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Abstract. We explore connections between our previous paper [J. Reine Angew.
Math. 604 (2007)], where we constructed spectra that interpolate between bu and H Z,
and earlier work of Kuhn and Priddy on the Whitehead conjecture and of Rognes on the
stable rank filtration in algebraic K-theory. We construct a “chain complex of spectra”
that is a bu analogue of an auxiliary complex used by Kuhn–Priddy; we conjecture that
this chain complex is “exact”; and we give some supporting evidence. We tie this to work
of Rognes by showing that our auxiliary complex can be constructed in terms of the stable
rank filtration. As a by-product, we verify for the case of topological complex K-theory
a conjecture made by Rognes about the connectivity (for certain rings) of the filtration
subquotients of the stable rank filtration of algebraic K-theory.

1. Introduction. In [4], we introduced a sequence {Am} of spectra in-
terpolating between the connective complex K-theory spectrum bu and the
integral Eilenberg–MacLane spectrum H Z. These new spectra resulted from
a general construction on permutative categories endowed with an “augmen-
tation.” In the current work, we explore connections of that construction to
other settings, in particular to work of Kuhn and Priddy [9] on the White-
head Conjecture, and to work of Rognes [15] on the stable rank filtration
of algebraic K-theory. Connections to Kuhn and Priddy’s work were sug-
gested by the many properties that the spectra Am share with the symmetric
powers of the sphere spectrum, Spm(S), which can also be given as an ex-
ample of the categorical construction of [4]. This led us to call Am the “bu
analogue” of Spm(S) and to propose a bu analogue of the Whitehead Conjec-
ture. On the other hand, our construction was also reminiscent of the stable
rank filtration in algebraic K-theory, and this made it natural to ask about
the exact relationship between the two filtrations for bu. Curiously, the two
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threads converged: in this paper we construct a bu analogue of an auxiliary
complex introduced by Kuhn and Priddy in the course of their proof of the
Whitehead conjecture, and it turns out to be closely related to the stable
rank filtration for topological complex K-theory. As a by-product, we obtain
a good understanding of the stable rank filtration in the case of bu; in par-
ticular, we are able to verify in this case the connectivity conjecture made
by Rognes in the context of Euclidean domains or local rings ([15, Conjec-
ture 12.3], though Rognes does not explicitly mention topological rings as
part of his context).

To describe our results in detail, we need to recall the overall setup of [4].
Let C be a permutative category. To such a category, Segal’s machine [16]
associates a spectrum that we will denote kC in the general case. The sim-
plest example is N, the permutative “category” with nonnegative integers
as objects, no nonidentity morphisms, and permutative structure given by
addition. In this case the associated spectrum is the integral Eilenberg–
MacLane spectrum, which we denote as usual by H Z, rather than kN. A
permutative category C is called augmented if there is a symmetric monoidal
functor ε : C → N such that ε−1(0) is the trivial one-object category. An
augmentation induces a map of spectra kC → H Z. For example, if S is the
category of finite pointed sets, with augmentation given by non-basepoint
cardinality, then kS is the sphere spectrum S, and the augmentation in-
duces the Hurewicz map S→ H Z. Similarly, the category of complex vector
spaces and unitary isomorphisms can be augmented by dimension, and this
augmentation induces a map bu→ H Z, which is the first structure map in
the tower of connective covers of complex K-theory.

Let C be an augmented permutative category. The main construction
of [4] associates to C a sequence of permutative categories

(1.1) C = K0C → K1C → · · · → KmC → · · · → K∞C ' N.

The associated spectra and maps refine the map kC → H Z,

(1.2) kC → kK1C → · · · → kKmC → · · · → H Z.

A key example is C = S, which gives kKmC ' Spm(S) and recovers the
classical filtration of H Z ' Sp∞(S) by the finite symmetric powers of the
sphere spectrum. The other primary example in [4] is the category of finite-
dimensional complex vector spaces and unitary isomorphisms, augmented
by dimension. In keeping with the notation in [4], we use Am to denote the
spectrum kKmC in the complex vector space case.

Standard manipulations of cofiber sequences allow us to recast a se-
quence such as (1.2) as a “chain complex” of spectra involving the successive
cofibers, and one can then ask whether this complex is “exact.” (See Sec-
tion 2.1.) This question at a prime p for the category of finite pointed sets
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gives the classical Whitehead Conjecture, stated below, which was proved
by Kuhn for p = 2 and by Kuhn and Priddy for odd primes. When localized
at the prime p, the sequence Spm(S) only changes at powers of p, and we
adopt the usual notation

L(k) = Σ−k Spp
k
(S)/Spp

k−1(S).

Note that L(0) = S0, and that in the following theorem, the map L(0)→ H Z
is the Hurewicz map.

Theorem 1.3 (Whitehead Conjecture, [7, 9]). The complex

(1.4) · · · → L(2)→ L(1)→ L(0)→ H Z
is exact at the prime p.

Because [4] established striking similarities between the subquotients
Am/Am−1 and Spm(S)/Spm−1(S) (that is, between the subquotients of (1.2)
for finite-dimensional complex vector spaces and finite pointed sets, respec-
tively), we were led to conjecture a bu analogue of the Whitehead Conjecture.
Again working at a prime p, we let

T (k) = Σ−(k+1)Apk/Apk−1.

Conjecture 1.5 (bu Whitehead Conjecture). The complex

(1.6) · · · → T (2)→ T (1)→ T (0)→ bu→ H Z
is exact at the prime p.

In considering the potential for adapting Kuhn and Priddy’s methods
to prove Conjecture 1.5, we see that Kuhn and Priddy did not actually
work directly with the complex {L(k)} in the proof of Theorem 1.3. In-
stead, they constructed an auxiliary complex {M(k)} defined by M(k) =
Σ−kD(k)/D(k − 1), where D(k) is the cofiber of the p-fold diagonal map
Spp

k−1
(S)→ Spp

k
(S). They proved that

(1.7) · · · →M(2)→M(1)→M(0)→ H Z/p
is exact at the prime p (the “mod p Whitehead Conjecture”) and then used
this to obtain Theorem 1.3.

In this paper, we define spectra M(k) that may play a similar role in a
bu version of the Whitehead Conjecture to the role played by M(k) in the
classical Whitehead Conjecture. The first part of the paper constructs the
spectra M(k), studies their properties, and gives evidence for the exactness
of the complex {M(k)} based on the calculus of functors. The second part
of the paper sets out a fairly general categorical construction related to the
rank filtration and explores some of its technical properties. The last part
of the paper shows that M(k) bears a close relationship to the categorical
construction introduced in the second part, as well as to the kth filtration
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quotient of the stable rank filtration of Rognes (if one were to apply the
stable rank filtration to topological complex K-theory). In the remainder of
this introduction, we summarize each of these segments and highlight the
new results.

The spectra M(k) are constructed in Section 2.1. We use the fact that
the sequence (1.1) is natural in augmented permutative categories, and we
consider the functor from finite pointed sets to finite-dimensional complex
vector spaces that takes a set S with basepoint ∗ to C(S)/C(∗). This functor
respects the augmentation and induces maps of spectra Spm(S)→ Am com-
patible with the inclusions Spm−1(S)→ Spm(S) and Am−1 → Am. Further,
the two sequences of spectra share the property that Spm−1(S) → Spm(S)
and Am−1 → Am are equivalences at a prime p unless m is a power of p. We
index logarithmically and denote the cofiber of Spp

k
(S)→ Apk by C(k), by

analogy to Kuhn and Priddy’s D(k), and we define

(1.8) M(k) = Σ−(k+1)C(k)/C(k − 1),

by analogy to Kuhn and Priddy’s M(k). The standard manipulation fits
these spectra together into a chain complex,

(1.9) · · · →M(2)→M(1)→M(0)→ bu.

The following conjecture is analogous to the exactness of (1.7).

Conjecture 2.13 (Reduced bu Whitehead Conjecture). The com-
plex (1.9) is exact at the prime p.

There are compelling similarities between the spectra M(k) of (1.7) and
the spectra M(k) of (1.9). As a first example, we compare the relation-
ship of (1.4) and (1.7) in the classical case with the relationship of (1.6)
and (1.9) in the bu case. In the classical case, M(k) is a cofiber of subquo-
tients of symmetric powers of the sphere spectrum, and it sits in a cofiber
sequence

Σ−1L(k − 1)→ L(k)→M(k).

(See (2.8).) It turns out that the first map is null-homotopic, and so M(k)
splits as a wedge sum, M(k) ' L(k) ∨L(k − 1) [13]. Similarly in the bu sit-
uation, M(k) is a cofiber of subquotients of symmetric powers of the sphere
spectrum and subquotients of the spectra Apk filtering bu, and there is a
cofiber sequence

(1.10) Σ−1L(k)→ T (k)→M(k).

(See (2.12).) We prove the following proposition.

Proposition 2.14. In (1.10), the mapΣ−1L(k)→ T (k) is null-homoto-
pic. Thus M(k) splits as a wedge sum M(k) ' T (k) ∨ L(k).
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A second characteristic of M(k) that is important in Kuhn and Priddy’s
work is that the Steinberg idempotent in Fp[GLk(Fp)] splits M(k) off from
Σ∞(B∆k)+, where ∆k

∼= (Z/p)k is a transitive elementary abelian p-sub-
group of Σpk . Being a wedge summand of a suspension spectrum makes
M(k) a projective spectrum in the sense of Kuhn’s homological algebra of
spectra. Also, because M(k) naturally splits from the suspension spectrum
of a classifying space (rather than a Thom space, as for L(k)), it is easier to
apply techniques involving the transfer. We establish a similar result for our
spectra M(k). The group that corresponds to ∆k in the unitary situation
is the irreducible projective elementary abelian p-subgroup Γk of U(pk),
described in [4, Section 10].

