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An irrational problem

by

Franklin D. Tall (Toronto)

Abstract. Given a topological space 〈X,T 〉 ∈ M , an elementary submodel of set
theory, we define XM to be X ∩M with topology generated by {U ∩M : U ∈ T ∩M}.
Suppose XM is homeomorphic to the irrationals; must X = XM? We have partial results.
We also answer a question of Gruenhage by showing that if XM is homeomorphic to the
“Long Cantor Set”, then X = XM .

In [JT], we considered the elementary submodel topology , defined as fol-
lows. Let 〈X, T 〉 be a topological space which is an element of M , an elemen-
tary submodel of the universe of sets. (Actually, an elementary submodel
of H(θ) for θ a sufficiently large regular cardinal. See [KT] or Chapter 24
of [JW] for discussion of this technical point.) Let TM be the topology on
X∩M generated by {U∩M : U ∈ T ∩M}. Then XM is defined to be X∩M
with topology TM . In [T] we raised the question of recovering X from XM

and proved for example:

Theorem 1. If XM is a locally compact uncountable separable metriz-
able space, then X = XM .

In particular:

Corollary 2. If XM is homeomorphic to R, then X = XM .

The proof proceeded by showing that [0, 1] ⊆ M—any definable set of
power 2ℵ0 would do. It followed that ω1 ⊆ M , whence by relativization we
deduced that X had no uncountable left- or right-separated subspaces. This
implied both X and T had cardinality ≤ 2ℵ0 and hence were included in
M . This sort of proof will recur frequently in what follows.
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On the other hand, we noted in [JT]:

Example. Let 〈X, T 〉 be any regular space without isolated points,
X, T ∈ M , a countable elementary submodel. Then XM is homeomorphic
to Q.

The problem that naturally arises then is:

Problem. If XM is homeomorphic to R−Q, is X also? In particular ,
does X = XM?

This is the problem of our title.

Undefined topological terms can be found in [E], set-theoretic ones in
[Ku], with the exception of 0#, Jónsson cardinal, and Chang’s Conjecture,
for which consult [K]. However let us define two topological notions which
may not be familiar to set theorists:

Definition. A space is of pointwise countable type if each point is con-
tained in a compact set K for which there exist open {Un}n<ω including K
such that each open set including K includes some Un. A map is perfect if
it is continuous, closed, and pre-images of points are compact.

We obtained a partial result concerning the Irrational Problem in [T]:

Theorem 3. Suppose 0# does not exist and XM is a separable metriz-
able space of cardinality continuum (e.g. an uncountable separable completely
metrizable space). Then X = XM .

The only use of the set-theoretic hypothesis (which follows for example
from V = L) was to conclude (via [KT]) that 2ℵ0 ⊆ M since |M | ≥ 2ℵ0 .
As noted by Welch [W], this also follows from the assumption that 2ℵ0 is
not a Jónsson cardinal. Once one has 2ℵ0 ⊆M , the proof outlined above for
Theorem 1 applies in this situation. In this paper we obtain several more
partial results:

Theorem 4. Suppose XM is an uncountable separable completely met-
rizable space. Then X = XM if any of the following conditions hold :

(a) X includes a perfect pre-image of a compact first countable uncount-
able T2 space,

(b) X is (a product of spaces) of pointwise countable type, e.g. X is first
countable or locally compact or Čech-complete,

(c) |R ∩M | is uncountable,
(d) |X| = 2ℵ0 .

For all I know, the theorem is true without any additional hypothesis, at
least for R − Q. Chang’s Conjecture, which yields an uncountable M with
M ∩ω1 countable, is a natural hypothesis to use, say with CH, to try to get
a counterexample. (This conjunction does yield a non-metrizable X such
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that XM is a separable metrizable space of size 2ℵ0 [T].) Note that (a) and
(b) rule out a number of plausible attempts, such as the “Irrational Long
Line” or the product of ℵ1 copies of the countable discrete space.

