DOI: 10.4064/fm207-1-2

The strength of the projective Martin conjecture

by

C. T. Chong (Singapore), Wei Wang (Guangzhou) and Liang Yu (Nanjing)

Abstract. We show that Martin's conjecture on Π_1^1 functions uniformly \leq_T -order preserving on a cone implies Π_1^1 Turing Determinacy over ZF + DC. In addition, it is also proved that for $n \geq 0$, this conjecture for uniformly degree invariant Π_{2n+1}^1 functions is equivalent over ZFC to Σ_{2n+2}^1 -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π_1^1 functions implies the consistency of the existence of a Woodin cardinal.

- 1. Introduction. A cone C of reals with base z is a set of the form $\{x \mid x \geq_T z\}$ where \leq_T denotes Turing reducibility. A function $F: 2^\omega \to 2^\omega$ is degree invariant on C if any two reals $x,y \geq_T z$ of the same Turing degree satisfy $F(x) \equiv_T F(y)$. The degree invariance is uniform on C if there is a function t such that if $x,y \geq_T z$, then $\Phi_i^x = y$ and $\Phi_j^y = x$ implies $\Phi_m^{F(x)} = F(y)$ and $\Phi_n^{F(y)} = F(x)$, where t(i,j) = (m,n). The function F is increasing on C if $F(x) \geq_T x$ for all $x \geq z$, and order preserving on C if $z \leq_T x \leq_T y$ implies $F(z) \leq_T F(x) \leq_T F(y)$. If this order preservation is witnessed by a function $t: \omega \to \omega$, i.e., $\Phi_e^x = y \geq_T z$ implies $\Phi_{t(e)}^{F(x)} = F(y)$, then it is uniform (note that a uniformly order preserving function is necessarily uniformly degree invariant). Finally, given functions F and G degree invariant on a cone, write $F \geq_M G$ if $F(x) \geq_T G(x)$ on a cone. Donald A. Martin conjectured that, under the assumption of ZF set theory plus the Axiom of Determinacy (AD) and Dependent Choice (DC):
 - (1) Every degree invariant function that is not increasing on a cone is a constant on a cone.
 - (2) \leq_M prewellorders degree invariant functions which are increasing on a cone. Furthermore, if the \leq_M -rank of F is α , then F' has \leq_M -rank $\alpha + 1$, where F'(x) = (F(x))', the Turing jump of F(x).

²⁰¹⁰ Mathematics Subject Classification: 03D28, 03E35, 28A20. Key words and phrases: Martin's conjecture, axiom of determinacy, Turing cone.

Slaman and Steel [7] proved (1) for functions which are uniformly degree invariant on a cone and (2) for Borel functions which are increasing and order preserving. In [8] Steel showed (2) for uniformly degree invariant functions and conjectured that every function degree invariant on a cone is uniformly degree invariant on a cone.

While Martin [4] has shown that Borel determinacy is a theorem of ZF + DC (hence conjectures (1) and (2) hold for Δ_1^1 functions that are uniformly degree invariant), it is known that AD in the analytical hierarchy beyond Δ_1^1 is a large cardinal axiom. An analysis of the proof in [8] shows that conjecture (2) for uniformly degree invariant Π_{2n+1}^1 functions follows from Δ_{2n+2}^1 Determinacy. Thus a natural question for Martin's Conjectures (1) and (2) is their set-theoretic strength for uniformly degree invariant functions beyond Δ_1^1 in the analytical hierarchy. There is also a related question concerning the more restrictive uniformly order preserving functions, i.e. while (2) holds for such functions under AD according to Steel [8], the set-theoretic strength of (2) for these functions has not been considered.

A set of reals is degree invariant if it is closed under Turing equivalence. Martin [3] showed that under AD, every degree invariant set of reals either contains or is disjoint from a cone. By Π^1_{2n+1} -Turing Determinacy (Π^1_{2n+1} -TD) we mean the assertion that every Π^1_{2n+1} set of reals that is degree invariant either contains or is disjoint from a cone. We show in this paper that Conjecture (2) for uniformly order preserving Π^1_1 functions implies the existence of $0^\#$. Relativizing the argument to arbitrary reals x leads to the conclusion that $x^\#$ exists for every x, so that by Harrington [1] we have the following theorem on the strength of Conjecture (2) for uniformly order preserving Π^1_1 functions.