Proposition 2.15. M(k) is the stable wedge summand of Σ∞(BΓk)+
at the prime p corresponding to the symplectic Steinberg idempotent in the
group ring Fp[Sp2k(Fp)]. Thus M(k) is a projective spectrum, in the sense
of Kuhn.

While the spectra M(k) may seem at first to be an ad hoc construction,
it turns out that they are an example of a general categorical construction
closely related to Rognes’s stable rank filtration of algebraic K-theory. We
set up this construction in detail in Section 3.1, but we summarize it here.
Recall that a Γ -space is a pointed functor from the category of finite pointed
sets to the category of pointed simplicial sets. An important example of a
Γ -space is given by the infinite symmetric product functor Sp∞, whose sta-
bilization is the integral Eilenberg–MacLane spectrum H Z. We say that a
Γ -space F is “augmented” if it comes equipped with a natural transforma-
tion ε : F → Sp∞ such that ε−1(Sp0) = ∗ (Definition 3.3). Then we give
F a natural filtration RmF by pulling back the filtration of Sp∞ by finite
symmetric powers. If F is obtained by applying Segal’s construction to a
permutative augmented category C (Definition 3.7), then we denote this
filtration RmC and call it the “modified rank filtration” of the Γ -space as-
sociated to C. There is a corresponding filtration of the K-theory spectrum
of C, and we call this the “modified stable rank filtration” of the K-theory
spectrum kC (Definition 3.9). It differs from the original stable rank fil-
tration of algebraic K-theory given by Rognes in taking place within the
framework of Segal’s Γ -spaces rather than Waldhausen’s S• construction,
but it is otherwise similar in spirit.

In Sections 3.2 and 3.3, we do some technical work to prepare for the main
goal of Section 4.1, namely to exhibit M(k) as a particular example of the
modified stable rank filtration. We say that an augmentation-preserving map
F → G of augmented Γ -spaces is a “strong augmented (stable) equivalence”
if it induces a (stable) equivalence RmF → RmG at each level m of the
filtration associated to the augmentation. The goal of Section 3.2 is to prove
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the proposition below, establishing that a bar construction of appropriate Γ -
spaces is strongly equivalent to an objectwise homotopy pushout; this gives
a tool to understand the augmentation-induced filtration of Am, which is
defined in [4] by a bar construction.

Proposition 3.20. Suppose given a diagram of Γ -spaces

F1 ← F0 → F2

that is a diagram of augmented monoids, and suppose that F12 is the ob-
jectwise homotopy pushout. Then the natural map

F12 → Bar(F1, F0, F2)

is a strong augmented stable equivalence.

In Section 3.3, we study filtered Γ -spaces that are “very special,” in
the sense of Segal. The primary example we have in mind is, of course, the
Γ -space associated to a permutative augmented category, because we want
to relate the modified stable rank filtration in this case to the spectra M(k)
in the reduced bu Whitehead Conjecture. Given a map between augmented,
very special Γ -spaces, the main result of Section 3.3 allows us to identify
the first place where the filtrations differ, and to describe the difference in
terms of the value of the Γ -spaces on S0.

Proposition 3.24. Let F → G be an augmentation-preserving map of
augmented very special Γ -spaces, and suppose that Ri[F (1)] → Ri[G(1)]
is a homotopy equivalence for all i < m. Then Ri[F (X)] → Ri[G(X)] is
a homotopy equivalence for all i < m and all X, and the commuting dia-
gram

Rm[F (1)] ∧X −−−−→ Rm[F (X)]y y
Rm[G(1)] ∧X −−−−→ Rm[G(X)]

is a strong homotopy pushout diagram of augmented Γ -spaces, that is, it
remains a homotopy pushout square after the application of Rj for all j.

In the final part of the paper, we reach our goal of tying the spectra
M(k), defined in Section 2 in terms of [4], to the stable rank filtration of
Rognes. First, in Section 4.1, we study the relationship between the modified
stable rank filtration and the construction of [4]. Given an augmented per-
mutative category C, the modified stable rank filtration is a filtration from ∗
to kC, while the spectra Am arising from the construction of [4] applied to
C give a filtration going from kC to H Z. The following theorem gives the
relationship.
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Theorem 4.4. For every m, there is a stable homotopy pushout square
of augmented Γ -spaces

RmC −−−−→ Cy y
Spm −−−−→ KmC

and hence a homotopy pushout diagram of spectra

RmkC −−−−→ kCy y
Spm(S) −−−−→ Am

As an immediate consequence, we find that when C is the category of
finite-dimensional complex vector spaces, the subquotients of the stable rank
filtration are actually the same as the spectra M(k).

Corollary 4.5. There is an equivalence M(k) ' RpkkC/Rpk−1kC.

Lastly, in Section 4.2 we address the relationship of the modified stable
rank filtration and the original stable rank filtration defined by Rognes. Con-
sider the category of finitely generated free modules over a nice commutative
ring R, which is the context of [15] (where, however, the topological case
is not explicitly considered). The associated spectrum is the free K-theory
spectrum of R. We include here the case where R is R or C by considering
the topologically enriched category of real or complex vector spaces, with
associated spectrum bo or bu. In Section 4.2 we show that the natural map
from Segal’s construction of K-theory to Waldhausen’s, described in Sec-
tion 1.8 of [17], induces a map from the modified stable rank filtration to
the original stable rank filtration of Rognes. The following proposition es-
tablishes that the map is in fact an equivalence of filtrations in the special
case of topological K-theory. We note, however, that the equivalence comes
about because the map on the associated graded is the inclusion of block
diagonal matrices into block upper triangular matrices, which is a homotopy
equivalence over the complex numbers, but not generally for discrete rings.
Hence the stable rank filtration and the modified stable rank filtration will
typically be different for discrete rings.

Proposition 4.10. Let C be the topological category of finite-dimensio-
nal complex vector spaces, let RmkC be the modified stable rank filtration
of kC = bu, and let Fmbu be the mth stable rank filtration of Rognes
as applied to complex topological K-theory. Then the canonical map of
filtrations RmkC → Fmbu is a homotopy equivalence of spectra for each m.
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The proposition, together with Theorem 4.4 and the analysis in [4], yields
a good understanding of the stable rank filtration of bu. Let Fmbu be the
mth stage in the original stable rank filtration of bu. It follows from Propo-
sition 4.10, Theorem 4.4, and Proposition 2.14 that there is an equivalence

Fmbu/Fm−1bu ' Σ−1Am/Am−1 ∨ Spm(S)/Spm−1(S).

We use this to prove the following result about the connectivity of the sub-
quotients of this filtration, which confirms for the special case of topological
complex K-theory the general conjecture made by Rognes in [15] (Conjec-
ture 12.3) for certain discrete rings.

Proposition 4.11. The subquotient spectrum Fmbu/Fm−1bu of the
stable rank filtration of Rognes is contractible unless m = pk for some
prime p. If m = pk, then the bottom nontrivial homotopy group of Fmbu/
Fm−1bu occurs in dimension 2m− 2.

We conclude this introduction with an open-ended remark about the
possible minimality of the various filtrations mentioned here. In [4] we con-
structed the complex of spectra T (k) over the fiber of bu → H Z, while in
this paper we construct the complex of spectra M(k) over the spectrum
bu itself. It is a consequence of Proposition 2.14 that the complex {T (k)}
is strictly smaller than the complex {M(k)}, which arises from the stable
rank filtration (by Corollary 4.5). In [4] we conjectured that the complex
{T (k)} is in fact minimal in the case of bu. Possibly it is reasonable to ex-
pect that the filtration constructed in [4] is minimal in other cases as well
and is strictly smaller than the corresponding stable rank filtration. We also
wonder if one can learn something interesting in the case of the algebraic
K-theory of a ring R by studying the relationship between the stable rank
filtration of Rognes and the modified stable rank filtration that we define in
this paper.

The organization of the rest of the paper is as follows. In Section 2, we
construct the complex {M(k)} and prove various results about it, in par-
ticular Propositions 2.14 and 2.15 that were mentioned in the introduction.
We also discuss the calculus evidence for Conjecture 2.13. In Section 3, we
introduce the formalism of augmented Γ -spaces and define the modified sta-
ble rank filtration. We prove various technical results about constructions
involving augmented Γ -spaces, which we need in the subsequent section. In
Section 4, we prove Theorem 4.4, which gives a general result about the
relationship of the modified stable rank filtration to the construction in [4].
This implies that the complex {M(k)} is closely related to the modified
stable rank filtration for complex K-theory, bu. Finally, we prove Proposi-
tion 4.10 to show that in the case of complex K-theory, the modified stable
rank filtration agrees with Rognes’s original filtration, and we use this to
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prove Proposition 4.11, which confirms Rognes’s connectivity conjecture for
the case of bu.

2. The reduced complex M(k). As we mentioned in the introduction,
Kuhn and Priddy’s proof of the Whitehead Conjecture does not directly
attack the complex {L(k)} to show that it is a projective resolution of H Z.
Rather, they use a related auxiliary complex {M(k)}, which they prove is
a projective resolution of H Z/p. One relevant difference between the two
complexes is that the spectra L(k) are most naturally thought of as Thom
spectra, while the spectra M(k) are most naturally thought of as stable
summands of classifying spaces. Thus techniques from the transfer are more
easily applied to the spectra M(k) than to L(k).

