A note on singular homology groups of infinite products of compacta

by

Kazuhiro Kawamura (Tsukuba)

Abstract

Let n be an integer with $n \geq 2$ and $\left\{X_{i}\right\}$ be an infinite collection of ($n-1$)-connected continua. We compare the homotopy groups of $\Sigma\left(\prod_{i} X_{i}\right)$ with those of $\prod_{i} \Sigma X_{i}$ (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the $n(\geq 2)$-sphere is given.

1. Introduction and results. The results of the present note stem from an attempt to compute the singular homology groups of the countable product S_{n}^{∞} of the n-sphere $(n \geq 1)$. Very little is known on these groups except for trivial facts: $\widetilde{\mathrm{H}}_{q}\left(S_{n}^{\infty}\right)=0$ for $q<n$ and $\mathrm{H}_{n}\left(S_{n}^{\infty}\right) \cong \pi_{n}\left(S_{n}^{\infty}\right) \cong \mathbb{Z}^{\infty}$, the countable product of the integers. The lack of higher local connectivity makes the computation non-trivial. A motivation for the computation is in the singular homology group of the Hawaiian earring and its n-dimensional analogue \mathbb{H}_{n} (see [1]-[3]). The space \mathbb{H}_{n} is naturally embedded in S_{n}^{∞}. In [1], it is shown that for each $n \geq 2$, the singular homology group $\mathrm{H}_{q}\left(\mathbb{H}_{n}\right)$ is not zero for infinitely many q 's. In particular $H_{3}\left(\mathbb{H}_{2}\right)$ is not zero, while Theorem 1.4 of this note shows that $\mathrm{H}_{3}\left(S_{2}^{\infty}\right)=0$.

Throughout the present note, ΣX denotes the unreduced suspension of a space X obtained from $X \times[0,1]$ by identifying $X \times\{0\}$ and $X \times\{1\}$ to points respectively. The image of $(x, t) \in X \times[0,1]$ under the quotient map is denoted by $[x, t]$.

Let $\left\{X_{i}\right\}$ be an infinite collection of continua (i.e. compact connected metric spaces) and let $j: \Sigma\left(\prod_{i} X_{i}\right) \rightarrow \prod_{i} \Sigma X_{i}$ be the map defined by

$$
j\left(\left[\left(x_{i}\right)_{i}, t\right]\right)=\left(\left[x_{i}, t\right]\right)_{i}, \quad \text { where }\left(x_{i}\right) \in \prod_{i} X_{i}, t \in[0,1] .
$$

It is easy to see that j is a well-defined embedding. Under the above notation, our first result is stated as follows.

Theorem 1.1. Let $n \geq 2$ be an integer and assume that each X_{i} is an ($n-1$)-connected continuum. Then:
(1) The induced homomorphism $j_{\sharp}: \pi_{q}\left(\Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow \pi_{q}\left(\prod_{i} \Sigma X_{i}\right)$ is an isomorphism for each $q<2 n$ and an epimorphism for $q=2 n$.
(2) If moreover $\mathrm{H}_{n}\left(X_{i}\right) \cong \mathbb{Z}$ for each i, then $j_{\sharp}: \pi_{2 n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow$ $\pi_{2 n}\left(\prod_{i} \Sigma X_{i}\right)$ is an isomorphism.

The proof is an application of the Freudenthal Suspension Theorem for unreduced suspensions of general (compactly generated) spaces (not necessarily CW-complexes). The above theorem implies the following result on homology groups of infinite products.

Corollary 1.2. Let $n \geq 2$ be an integer and assume that each X_{i} is ($n-1$)-connected. Then:
(1) $\widetilde{\mathrm{H}}_{q-1}\left(\prod_{i} X_{i}\right) \cong \mathrm{H}_{q}\left(\prod_{i} \Sigma X_{i}\right)$ for each $1 \leq q<2 n$.
(2) If moreover $\mathrm{H}_{n}\left(X_{i}\right) \cong \mathbb{Z}$ for each i, then $\widetilde{\mathrm{H}}_{q-1}\left(\prod_{i} X_{i}\right) \cong \mathrm{H}_{q}\left(\prod_{i} \Sigma X_{i}\right)$ for each $1 \leq q \leq 2 n$.

Applying the above corollary to the countable product S_{n}^{∞} of the n sphere ($n \geq 2$), we obtain the following.

Corollary 1.3. Let $n \geq 2$ be an integer. For each integer $k \geq 0$, we have an isomorphism $\mathrm{H}_{n+k}\left(S_{n}^{\infty}\right) \cong \mathrm{H}_{n+k+1}\left(S_{n+1}^{\infty}\right)$ provided $n \geq k+1$.