MAIN THEOREM 1. If Conjecture (2) holds for uniformly order preserving Π_1^1 functions then Π_1^1 -TD is true.

We also show that in general, for $n \geq 0$, Conjecture (2) for uniformly degree invariant Π^1_{2n+1} functions implies Σ^1_{2n+2} -TD, assuming Π^1_{2n+1} -uniformization when $n \geq 1$. In fact, by this, Steel [8] and an unpublished work of W. H. Woodin, we have the strength of Conjecture (2) for uniformly degree invariant Π^1_{2n+1} functions measured by Σ^1_{2n+2} -AD.

MAIN THEOREM 2. Conjecture (2) for uniformly degree invariant Π^1_{2n+1} functions is equivalent to Σ^1_{2n+2} -AD.

We recall some facts and notations (see Sacks [6] which is used as the standard reference in this paper). For each real x, ω_1^x denotes the least ordinal α for which $L_{\alpha}[x]$ is admissible. Kleene constructed a $\Pi_1^1(x)$ complete set \mathcal{O}^x with a $\Pi_1^1(x)$ well founded relation $<_{\mathcal{O}^x}$ on \mathcal{O}^x . The set \mathcal{O}^x is the hyperjump of x. The height of the ordering $<_{\mathcal{O}^x}$ on \mathcal{O}^x is exactly ω_1^x .

Furthermore, Kleene's construction of \mathcal{O}^x is uniform. In other words, the relation $\{(x,\mathcal{O}^x)\mid x\in 2^\omega\}$ is Π^1_1 . A fact that will be used implicitly is that given reals x and y, x is hyperarithmetic in y (written $x\leq_h y$) if and only if x is Δ^1_1 in y, and this is in turn equivalent to $x\in L_{\omega^y_1}[y]$. We work under ZF + DC. As we will only be concerned with Conjecture (2), it will be referred to as the \leq_M Conjecture from here on.

2. The \leq_M Conjecture for uniformly order preserving Π^1_1 functions. Let

$$\mathcal{F} = \{ x \mid \forall \alpha < \omega_1^x \ \forall a \subseteq \alpha \ (a \in L_{\omega_1^x} \Rightarrow a \in L_{\alpha+3}[x]) \}.$$

 \mathcal{F} is a degree invariant Σ_1^1 set introduced by H. Friedman [2]. We give a simpler proof of the following result given as Lemma 7.17 in [2].

Lemma 2.1. \mathcal{F} is cofinal in the Turing degrees.

Proof. For any real z, let

$$\mathcal{F}(z) = \{ x \oplus z \mid \forall \alpha < \omega_1^z \ \forall a \subseteq \alpha \ (a \in L_{\omega_1^z} \Rightarrow a \in L_{\alpha+3}[x \oplus z]) \}$$

be a degree invariant $\Sigma_1^1(z)$ set. Obviously $\mathcal{F}(z)$ is not empty. By the Gandy Basis Theorem relativized to z, there is an x such that $\omega_1^{x\oplus z}=\omega_1^z$ and $x\oplus z\in \mathcal{F}(z)$. Then $x\oplus z\in \mathcal{F}$.

The following lemma follows from Lemmas 7.20–7.22 in [2].

LEMMA 2.2. If 0^{\sharp} does not exist, then $\bar{\mathcal{F}} = 2^{\omega} - F$ is cofinal in the Turing degrees.

For x a real and $n \in \omega$, let $x^{[n]}$ be the real such that $x^{[n]}(i) = x(\langle n, i \rangle)$.

Theorem 2.3. If the \leq_M Conjecture holds for uniformly order preserving Π^1_1 functions, then 0^{\sharp} exists.