In this section, we construct a complex {M(k)} of spectra that appears
to be the bu analogue of the complex {M(k)} in the classical situation. In
Section 2.1, we recall the relevant definitions in Kuhn’s homological algebra
of spectra, we construct the spectra M(k), and we conjecture that the com-
plex {M(k)} is exact. In Section 2.2, we give technical material on universal
spaces of collections of subgroups, which leads to two results about M(k)
(Propositions 2.14 and 2.15) that are parallel to what is known about the
classical M(k) (Propositions 2.9 and 2.10). In Section 2.3, we give evidence
based on the calculus of functors for the exactness of the complex {M(k)}.

2.1. Construction of the complex M(k). Our first order of business
is to define a complex in the context of bu that is an analogue of the projec-
tive resolution of H Z/p in (1.7). We recall the relevant homological concepts
from [8] and review the construction of the auxiliary complex {M(k)} used
by Kuhn and Priddy. Then we follow the same template with different in-
gredients to construct the complex {M(k)}, and we set out the parallels
that we know and those that we conjecture between {M(k)} and {M(k)}.

Definition 2.1 ([8, Section 2]).

(1) A spectrum is called free if it is the suspension spectrum of a space,
and it is called projective if it is a wedge summand of a free spectrum.

(2) A chain complex (over E0) of spectra is a sequence of spectra and
maps between them,

(2.2) · · · ∂3−→ X2
∂2−→ X1

∂1−→ X0
∂0−→ E0,

together with an extension to a diagram of the form

· · · −→ X2
q2−→ E2

i1−→ X1
q1−→ E1

i0−→ X0
q0−→ E0,

where each sequence En+1
in−→ Xn

qn−→ En is a cofiber sequence. (We
will often specify explicitly only the diagram (2.2), with the extended
diagram being implicitly understood.)
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(3) A cofiber sequence of spectra X → Y
q−→ Z is called short exact

if the map Ω∞q has a homotopy section, i.e., if there exists a map
f : Ω∞Z → Ω∞Y in the homotopy category such that the composed
map (Ω∞q) ◦ f is a weak homotopy equivalence. A chain complex
is called exact if each of the cofiber sequences En+1 → Xn → En is
short exact.

Remark 2.3. Elementary diagram chasing establishes a bijective corre-
spondence (up to a suitable notion of homotopy equivalence) between chain
complexes over E0 and filtrations of the spectrum E0, i.e., diagrams of spec-
tra

F0 → F1 → F2 → · · · → E0 ' hocolim Fn.

(See [8, Remark 2.2].) To associate a chain complex to a filtration of this
form, set Xn = Σ−nFn/Fn−1 and En = Σ−nE0/Fn−1. For the other di-
rection, suppose we are given a chain complex as in (2.2). This structure
provides maps En → ΣEn+1 for each n, and hence maps E0 → Σn+1En+1.
Define Fn to be the homotopy fiber of this map.

The following lemma establishes an alternative criterion for a chain com-
plex to be exact.

Lemma 2.4. A chain complex of spectra

· · · ∂n+1−−−→ Xn
∂n−→ Xn−1 −→ · · ·

∂1−→ X0
∂0−→ X−1 = E0

is exact if and only if for n ≥ −1 there exist maps εn : Ω∞Xn → Ω∞Xn+1

in the homotopy category such that for all n ≥ −1 the map

(2.5) εn−1 ◦ (Ω∞∂n) + (Ω∞∂n+1) ◦ εn

is a weak homotopy equivalence.

The maps εn will be called a “contracting homotopy” for the chain com-
plex. Note that if a chain complex is exact, then the homotopy spectral
sequence for the associated filtration collapses at the second page.

Proof of Lemma 2.4. Suppose first that the chain complex is exact. Thus
for each n there is a map

fn : Ω∞En → Ω∞Xn

that is a homotopy section of the structure map

Ω∞qn : Ω∞Xn → Ω∞En.

For each n, we have the following homotopy commutative diagram, where
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the rows are fibration sequences:

Ω∞En+1 −−−−→ Ω∞En+1 ×Ω∞En
proj−−−−→ Ω∞En

=

y yΩ∞in+fn

y=

Ω∞En+1
Ω∞in−−−−→ Ω∞Xn

Ω∞qn−−−−→ Ω∞En

The middle vertical map must be an equivalence, and we can define the map
εn to be the composite

Ω∞Xn
(Ω∞in+fn)−1

−−−−−−−−−→ Ω∞En+1 ×Ω∞En
proj−−→ Ω∞En+1

fn+1−−−→ Ω∞Xn+1.

Elementary diagram chasing establishes that the maps εn satisfy (2.5).
Conversely, suppose that we have a chain complex endowed with maps

εn satisfying (2.5). We define maps fn : Ω∞En → Ω∞Xn by fn = εn−1 ◦
(Ω∞in−1). An inductive argument shows that fn is a homotopy section
of Ω∞qn.

Having established the terminology and notation for chain complexes
of spectra, we now turn to the auxiliary spectra M(k) used by Kuhn and
Priddy. In studying the filtration of H Z by Spm(S) at a particular prime p,
one can focus on values of m that are powers of p, because otherwise
Spm−1(S) → Spm(S) is an equivalence at the prime p. In point of fact,
Kuhn and Priddy work with a version of the symmetric power filtration
that is reduced mod p, as follows. Let D(k) be the cofiber of the p-fold diag-
onal map Spp

k−1
(S)→ Spp

k
(S). The filtration of H Z by symmetric powers

of the sphere spectrum fits into a diagram with a filtration of H Z/p by the
spectra D(k) as follows:

(2.6)

∗ = Sp0(S) −−−−→ Sp1(S) −−−−→ Spp(S) −−−−→ · · · −−−−→ H Zy y∆ y∆ y×p
S = Sp1(S) −−−−→ Spp(S) −−−−→ Spp

2
(S) −−−−→ · · · −−−−→ H Zy y y y

S =: D(0) −−−−→ D(1) −−−−→ D(2) −−−−→ · · · −−−−→ H Z/p
Here the horizontal maps between symmetric powers are induced by

basepoint inclusions, while the vertical maps are p-fold diagonal maps, and
all spectra are implicitly localized at p. The columns are by definition ho-
motopy cofiber sequences. To discuss the associated chain complexes, define
L(k) := Σ−k Spp

k
(S)/Spp

k−1(S) and M(k) := Σ−kD(k)/D(k − 1). (At the
beginning of the sequence, L(0) = M(0) = S.)

Remark 2.7. Recall once again that for k > 0 the maps Spp
k−1

(S) →
Spp

k−1(S) are equivalences at p. Hence the spectra Spp
k
(S)/Spp

k−1
(S) and
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Spp
k
(S)/Spp

k−1(S) are equivalent after localization at p, and either one
could be used to define L(k). In fact, for k > 0, the difference between
the two spectra is that the latter is p-local, while the former is not, so the
latter is the p-localization of the former.

Each row in (2.6) now gives us a chain complex,

(2.8)

· · · −−−−→ Σ−1L(1) −−−−→ Σ−1L(0) −−−−→ ∗ −−−−→ H Zy y y y×p
· · · −−−−→ L(2) −−−−→ L(1) −−−−→ L(0) −−−−→ H Zy y y y
· · · −−−−→ M(2) −−−−→ M(1) −−−−→ M(0) −−−−→ H Z/p

and again each column is a homotopy cofiber sequence. In fact, it turns out
that this cofiber sequence splits.

Proposition 2.9 ([13, Proposition 5.15]). M(k) splits as a wedge sum:

M(k) ' L(k) ∨ L(k − 1).

Another important feature of the chain complexes of diagram (2.8) is
that each spectrum M(k) is projective, again from Mitchell and Priddy’s
earlier work. This is important in Kuhn and Priddy’s proof because they
use the standard homological technique of inducing a map from a projective
complex to an acyclic complex. Let ∆k be a transitive elementary abelian
p-subgroup of Σpk . (∆k is unique up to conjugacy.)

Proposition 2.10 ([13, Theorem 5.1]). M(k) splits off from Σ∞(B∆k)+
as the stable wedge summand corresponding to the Steinberg idempotent in
Fp[GLk(Fp)].

To define the bu analogue of this setup, we follow the same template
with different ingredients. Recall that the construction of [4], applied to
finite pointed sets and taken at powers of p, gives exactly the filtration

S = Sp1(S)→ Spp(S)→ Spp
2
(S)→ · · · → H Z,

while applying it to finite-dimensional complex vector spaces gives a filtra-
tion

bu = A0 → A1 → Ap → · · · → H Z.

The bu analogue of (2.6) retains the top row, and replaces the middle row
by the spectra Apk . The map between the first row and the second row is
induced by the natural map of categories from finite pointed sets to finite-
dimensional complex vector spaces, and we define spectra C(k) as the ver-
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tical cofibers, indexed logarithmically, by analogy (1) to the spectra D(k)
of (2.6):

(2.11)

∗ −−−−→ Sp1(S) −−−−→ Spp(S) −−−−→ · · · −−−−→ H Zy y y y
bu = A0 −−−−→ A1 −−−−→ Ap −−−−→ · · · −−−−→ H Zy y y y

bu =: C(−∞) −−−−→ C(0) −−−−→ C(1) −−−−→ · · · −−−−→ ∗
We now pass to subquotients with the following notation:

L(k) := Σ−k Spp
k
(S)/Spp

k−1(S),

T (k) := Σ−(k+1)Apk/Apk−1,

M(k) := Σ−(k+1)C(k)/C(k − 1).