Thus, as $n \rightarrow \infty$, the homology group $\mathrm{H}_{n+k}\left(S_{n}^{\infty}\right)$ stabilizes and we make use of this fact to prove:

ThEOREM 1.4. $\mathrm{H}_{n+1}\left(S_{n}^{\infty}\right)=0$ for each $n \geq 2$.
The Künneth formula, applied to $S_{1}^{\infty} \approx S_{1}^{\infty} \times S_{1}^{\infty}$, implies that $\mathrm{H}_{2}\left(S_{1}^{\infty}\right)$ contains $\mathbb{Z}^{\infty} \otimes \mathbb{Z}^{\infty}$ as a direct summand and hence is non-zero.

Throughout, the n-sphere is denoted by S_{n} to keep the notation S_{n}^{∞} for the countable product of the n-sphere.
2. Proofs. Let $E: \pi_{q}(X) \rightarrow \pi_{q+1}(\Sigma X)$ be the unreduced suspension homomorphism described in [6, p. 369]. The Freudenthal Suspension Theorem for unreduced suspensions of general spaces is stated as follows.

Theorem 2.1 ([6, Chap. VII, (7.13)] and [5, Appendix]). Let $n \geq 2$ be an integer and X an $(n-1)$-connected (compactly generated) space. Then:
(1) $E: \pi_{q}(X) \rightarrow \pi_{q+1}(\Sigma X)$ is an isomorphism for $q<2 n-1$ and an epimorphism for $q=2 n-1$.
(2) The kernel of $E: \pi_{2 n-1}(X) \rightarrow \pi_{2 n}(\Sigma X)$ is generated by $\{[\alpha, \beta] \mid$ $\left.\alpha, \beta \in \pi_{n}(X)\right\}$, where $[\alpha, \beta]$ denotes the Whitehead product of α and β.

Remark. In [5], the space X in (2) is assumed to be a CW-complex. To obtain the result for a general X, take a $\operatorname{map} \varphi: W \rightarrow X$ which induces
isomorphisms between homotopy groups in all dimensions (see, for example, [6, Chap. V, Theorem (3.2)]). The spaces ΣX and ΣW are simply connected and $\Sigma \varphi$ induces isomorphisms between homology groups in all dimensions, hence also between homotopy groups. Moreover the diagram

is commutative and conclusion (2) follows from the one for CW-complexes.
Notation. For a collection $\left\{\alpha_{i}: Y \rightarrow X_{i}\right\}_{i}$ of maps, $\triangle_{i} \alpha_{i}: Y \rightarrow \prod_{i} X_{i}$ denotes the diagonal product of $\left(\alpha_{i}\right)$, that is, the map defined by

$$
\triangle_{i} \alpha_{i}(p)=\left(\alpha_{i}(p)\right)_{i}, \quad p \in Y .
$$

Proof of Theorem 1.1. As ΣZ is simply connected for every path-connected space Z, we may restrict our attention to the case $q \geq 2$. Consider the following diagram:

Here $\Pi: \prod_{i} \pi_{*}\left(X_{i}\right) \rightarrow \pi_{*}\left(\prod_{i} X_{i}\right)$ and $\Pi: \prod_{i} \pi_{*}\left(\Sigma X_{i}\right) \rightarrow \pi_{*}\left(\prod_{i} \Sigma X_{i}\right)$ are the canonical isomorphisms given by $\Pi\left(\left(\alpha_{i}\right)\right)=$ (the homotopy class of $\left.\triangle_{i} \alpha_{i}\right)$. Also E^{∞} is the product of the suspension homomorphisms.

It is straightforward to verify that the above diagram is commutative. Then (1) follows easily from Theorem 2.1(1). To show (2), first notice that

$$
\begin{equation*}
\operatorname{Ker}\left[j_{\sharp}: \pi_{2 n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow \pi_{2 n}\left(\prod_{i} \Sigma X_{i}\right)\right]=E \Pi\left(\operatorname{Ker} E^{\infty}\right) \tag{*}
\end{equation*}
$$

since $E: \pi_{2 n-1}\left(\prod_{i} X_{i}\right) \rightarrow \pi_{2 n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right)$ is an epimorphism. Fix a generator e_{i} of $\mathrm{H}_{n}\left(X_{i}\right) \cong \pi_{n}\left(X_{i}\right) \cong \mathbb{Z}$. By Theorem 2.1(2), $\operatorname{Ker}\left(E: \pi_{2 n-1}\left(X_{i}\right) \rightarrow\right.$ $\left.\pi_{2 n}\left(\Sigma X_{i}\right)\right)$ is generated by $\left[e_{i}, e_{i}\right]$.

