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A note on singular homology groups of
infinite products of compacta

by

Kazuhiro Kawamura (Tsukuba)

Abstract. Let n be an integer with n ≥ 2 and {Xi} be an infinite collection of
(n− 1)-connected continua. We compare the homotopy groups of Σ(

∏
iXi) with those of∏

iΣXi (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem.
An application to homology groups of the countable product of the n(≥ 2)-sphere is given.

1. Introduction and results. The results of the present note stem
from an attempt to compute the singular homology groups of the countable
product S∞n of the n-sphere (n ≥ 1). Very little is known on these groups
except for trivial facts: H̃q(S∞n ) = 0 for q < n and Hn(S∞n ) ∼= πn(S∞n ) ∼= Z∞,
the countable product of the integers. The lack of higher local connectivity
makes the computation non-trivial. A motivation for the computation is in
the singular homology group of the Hawaiian earring and its n-dimensional
analogue Hn (see [1]–[3]). The space Hn is naturally embedded in S∞n . In
[1], it is shown that for each n ≥ 2, the singular homology group Hq(Hn)
is not zero for infinitely many q’s. In particular H3(H2) is not zero, while
Theorem 1.4 of this note shows that H3(S∞2 ) = 0.

Throughout the present note, ΣX denotes the unreduced suspension of
a space X obtained from X × [0, 1] by identifying X × {0} and X × {1} to
points respectively. The image of (x, t) ∈ X × [0, 1] under the quotient map
is denoted by [x, t].

Let {Xi} be an infinite collection of continua (i.e. compact connected
metric spaces) and let j : Σ(

∏
iXi)→

∏
iΣXi be the map defined by

j([(xi)i, t]) = ([xi, t])i, where (xi) ∈
∏

i

Xi, t ∈ [0, 1].

It is easy to see that j is a well-defined embedding. Under the above notation,
our first result is stated as follows.
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Theorem 1.1. Let n ≥ 2 be an integer and assume that each Xi is an
(n− 1)-connected continuum. Then:

(1) The induced homomorphism j] : πq(Σ(
∏
iXi)) → πq(

∏
iΣXi) is an

isomorphism for each q < 2n and an epimorphism for q = 2n.
(2) If moreover Hn(Xi) ∼= Z for each i, then j] : π2n(Σ(

∏
iXi)) →

π2n(
∏
iΣXi) is an isomorphism.

The proof is an application of the Freudenthal Suspension Theorem for
unreduced suspensions of general (compactly generated) spaces (not neces-
sarily CW-complexes). The above theorem implies the following result on
homology groups of infinite products.

Corollary 1.2. Let n ≥ 2 be an integer and assume that each Xi is
(n− 1)-connected. Then:

(1) H̃q−1(
∏
iXi) ∼= Hq(

∏
iΣXi) for each 1 ≤ q < 2n.

(2) If moreover Hn(Xi) ∼= Z for each i, then H̃q−1(
∏
iXi) ∼= Hq(

∏
iΣXi)

for each 1 ≤ q ≤ 2n.

Applying the above corollary to the countable product S∞n of the n-
sphere (n ≥ 2), we obtain the following.

Corollary 1.3. Let n ≥ 2 be an integer. For each integer k ≥ 0, we
have an isomorphism Hn+k(S∞n ) ∼= Hn+k+1(S∞n+1) provided n ≥ k + 1.

Thus, as n→∞, the homology group Hn+k(S∞n ) stabilizes and we make
use of this fact to prove:

Theorem 1.4. Hn+1(S∞n ) = 0 for each n ≥ 2.

The Künneth formula, applied to S∞1 ≈ S∞1 × S∞1 , implies that H2(S∞1 )
contains Z∞ ⊗ Z∞ as a direct summand and hence is non-zero.

Throughout, the n-sphere is denoted by Sn to keep the notation S∞n for
the countable product of the n-sphere.

2. Proofs. Let E : πq(X) → πq+1(ΣX) be the unreduced suspension
homomorphism described in [6, p. 369]. The Freudenthal Suspension Theo-
rem for unreduced suspensions of general spaces is stated as follows.