(Note that Apk−1 → Apk−1 is an equivalence at p, and the appropriate
variation of Remark 2.7 applies to the definition of T (k).) Thus we obtain
the following diagram of chain complexes, where all spectra are implicitly
localized at p, and in fact, all spectra except for the rightmost three columns
were p-local from the outset.

(2.12)

. . .Σ−1L(2) −−−−→ Σ−1L(1) −−−−→ Σ−1L(0) −−−−→ ∗ −−−−→ H Zy y y y y'

. . . T (2) −−−−→ T (1) −−−−→ T (0) −−−−→ bu −−−−→ H Zy y y y y

. . . M(2) −−−−→ M(1) −−−−→ M(0) −−−−→ bu −−−−→ ∗

(At the beginning of the sequence, L(0) = S, T (0) = Σ∞CP∞, and M(0) '
Σ∞CP∞+ ' T (0) ∨L(0).) The conjecture that corresponds to the exactness
of (1.7), which was the main computation performed in [9], is the following.

Conjecture 2.13 (Reduced bu Whitehead Conjecture). The complex

· · · →M(2)→M(1)→M(0)→ bu

is exact at the prime p.

In the next two subsections, we elaborate further on this conjecture in
two ways. In Section 2.2, we establish analogues of Propositions 2.9 and 2.10.
These establish that the spectra in Conjecture 2.13 are projective in the
sense of Kuhn, and that the structure of diagram (2.12) is exactly parallel

(1) Note that since the sequence {C(k)} is indexed logarithmically and the sequence
{Apk} is not, we have an initial term C(−∞), corresponding to logp 0 = −∞.
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to that of diagram (2.6). Then in Section 2.3, we offer evidence from the
calculus of functors for the correctness of Conjecture 2.13.

2.2. Collections of subgroups. In this subsection, we explore further
the properties of the spectra M(k) that establish them as appropriate ana-
logues of the spectra M(k) used by Kuhn and Priddy in the proof of the
mod p Whitehead Conjecture. First, comparing (2.8) to (2.12) and look-
ing at the columns, we see that the spectra L(k − 1), L(k), and M(k) in
the classical situation correspond, respectively, to L(k), T (k), and M(k) in
the bu analogue. Thus the result that corresponds to Proposition 2.9 is the
following.

Proposition 2.14. In (2.12), the map Σ−1L(k)→ T (k) is null-homoto-
pic. Thus M(k) splits as a wedge sum M(k) ' T (k) ∨ L(k).

Second, we show that M(k) is projective, corresponding to Proposi-
tion 2.10. In fact, it turns out that to describe how M(k) splits off of a
suspension spectrum, we can use the dictionary that is used in [4] between
the identity functor and symmetric groups on the one hand, and the func-
tor V 7→ BU(V ) and the unitary groups on the other. As explained in
[4, Section 10], the analogue of the transitive elementary abelian p-subgroup
∆k of Σpk is the irreducible projective elementary abelian p-subgroup Γk of
U(pk). Just as the Weyl group of ∆k in Σpk is GLk(Fp), the Weyl group
of Γk in U(pk) is the symplectic group Sp2k(Fp). Thus the statement that
corresponds to Proposition 2.10 is the following.

Proposition 2.15. M(k) is the stable wedge summand of Σ∞(BΓk)+
at the prime p corresponding to the symplectic Steinberg idempotent in the
group ring Fp[Sp2k(Fp)]. Thus M(k) is a projective spectrum, in the sense
of Kuhn.

The objects in Propositions 2.14 and 2.15 are defined in terms of sub-
quotients of filtrations obtained by the constructions of [4]. Since that work
identifies such subquotients in terms of collections of subgroups of certain
automorphism groups, we devote much of this subsection to related calcula-
tions with universal spaces. The proofs of Propositions 2.14 and 2.15 appear
towards the end of the subsection.

We begin by recalling some essential background. (A good reference is
[2, Section 2.]) Given a group G, a collection C of subgroups of G is a set
of subgroups of G that is closed under conjugation by elements of G. There
is a universal G-space EC, terminal among G-spaces whose isotropy groups
are in C, which can be characterized by the following two properties: (i) all
isotropy groups of EC are in C, and (ii) if H ∈ C, then (EC)H ' ∗. The
space EC has a standard construction as the nerve of the category whose
objects are pairs (O, x), where O is a transitive G-set with isotropy in C,
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and x ∈ O. If we think of C as a poset under inclusions and write |C| for
the nerve of the corresponding category, then there is a G-equivariant map
EC → |C| given by taking (O, x) to the isotropy group of x, and by [2, 2.12]
that map is G-equivariant and a homotopy equivalence (but not necessarily
a G-equivalence).

We are interested in particular collections of subgroups of the unitary
group U(m). These collections were studied in [4, Section 9].

Definition 2.16. Let H be a subgroup of U(m).

(1) We say H is standard if H is conjugate to a proper subgroup of the
form

∏s
i=1 U(mi), where U(mi) is the group of automorphisms of a

subspace Cmi ⊂ Cm. The collection of standard subgroups of U(m)
is denoted Rm.

(2) We say that a standard subgroup H is complete if it is a proper
subgroup conjugate to one of the form

∏s
i=1 U(mi) where

∑
mi = m.

The collection of complete subgroups of U(m) is denoted Lm. We
observe that Lm is equivalent to the poset of proper direct sum
decompositions of Cm.

Note that all complete subgroups are standard; U(m) itself is neither
standard nor complete; the trivial subgroup is standard but is not complete.

The heart of the proofs of Propositions 2.14 and 2.15 is a commuta-
tive ladder involving both homotopy orbit spaces and strict orbit spaces of
universal spaces of collections of subgroups. Let X� denote the unreduced
suspension of a space X and, if X is a G-space with a based action, let Xh̃G
be the based (reduced) homotopy orbits, Xh̃G := EG+ ∧G X. Let Rm,ntrv

be the subcollection of nontrivial standard subgroups of U(m). By using
the map S0 → S2m that includes S0 as the poles of S2m, and the pas-
sage from homotopy orbits to actual orbits, we can construct the following
commutative ladder:

(2.17)

(ERm,ntrv
� ∧ S0)h̃U(m) −−−−→ (ERm� ∧ S0)h̃U(m)y y

(ERm,ntrv
� ∧ S0)U(m) −−−−→ (ERm� ∧ S0)U(m)y y

(ERm,ntrv
� ∧ S2m)U(m) −−−−→ (ERm� ∧ S2m)U(m)

When m is a power of p, say m = pk, applying Σ∞ to the middle row
of this ladder turns out to give the (k + 1)-fold suspension of the map
Σ−1L(k)→ T (k) in (2.12), so the following lemma is an essential ingredient
in Proposition 2.14.



44 G. Z. Arone and K. Lesh

Lemma 2.18. (ERm,ntrv
� ∧ S0)U(m) → (ERm� ∧ S0)U(m) is null-homo-

topic.

Proof. Consider the lower square of (2.17). By [4, Proposition 9.13], we
know that (ERm,ntrv

� ∧ S2m)U(m) ' ∗. On the other hand, equation (9.3)
in [4] says that

(ERm� ∧ S0)→ (ERm� ∧ S2m)

is a U(m)-equivalence, and so

(ERm� ∧ S0)U(m) → (ERm� ∧ S2m)U(m)

is an equivalence, which completes the proof.

The remaining ingredients for the proof of Proposition 2.14 come from
the upper square of (2.17). The first step is to show that the upper square
is a homotopy pushout square and that it has a contractible space in the
upper right corner. The second step is to identify the suspension spectra
of the remaining corners of the square with the appropriate suspensions of
L(k), T (k), and M(k).

Lemma 2.19. The top square of (2.17) is a homotopy pushout square
with contractible upper right corner.

Proof. The proof is essentially the same as that of Proposition 9.11 of [4].
The map ERm,ntrv → ERm is the inclusion of the singular set, as is easily
checked by looking at the isotropy groups of the chains that form the sim-
plices of ERm. The cofiber of this map has a free action of U(m) (in the
based sense), and so horizontal cofibers of the first two rows of (2.17) are
equivalent. Because all of the spaces involved are simply connected (they
are suspensions of connected spaces), this is sufficient to guarantee that the
top square of (2.17) is a homotopy pushout square. Lastly, because Rm
contains the trivial subgroup, it follows that ERm ' |Rm| ' ∗, and so
(ERm� ∧ S0)h̃U(m) is contractible.

To begin the identification of the suspension spectra of the corners of the
upper square of (2.17), note that the middle row is just the inclusion map
BRm,ntrv

� → BRm�. We recall from [4, Proposition 9.8] that the inclusion
of the collection of complete subgroups into standard subgroups induces a
map ELm → ERm,ntrv that is a U(m)-equivalence, and therefore is still a
homotopy equivalence once we take orbit spaces. This allows us to replace
the middle row of (2.17) with the map BLm� → BR�m and the top left
corner with (EL�m)h̃U(m). On the other hand, the U(m)-equivariant map
ELm → |Lm| is a homotopy equivalence (though not a U(m)-equivalence),
and so induces an equivalence on homotopy orbits. Thus Lemmas 2.18
and 2.19 tell us that the upper square of (2.17) is equivalent to a homo-
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topy pushout square

(2.20)

|Lm|�h̃U(m)
−−−−→ ∗y y

(BLm�)
∗−−−−→ (BRm�)

To prove Propositions 2.14 and 2.15, we need to relate (2.20) to the
successive quotients of the spectra Am and Spm(S) for m = pk. The most
immediate is the lower right corner. It follows from [4, Corollary 8.3] that

Σ∞(BRpk
�) ' Apk/Apk−1(2.21)

We want to relate the lower left corner of (2.20) to the quotients of sym-
metric powers of spheres, which can also be identified in terms of classifying
spaces of collections of subgroups, this time of symmetric groups rather
than unitary groups. Let Fm be the collection of proper standard subgroups
of Σm, i.e., subgroups of Σm that are conjugate to subgroups of the form
Σm1 × · · · ×Σms . Then by [4, Corollaries 8.3 and 8.4]

Σ∞(BFpk
�) ' Spp

k
(S)/Spp

k−1(S).(2.22)

The following proposition relates this to the lower left corner of (2.20)
through the inclusion Σm → U(m) that permutes the standard basis el-
ements of Cm.