Claim. For each $\gamma=\left(\gamma_{i}\right)_{i} \in \operatorname{Ker} E^{\infty}$, we have $E \circ \Pi(\gamma)=0$.
Proof of Claim. Let $\gamma_{i}=m_{i}\left[e_{i}, e_{i}\right], m_{i} \in \mathbb{Z}$. Let $\varepsilon_{i}: S_{n} \rightarrow X_{i}$ be a map representing e_{i}. Then $m_{i} \cdot e_{i}$ is represented by $\varepsilon_{i} \circ \mu_{i}$, where $\mu_{i}: S_{n} \rightarrow S_{n}$ is a map of degree m_{i}. Let $p_{i}: \prod_{j} X_{j} \rightarrow X_{i}$ be the projection onto X_{i}. In what follows, for simplicity, the homotopy classes represented by $\triangle_{i} \varepsilon_{i}$ etc.
are abbreviated to $\triangle_{i} \varepsilon_{i}$ etc. The equality

$$
\begin{aligned}
\left(p_{i}\right)_{\sharp}\left[\triangle_{i} \varepsilon_{i} \circ \mu_{i}, \triangle_{i} \varepsilon_{i}\right] & =\left[\left(p_{i}\right)_{\sharp} \triangle_{i} \varepsilon_{i} \circ \mu_{i},\left(p_{i}\right)_{\sharp} \triangle_{i} \varepsilon_{i}\right] \\
& =\left[\varepsilon_{i} \circ \mu_{i}, \varepsilon_{i}\right]=m_{i}\left[e_{i}, e_{i}\right]=\gamma_{i}
\end{aligned}
$$

shows that $\Pi(\gamma)=\left[\triangle_{i} \varepsilon_{i} \circ \mu_{i}, \triangle_{i} \varepsilon_{i}\right]$. Thus $E \circ \Pi(\gamma)=E\left(\left[\triangle_{i} \varepsilon_{i} \circ \mu_{i}, \triangle_{i} \varepsilon_{i}\right]\right)=0$.
The above claim together with $(*)$ implies that j_{\sharp} is a monomorphism in dimension $2 n$ and hence an isomorphism. This completes the proof of Theorem 1.1.

Proof of Corollary 1.2. This is well known to be a direct consequence of Theorem 1.1 and a proof is provided for completeness. Statement (1) follows immediately from Theorem 1.1 via the Whitehead Theorem and the isomorphism $\widetilde{\mathrm{H}}_{q}(\Sigma Z) \cong \widetilde{\mathrm{H}}_{q-1}(Z)$ for each path-connected space Z.

To show (2), we identify $\Sigma\left(\prod_{i} X_{i}\right)$ with $j\left(\Sigma\left(\prod_{i} X_{i}\right)\right)$. The space $\Sigma\left(\prod_{i} X_{i}\right)$ is simply connected. By Theorem 1.1 , the inclusion $\Sigma\left(\prod_{i} X_{i}\right) \rightarrow$ $\prod_{i} \Sigma X_{i}$ induces isomorphisms of homotopy groups up to dimension $2 n$. Thus $\pi_{q}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right)=0$ for each $q \leq 2 n$ and the homomorphism ∂ : $\pi_{2 n+1}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow \pi_{2 n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right)$ is trivial. Since the Hurewicz homomorphism $\pi_{2 n+1}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow \mathrm{H}_{2 n+1}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right)$ is an isomorphism, it follows that the connecting homomorphism

$$
\partial: \mathrm{H}_{2 n+1}\left(\prod_{i} \Sigma X_{i}, \Sigma\left(\prod_{i} X_{i}\right)\right) \rightarrow \mathrm{H}_{2 n}\left(\Sigma\left(\prod_{i} X_{i}\right)\right)
$$

is trivial. So the inclusion $\Sigma\left(\prod_{i} X_{i}\right) \rightarrow \prod_{i} \Sigma X_{i}$ induces isomorphisms of homology groups up to dimension $2 n$.

Proof of Theorem 1.4. By Corollary 1.3, $\mathrm{H}_{3}\left(S_{2}^{\infty}\right) \cong \mathrm{H}_{n+1}\left(S_{n}^{\infty}\right)$ for each $n \geq 3$. So we may assume that $n \geq 3$. We apply Whitehead's "certain exact sequence" [7] in the following form.