Theorem 2.1 ([6, Chap. VII, (7.13)] and [5, Appendix]). Let n ≥ 2 be
an integer and X an (n− 1)-connected (compactly generated) space. Then:

(1) E : πq(X) → πq+1(ΣX) is an isomorphism for q < 2n − 1 and an
epimorphism for q = 2n− 1.

(2) The kernel of E : π2n−1(X) → π2n(ΣX) is generated by {[α, β] |
α, β ∈ πn(X)}, where [α, β] denotes the Whitehead product of α and β.

Remark. In [5], the space X in (2) is assumed to be a CW-complex.
To obtain the result for a general X, take a map ϕ : W → X which induces
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isomorphisms between homotopy groups in all dimensions (see, for example,
[6, Chap. V, Theorem (3.2)]). The spaces ΣX and ΣW are simply connected
and Σϕ induces isomorphisms between homology groups in all dimensions,
hence also between homotopy groups. Moreover the diagram

πq(W ) πq+1(ΣW )

πq(X) πq+1(ΣX)

E //

ϕ]

��
(Σϕ)]

��
E //

is commutative and conclusion (2) follows from the one for CW-complexes.

Notation. For a collection {αi : Y → Xi}i of maps, 4iαi : Y →∏
iXi

denotes the diagonal product of (αi), that is, the map defined by

4iαi(p) = (αi(p))i, p ∈ Y.
Proof of Theorem 1.1. As ΣZ is simply connected for every path-con-

nected space Z, we may restrict our attention to the case q ≥ 2. Consider
the following diagram:

πq(Σ(
∏
iXi)) πq(

∏
iΣXi)

πq−1(
∏
iXi)

∏
i πq(ΣXi)

∏
i πq−1(Xi)

∏
i πq−1(Xi)

j] //

E

OO

Π

OO

Π

OO

�����������

�����������

E∞

OO

Here Π :
∏
i π∗(Xi) → π∗(

∏
iXi) and Π :

∏
i π∗(ΣXi) → π∗(

∏
iΣXi)

are the canonical isomorphisms given by Π((αi)) = (the homotopy class of
4iαi). Also E∞ is the product of the suspension homomorphisms.

It is straightforward to verify that the above diagram is commutative.
Then (1) follows easily from Theorem 2.1(1). To show (2), first notice that

(∗) Ker
[
j] : π2n

(
Σ
(∏

i

Xi

))
→ π2n

(∏

i

ΣXi

)]
= EΠ(KerE∞)

sinceE : π2n−1(
∏
iXi)→ π2n(Σ(

∏
iXi)) is an epimorphism. Fix a generator

ei of Hn(Xi) ∼= πn(Xi) ∼= Z. By Theorem 2.1(2), Ker(E : π2n−1(Xi) →
π2n(ΣXi)) is generated by [ei, ei].

Claim. For each γ = (γi)i ∈ KerE∞, we have E ◦Π(γ) = 0.

Proof of Claim. Let γi = mi[ei, ei], mi ∈ Z. Let εi : Sn → Xi be a map
representing ei. Then mi · ei is represented by εi ◦ µi, where µi : Sn → Sn
is a map of degree mi. Let pi :

∏
j Xj → Xi be the projection onto Xi. In

what follows, for simplicity, the homotopy classes represented by 4iεi etc.
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are abbreviated to 4iεi etc. The equality

(pi)][4iεi ◦ µi,4iεi] = [(pi)]4iεi ◦ µi, (pi)]4iεi]

= [εi ◦ µi, εi] = mi[ei, ei] = γi

shows thatΠ(γ) = [4iεi◦µi,4iεi]. Thus E◦Π(γ) = E([4iεi◦µi,4iεi]) = 0.

The above claim together with (∗) implies that j] is a monomorphism
in dimension 2n and hence an isomorphism. This completes the proof of
Theorem 1.1.

Proof of Corollary 1.2. This is well known to be a direct consequence
of Theorem 1.1 and a proof is provided for completeness. Statement (1)
follows immediately from Theorem 1.1 via the Whitehead Theorem and the
isomorphism H̃q(ΣZ) ∼= H̃q−1(Z) for each path-connected space Z.