We will prove (a) and (b) first. Their proofs are natural extensions of
the proof of Theorem 1. (b) in fact follows immediately from (a) by using
Lemmas 5 and 6 below together with the classical topological fact that an
uncountable separable completely metrizable space includes a copy of the
Cantor Set.

Lemma 5 [JT]. If XM is Ti, i ≤ 3, so is X.

Lemma 6. If X is T3 and a product of spaces of pointwise countable
type, then XM is a perfect image of a subspace of X [P]. For X compact T2,
XM is a perfect image of X itself [Ju].

(A proof of Lemma 6 for spaces of pointwise countable type may be found
in [JT]. Alternatively, one can omit Lemma 6 and divide into 2 cases: finite
products of spaces of pointwise countable type have pointwise countable
type, so [JT] applies; infinite products include copies of the Cantor Set.)

The idea of the proof of (a) is to use the perfect map plus another
classical fact, namely that the Cantor Set maps onto [0, 1], to obtain via
elementarity a closed map from a closed—hence complete—subspace of XM

onto [0, 1]M = [0, 1]∩M . (The equality is by first countability [JT].) Closed
metrizable images of completely metrizable spaces are completely metrizable
(see e.g. [E, 4.4.17]), hence absolute Gδ. If [0, 1]∩M is a Gδ in [0, 1], it is in
fact all of [0, 1] (see below), so [0, 1] ⊆M , which, by the proof of Theorem 1,
is enough to get the desired result. Unfortunately, elementarity does not
quite give us a closed map, so we have to work a bit harder. Now for the
details. We first need definitions and a technical lemma which enable us to
make do with an elementary version of a closed map.

Definition. A regular space is almost Čech-complete if there is a se-
quence {G(n)}n<ω, each G(n) a collection of open sets such that

⋃G(n) is
dense (we call G(n) an “open almost-cover”), and such that whenever F is a
centered collection of open sets meeting each G(n), then

⋂{F : F ∈ F} 6= 0.
If we require the G(n)’s to be covers, we get Čech-completeness.

Lemma 7 [F]. A completely regular space is almost Čech-complete if and
only if it includes a dense Gδ Čech-complete subspace.

Definition. Let B be a basis for a space X such that B is closed under
finite intersections. f : X → Y is a B-map if:

(1) for all B ∈ B, f(X −B) is closed,
(2) f is onto, but for no B ∈ B is f |(X −B) onto Y .
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Lemma 8. A B-image of an almost Čech-complete space is almost Čech-
complete.

Proof. We model our proof on that for closed irreducible images in [AL].
Suppose X is almost Čech-complete with respect to the sequence {G(n)}n<ω
of open almost-covers. Let B be a basis for X. For each n < ω and each
x ∈ ⋃Gn, pick a basic open G′n(x) ∈ B containing x and included in some
member of G(n). Then, letting G ′(n) = {G′n(x) : x ∈ ⋃Gn}, claim X is
almost Čech-complete with respect to the sequence {G ′(n)}n<ω. For let D be
a centered collection of open sets meeting each G ′(n), say Dn ∈ D∩G′n. Then
Dn is included in some D∗n ∈ Gn by construction. Then D∗ = D ∪ {D∗n}n<ω
is centered, so

⋂{D : D ∈ D∗} 6= 0, so
⋂{D : D ∈ D} 6= 0.

So without loss of generality, we may assume each Gn is included in
the basis B. Given B ∈ B, let B̂ = f−1(Y − f(X − B)). Then B̂ is open
and included in B. Furthermore, by (2) (irreducibility), B̂ 6= ∅. Indeed,
B̂ is dense in B. To see this, let U ∈ B be such that U ∩ B 6= ∅. Then
∅ 6= ̂U ∩B ⊆ U ∩ B, but also ̂U ∩B ⊆ B̂, since x ∈ ̂U ∩B implies f(x) ∈
Y − f(X − (U ∩B)) implies f(x) 6∈ f(X −B) implies f(x) ∈ Y − f(X −B)
implies x ∈ f−1(Y − f(X −B)). Thus B̂ ∩ U 6= ∅.

