A note on singular homology groups of infinite products of compacta

by

Kazuhiro Kawamura (Tsukuba)

Abstract. Let *n* be an integer with $n \geq 2$ and $\{X_i\}$ be an infinite collection of (n-1)-connected continua. We compare the homotopy groups of $\Sigma(\prod_i X_i)$ with those of $\prod_i \Sigma X_i$ (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the $n(\geq 2)$ -sphere is given.

1. Introduction and results. The results of the present note stem from an attempt to compute the singular homology groups of the countable product S_n^{∞} of the *n*-sphere $(n \ge 1)$. Very little is known on these groups except for trivial facts: $\widetilde{H}_q(S_n^{\infty}) = 0$ for q < n and $H_n(S_n^{\infty}) \cong \pi_n(S_n^{\infty}) \cong \mathbb{Z}^{\infty}$, the countable product of the integers. The lack of higher local connectivity makes the computation non-trivial. A motivation for the computation is in the singular homology group of the Hawaiian earring and its *n*-dimensional analogue \mathbb{H}_n (see [1]–[3]). The space \mathbb{H}_n is naturally embedded in S_n^{∞} . In [1], it is shown that for each $n \ge 2$, the singular homology group $H_q(\mathbb{H}_n)$ is not zero for infinitely many *q*'s. In particular $H_3(\mathbb{H}_2)$ is not zero, while Theorem 1.4 of this note shows that $H_3(S_2^{\infty}) = 0$.

Throughout the present note, ΣX denotes the *unreduced* suspension of a space X obtained from $X \times [0, 1]$ by identifying $X \times \{0\}$ and $X \times \{1\}$ to points respectively. The image of $(x, t) \in X \times [0, 1]$ under the quotient map is denoted by [x, t].

Let $\{X_i\}$ be an infinite collection of continua (i.e. compact connected metric spaces) and let $j: \Sigma(\prod_i X_i) \to \prod_i \Sigma X_i$ be the map defined by

$$j([(x_i)_i, t]) = ([x_i, t])_i, \text{ where } (x_i) \in \prod_i X_i, \ t \in [0, 1].$$

It is easy to see that j is a well-defined embedding. Under the above notation, our first result is stated as follows.

²⁰⁰⁰ Mathematics Subject Classification: Primary 55N10; Secondary 55Q15.

THEOREM 1.1. Let $n \ge 2$ be an integer and assume that each X_i is an (n-1)-connected continuum. Then:

(1) The induced homomorphism $j_{\sharp} : \pi_q(\Sigma(\prod_i X_i)) \to \pi_q(\prod_i \Sigma X_i)$ is an isomorphism for each q < 2n and an epimorphism for q = 2n.

(2) If moreover $H_n(X_i) \cong \mathbb{Z}$ for each *i*, then $j_{\sharp} : \pi_{2n}(\Sigma(\prod_i X_i)) \to \pi_{2n}(\prod_i \Sigma X_i)$ is an isomorphism.

The proof is an application of the Freudenthal Suspension Theorem for unreduced suspensions of general (compactly generated) spaces (not necessarily CW-complexes). The above theorem implies the following result on homology groups of infinite products.

COROLLARY 1.2. Let $n \ge 2$ be an integer and assume that each X_i is (n-1)-connected. Then:

(1) $\widetilde{\mathrm{H}}_{q-1}(\prod_i X_i) \cong \mathrm{H}_q(\prod_i \Sigma X_i)$ for each $1 \leq q < 2n$.

(2) If moreover $\operatorname{H}_n(X_i) \cong \mathbb{Z}$ for each i, then $\operatorname{H}_{q-1}(\prod_i X_i) \cong \operatorname{H}_q(\prod_i \Sigma X_i)$ for each $1 \leq q \leq 2n$.

Applying the above corollary to the countable product S_n^{∞} of the *n*-sphere $(n \ge 2)$, we obtain the following.

COROLLARY 1.3. Let $n \ge 2$ be an integer. For each integer $k \ge 0$, we have an isomorphism $\operatorname{H}_{n+k}(S_n^{\infty}) \cong \operatorname{H}_{n+k+1}(S_{n+1}^{\infty})$ provided $n \ge k+1$.

Thus, as $n \to \infty$, the homology group $H_{n+k}(S_n^{\infty})$ stabilizes and we make use of this fact to prove:

THEOREM 1.4. $\operatorname{H}_{n+1}(S_n^{\infty}) = 0$ for each $n \geq 2$.