To show (2), we identify Σ(
∏
iXi) with j(Σ(

∏
iXi)). The space

Σ(
∏
iXi) is simply connected. By Theorem 1.1, the inclusion Σ(

∏
iXi)→∏

iΣXi induces isomorphisms of homotopy groups up to dimension 2n. Thus
πq(
∏
iΣXi, Σ(

∏
iXi)) = 0 for each q ≤ 2n and the homomorphism ∂ :

π2n+1(
∏
iΣXi, Σ(

∏
iXi)) → π2n(Σ(

∏
iXi)) is trivial. Since the Hurewicz

homomorphism π2n+1(
∏
iΣXi, Σ(

∏
iXi)) → H2n+1(

∏
iΣXi, Σ(

∏
iXi)) is

an isomorphism, it follows that the connecting homomorphism

∂ : H2n+1

(∏

i

ΣXi, Σ
(∏

i

Xi

))
→ H2n

(
Σ
(∏

i

Xi

))

is trivial. So the inclusion Σ(
∏
iXi) →

∏
iΣXi induces isomorphisms of

homology groups up to dimension 2n.

Proof of Theorem 1.4. By Corollary 1.3, H3(S∞2 ) ∼= Hn+1(S∞n ) for each
n ≥ 3. So we may assume that n ≥ 3. We apply Whitehead’s “certain exact
sequence” [7] in the following form.

Theorem 2.2 ([7], cf. [4, p. 36]). Suppose that X is an (n−1)-connected
space with n ≥ 3. There exists a natural exact sequence

πn(X)⊗ Z/2Z i→ πn+1(X) θ→ Hn+1(X)→ 0

where θ is the Hurewicz homomorphism.

Let pi : S∞n → Sn be the projection onto the ith factor. We consider the
following commutative diagram:

πn(S∞n )⊗ Z/2Z πn+1(S∞n ) Hn+1(S∞n ) 0

(πn(Sn)⊗ Z/2Z)∞ πn+1(Sn)∞ Hn+1(Sn)∞ = 0

i //

4i((pi)]⊗1Z/2Z)
��

θ //

4i(pi)]
��

//

i∞ // θ∞ //

where the first row is the exact sequence of Theorem 2.2 for S∞n and the
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second row is the countable product of the exact sequences of Theorem 2.2
for the n-sphere Sn.

Let h : πn(Sn)∞ ⊗ Z/2Z → (πn(Sn) ⊗ Z/2Z)∞ be the homomorphism
defined by h((αi)i⊗1) = ((αi⊗1)i). It is easy to see that h is an isomorphism.
Now we show the following equality:

4i((pi)] ⊗ 1Z/2Z) = h ◦ ((4i(pi)])⊗ 1Z/2Z) :

πn(S∞n )⊗ Z/2Z→ (πn(Sn)⊗ Z/2Z)∞.

Indeed, for each α⊗ 1 ∈ πn(S∞n )⊗ Z/2Z, we have

h ◦ ((4i(pi)])⊗ 1Z/2Z)(α⊗ 1) = h(((pi)](α))i ⊗ 1) = ((pi)](α)⊗ 1)i
= 4i((pi)] ⊗ 1Z/2Z)(α⊗ 1),

which proves the desired equality.
Since4i((pi)])(= Π−1) is an isomorphism,4i((pi)])⊗1Z/2Z is an isomor-

phism. This together with the above equality implies that4i((pi)]⊗1Z/2Z) is
an isomorphism. As i∞ is an epimorphism, so is i and hence Hn+1(S∞n ) = 0.
This completes the proof.

Acknowledgements. The author expresses his sincere thanks to the
referee for helpful suggestions and also for informing him of a preliminary
announcement due to A. Zastrow [8].

References

[1] M. G. Barratt and J. Milnor, An example of anomalous singular theory, Proc. Amer.
Math. Soc. 13 (1962), 293–297.

[2] K. Eda and K. Kawamura, The singular homology of the Hawaiian earring, J. London
Math. Soc. 62 (2000), 305–310.

[3] —, —, Homotopy and homology groups of the n-dimensional Hawaiian earring, Fund.
Math. 165 (2000), 17–28.

[4] H.-J. Baues, Homotopy Type and Homology, Oxford Sci. Publ., 1996.
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