Let H(n) = {f(Ĝ) : G ∈ G(n)}. Claim H(n) is an open almost-cover
of Y . Certainly each f(Ĝ) is open; given U open in Y , some G ∈ G(n) meets
f−1(U), hence so does Ĝ, hence f(Ĝ) meets f−1(U), hence so does Ĝ, hence
f(Ĝ) meets U . Now suppose D is a centered family of open subsets of Y
meeting eachH(n). Then C = {f−1(D) : D ∈ D} is a centered family of open
subsets of X meeting each G(n), so

⋂{C : C ∈ C} 6= 0. If x ∈ ⋂{C : C ∈ C},
then f(x) ∈ ⋂{D : D ∈ D}. So Y is almost Čech-complete with respect to
{H(n)}n<ω.

Continuing with the proof of Theorem 4(a), with the aid of Lemmas 7
and 8 we can prove:

Lemma 9. Suppose X includes a perfect pre-image of an uncountable
compact first countable T2 space Y and XM is Čech-complete. Then M ⊇
[0, 1].

Proof. First of all, as in the classical proof that uncountable compact
first countable T2 spaces have cardinality 2ℵ0 (see e.g. [H, 4.5]), we notice
that each such space Y includes a compact subspace without isolated points,
and hence a Cantor tree of closed sets, which yields a map of the subspace
onto the Cantor Set (see e.g. [J2, 3.18]) and hence onto [0, 1]. By the Tietze
Extension Theorem, this map extends over the whole compact space Y to
give us a perfect map of it onto [0, 1]. Since the composition of perfect maps
is perfect, the perfect pre-image of a compact space is compact, and perfect
maps from a compact space are closed irreducible on a closed subspace, we
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conclude that there is a closed L ⊆ X and a closed irreducible map from L
onto [0, 1]. By elementarity, there is an F ∈M such that:

(1) F ∩M is closed in XM ,
(2) there is a continuous surjection g from F ∩M (as a subspace of XM )

to [0, 1] ∩M such that if H ∈M is a closed subset of X, then

(a) g(F ∩H ∩M) is closed in [0, 1] ∩M ,
(b) if g(F ∩H ∩M) = [0, 1] ∩M , then F ∩H ∩M = F ∩M .

We thus have a B-map from a closed (hence Čech-complete) subspace
of XM onto [0, 1]∩M . Therefore [0, 1]∩M includes a dense Čech-complete
subspace. Such a subspace is then Gδ in [0, 1] ∩M . It follows that (0, 1) ∩ M
also includes a dense Gδ. But (0, 1) ∩M is a topological subgroup of (0, 1)
and we have shown it is non-meager. It has the property of Baire since
(0, 1)− [(0, 1) ∩M ] is meager. We now apply:

Lemma 10 [Ke, 0.11]. A subgroup of a topological group which is non-
meager and has the property of Baire is clopen.

But (0, 1) is connected, so (0, 1) ∩M = (0, 1), so M includes (0, 1) and
hence [0, 1] and we have established Lemma 9.

Theorem 4(a) can now easily be established in the manner of Theorem 1.
Precisely:

Lemma 11. If [0, 1] ⊆M and XM is T2, hereditarily Lindelöf and hered-
itarily separable, then X = XM .

The proof is outlined following Corollary 2 and is given in full in [T].
Theorem 4(c) is proved in a completely different fashion from 4(a), using

the following unpublished result of W. H. Woodin, included with his kind
permission.

Theorem 12. If R ∩M includes a perfect set , then R ∩M = R.

The following proof, due to E. T. Eisworth and included with his kind
permission, is much more elementary than Woodin’s proof.