Proof. If 0^{\sharp} does not exist, then by Lemmas 2.1 and 2.2, both \mathcal{F} and $\bar{\mathcal{F}}$ are cofinal. For a contradiction, we will define a Π_1^1 function G that is uniformly order preserving such that $\{x \mid G(x) = \mathcal{O}^{\mathcal{O}^x}\}$ and $\{x \mid G(x) = \mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}\}$ are both cofinal in the Turing degrees.

Let P(x,y) be an arithmetic predicate such that

$$x \in \bar{\mathcal{F}} \iff \forall y \ P(x, y).$$

CLAIM 2.4. If $x \leq_T y$ are such that $x \in \mathcal{F}$ and $y \in \bar{\mathcal{F}}$, then $\mathcal{O}^x \leq_h y$.

As $y \notin \mathcal{F}$, there are $\alpha < \omega_1^y$ and $a \subseteq \alpha$ with $a \in L_{\omega_1^y} \setminus L_{\alpha+3}[y]$. Clearly, $\alpha \ge \omega$. As $x \le_T y$, $L_{\alpha+3}[x] \subseteq L_{\alpha+3}[y]$ and thus $a \notin L_{\alpha+3}[x]$. As $x \in \mathcal{F}$, $\omega_1^x \le \alpha < \omega_1^y$. By $x \le_T y$ again, $\mathcal{O}^x \le_h y$.

By Claim 2.4, if $x \leq_T y$ are such that $x \in \mathcal{F}$ and $y \in \bar{\mathcal{F}}$, then $\mathcal{O}^{\mathcal{O}^x} \leq_T \mathcal{O}^y$. Now define G(x) = y as follows:

- (1) $y^{[0]} = \langle 0 \rangle \hat{\mathcal{O}}^{\mathcal{O}^x} \wedge x \in \bar{\mathcal{F}} \text{ or } y^{[0]} = \langle 1 \rangle \hat{\mathcal{O}}^{\mathcal{O}^{\mathcal{O}^x}} \wedge \exists v \leq_T y^{[0]} \neg P(x, v).$ Thus $y^{[0]}$ gives a Π^1_1 differentiation between $x \in \bar{\mathcal{F}}$ and $x \in \mathcal{F}$.
- (2) $y^{[1]} = \mathcal{O}^x$.
- (3) If Φ_e^x is partial then let $y^{[e+2]} = \emptyset$.
- (4) If Φ_e^x is total and equal to u, the following three cases differentiate in a Π_1^1 way between $u \in \mathcal{F}$ and $x \in \bar{\mathcal{F}}$, $u, x \in \mathcal{F}$, and $u \in \bar{\mathcal{F}}$ for all $u \leq_T x$:
 - (a) $y^{[0]}(0) = 0 \land \exists v \leq_T y^{[1]} \neg P(u, v) \land y^{[e+2]} = \langle 1 \rangle \hat{\mathcal{O}}^{\Phi_i^{y^{[1]}}}$ where i is the least index so that $\mathcal{O}^{\mathcal{O}^u} = \mathcal{O}^{\Phi_i^{y_i^{[1]}}}$, or
 - (b) $y^{[0]}(0) = 1 \wedge \exists v \leq_T y^{[1]} \neg P(u,v) \wedge y^{[e+2]} = \langle 1 \rangle \hat{\mathcal{O}}^{\mathcal{O}^u}$, or (c) $\forall v \leq_T y^{[1]} P(u,v) \wedge y^{[e+2]} = \langle 0 \rangle \hat{\mathcal{O}}^{\mathcal{O}^u}$.

G(x) is obviously Π_1^1 .

CLAIM 2.5. If $x \in \mathcal{F}$ then $G(x) \equiv_T \mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}$.

Clearly $x \in \mathcal{F}$ implies $\mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}} \leq_T G(x)$ and $G(x)^{[0]} \oplus G(x)^{[1]} \leq_T \mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}$.