The Künneth formula, applied to $S_1^{\infty} \approx S_1^{\infty} \times S_1^{\infty}$, implies that $H_2(S_1^{\infty})$ contains $\mathbb{Z}^{\infty} \otimes \mathbb{Z}^{\infty}$ as a direct summand and hence is non-zero.

Throughout, the *n*-sphere is denoted by S_n to keep the notation S_n^{∞} for the countable product of the *n*-sphere.

2. Proofs. Let $E : \pi_q(X) \to \pi_{q+1}(\Sigma X)$ be the unreduced suspension homomorphism described in [6, p. 369]. The Freudenthal Suspension Theorem for unreduced suspensions of general spaces is stated as follows.

THEOREM 2.1 ([6, Chap. VII, (7.13)] and [5, Appendix]). Let $n \ge 2$ be an integer and X an (n-1)-connected (compactly generated) space. Then:

(1) $E : \pi_q(X) \to \pi_{q+1}(\Sigma X)$ is an isomorphism for q < 2n-1 and an epimorphism for q = 2n-1.

(2) The kernel of $E : \pi_{2n-1}(X) \to \pi_{2n}(\Sigma X)$ is generated by $\{[\alpha, \beta] \mid \alpha, \beta \in \pi_n(X)\}$, where $[\alpha, \beta]$ denotes the Whitehead product of α and β .

REMARK. In [5], the space X in (2) is assumed to be a CW-complex. To obtain the result for a general X, take a map $\varphi : W \to X$ which induces isomorphisms between homotopy groups in all dimensions (see, for example, [6, Chap. V, Theorem (3.2)]). The spaces ΣX and ΣW are simply connected and $\Sigma \varphi$ induces isomorphisms between homology groups in all dimensions, hence also between homotopy groups. Moreover the diagram

$$\begin{aligned} \pi_q(W) & \xrightarrow{E} \pi_{q+1}(\Sigma W) \\ \varphi_{\sharp} & (\Sigma \varphi)_{\sharp} \\ \pi_q(X) & \xrightarrow{E} \pi_{q+1}(\Sigma X) \end{aligned}$$

is commutative and conclusion (2) follows from the one for CW-complexes.

NOTATION. For a collection $\{\alpha_i : Y \to X_i\}_i$ of maps, $\triangle_i \alpha_i : Y \to \prod_i X_i$ denotes the diagonal product of (α_i) , that is, the map defined by

$$\Delta_i \alpha_i(p) = (\alpha_i(p))_i, \quad p \in Y.$$

Proof of Theorem 1.1. As ΣZ is simply connected for every path-connected space Z, we may restrict our attention to the case $q \ge 2$. Consider the following diagram:

$$\begin{aligned} \pi_q(\varSigma(\prod_i X_i)) & \xrightarrow{j_{\sharp}} \pi_q(\prod_i \varSigma X_i) \\ & \stackrel{f}{\underset{E}{\land}} & \stackrel{f}{\underset{\pi_{q-1}(\prod_i X_i)}{\land}} \\ & \pi_{q-1}(\prod_i X_i) & \prod_i \pi_q(\varSigma X_i) \\ & \Pi & \stackrel{f}{\underset{\pi_{q-1}(X_i)}{\land}} \\ & \prod_i \pi_{q-1}(X_i) & \longrightarrow \prod_i \pi_{q-1}(X_i) \end{aligned}$$

Here $\Pi : \prod_i \pi_*(X_i) \to \pi_*(\prod_i X_i)$ and $\Pi : \prod_i \pi_*(\Sigma X_i) \to \pi_*(\prod_i \Sigma X_i)$ are the canonical isomorphisms given by $\Pi((\alpha_i)) =$ (the homotopy class of $\triangle_i \alpha_i$). Also E^{∞} is the product of the suspension homomorphisms.

It is straightforward to verify that the above diagram is commutative. Then (1) follows easily from Theorem 2.1(1). To show (2), first notice that

(*)
$$\operatorname{Ker}\left[j_{\sharp}: \pi_{2n}\left(\varSigma\left(\prod_{i} X_{i}\right)\right) \to \pi_{2n}\left(\prod_{i} \varSigma X_{i}\right)\right] = E\Pi(\operatorname{Ker} E^{\infty})$$

since $E : \pi_{2n-1}(\prod_i X_i) \to \pi_{2n}(\Sigma(\prod_i X_i))$ is an epimorphism. Fix a generator e_i of $H_n(X_i) \cong \pi_n(X_i) \cong \mathbb{Z}$. By Theorem 2.1(2), $\operatorname{Ker}(E : \pi_{2n-1}(X_i) \to \pi_{2n}(\Sigma X_i))$ is generated by $[e_i, e_i]$.