Proposition 2.23. The Σm-equivariant inclusion Fm → Lm induces a
homotopy equivalence BFm ' BLm.

To prove the proposition, one shows that the orbit categories whose
nerves give BFm and BLm have isomorphic subcategories containing at
least one object from each isomorphism class. The essential point is that
standard subgroups of Σm are complete, and complete subgroups of U(m)
and of Σm have isomorphic Weyl groups.

Proof of Proposition 2.14. We have a commuting diagram

Σ∞(BFpk
�) ' //

'

��

Σ∞(BLpk
�) ' // Σ∞(BRpk,ntrv

�)

∗
��

Σ∞(BRpk
�)

'
��

Spp
k
(S)/Spp

k−1(S) // Apk/Apk−1

that results from combining equations (2.21) and (2.22) with the results
of Proposition 2.23, Lemma 2.18, and the naturality of the identification
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of filtration quotients in terms of classifying spaces of collections of sub-
groups. The (k+1)-fold desuspension of Spp

k
(S)/Spp

k−1(S) → Apk/Apk−1

is Σ−1L(k)→ T (k), so this finishes the proof of the proposition.

Proof of Proposition 2.15. From (2.20)–(2.22), we know that there is a
homotopy cofiber sequence

(|Lm|�)h̃U(m) → Spm(S)/Spm−1(S)→ Am/Am−1.

Since M(k) is defined in Section 2.1 by

M(k) ' Σ−(k+1) cofiber(Apk−1/Spp
k−1

(S)→ Apk/Spp
k
(S)),

this establishes that

(2.24) M(k) ' S−k ∧ (|Lpk |�)h̃U(pk).

On the other hand, by [4, Proposition 10.3] and its proof, we know that the
spectrum S−k ∧ (|Lpk |�)h̃U(pk) is a wedge summand of Σ∞(BΓk�)+ by the
symplectic Steinberg idempotent, which finishes the proof.

2.3. Calculus evidence for variants of the Whitehead conjecture.
In this subsection, we present evidence from the calculus of functors for
Conjecture 2.13, the “reduced bu Whitehead conjecture,” as well as for the
classical “mod p Whitehead Conjecture” when p = 2. This follows on from
the discussion in [4, Sections 1 and 11], where we discussed a tantalizing
link between, on the one hand, the chain complexes of spectra

· · · → L(1)→ L(0)→ H Z,(2.25)
· · · → T (1)→ T (0)→ bu→ H Z,(2.26)

and, on the other hand, certain “Taylor towers” arising from the calculus of
functors of Goodwillie and Weiss. For (2.25), the link is that Ωk−1Ω∞L(k)
is equivalent to the kth nontrivial layer of the Goodwillie tower at the prime
p of the identity functor evaluated at S1. Similarly for (2.26), Ωk−1Ω∞T (k)
is equivalent to the kth nontrivial layer of the Weiss tower of the functor
V 7→ BU(V ) at the prime p, evaluated at C. This suggests that there may be
a deeper connection between the complexes (2.25) and (2.26) and the Taylor
towers. In particular, the number of loops involved to relate the infinite loop
spaces of the spectra in (2.25) and (2.26) to the layers of the Taylor towers is
just right; it allows the possibility that deloopings of the structure maps in
the Taylor towers may serve as a contracting homotopy for the complexes,
which would provide conceptual proofs of exactness. (See [3] for more on
such deloopings.) We have not been able to prove these speculations.

There exists a similar link to a Taylor tower for the reduced bu White-
head Conjecture. In order to obtain a Taylor tower that potentially provides
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a contracting homotopy for the complex

· · · →M(2)→M(1)→M(0)→ bu

of Conjecture 2.13, we evaluate the Weiss tower for the functor V 7→ BU(V )
at the vector space C0. We find (by [1]) that the fibers in the tower have
the form

Ω∞map(|Lpk |�, Σ∞Sad
pk )h̃U(pk).

However, by Theorem 10.1 of [4], there is a mod p equivalence of spectra

map(|Lpk |�, Σ∞Sad
pk ) 'p S−2k+1 ∧ |Lpk |�.

By (2.24), we know that M(k) ' S−k ∧ (|Lpk |�)h̃U(pk). Thus we conclude
that when the Weiss tower for V 7→ BU(V ) is evaluated at C0, there is a
mod p equivalence between the kth layer and the appropriate loop space
of M(k):

Ω∞map(|Lpk |�, Σ∞Sad
pk )h̃U(pk) ' Ω

k−1Ω∞M(k).

The connecting maps in the Taylor tower give us maps

(2.27) Ωk−1Ω∞M(k)→ BΩkΩ∞M(k + 1) ' Ωk−1Ω∞M(k + 1).

Application of [3, Corollary 7.2] shows that the connecting map (2.27) de-
loops k−1 times, and so a delooping could provide a contracting homotopy,
as suggested in the following conjecture.

Conjecture 2.28. (k − 1)-fold deloopings of (2.27) give a contracting
homotopy for the complex of Conjecture 2.13.

Finally, we record as a curiosity Bill Dwyer’s observation that the “mod 2
Whitehead conjecture,” which asserts the exactness of the complex (1.7) for
the prime 2, also possesses a Taylor tower that might give a contracting ho-
motopy. (A contracting homotopy was constructed in [9] by other methods.)
However, we do not have a calculus analogue for the odd primary analogue
of this statement. The point for p = 2 is that S0 can be identified with
Z/2 ' Ω∞H Z/2. Thus, the Taylor tower of the identity evaluated at S0

gives rise to a tower of fibrations converging to Ω∞H Z/2, or at least trying
to converge (2). Proposition 2.29 below, together with Theorem 1.17 and
Corollary 9.6 of [2], tells us that the layers in this Taylor tower coincide, up
to the right number of deloopings, with the terms M(k) in (1.7). That is,
Proposition 2.29 tells us that ΩkΩ∞M(k) is the kth layer in the 2-localized
Taylor tower for the identity evaluated at S0. Hence the connecting maps
for this Taylor tower give maps

ΩkΩ∞M(k)→ ΩkΩ∞M(k + 1),

(2) It is not known if the Taylor tower for the identity converges at S0. We speculate
that it does.
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and deloopings of these would provide potential contracting maps for (1.7),
as in the other situations we have examined.

Proposition 2.29. At the prime 2,

M(k) '2 S
−(k−1) ∧ (|P2k |�)h̃Σ

2k

Proof. We know from Theorem 1.17 and Corollary 9.6 of [2] (applied
with p = 2 and X = S0) that S−(k−1) ∧ (|P2k |�)h̃Σ

2k
is the Steinberg sum-

mand of Σ∞(B∆k)+. On the other hand, Mitchell and Priddy [13] proved
that (at all primes) M(k) is the Steinberg wedge summand of Σ∞(B∆k)+,
and this concludes the proof.

3. General constructions. In this section, we make technical prepa-
rations for Section 4, where our goal is to compare the filtration constructed
in [4] to Rognes’s stable rank filtration of algebraic K-theory [15]. Rognes de-
fined his stable rank filtration only for the case of the algebraic K-theory of a
discrete ring, but his construction can be applied to topological K-theory as
well, and the topological case is covered by our discussion. The comparison
in Section 4 goes through an intermediary, the “modified stable rank filtra-
tion” of a K-theory spectrum, which we introduce and study in this section.
It is based on Segal’s Γ -space and Γ -category constructions, as opposed to
Waldhausen’s S• construction, which formed the setting of Rognes’s original
work. In other respects, however, it follows the spirit of [15].

In Section 3.1, we define the notion of a filtered Γ -space, we show how it
arises from an augmented permutative category, and we define the modified
stable rank filtration of a K-theory spectrum. In Section 3.2, we compare
bar constructions and homotopy pushouts of monoidal augmented Γ -spaces.
Finally, in Section 3.3 we study the particular situation of “very special”
Γ -spaces, and we give a homotopy pushout diagram that allows an induc-
tive understanding of the modified stable rank filtration for a permutative
category.

3.1. Filtered and augmented Γ -spaces. We begin by reviewing the
relationship between Γ -spaces and spectra and discussing how filtered Γ -
spaces can serve as convenient models for filtered spectra. We then consider
how an augmented permutative category gives rise to a filtered Γ -space. We
end this subsection with the definition of the modified stable rank filtration
of the spectrum associated to an augmented permutative category, such as
the algebraic K-theory spectrum of a ring, and we give examples.

Let Γ op be the skeletal category of finite pointed sets, having one ob-
ject for each cardinality. We will denote a generic object of Γ op by n =
{0, 1, . . . , n}, with zero acting as the basepoint. As usual, a Γ -space F is
a pointed functor from Γ op to the category of pointed simplicial sets. A
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Γ -space may be prolonged to a functor from the category of pointed simpli-
cial sets to itself via the diagonal of the levelwise evaluation of the functor
on a simplicial set, once we replace it with its left Kan extension from the
category of finite pointed sets to the category of all pointed sets.

