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A note on singular homology groups of
infinite products of compacta

by

Kazuhiro Kawamura (Tsukuba)

Abstract. Let n be an integer with n > 2 and {X;} be an infinite collection of
(n — 1)-connected continua. We compare the homotopy groups of X(J]; X;) with those of
IL; 2X; (¥ denotes the unreduced suspension) via the Freudenthal Suspension Theorem.
An application to homology groups of the countable product of the n(> 2)-sphere is given.

1. Introduction and results. The results of the present note stem
from an attempt to compute the singular homology groups of the countable
product S;° of the n-sphere (n > 1). Very little is known on these groups
except for trivial facts: ﬁq(Sflo) = 0 for ¢ < nand H, (S;°) = m,(S;°) = Z*°,
the countable product of the integers. The lack of higher local connectivity
makes the computation non-trivial. A motivation for the computation is in
the singular homology group of the Hawaiian earring and its n-dimensional
analogue H,, (see [1]-[3]). The space H,, is naturally embedded in S;°. In
[1], it is shown that for each n > 2, the singular homology group H,(H,,)
is not zero for infinitely many ¢’s. In particular Hz(Hsz) is not zero, while
Theorem 1.4 of this note shows that H3(S5°) = 0.

Throughout the present note, >’ X denotes the unreduced suspension of
a space X obtained from X x [0, 1] by identifying X x {0} and X x {1} to
points respectively. The image of (x,t) € X x [0, 1] under the quotient map
is denoted by [x,t].

Let {X;} be an infinite collection of continua (i.e. compact connected
metric spaces) and let j : (][, X;) — [[;, 2 X; be the map defined by

()i, 1]) = (w5, t])i,  where (z;) € HX t e [0,1].

7

It is easy to see that j is a well-defined embedding. Under the above notation,
our first result is stated as follows.
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THEOREM 1.1. Let n > 2 be an integer and assume that each X; is an
(n — 1)-connected continuum. Then:

(1) The induced homomorphism jy : mq(X([[; Xi)) — mq(I]; XX5) is an
isomorphism for each q < 2n and an epimorphism for ¢ = 2n.

(2) If moreover H,(X;) = Z for each i, then jy : mo,(X(I[; Xi)) —
mon(1[; 2 X5) is an isomorphism.

The proof is an application of the Freudenthal Suspension Theorem for
unreduced suspensions of general (compactly generated) spaces (not neces-
sarily CW-complexes). The above theorem implies the following result on
homology groups of infinite products.

COROLLARY 1.2. Let n > 2 be an integer and assume that each X; is
(n — 1)-connected. Then:

1 ﬁ_l X)) =H 3 X;) for each 1 < g < 2n.

( q i q A =

; (2) ]ff moreover Hy, (X;) 22 Z for each i, then Hy—1 ([ [; Xi) = Hy([[; X X5)
or each 1 < q < 2n.

Applying the above corollary to the countable product S5° of the n-
sphere (n > 2), we obtain the following.

COROLLARY 1.3. Let n > 2 be an integer. For each integer k > 0, we
have an isomorphism H, 1 (S5°) = Hyyr41(S55,) provided n > k 4+ 1.

Thus, as n — oo, the homology group H,,;1(55°) stabilizes and we make
use of this fact to prove:

THEOREM 1.4. Hy,41(S°) =0 for each n > 2.
The Kiinneth formula, applied to S7° ~ ST° x S7°, implies that Ha(57°)
contains Z*>° ® Z>° as a direct summand and hence is non-zero.

Throughout, the n-sphere is denoted by S, to keep the notation S;° for
the countable product of the n-sphere.

2. Proofs. Let E : my(X) — mg+1(XX) be the unreduced suspension
homomorphism described in [6, p. 369]. The Freudenthal Suspension Theo-
rem for unreduced suspensions of general spaces is stated as follows.

THEOREM 2.1 ([6, Chap. VII, (7.13)] and [5, Appendix]). Let n > 2 be
an integer and X an (n — 1)-connected (compactly generated) space. Then:

(1) E : mg(X) — mg41(XX) is an isomorphism for ¢ < 2n — 1 and an
epimorphism for ¢ = 2n — 1.

(2) The kernel of E : mon—1(X) — mon(XX) is generated by {[a, 3] |
a, 3 € mp(X)}, where o, 5] denotes the Whitehead product of o and .

REMARK. In [5], the space X in (2) is assumed to be a CW-complex.
To obtain the result for a general X, take a map ¢ : W — X which induces
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isomorphisms between homotopy groups in all dimensions (see, for example,
[6, Chap. V, Theorem (3.2)]). The spaces XX and X'W are simply connected
and Yy induces isomorphisms between homology groups in all dimensions,
hence also between homotopy groups. Moreover the diagram

(W) —E= 7411 (SW)

wul (Ew)ul

g(X) —F> 741 (DX)
is commutative and conclusion (2) follows from the one for CW-complexes.
NOTATION. For a collection {a; : Y — X;}; of maps, Njo; 1 Y — [, X;
denotes the diagonal product of («;), that is, the map defined by
Aiai(p) = (ai(p))i, peY.