CLAIM. For each
$$\gamma = (\gamma_i)_i \in \operatorname{Ker} E^{\infty}$$
, we have $E \circ \Pi(\gamma) = 0$.

Proof of Claim. Let $\gamma_i = m_i[e_i, e_i], m_i \in \mathbb{Z}$. Let $\varepsilon_i : S_n \to X_i$ be a map representing e_i . Then $m_i \cdot e_i$ is represented by $\varepsilon_i \circ \mu_i$, where $\mu_i : S_n \to S_n$ is a map of degree m_i . Let $p_i : \prod_j X_j \to X_i$ be the projection onto X_i . In what follows, for simplicity, the homotopy classes represented by $\Delta_i \varepsilon_i$ etc. are abbreviated to $\triangle_i \varepsilon_i$ etc. The equality

$$\begin{aligned} (p_i)_{\sharp}[\triangle_i\varepsilon_i \circ \mu_i, \triangle_i\varepsilon_i] &= [(p_i)_{\sharp} \triangle_i\varepsilon_i \circ \mu_i, (p_i)_{\sharp} \triangle_i\varepsilon_i] \\ &= [\varepsilon_i \circ \mu_i, \varepsilon_i] = m_i [e_i, e_i] = \gamma_i \end{aligned}$$

shows that $\Pi(\gamma) = [\triangle_i \varepsilon_i \circ \mu_i, \triangle_i \varepsilon_i]$. Thus $E \circ \Pi(\gamma) = E([\triangle_i \varepsilon_i \circ \mu_i, \triangle_i \varepsilon_i]) = 0$.

The above claim together with (*) implies that j_{\sharp} is a monomorphism in dimension 2n and hence an isomorphism. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. This is well known to be a direct consequence of Theorem 1.1 and a proof is provided for completeness. Statement (1) follows immediately from Theorem 1.1 via the Whitehead Theorem and the isomorphism $\widetilde{H}_q(\Sigma Z) \cong \widetilde{H}_{q-1}(Z)$ for each path-connected space Z.

To show (2), we identify $\Sigma(\prod_i X_i)$ with $j(\Sigma(\prod_i X_i))$. The space $\Sigma(\prod_i X_i)$ is simply connected. By Theorem 1.1, the inclusion $\Sigma(\prod_i X_i) \to \prod_i \Sigma X_i$ induces isomorphisms of homotopy groups up to dimension 2n. Thus $\pi_q(\prod_i \Sigma X_i, \Sigma(\prod_i X_i)) = 0$ for each $q \leq 2n$ and the homomorphism ∂ : $\pi_{2n+1}(\prod_i \Sigma X_i, \Sigma(\prod_i X_i)) \to \pi_{2n}(\Sigma(\prod_i X_i))$ is trivial. Since the Hurewicz homomorphism $\pi_{2n+1}(\prod_i \Sigma X_i, \Sigma(\prod_i X_i)) \to \operatorname{H}_{2n+1}(\prod_i \Sigma X_i, \Sigma(\prod_i X_i))$ is an isomorphism, it follows that the connecting homomorphism

$$\partial : \mathrm{H}_{2n+1}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right) \to \mathrm{H}_{2n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right)$$

is trivial. So the inclusion $\Sigma(\prod_i X_i) \to \prod_i \Sigma X_i$ induces isomorphisms of homology groups up to dimension 2n.

Proof of Theorem 1.4. By Corollary 1.3, $H_3(S_2^{\infty}) \cong H_{n+1}(S_n^{\infty})$ for each $n \geq 3$. So we may assume that $n \geq 3$. We apply Whitehead's "certain exact sequence" [7] in the following form.

THEOREM 2.2 ([7], cf. [4, p. 36]). Suppose that X is an (n-1)-connected space with $n \ge 3$. There exists a natural exact sequence

$$\pi_n(X) \otimes \mathbb{Z}/2\mathbb{Z} \xrightarrow{i} \pi_{n+1}(X) \xrightarrow{\theta} \mathrm{H}_{n+1}(X) \to 0$$

where θ is the Hurewicz homomorphism.