A Γ -space comes equipped with a natural “assembly map”

X ∧ F (Y )→ F (X ∧ Y ),

where X and Y are pointed simplicial sets, and so there are suspension maps
S1 ∧ F (X)→ F (S1 ∧X). It follows that the sequence

F (S0), F (S1), . . . , F (Sj), . . .

forms a prespectrum, which we call the stabilization of F . A map α : F → G
between Γ -spaces is, by definition, a natural transformation between the
underlying functors. The map α is called an equivalence if α(X) is a weak
equivalence for all X, and it is called a stable equivalence if the associated
map of stabilizations

{α(Sj)} : {F (Sj)} → {G(Sj)}
is a weak homotopy equivalence of spectra. The category of Γ -spaces pro-
vides a good model for the category of (−1)-connected spectra, via the
functor F 7→ {F (Sj)} [5], [12].

We are interested in filtrations of certain spectra, so we also set up a
notion of filtered Γ -space as a model for a filtered spectrum.

Definition 3.1. A filtered Γ -space is a sequence of Γ -spaces of the form

F0 → F1 → · · · → Fm → · · · → F = colim
m

Fm

such that each of the maps Fm−1 → Fm is an (objectwise) injection.

There is a self-evident notion of a map between filtered Γ -spaces. We will
denote a generic filtered Γ -space sometimes by F , and sometimes by {Fm}.

Definition 3.2. Let F = {Fm} and G = {Gm} be filtered Γ -spaces.
Let α = {αm} be a filtered morphism from F to G. We say that α is a
filtered stable equivalence if αm is a stable equivalence for all m.

The prototypical example of a filtered Γ -space is the infinite symmetric
product functor Sp∞, filtered by the functors Spm defined by Spm(X) =
Xm/Σm. In this paper, we are mostly concerned with filtrations that are
pulled back from this filtration of Sp∞.

Definition 3.3. An augmentation of a Γ -space F is a map of Γ -spaces
ε : F → Sp∞ such that for all X, the inverse image of the basepoint of
Sp∞(X) under the augmentation ε(X) consists of just the basepoint of
F (X). In this case F will be called an augmented Γ -space.
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We can use an augmentation to endow a Γ -space F with a filtration by
Γ -spaces as follows.

Definition 3.4. Let F be an augmented Γ -space. For m = 0, 1, 2, . . .,
define RmF to be the strict limit (not the homotopy limit) of the following
diagram:

Fy
Spm −−−−→ Sp∞

The Γ -spaces RmF endow F with a filtration

(3.5) ∗ = R0F → R1F → · · · → F = colim
m
RmF

and we call it the filtration associated with the augmentation of F . Because
the composites RmF → F → Sp∞ provide compatible augmentations for
the Γ -spaces RmF , the filtration {RmF} is actually a filtration of F in the
category of augmented Γ -spaces.

From here on we will work mostly in the category of augmented Γ -spaces.

Definition 3.6.

(1) Morphisms between augmented Γ -spaces that respect the augmen-
tations are called augmented morphisms.

(2) An augmented morphism α : F → G between augmented Γ -spaces
is called a strong augmented equivalence (resp., strong augmented
stable equivalence) if the induced map Rmα : RmF → RmG is an
equivalence (resp. stable equivalence) for each m.

(3) Two augmented Γ -spaces are said to be strongly (stably) equivalent if
they are related by a possibly zigzagging chain of strong augmented
(stable) equivalences.

In order to define the modified stable rank filtration, we actually want
to filter augmented Γ -spaces that come from Segal’s construction of the
Γ -space associated to a symmetric monoidal category. For technical conve-
nience, we use a permutative category , that is, a symmetric monoidal cate-
gory in which the unit and associativity isomorphisms are actually identity
morphisms. A basic example is the “category” of nonnegative integers N,
where the only morphisms are the identity morphisms, and the permutative
structure is given by addition.

Let C be a category with sums such that the associated symmetric
monoidal category is in fact permutative. (For example, take C to have
just one object in each isomorphism class.) Segal gave a construction that
associates to C a Γ -category , i.e., a functor S 7→ C(S) from Γ op to categories,
satisfying certain conditions. The category C(S) has objects (f, α∗) consist-
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ing of (i) a function f taking pointed subsets of S to objects of C, and (ii) a
collection of compatible isomorphisms αS1,S2 : f(S1)⊕ f(S2)

∼=−→ f(S1 ∨S2),
one isomorphism for each pair of subsets S1 and S2 of S whose intersection
is the singleton set containing the basepoint. Morphisms of such objects are
required to be isomorphisms on the objects of C (or weak equivalences, in the
context in which this is meaningful). There is a Γ -space associated to a Γ -
category by taking nerves, and for simplicity, we do not distinguish between
the two. That is, given a set S, we will write C(S) for either the category
C(S) or its nerve, trusting to context to clarify which is meant. For example,
the Γ -space associated with permutative category N is N(X) = Sp∞(X).

Definition 3.7. An augmentation of a permutative category C is a func-
tor ε : C → N that respects the monoidal structure and has the property
that ε−1(0) consists of just the zero object and its identity morphism. We
write Cm for the full subcategory of C given by ε−1(m).

If C is an augmented permutative category, then the associated Γ -space
C(X) is augmented (Definition 3.3) because the augmentation ε : C → N
induces a natural transformation C(X) → N(X) = Sp∞(X). Therefore,
C(X) is equipped with a natural filtration as in (3.5), pulled back from the
filtration of Sp∞(X).

Definition 3.8. For an augmented permutative category C, we denote
the filtration of C(X) associated to the augmentation in the following way:

R0[C(X)]→ R1[C(X)]→ · · · → Rm[C(X)]→ · · · → R∞[C(X)].

Here, by definition we have R0[C(X)] = ∗ and R∞[C(X)] = C(X). Ob-
serve that Rm/Rm−1[C(1)] ∼= (BCm)+.

Recall that given a permutative category C, the spectrum

C(S0), C(S1), . . . , C(Sj), . . .
is called the (Segal) K-theory spectrum of the category C and is denoted
kC. In fact, C(−) is a very special Γ -space, i.e., the n collapse maps n → 1
induce a homotopy equivalence

C(n)→ C(1)n.

As a consequence the spectrum {C(Sj)} is actually an Ω-spectrum for
j ≥ 1 [16].

As soon as we filter C(X) as in Definition 3.8, however, the Γ -spaces
Rm[C(−)] are no longer very special. Nonetheless, the mere fact that
Rm[C(−)] is a Γ -space gives us a suspension map

S1 ∧Rm[C(Sj)]→ Rm[C(Sj+1)],

and thus {Rm[C(Sj)]}j is a spectrum, even if not an Ω-spectrum.
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Definition 3.9. If C is a permutative category, we define the spectrum
RmkC := {Rm[C(Sj)]}j to be the mth modified stable rank filtration of the
K-theory spectrum kC.

The terminology “modified stable rank filtration” is justified in Sec-
tion 4.2, where we compare this filtration to that of Rognes and show that
they are closely related in result as well as in construction.

Example 3.10.

(1) If C = N, then by definition we have Rm[C(X)] = Spm(X), and so
Rm H Z = RmkN = Spm(S).

(2) Let C be the skeletal category of finite pointed sets with objects n,
morphisms given by isomorphisms, and permutative structure given
by wedge sum with, for each n and k, a fixed choice of isomorphism
of n ∨ k with n+ k. It is well known that the associated spectrum
kC is the sphere spectrum S.

The usual model for C(X) is(∐
i∈N

EΣi ×Σi X
i
)/
∼

where ∼ identifies points in the ith summand to the (i − 1)st sum-
mand if they have coordinates at the basepoint of X. The augmen-
tation to Sp∞(X) collapses each EΣi to a point. We can see from
this model that if C is finite pointed sets, then

Rm[C(X)]/Rm−1[C(X)] ' (EΣm)+ ∧Σm X∧m ' (X∧m)h̃Σm
.

If m > 1, then the quotient is out of the stable range, and the
inclusion Rm−1C(−) → RmC(−) is actually an augmented stable
equivalence of Γ -spaces. The modified stable rank filtration is trivial
in this case: R0kC = ∗, R1kC = kC = S, and RmkC/Rm−1kC ' ∗
for m > 1.

3.2. Sums, products, and pushouts of augmented Γ -spaces. In
this subsection, we set up machinery to use in Section 4.1 for the comparison
of the modified rank filtration constructed in Section 3.1 with the filtration
constructed in [4]. The filtration of [4] is based on an inductive bar construc-
tion at the level of permutative categories and infinite loop spaces. However,
we would like to make our comparison in Section 4.1 using an inductive ho-
motopy pushout construction in the category of augmented Γ -spaces. Thus
our main result of this section, Proposition 3.20, translates between the two,
giving a strong augmented stable equivalence.

Homotopy pushouts are based on sums, while bar constructions are based
on products, so our first order of business is to compare sums and products.
Let F and G be Γ -spaces (not necessarily filtered or augmented). It is a
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standard fact that the natural inclusion F ∨G→ F ×G is a stable equiva-
lence, and we need to extend this to filtered Γ -spaces. So let F = {Fm} and
G = {Gm} be filtered Γ -spaces. We define filtrations of the Γ -spaces F ∨G
and F ×G as follows:

(F ∨G)m = Fm ∨Gm,(3.11)
(F ×G)m = colim

i+k≤m
(Fi ×Gk).(3.12)

The inclusion F ∨G→ F ×G respects these filtrations.