Proof of Theorem 12. By a routine modification of the construction of a
Bernstein set, construct 2ℵ0 disjoint Bernstein sets of R, i.e. {Br}r∈R such
that neither Br nor R − Br includes a Cantor Set. Define f : R → R by
sending Br to r, f arbitrary outside

⋃
r∈RBr. Then there are such Bernstein

sets and such an f ∈M . If P ⊆ R∩M = RM is perfect, it includes a Cantor
Set and so meets each Br. Therefore f ′′P = R ⊆M .

It follows immediately that:

Corollary 13. If R∩M is analytic and uncountable, then R∩M = R.
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Thus, to prove (c) we need only show R ∩M is analytic, which follows
from the following two lemmas. We first quote:

Lemma 14 [E, 4.3.20]. If Y is a completely metrizable space, then every
continuous map f : A→ Y from a dense subset A of a topological space X
to the space Y is extendible to a continuous map F : B → Y defined on a
Gδ set B ⊆ X including A.

We also need:

Lemma 15 [E, Exercise 6.2.A.(e)]. Every uncountable separable com-
pletely metrizable space without isolated points includes a dense subspace
homeomorphic to R−Q.

Since the perfect kernel of a separable completely metrizable space is
completely metrizable (as only countably many points have been removed
and a Gδ subspace of a complete metric space is completely metrizable), we
see that every uncountable separable completely metrizable space X has the
form Y ∪I, where Y has a dense Gδ subspace homeomorphic to R−Q (Gδ
since R − Q is completely metrizable) and I is a countable set of isolated
points. Applying this to XM , let L ⊆ XM be homeomorphic to R− Q and
dense in the non-isolated part of XM , say h : L ∼= R − Q. Then L is Gδ in
XM . Apply Lemma 14 now, taking X ∩M for A, X ∩M for X, XM for Y
and the identity function for f . Since f is onto, so will be F . Then F−1(L)
is Gδ in a Gδ subset of a closed subset of X, and h ◦ F maps F−1(L) onto
R − Q. Relativizing to M , we see that (R − Q) ∩M is a continuous image
of a Gδ subset of XM and hence is analytic. Then so is R ∩M , and we are
done.

Theorem 4(d) follows quickly from (c), for if |X| = 2ℵ0 , then |X ∩M | =
|2ℵ0 ∩M |. But |X ∩M | = 2ℵ0 , so 2ℵ0 ∩M is uncountable.
|X| = 2ℵ0 will occur if X is hereditarily Lindelöf; this is interesting

because there is a consistent example—due to G. Gruenhage—of an X which
is hereditarily separable, hereditarily Lindelöf, non-metrizable, but for which
XM is a separable metrizable space [Ju]. Such an example thus cannot have
XM complete.

We will also use Lemma 9 to answer a question of Gruenhage. In [PT],
we proved:

Theorem 16. (a) If ω1 ⊆ M and XM is homeomorphic to ω1, then
X = XM .

(b) Chang’s Conjecture implies there is an M such that (ω2)M is hom-
eomorphic to ω1.

(c) If XM is homeomorphic to the Long Line, then X = XM . (More
generally , if XM is locally compact T2, locally hereditarily Lindelöf , and
connected , then X = XM .)
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The proof of (c) used connectedness in an essential way, so Gruenhage
(personal communication) asked what happens if we for example have XM

homeomorphic to the “Long Cantor Set”. We can answer that X = XM in
that case and indeed for more general ones.

Let us call a line space the linearly ordered topological space obtained by
replacing each α ∈ ω1 by some non-empty compact subspace Rα of R. That
is, we are considering the order (and resulting ordered topological space) on
{〈α, r〉 : α ∈ ω1 and r ∈ Rα} given by:

〈α, r〉 < 〈β, s〉 if either α < β, or α = β and r < s.

The Long Cantor Set is obtained by taking each Rα to be a copy of the
Cantor Set K.

We shall show:

Theorem 17. If XM is homeomorphic to a line space, and some point
of XM has no countable neighborhood , then X = XM .

Corollary 18. If XM is homeomorphic to the Long Cantor Set , then
X = XM .