Given $e < \omega$, $\mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}$ can uniformly decide whether Φ_e^x is total. Suppose that Φ_e^x is total. To calculate $G(x)^{[e+2]}(n)$, one verifies clauses (4b, 4c) above. But the predicate $\forall v \leq_T y^{[1]} P(u, v)$ is $\Delta_1^1(\mathcal{O}^x)$, hence recursive in $\mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}$. Once this predicate is decided, $\mathcal{O}^{\mathcal{O}^{\mathcal{O}^x}}$ may use recursive functions f and g, where $u = \Phi_e^w \to \mathcal{O}^{\mathcal{O}^u} = \Phi_{f(e)}^{\mathcal{O}^{\mathcal{O}^w}}$ and $u = \Phi_e^w \to \mathcal{O}^{\mathcal{O}^{\mathcal{O}^u}} = \Phi_{g(e)}^{\mathcal{O}^{\mathcal{O}^{\mathcal{O}^w}}}$, to finish the calculation.

CLAIM 2.6. If $x \in \bar{\mathcal{F}}$ then $G(x) \equiv_{\mathcal{T}} \mathcal{O}^{\mathcal{O}^x}$.

This is similar to the above claim, except for the final step calculating $G(x)^{[e+2]}(n)$.

Now $\mathcal{O}^{\mathcal{O}^x}$ is able to decide whether (4a) or (4c) holds, as in the above claim. If (4c) holds, the calculation is the same. If (4a) holds, then $u \in \mathcal{F}$. By Claim 2.4, $\mathcal{O}^u \leq_h x$ and thus $\mathcal{O}^{\mathcal{O}^u} \leq_T \mathcal{O}^x = G(x)^{[1]}$. So *i* exists. Moreover, the search for i is a procedure uniformly $\Pi_1^1(\mathcal{O}^x)$. Hence $\mathcal{O}^{\mathcal{O}^x}$ uniformly computes $G(x)^{[e+2]}(n)$.

It follows from the above two claims that G is degree invariant. Moreover, G preserves \leq_T by Claim 2.4.

To show that G is uniformly order preserving, let h be a recursive function such that $\forall x, y, e \ (x = \Phi_e^y \to \mathcal{O}^x = \Phi_{h(e)}^{\mathcal{O}^y})$. In addition, let s be recursive with

$$\forall x, y, e, i \ (x = \Phi_e^y \to \Phi_i^x = \Phi_{s(e,i)}^y).$$

Suppose that $x = \Phi_e^y$. Then

(1) $G(x)^{[0]} = G(y)^{[e+2]}$,

- (2) $G(x)^{[1]} = \Phi_{h(e)}^{G(y)^{[1]}}$,
- (3) $G(x)^{[i+2]} = G(y)^{[s(e,i)+2]}$.

Hence G is as desired. \blacksquare

The above proof easily relativizes to any real x to guarantee the existence of $x^{\#}$. Since Harrington [1] has shown that the existence of sharps implies Π_1^1 -TD, we have

MAIN THEOREM 1. If the \leq_M Conjecture holds for Π_1^1 functions which are uniformly order preserving, then Π_1^1 -TD is true.

3. The \leq_M Conjecture for Π^1_{2n+1} functions and Σ^1_{2n+2} -TD

Lemma 3.1. Π^1_{2n+1} -uniformization and Δ^1_{2n+2} -TD imply Σ^1_{2n+2} -TD for $n \in \omega$.

Proof. Let $A \in \Sigma^1_{2n+2}$ be degree invariant and \leq_T -cofinal. Define

$$R(x,y) \Leftrightarrow x \leq_T y \land y \in A.$$

So $R(x,y)\in \Sigma^1_{2n+2}$. Note that Π^1_{2n+1} -uniformization implies Σ^1_{2n+2} -uniformization. Let $F\in \Sigma^1_{2n+2}$ uniformize R. Then F is actually a Δ^1_{2n+2} function. Define

$$B = \{ u \mid \exists x <_T u, y \equiv_T u \ (F(x) = y) \}.$$

Then B is Δ^1_{2n+2} , degree invariant and \leq_T -cofinal. Moreover, $B \subseteq A$. By Δ^1_{2n+2} -TD, B contains a cone of Turing degrees. Hence so does A.