Lemma 3.13. If F and G are filtered Γ -spaces, then the inclusion map
F ∨ G → F × G is a filtered stable equivalence. More generally, for any
positive integer l and filtered Γ -spaces F 1, . . . , F l, the inclusion map F 1 ∨
· · · ∨ F l → F 1 × · · · × F l is a filtered stable equivalence.

Proof. We need to show that, for each m, the inclusion map

Fm ∨Gm → colim
i+k≤m

Fi ×Gk

is a stable equivalence. We consider the factorization

(3.14) Fm∨Gm → colim
{i+k≤m|i·k=0}

Fi∨Gk → colim
i+k≤m

Fi∨Gk → colim
i+k≤m

Fi×Gk,

and we assert that each of these maps is a stable equivalence. In fact, it is
easy to check that the first map is an isomorphism, and the second map is
likewise an isomorphism because the target diagram is the left Kan extension
of the source diagram. Finally, consider the diagram

hocolim
i+k≤m

Fi ∨Gk −−−−→ hocolim
i+k≤m

Fi ×Gky y
colim
i+k≤m

Fi ∨Gk −−−−→ colim
i+k≤m

Fi ×Gk

The vertical maps are equivalences, because both diagrams are cofibrant [6],
and thus colimits are equivalent to homotopy colimits. The top row is a
stable equivalence because each Fi ∨Gk → Fi ×Gk is a stable equivalence;
thus the bottom row is a stable equivalence, completing the proof that (3.14)
is a stable equivalence.

The more general statement follows by induction.

If F and G are augmented Γ -spaces, then there are natural augmenta-
tions on the Γ -spaces F ∨G and F ×G defined by the compositions

F ∨G→ Sp∞ ∨Sp∞ fold−−→ Sp∞,(3.15)

F ×G→ Sp∞×Sp∞ +−−→ Sp∞ .(3.16)
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The filtrations of F ∨G and F ×G that are induced by these augmentations
turn out to coincide with those defined by (3.11) and (3.12), as established
in the following lemma.

Lemma 3.17. If F and G are augmented Γ -spaces and F ∨G and F×G
are augmented by (3.15) and (3.16), then

Rm(F ∨G) ∼= (RmF ) ∨ (RmG), Rm(F ×G) ∼= colim
i+k≤m

(RiF ×RkG).

Proof. The lemma follows for the product by inspection of the two
stacked strict pullback diagrams

colim
i+k≤m

(RiF ×RkG) −−−−→ F ×Gy y
colim
i+k≤m

(Spi×Spk) −−−−→ Sp∞×Sp∞ycolim (+)

y+

Spm −−−−→ Sp∞

because the outer square is the pullback that identifies Rm(F × G). The
proof for the wedge is similar, but easier.

Corollary 3.18. If F and G are augmented Γ -spaces and F ∨G and
F ×G are augmented by (3.15) and (3.16), then the natural inclusion F ∨
G→ F ×G is a strong augmented stable equivalence.

Finally, we come to our goal for this subsection, which is to compare bar
constructions and homotopy pushouts of Γ -spaces. We call an augmented
Γ -space F an “augmented monoid” if there is an associative and unital map
of augmented Γ -spaces F × F → F . Suppose given a diagram

(3.19) F1 ← F0 → F2

of augmented monoids. We can define the augmented Γ -space Bar(F1, F0, F2)
as the diagonal of the standard simplicial object

q 7→ F1 × (F0)q × F2,

where the augmentation is given levelwise by (3.16).
On the other hand, we can define F12 as the objectwise homotopy push-

out of (3.19), and F12 has an augmentation because there is a (strictly)
commuting diagram

F0(X) −−−−→ F1(X)y y
F2(X) −−−−→ Sp∞(X)
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A common canonical model for F12 is the geometric realization (i.e., diago-
nal) of the simplicial object

q 7→ F1 ∨ F0 ∨ · · · ∨ F0︸ ︷︷ ︸
q

∨F2.

With this model, we see that, levelwise, the augmentation of F12 is just
the wedge of the augmentations of F0, F1, and F2. There is a natural
augmentation-preserving map F12 → Bar(F1, F0, F2) induced by the sim-
plicial map that is given in degree q by the inclusion map

F1 ∨ (F0)∨q ∨ F2 → F1 × (F0)q × F2.

We now have all of the ingredients for the main goal of this subsection.

Proposition 3.20. Suppose given a diagram of Γ -spaces

F1 ← F0 → F2

that is a diagram of augmented monoids, and suppose that F12 is the object-
wise homotopy pushout. Then the natural map

F12 → Bar(F1, F0, F2)

is a strong augmented stable equivalence.

Proof. By Corollary 3.18, F12 → Bar(F1, F0, F2) is a strong augmented
stable equivalence in each simplicial degree. It follows that the induced map
of geometric realizations is a strong augmented stable equivalence.

3.3. Very special Γ -spaces. In this subsection, we study the structure
of an augmented Γ -space a little more closely. We consider a map F → G of
augmented Γ -spaces that are “very special” in the sense of Segal. We show
that if RiF → RiG is an equivalence for i < m, then we can compare RmF
and RmG using the values of F and G on the space S0 (Proposition 3.24).
Further, unlike the previous subsection, this result does not require stabi-
lization, but is true on the level of spaces rather than spectra. It generalizes
the result of Theorem 1.1 of [11] (Remark 3.30).

The main tool for the comparison is a particular instance of the assembly
map discussed in Section 3.1. Let F be an augmented Γ -space and let k
denote the set {0, 1, . . . , k}, with 0 as the basepoint. We can define a new
augmented Γ -space X 7→ F (1) ∧X by using the assembly map to provide
an augmentation via the composition

F (1) ∧X → F (1 ∧X)
∼=−−→ F (X)→ Sp∞(X).

By construction, this gives a map of augmented Γ -spaces F (1)∧X → F (X).

Example 3.21.

(1) If F = Sp∞, then F (1) = N, and the map Sp∞(1) ∧X → Sp∞(X)
is given by m ∧ x 7→ mx.
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(2) If F is the Γ -space associated to the Segal construction for the
category of finite pointed sets (so that for connected X we have
F (X) ' Ω∞Σ∞X), then F (1) '

∨
i(BΣi)+. On each component of

F (1) ∧X, the map F (1) ∧X → F (X) becomes the map

BΣi+ ∧X →
(∐

EΣi ×Σi X
i
)/
∼

induced by the i-fold diagonal map X → Xi.

We need more detail on the filtration associated to the augmentation of
the Γ-space X 7→ F (1)∧X. Example 3.21(1) shows that Rm[Sp∞(1)∧X]
= Spm(1)∧X, and this turns out to be the key to the general case, as shown
in the proof of the following lemma.

Lemma 3.22. Rm[F (1) ∧X] = Rm[F (1)] ∧X.

Proof. We consider the following diagram of augmented Γ -spaces:

(3.23)

F (1) ∧X −−−−→ F (1 ∧X) ∼= F (X)y y
Sp∞(1) ∧X −−−−→ Sp∞(1 ∧X) ∼= Sp∞(X)

The horizontal maps are assembly maps for the Γ -spaces F and Sp∞, and
the vertical maps are given by the augmentation of F . The diagram strictly
commutes, because the assembly map is natural in maps of Γ -spaces.

By definition, the augmentation of F (1) ∧ X is given by the clockwise
path from top left to bottom right, and thus Rm[F (1) ∧ X] is defined as
the inverse image of Spm(X) ⊆ Sp∞(X) by this path. However, since (3.23)
commutes, we can go the other way around the square. As noted above, the
inverse image of Spm(X) in Sp∞(1)∧X is Spm(1)∧X. Because the inverse
image of Spm(1)∧X in F (1)∧X is, by definition, Rm[F (1)]∧X, the lemma
follows.

Now we want to use the assembly map to compare two Γ -spaces. Let
F → G be an augmentation-preserving map of augmented, very special
Γ -spaces. Then we have a commutative diagram

Rm[F (1) ∧X] −−−−→ Rm[F (X)]y y
Rm[G(1) ∧X] −−−−→ Rm[G(X)]

By using Lemma 3.22 to replace Rm[F (1) ∧ X] and Rm[G(1) ∧ X] with
Rm[F (1)]∧X and Rm[G(1)]∧X, respectively, we obtain the diagram of the
following theorem, which is our goal for this subsection.

Proposition 3.24. Let F → G be an augmentation-preserving map of
augmented very special Γ -spaces, and suppose that Ri[F (1)] → Ri[G(1)] is
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a homotopy equivalence for all i < m. Then Ri[F (X)] → Ri[G(X)] is a
homotopy equivalence for all i < m and all X, and the commuting dia-
gram

Rm[F (1)] ∧X −−−−→ Rm[F (X)]y y
Rm[G(1)] ∧X −−−−→ Rm[G(X)]

is a strong homotopy pushout diagram of augmented Γ -spaces, that is, it
remains a homotopy pushout square after the application of Rj for all j.

Before tackling the proof of Proposition 3.24, we establish a lemma about
the righthand side of its diagram in the case that X is a finite pointed set. If
k ∈ N, then because F is very special, we have an equivalence F (k)→ F (1)k

induced by the k collapse maps. We would like to understand Rm[F (k)] in
terms of F (1)k.

Lemma 3.25. Suppose that F is an augmented very special Γ -space.
Then

Rm[F (k)] ' colim
i1+···+ik≤m

Ri1 [F (1)]× · · · × Rik [F (1)].