Rather than proving these directly (which can be done by an extension
of the argument for Theorem 16(a), we shall obtain them as corollaries to
more general results that—as in 16(c)—remove linearity from the picture.
Before doing so, however, we offer up the following examples which show
that finding the “right” generalization is not so easy.

Theorem 19. (a) 2ℵ0 < ℵω implies there is a locally compact T2, lo-
cally hereditarily Lindelöf , countably compact space X and an elementary
submodel M such that XM 6= X, although XM is locally compact , T2, lo-
cally hereditarily Lindelöf , countably compact , includes a Cantor Set , and
has size 2ℵ0 .

(b) If 2ℵ0 = ℵ1, we may additionally require that XM is the union of an
increasing collection of ℵ1 compact sets.

Proof. [JNW] construct locally compact T2, locally countable, countably
compact spaces Xn of size ℵn, each n ∈ ω. Suppose 2ℵ0 = ℵn; let X be
the disjoint sum of [0, 1] with Xn+1. Take a countably closed elementary
submodel M of size 2ℵ0 = ℵn containing X. Then XM 6= X, but includes
[0, 1]. By countable closure, XM is a countably compact subspace of the first
countable space X, and hence is a closed subspace and therefore is locally
compact. It also is locally hereditarily Lindelöf.

To prove (b), consider the space X2 mentioned in the proof of (a). In
fact—see [JNW]—this space has the property that countable sets have com-
pact closure. Let X = X2 × [0, 1]. Let M be a countably closed elementary
submodel M of size 2ℵ0 containing X2. Then XM 6= X, but XM is locally
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compact T2, locally hereditarily Lindelöf, has no point with a countable
neighborhood, and countable sets have compact closure (sinceXM is a closed
subspace of X). Let XM = {xα : α < ω1}. Then XM =

⋃
β<ω1

{xα : α < β}.
Despite these examples, there are non-linear generalizations of Theo-

rem 17 available. First recall:

Definition. Let σ be an ordinal. {xα}α<σ is a free sequence (of points
in a space X) if for every β < σ, {xα : α < β} ∩ {xα : β ≤ σ} = 0.

We shall prove:

Theorem 20. Suppose XM is locally compact T2, locally hereditarily
Lindelöf , contains a point with no countable neighborhood , and has no free
sequence of length > c2. Then XM = X.

Arkhangel’skĭı [A] proved that compact first countable spaces have no
uncountable free sequences, so line spaces cannot have free sequences of
length greater than ω1

2, so Theorem 17 and Corollary 18 immediately follow.
After proving Theorem 20, we shall deduce some more corollaries.

We need to quote some results from previous papers that we will need
in order to prove Theorem 20.

Lemma 21 [PT]. XM locally hereditarily Lindelöf and ω1 ⊆M imply X
is locally hereditarily Lindelöf.

Lemma 22 [T]. XM locally compact T2 implies X is locally compact T2.

Lemma 23 [JT]. X first countable implies XM is a subspace of X.

Proof of Theorem 20. Since XM is locally compact T2, by Lemma 6 some
subspace of X maps perfectly onto XM and hence X includes a perfect
pre-image of an uncountable compact first countable T2 space. Thus by
Lemma 9, M ⊇ [0, 1] and hence ω1. Therefore X is locally hereditarily
Lindelöf and locally compact T2 so it is first countable, so XM is a subspace
of it.

In order to show that X = XM , it will suffice to show that |X| ≤ 2ℵ0 .
By local compactness, fix for each x ∈ X an open set Ux such that Ux is
compact. Define a strictly increasing collection of closed subsets of X as
follows. Let F0 be some Ux0 . Given Fα 6= X, take y ∈ X − Fα and let
Fα+1 =

⋃{Ux : x ∈ Fα} ∪ Uy. For α limit with cf(α) = ω, if
⋃
β<α Fβ 6= X,

take y ∈ X −⋃β<α Fβ and let

Fα =
⋃
{Ux : x ∈ some Fβ , β < α} ∪ Uy.