COROLLARY 3.2. Δ_2^1 -TD implies Σ_2^1 -TD.

Proof. As Π^1_1 -uniformization is a theorem of ZFC, the corollary follows immediately from Lemma 3.1. \blacksquare

We prove the next result for the lightface version. The proof for the boldface version follows with obvious changes.

Theorem 3.3. Assume Π^1_{2n+1} -uniformization. If the \leq_M Conjecture holds for uniformly degree invariant Π^1_{2n+1} functions, then Σ^1_{2n+2} -TD holds.

Proof. Let $A \in \Delta^1_{2n+2}$, and suppose $P, Q \in \Pi^1_{2n+1}$ are such that

$$x \in A \iff \exists y \ P(x,y) \iff \forall y \ \neg Q(x,y).$$

Let $R(x,y) \Leftrightarrow P(x,y) \vee Q(x,y)$. By Π^1_{2n+1} -uniformization, let $F \in \Pi^1_{2n+1}$ uniformize R. Define $J_0(x) = z$ if and only if $z^{[0]} = F(x)$ and

$$\forall e \ ((\Phi_e^x \text{ is total} \to z^{[e+1]} = F(\Phi_e^x)) \land (\Phi_e^x \text{ is partial} \to z^{[e+1]} = \emptyset)).$$

Obviously $J_0 \in \Pi^1_{2n+1}$ is total. Moreover, J_0 is uniformly order preserving. To see this, let f be a recursive function such that

$$\forall e, x_0, x_1 \ (x_0 = \Phi_e^{x_1} \to \forall i \ (\Phi_{f(e,i)}^{x_1} \simeq \Phi_i^{x_0})).$$

Suppose $x_0 = \Phi_e^{x_1}$. Then $(J_0(x_0))^{[0]} = (J_0(x_1))^{[e]}$ and $(J_0(x_0))^{[i+1]} = (J_0(x_1))^{[f(e,i)+1]}$. Thus $J_0(x_0)$ may be effectively computed from $J_0(x_1)$.

Let g be a recursive function such that $x_0 = \Phi_e^{x_1} \to J_0(x_0) = \Phi_{a(e)}^{J_0(x_1)}$.

Define $J(x) = x \oplus z_0 \oplus z_1$ if and only if $z_0 = J_0(x)$ and

$$(P(x, z_0^{[0]}) \wedge z_1 = \emptyset) \vee (Q(x, z_0^{[0]}) \wedge z_1 = \langle 1 \rangle \hat{\ } (x \oplus z_0)').$$

Note that $J \in \Pi^1_{2n+1}$. We claim that J is uniformly degree invariant. To see this, let h be a recursive function such that $x_0 = \Phi_e(x_1) \to (x_0 \oplus J_0(x_0))' = \Phi_{h(e)}^{(x_1 \oplus J_0(x_1))'}$. For each e, let t(e) be the index of the procedure Ψ defined by:

- 1. $(\Psi^z)^{[0]} = \Phi_e^{z^{[0]}}$ and $(\Psi^z)^{[1]} = \Phi_{g(e)}^{z^{[1]}}$.
- 2. If $z^{[2]}(0) = 0$ then $(\Psi^z)^{[2]} = \emptyset$. Otherwise $(\Psi^z)^{[2]} = \langle 1 \rangle \hat{\Phi}_{h(e)}^w$, where w is such that $\langle 1 \rangle \hat{w} = z^{[2]}$.

If the \leq_M Conjecture holds for uniformly degree invariant Π^1_{2n+1} functions, then eventually J is either $x \mapsto x \oplus J_0(x)$ or $x \mapsto x \oplus J_0(x) \oplus (x \oplus J_0(x))'$. Hence A either contains or avoids a cone of Turing degrees.

Thus we have Δ^1_{2n+2} -TD. Now Σ^1_{2n+2} -TD follows from Lemma 3.1.