Proof of Theorem 1.1. As X'Z is simply connected for every path-con-
nected space Z, we may restrict our attention to the case ¢ > 2. Consider
the following diagram:

(51 X)) 2 ([, £X,)

5| |n
mg-1(I]; Xi) I[; (X X3)
| [e~
I1; mq—1(X3) IL; mq-1(X53)
Here IT : [[, m(X;) — m(I[; Xi) and 1T @ J[, m(XX;) — mo ([ X X5)
are the canonical isomorphisms given by I7((c;)) = (the homotopy class of
ANay). Also E* is the product of the suspension homomorphisms.

It is straightforward to verify that the above diagram is commutative.
Then (1) follows easily from Theorem 2.1(1). To show (2), first notice that

() Ker {jﬁ . Tom (2(1_[ X)) = wzn(H ZXi)] = EIl(Ker E)

since E : a1 ([ [; Xi) — mon(X(]]; Xi)) is an epimorphism. Fix a generator
e; of Hy(X;) = m,(X;) = Z. By Theorem 2.1(2), Ker(E : mo,—1(X;) —
mon (X X)) is generated by [e;, e;].

CLAIM. For each v = (v;); € Ker E*°, we have E o II(y) = 0.

Proof of Claim. Let ~; = m;le;, e;], mi € Z. Let €; : S,, — X; be a map
representing e;. Then m; - e; is represented by €; o u;, where p; : S, — Sy
is a map of degree m;. Let p; : Hj X; — X; be the projection onto X;. In
what follows, for simplicity, the homotopy classes represented by A;g; etc.
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are abbreviated to A\;e; etc. The equality
(pi)s[Digi o piy DNiei] = [(pi)gDigi © iy (pi)gDigi]
= [g5 0 pir€i] = miles, ) = i
shows that H(’y) = [Aigioﬂi; Aze’fz] Thus EOH("}/) = E([Aigioﬂi; Aze’fz]) =0.

The above claim together with (x) implies that j; is a monomorphism
in dimension 2n and hence an isomorphism. This completes the proof of
Theorem 1.1.

Proof of Corollary 1.2. This is well known to be a direct consequence
of Theorem 1.1 and a proof is provided for completeness. Statement (1)
follows immediately from Theorem 1.1 via the Whitehead Theorem and the
isomorphism Hy(X'Z) = H,_1(Z) for each path-connected space Z.

To show (2), we identify X(][, X;) with j(X([[, Xi)). The space
Y(IL; X:) is simply connected. By Theorem 1.1, the inclusion X ([, X;) —
[[; XX, induces isomorphisms of homotopy groups up to dimension 2n. Thus
mo(I]; XX, X(I[; Xi)) = 0 for each ¢ < 2n and the homomorphism 0 :
Ton+1 ([ [; X X5, 2(I1; Xi)) — mon(X(I]; Xi)) is trivial. Since the Hurewicz
homomorphism 7o, 1 ([[; XX, 2([]; Xi)) — Hont1t (I, 2 X5, X(I1; Xi)) is
an isomorphism, it follows that the connecting homomorphism

9 : Hopsy (H X, 2(1_[ X;)) = Han (E(H X))

is trivial. So the inclusion X (][, X;) — [[, ¥X; induces isomorphisms of
homology groups up to dimension 2n.

Proof of Theorem 1.4. By Corollary 1.3, H3(53°) = H,,41(S:°) for each
n > 3. So we may assume that n > 3. We apply Whitehead’s “certain exact
sequence” [7] in the following form.

THEOREM 2.2 ([7], cf. [4, p. 36]). Suppose that X is an (n—1)-connected
space with n > 3. There exists a natural exact sequence

(X)) ® Z)2Z 5 11 (X) 5 Hopr (X) — 0
where 0 is the Hurewicz homomorphism.

Let p; : S;° — S, be the projection onto the ith factor. We consider the
following commutative diagram:

Tn(Sp7) ® Z/2Z #Wn-i-l (S7°) ‘ Hy1(S3°) —0
Az‘((pi)u@)lz/zz)l Ai(pi)ﬁl
(0 (Sn) ® Z/2Z)>° — 141 (Sp) ™~ Hyg1(S0)® = 0

where the first row is the exact sequence of Theorem 2.2 for S;° and the
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second row is the countable product of the exact sequences of Theorem 2.2
for the n-sphere .S,,.

Let h : m,(Sp)™® ® Z/2Z — (mp(Spn) @ Z/27Z)>° be the homomorphism
defined by h((;)i®1) = ((a;®1);). It is easy to see that h is an isomorphism.
Now we show the following equality:

Ai((pi)g @ 1z/9z) = ho ((Di(pi)y) ® 1z/02) :
Tn(S20) @ Z)27 — (7 (Sy) @ Z/27)°.
Indeed, for each a ® 1 € 7,(S°) ® Z/27Z, we have
ho ((Ailpi)s) ® 1z/92) (@ © 1) = h(((pi)g(@))i @ 1) = ((pi)g () @ 1)
= Ni((pi)y ® 1z/22) (@ ® 1),
which proves the desired equality.

Since Ai((p)g)(= II71) is an isomorphism, A;((p;)4)®17/97 is an isomor-
phism. This together with the above equality implies that A;((pi)y®1z/2z) is
an isomorphism. As i* is an epimorphism, so is ¢ and hence H,,11(S3°) = 0.
This completes the proof.
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