If
⋃
β<α Fβ = X, let Fα = X. For α limit with cf(α) > ω, let Fα =

⋃
β<α Fβ .

For such α, Fα is then closed by first countability. By construction, for
such α’s Fα is open as well. Since X is first countable, and compact first
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countable T2 spaces have cardinality ≤ 2ℵ0 , it suffices to prove that our
construction cannot continue up to say c3 + 1. If it did, by just looking at
indices of cofinality c, we would get a strictly increasing (c2 + 1)-sequence
of clopen sets. c2 + 1 is definable and of size c and hence is in M , so again
by elementarity, there is an F ∈ M , F : c2 + 1 → T , such that for α <
β < c2 + 1, F (α) ( F (β) and X − F (α) ∈ T . For each α < β < c2 + 1,
by elementarity again, F (α) ∩M ( F (β) ∩M . Thus the F (α) ∩M ’s form
a strictly increasing sequence of clopen subsets of XM . For α ∈ c2 + 1, pick
f(α) ∈ (F (α+ 1)∩M)− (F (α)∩M). Then {f(α)}α∈c2+1 is a free sequence
in XM , contradicting our hypothesis. Thus Theorem 20 is established.

Now for some more corollaries:

Corollary 24. Suppose XM is a T2, locally hereditarily Lindelöf , per-
fect pre-image of ω1 that contains a point with no countable neighborhood.
Then X = XM .

Corollary 25. Suppose XM is homeomorphic to the disjoint union of
ω1 and R. Then X = XM .

Proof. The second one is immediate; for the first, observe that a perfect
pre-image of a (locally) compact space is (locally) compact. Then XM is
first countable and so has no free sequence of length > c2.

The cardinal arithmetic hypothesis in Theorem 19(b) is necessary. A
proof similar to that for Theorem 20 yields the following:

Theorem 26. Suppose 2ℵ0 > ℵn and XM is locally compact T2, locally
hereditarily Lindelöf , contains a point with no countable neighborhood , and
is the union of ℵn compact sets. Then X = XM .

Note that the “locally hereditarily Lindelöf” condition is essential in
these results. Otherwise, one could replace each point in ω1 by the one-
point compactification of the disjoint sum of (2ℵ0)+ copies of [0, 1]. Take a
countably closed elementary submodelM of size 2ℵ0 containing this spaceX.
Then XM will be like X, except with only 2ℵ0 copies of [0, 1].

Theorem 16(b) shows that the condition that XM include a point with
no countable neighborhood is essential if we want ZFC results.

I would like to thank the referee for numerous useful suggestions, includ-
ing Theorem 19(b). Among other things, s/he noted that if one is mainly
interested in Theorem 20 and its corollaries, there is an easier way to obtain
M ⊇ [0, 1]. Lemma 9 is difficult because it assumes only Čech-completeness
rather than local compactness. With local compactness, we have:

Lemma 27. If XM includes an open set with uncountable compact first
countable closure, then M ⊇ [0, 1].
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Proof. If there is such an open set U , claim there is one which is of form
W ∩M , W ∈ M , W open in X. To see this, first claim each point in U
is contained in an open set with compact closure, and hence a basic open
set with compact closure. For if p ∈ U − U , take an open V containing
p. Then p ∈ U ∩ V . If each such basic open set had countable closure,
by compactness U would be countable, contradiction. Let therefore U =
W ∩ M , W ∈ M , W open in X. Then W ∈ M . Note U = (W )M ; that
(W )M = W ∩M ⊆ U is clear; if x ∈ U were not in W , there would be a
V open in X and containing x such that V ∩ U = 0. Take such a V ∈ M .
Then V ∩M ∩ U = 0, contradiction. Since (W )M is compact, so is W [Ju]
and so by Lemma 6 there is a perfect map from W onto [0, 1]. But then
(W )M maps onto [0, 1]M = [0, 1] ∩M , whence by compactness, [0, 1] ⊆M .
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