MAIN THEOREM 2. Let $n \geq 0$. The \leq_M Conjecture for uniformly degree invariant Π^1_{2n+1} functions is equivalent to Σ^1_{2n+2} -AD.

Proof. An analysis of Theorem 1 in Steel [8] shows that Σ_{2n+2}^1 -AD (in fact Δ_{2n+2}^1 -AD) implies the ≤_M Conjecture for uniformly degree invariant Π_{2n+1}^1 functions. We show the converse by induction on n: First note that if n=0, then Π_1^1 -uniformization is the Kondo–Addison Theorem, so that by Theorem 3.3, Σ_2^1 -TD holds. Now assume by induction that Σ_{2n}^1 -TD is true. Woodin (unpublished) has shown that over ZFC, for $k \geq 1$, Σ_{2k}^1 -TD is equivalent to Σ_{2k}^1 -AD, and Moschovakis [5, Chapter 6] has shown that Π_{2k+1}^1 -uniformization is a consequence of Σ_{2k}^1 -AD. Thus Π_{2n+1}^1 -uniformization holds and so Theorem 3.3 yields Σ_{2n+2}^1 -TD, hence Σ_{2n+2}^1 -AD. ■

The following corollary gives the consistency strength of the \leq_M Conjecture.

COROLLARY 3.4. If it is consistent that the \leq_M Conjecture holds for uniformly degree invariant Π^1_1 functions, then it is consistent that there is a Woodin cardinal.

Proof. The hypothesis and Theorem 3.3 imply that Π_2^1 -TD is consistent. Woodin has shown that Π_2^1 -TD is equiconsistent with the existence of a Woodin cardinal. \blacksquare

REMARK. We do not know if Main Theorem 1 may be strengthened to Δ_2^1 -TD (hence Δ_2^1 -AD). If this is true, then by Steel [8] it will give a characterization of the \leq_M Conjecture for uniformly order preserving Π_1^1

functions. In general, one would like to understand better the role of order preserving functions in the study of the \leq_M Conjecture. For example, it is not clear if Corollary 3.4 applies to functions which are order preserving.

Acknowledgments. The research of Chong and Wang was supported in part by NUS grant WBS 146-000-054-123, and Yu was supported by NSF of China No. 10701041 as well as Research Fund for Doctoral Program of Higher Education No. 0070284043.

References

- [1] L. Harrington, Analytic determinacy and 0[#], J. Symbolic Logic 43 (1978), 685–693.
- [2] R. Mansfield and G. Weitkamp, Recursive Aspects of Descriptive Set Theory, Oxford Logic Guides 11, Oxford Univ. Press, New York, 1985.
- [3] D. A. Martin, The axiom of determinateness and reduction principles in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), 687–689.
- [4] —, Borel determinacy, Ann. of Math. (2) 102 (1975), 363–371.
- [5] Y. N. Moschovakis, Descriptive Set Theory, Stud. Logic Found. Math. 100, North-Holland, Amsterdam, 1980.
- [6] G. E. Sacks, Higher Recursion Theory, Perspectives in Math. Logic, Springer, Berlin, 1990.
- [7] T. A. Slaman and J. R. Steel, *Definable functions on degrees*, in: Cabal Seminar 81–85, Lecture Notes in Math. 1333, Springer, Berlin, 1988, 37–55.
- [8] J. R. Steel, A classification of jump operators, J. Symbolic Logic 47 (1982), 347–358.

C. T. Chong
Department of Mathematics
Faculty of Science
National University of Singapore
Lower Kent Ridge Road
Singapore 117543
E-mail: chongct@math.nus.eud.sg

Liang Yu Institute of Mathematical Sciences Nanjing University Nanjing, Jiangsu Province 210093, P.R. China

E-mail: yuliang.nju@gmail.com

Wei Wang
Department of Philosophy
Sun Yat-sen University
135 Xingang Xi Road
Guangzhou 510275, P.R. China
E-mail: wwang.cn@gmail.com

Received 20 December 2008; in revised form 30 October 2009