Theorem 2.2 ([7], cf. [4, p. 36]). Suppose that X is an $(n-1)$-connected space with $n \geq 3$. There exists a natural exact sequence

$$
\pi_{n}(X) \otimes \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{i} \pi_{n+1}(X) \xrightarrow{\theta} \mathrm{H}_{n+1}(X) \rightarrow 0
$$

where θ is the Hurewicz homomorphism.
Let $p_{i}: S_{n}^{\infty} \rightarrow S_{n}$ be the projection onto the i th factor. We consider the following commutative diagram:

$$
\left.\begin{array}{rl}
\pi_{n}\left(S_{n}^{\infty}\right) \otimes \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{i} \pi_{n+1}\left(S_{n}^{\infty}\right) \xrightarrow{\theta} H_{n+1}\left(S_{n}^{\infty}\right) \longrightarrow \\
\triangle_{i}\left(\left(p_{i}\right)_{\sharp} \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right) \\
\downarrow
\end{array}\right] \begin{gathered}
\triangle_{i}\left(p_{i}\right)_{\sharp} \\
\left(\pi_{n}\left(S_{n}\right) \otimes \mathbb{Z} / 2 \mathbb{Z}\right)^{\infty} \xrightarrow{i^{\infty}} \pi_{n+1}\left(S_{n}\right)^{\infty} \xrightarrow{\theta^{\infty}} H_{n+1}\left(S_{n}\right)^{\infty}=0
\end{gathered}
$$

where the first row is the exact sequence of Theorem 2.2 for S_{n}^{∞} and the
second row is the countable product of the exact sequences of Theorem 2.2 for the n-sphere S_{n}.

Let $h: \pi_{n}\left(S_{n}\right)^{\infty} \otimes \mathbb{Z} / 2 \mathbb{Z} \rightarrow\left(\pi_{n}\left(S_{n}\right) \otimes \mathbb{Z} / 2 \mathbb{Z}\right)^{\infty}$ be the homomorphism defined by $h\left(\left(\alpha_{i}\right)_{i} \otimes 1\right)=\left(\left(\alpha_{i} \otimes 1\right)_{i}\right)$. It is easy to see that h is an isomorphism. Now we show the following equality:

$$
\begin{aligned}
& \triangle_{i}\left(\left(p_{i}\right)_{\sharp} \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right)=h \circ\left(\left(\triangle_{i}\left(p_{i}\right)_{\sharp}\right) \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right): \\
& \pi_{n}\left(S_{n}^{\infty}\right) \otimes \mathbb{Z} / 2 \mathbb{Z} \rightarrow\left(\pi_{n}\left(S_{n}\right) \otimes \mathbb{Z} / 2 \mathbb{Z}\right)^{\infty} .
\end{aligned}
$$

Indeed, for each $\alpha \otimes 1 \in \pi_{n}\left(S_{n}^{\infty}\right) \otimes \mathbb{Z} / 2 \mathbb{Z}$, we have

$$
\begin{aligned}
h \circ\left(\left(\triangle_{i}\left(p_{i}\right)_{\sharp}\right) \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right)(\alpha \otimes 1) & =h\left(\left(\left(p_{i}\right)_{\sharp}(\alpha)\right)_{i} \otimes 1\right)=\left(\left(p_{i}\right)_{\sharp}(\alpha) \otimes 1\right)_{i} \\
& =\triangle_{i}\left(\left(p_{i}\right)_{\sharp} \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right)(\alpha \otimes 1),
\end{aligned}
$$

which proves the desired equality.
Since $\triangle_{i}\left(\left(p_{i}\right)_{\sharp}\right)\left(=\Pi^{-1}\right)$ is an isomorphism, $\triangle_{i}\left(\left(p_{i}\right)_{\sharp}\right) \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}$ is an isomorphism. This together with the above equality implies that $\triangle_{i}\left(\left(p_{i}\right)_{\sharp} \otimes 1_{\mathbb{Z} / 2 \mathbb{Z}}\right)$ is an isomorphism. As i^{∞} is an epimorphism, so is i and hence $H_{n+1}\left(S_{n}^{\infty}\right)=0$. This completes the proof.

Acknowledgements. The author expresses his sincere thanks to the referee for helpful suggestions and also for informing him of a preliminary announcement due to A. Zastrow [8].

References

[1] M. G. Barratt and J. Milnor, An example of anomalous singular theory, Proc. Amer. Math. Soc. 13 (1962), 293-297.
[2] K. Eda and K. Kawamura, The singular homology of the Hawaiian earring, J. London Math. Soc. 62 (2000), 305-310.
[3] 一, 一, Homotopy and homology groups of the n-dimensional Hawaiian earring, Fund. Math. 165 (2000), 17-28.
[4] H.-J. Baues, Homotopy Type and Homology, Oxford Sci. Publ., 1996.
[5] A. N. Dranishnikov, D. Repovš and E.V. Ščepin, On intersections of compacta in Euclidean space: The metastable range, Tsukuba J. Math. 17 (1993), 549-564.
[6] G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math. 61, Springer, 1978.
[7] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110.
[8] A. Zastrow, The singular homology groups of planar sets do not behave anomalously, preliminary announcement, Topology Atlas preprint no. 384 at http://at.yorku.ca/i/ d/e/b/11.htm.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8071, Japan
E-mail: kawamura@math.tsukuba.ac.jp

