑

i≤k
si · 〈‖yi1‖, . . . , ‖yiM(i)‖〉

=
∑

i≤m
ti · 〈‖zi1‖, . . . , ‖ziL(i)‖〉

in G{‖M‖}∪TC(‖M‖).

Let Y denote the space (Q × N)<N, in its usual Borel structure. Then
M is a Borel subset of XL(α) × Y with countable sections. Thus (1) we
can produce a countable sequence (fn)n∈N of Borel functions, with each
fn : Pα → Y , such that for any M ∈ Pα, (fn(M))n∈N enumerates without
repetition the set of y ∈ Y such that (M, y) ∈M . Thus, again using the uni-
formization theorem for Borel subsets of the plane with countable sections,
we may find a Borel function θ : Pα → NN×N such that for allM ∈ Pα and
l,m, n ∈ N,

fl(M) + fm(M) = fn(M) if and only if (θ(M))(l,m) = n;

and thus θ(M) provides an abelian group structure on N isomorphic to
G{‖M‖}∪TC(‖M‖).

5. So what?

Definition. Let TFA be the set of all G : N× N→ N which provide a
torsion free abelian group structure on the natural numbers. We let ∼=|TFA
be the isomorphism relation on TFA, so that

G1 ∼=|TFA G2

if and only if there is some permutation ψ of the natural numbers such that
for all m,n ∈ N,

ψ(G1(m,n)) = G2(ψ(m), ψ(n)).

If we equip NN×N with the usual product topological structure then TFA
becomes a Borel set. The last section showed that for all α < ω1,

∼=α ≤B ∼=|TFA.

Thus ∼= |TFA is non-Borel by

(1) See [8, 18.10] for a proof of this classical theorem; indeed, [8] is probably the right
reference for all the descriptive set theory used here.



256 G. Hjorth

Theorem 5.1 (Harrington). There is no Borel equivalence relation E
with

∼=α ≤B E

all α < ω1. (See [7, 5.11]) for a proof.)

Harrington’s argument can be used to show that there is no Borel E with
each ∼=α absolutely ∆∼

1
2 reducible (2) to E, and thus we conclude, under very

general notions of reducibility, that not only is ∼=TFA not Borel but it is not
even reducible to any Borel equivalence relation.

It is known, as found for instance in [1], that if C is a Borel class of
countable structures with ∼= |C Borel, then there is some α < ω1 with

∼=|C ≤B ∼=α.

Thus we see that any such C is Borel reducible to the isomorphism relation
on TFA.

We can also factor in the results of Friedman and Stanley, who in [2]
showed that there is no absolutely ∆∼

1
2 assignment of elements of 2<ω1 as

complete invariants for elements of P 2 up to ∼=2. Thus in particular there
is no Ulm-type classification of torsion free abelian groups—a result first
pointed out in [9] on the basis of very different reasoning.

And we may continue in this fashion. Similar arguments show that ∼=3
is not absolutely ∆∼

1
2 reducible to Pℵ0(2<ω1), the set of countable subsets of

2<ω1 , and thus the torsion free abelian groups cannot be assigned elements
of Pℵ0(2<ω1) as complete invariants.

And so on.
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