Let $p_i: S_n^{\infty} \to S_n$ be the projection onto the *i*th factor. We consider the following commutative diagram:

$$\begin{array}{c|c} \pi_n(S_n^{\infty}) \otimes \mathbb{Z}/2\mathbb{Z} & \xrightarrow{i} & \pi_{n+1}(S_n^{\infty}) & \xrightarrow{\theta} & H_{n+1}(S_n^{\infty}) & \longrightarrow 0 \\ & & & & & \\ \bigtriangleup_i((p_i)_{\sharp} \otimes \mathbb{I}_{\mathbb{Z}/2\mathbb{Z}}) & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

where the first row is the exact sequence of Theorem 2.2 for S_n^{∞} and the

second row is the countable product of the exact sequences of Theorem 2.2 for the *n*-sphere S_n .

Let $h : \pi_n(S_n)^{\infty} \otimes \mathbb{Z}/2\mathbb{Z} \to (\pi_n(S_n) \otimes \mathbb{Z}/2\mathbb{Z})^{\infty}$ be the homomorphism defined by $h((\alpha_i)_i \otimes 1) = ((\alpha_i \otimes 1)_i)$. It is easy to see that h is an isomorphism. Now we show the following equality:

$$\Delta_i((p_i)_{\sharp} \otimes 1_{\mathbb{Z}/2\mathbb{Z}}) = h \circ ((\Delta_i(p_i)_{\sharp}) \otimes 1_{\mathbb{Z}/2\mathbb{Z}}) :$$
$$\pi_n(S_n^{\infty}) \otimes \mathbb{Z}/2\mathbb{Z} \to (\pi_n(S_n) \otimes \mathbb{Z}/2\mathbb{Z})^{\infty}.$$

Indeed, for each $\alpha \otimes 1 \in \pi_n(S_n^\infty) \otimes \mathbb{Z}/2\mathbb{Z}$, we have

$$h \circ ((\triangle_i(p_i)_{\sharp}) \otimes 1_{\mathbb{Z}/2\mathbb{Z}})(\alpha \otimes 1) = h(((p_i)_{\sharp}(\alpha))_i \otimes 1) = ((p_i)_{\sharp}(\alpha) \otimes 1)_i$$
$$= \triangle_i((p_i)_{\sharp} \otimes 1_{\mathbb{Z}/2\mathbb{Z}})(\alpha \otimes 1),$$

which proves the desired equality.

Since $\triangle_i((p_i)_{\sharp})(=\Pi^{-1})$ is an isomorphism, $\triangle_i((p_i)_{\sharp}) \otimes \mathbb{1}_{\mathbb{Z}/2\mathbb{Z}}$ is an isomorphism. This together with the above equality implies that $\triangle_i((p_i)_{\sharp} \otimes \mathbb{1}_{\mathbb{Z}/2\mathbb{Z}})$ is an isomorphism. As i^{∞} is an epimorphism, so is *i* and hence $H_{n+1}(S_n^{\infty}) = 0$. This completes the proof.

Acknowledgements. The author expresses his sincere thanks to the referee for helpful suggestions and also for informing him of a preliminary announcement due to A. Zastrow [8].

References

- M. G. Barratt and J. Milnor, An example of anomalous singular theory, Proc. Amer. Math. Soc. 13 (1962), 293–297.
- [2] K. Eda and K. Kawamura, The singular homology of the Hawaiian earring, J. London Math. Soc. 62 (2000), 305–310.
- [3] —, —, Homotopy and homology groups of the n-dimensional Hawaiian earring, Fund. Math. 165 (2000), 17–28.
- [4] H.-J. Baues, Homotopy Type and Homology, Oxford Sci. Publ., 1996.
- [5] A. N. Dranishnikov, D. Repovš and E.V. Ščepin, On intersections of compacta in Euclidean space: The metastable range, Tsukuba J. Math. 17 (1993), 549–564.
- [6] G. W. Whitehead, *Elements of Homotopy Theory*, Grad. Texts in Math. 61, Springer, 1978.
- [7] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51–110.
- [8] A. Zastrow, The singular homology groups of planar sets do not behave anomalously, preliminary announcement, Topology Atlas preprint no. 384 at http://at.yorku.ca/i/ d/e/b/11.htm.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8071, Japan E-mail: kawamura@math.tsukuba.ac.jp

> Received 13 December 2001; in revised form 7 October 2002