Proof. First consider the special case of symmetric powers. Let

C := colim
i1+···+ik≤m

Spi1(1)× · · · × Spik(1) ⊂ Sp∞(1)k,

where the colimit is taken over the poset of k-tuples with (i1, . . . , ik) ≤
(i′1, . . . , i

′
k) if ij ≤ i′j for all j = 1, . . . , k. The isomorphism of discrete sets

Sp∞(k)
∼=−→ Sp∞(1)k gives us an isomorphism between Spm(k) and C.

Then we consider the map of diagrams
F (k)y

Spm(k) −−−−→ Sp∞(k)

 −→


F (1)ky
C −−−−→ Sp∞(1)k


which is an isomorphism on the lower row. Indeed, each bottom row is an
inclusion of discrete sets, and the map of upper right corners is a homo-
topy equivalence, which is sufficient to guarantee that the map between the
(strict) pullbacks is a homotopy equivalence. However, the pullback of the
left diagram isRm[F (k)] by definition, and the pullback of the right diagram
is colim i1+···+ik≤mRi1 [F (1)]× · · · × Rik [F (1)]. The lemma follows.

Proof of Proposition 3.24. It suffices to establish the proposition for
X = k for arbitrary k ∈ N. Furthermore, since RiRm = Ri if i ≤ m and
RjRm = Rm if j > m, it actually suffices to show that for i ≤ m we have a
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homotopy pushout diagram
Ri[F (1)] ∧ k −−−−→ Ri[F (k)]y y
Ri[G(1)] ∧ k −−−−→ Ri[G(k)]

We will deal with the case i = m in detail. The case i < m is proved in the
same way, except it is easier.

By Lemma 3.25, we need to show that the following is a homotopy
pushout:

(3.26)

Rm[F (1)] ∧ k −−−−→ colim
i1+···+ik≤m

Ri1 [F (1)]× · · · × Rik [F (1)]y y
Rm[G(1)] ∧ k −−−−→ colim

i1+···+ik≤m
Ri1 [G(1)]× · · · × Rik [G(1)]

As in the proof of Lemma 3.13, we note that the diagram over which the
colimits are taken is cofibrant, so the colimits can be replaced by homotopy
colimits [6]. Further, the left column consists of k-fold wedge sums, and
these can be written as homotopy colimits over the same category by taking
(i1, . . . , ik) to a point if ij < m for all ij , and taking (0, . . . , 0,m, 0, . . . , 0)
to Rm[F (1)] (for the upper row) or Rm[G(1)] (for the lower row).

With this setup, we conclude that the proposition follows because (3.26)
is a homotopy colimit over the category of k-tuples of the following two
types of squares, all of which are themselves homotopy pushout squares:

(1) when all ij < m,
∗ −−−−→ Ri1 [F (1)]× · · · × Rik [F (1)]y=

y'
∗ −−−−→ Ri1 [G(1)]× · · · × Rik [G(1)]

(2) if some ij = m,
Rm[F (1)] −−−−→∼= R0[F (1)]× · · · × Rm[F (1)]× · · · × R0[F (1)]y y
Rm[G(1)]

∼=−−−−→ R0[G(1)]× · · · × Rm[G(1)]× · · · × R0[G(1)]
In Section 4, we apply a special case of Proposition 3.24, which we single

out as a corollary. First we need to introduce one more definition.

Definition 3.27. Let F be an augmented very special Γ -space. We
say that F is m-reduced if the following natural map is a weak homotopy
equivalence:

Rm[F (1)] '−−→ Rm[Sp∞(1)].
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Since Sp∞(1) = N, this is saying that the first m pieces (usually compo-
nents) of F (1) are contractible. For example, if F is the Segal construction
for the category of finite pointed sets, then F (1) '

∐
iBΣi, and F is 1-

reduced because BΣ1 ' ∗. An augmented Γ -space is always 0-reduced by
definition.

Since Rm[F (X)] is defined as the inverse image of Spm(X) under the
augmentation F (X)→ Sp∞(X), and Sp∞(1) is discrete, we see that

Rm[F (1)] ∼=
∨

1≤i≤m
Ri/Ri−1[F (1)].

We can use this splitting to define the maps in the left square of the following
diagram:

(3.28)

Rm/Rm−1[F (1)] ∧X −−−−→ Rm[F (1)] ∧X −−−−→ Rm[F (X)]y y y
Rm/Rm−1[Sp∞(1)] ∧X −−−−→ Rm[Sp∞(1)] ∧X −−−−→ Spm(X)

However, Rm/Rm−1[Sp∞(1)] is just S0, and so we arrive at the following
corollary of Proposition 3.24.

Corollary 3.29. Suppose that F is an augmented very special Γ -space
that is (m− 1)-reduced. Then there is a homotopy pushout diagram of aug-
mented Γ -spaces

Rm/Rm−1[F (1)] ∧X −−−−→ RmF (X)y y
X −−−−→ Spm(X)

where the identity Γ -space in the lower left corner is given the augmentation
X → Sp∞X by x 7→ mx.

Proof. The left square of (3.28) is a homotopy pushout because F is
(m− 1)-reduced, and the right square is a homotopy pushout by direct ap-
plication of Proposition 3.24. Thus the outer square is a homotopy pushout,
and the corollary follows.

Remark 3.30. Proposition 3.24 is closely related to Theorem 1.1 of [11],
the proof of which comes in two halves, [11, Lemmas 6.1 and 6.2]. Proposi-
tion 3.24 is a slightly strengthened version of [11, Lemma 6.1]. We also obtain
a version of the second half: Lemma 4.7 of this paper contains Lemma 6.3
of [11] in the case of the family of all subgroups, but it is not as general as
the original lemma.

4. Comparisons. Our goal in this section is to establish the precise
relationship of the modified stable rank filtration of aK-theory spectrum kC,
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defined in Section 3.1, to two other filtrations of kC: the filtration defined
by the authors in [4], and the stable rank filtration of a K-theory spectrum
that was defined by Rognes in [15]. In Section 4.1, we do the first of these
comparisons, and we show that the filtration constructed by the authors in
[4] is related to the modified stable rank filtration through a pushout diagram
involving the symmetric powers of the sphere spectrum and the spectrum
kC itself. This allows us to verify the claim made in the introduction that
the spectra M(k) in the reduced bu Whitehead Conjecture are in fact the
subquotients of the modified stable rank filtration.

Then in Section 4.2, we compare the modified stable rank filtration to the
original construction of the stable rank filtration by Rognes. There is a map
from the first to the second, which need not be, in general, an equivalence of
filtrations in the case of the algebraic K-theory of a discrete ring. However,
we show that it is an equivalence in the case of topological K-theory. Thus,
in this case the modified stable rank filtration provides another model for
Rognes’s filtration. In combination with the results of Section 4.1, we find
that the spectra M(k) introduced in Section 2 are actually filtration quo-
tients in the stable rank filtration of Rognes.

4.1. Comparing the modified stable rank filtration to [4]. Let C
be an augmented permutative category. Our previous work in [4], and the
modified rank filtration constructed in Section 3.1, give two filtered Γ -spaces
that we can associate with C, and our goal in this subsection is to compare
them. The sequence (KmC)(−) constructed in [4] is a sequence of augmented,
very special Γ -spaces interpolating beween the Γ -spaces C(−) and N(−) =
Sp∞(−). The stabilization of this sequence is a sequence of spectra beginning
with kC and ending with H Z. In the case that C is the category of finite-
dimensional complex vector spaces, these are the spectra whose subquotients
appear in the bu Whitehead conjecture (Conjecture 1.5). On the other hand,
we have the modified rank filtration, i.e., the augmented Γ -spaces Rm[C(−)]
constructed in Section 3.1. This is a sequence of augmented, but not very
special Γ -spaces interpolating between ∗ and C(−).

Certainly the sequences (KmC)(−) and Rm[C(−)] cannot be the same.
The spectra Am that are the stabilizations of (KmC)(−) go from kC to H Z,
while the stabilizations RmkC of Rm[C(−)] go from ∗ to kC. However, the
main technical result of this subsection (Theorem 4.3) has an immediate
consequence (Theorem 4.4) giving a homotopy pushout diagram of spectra

(4.1)

RmkC −−−−→ kCy y
Spm(S) −−−−→ Am

a result that is heuristically plausible because the vertical fibers on the
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left go from ∗ to the fiber of the augmentation kC → H Z, and so do the
vertical fibers on the right. This gives a precise stable relationship between
the modified stable rank filtration in the upper left corner of (4.1), and the
filtration defined in [4] in the lower right corner, though the result is only
true stably and not on the level of the corresponding Γ -spaces.

To set up the argument to obtain (4.1), for each m we define an aug-
mented Γ -space Em[C(X)] by an objectwise pushout diagram

(4.2)

Rm[C(X)] −−−−→ C(X)y y
Spm(X) −−−−→ Em[C(X)]

where the maps Rm[C(X)]→ C(X) and Rm[C(X)]→ Spm(X) are the maps
that define Rm[C(X)] as a pullback. It is easy to check that (4.2) is a strong
pushout diagram of augmented Γ -spaces, that is, that the diagram remains
a pushout when any Ri is applied to it.

Theorem 4.3. For each m, there is a chain of augmented stable equiv-
alences

Em[C(−)] ' Km[C(−)].

The stable equivalences commute with the maps from the (m− 1)st stage to
the mth stage on both sides.

To obtain diagram (4.1) from the theorem, note that diagram (4.2) is
a homotopy pushout as well as a pushout diagram, because the top map
is an objectwise cofibration. The following theorem is then an immediate
corollary, and is the main result of this section.

Theorem 4.4. For every m, there is a stable homotopy pushout square
of augmented Γ -spaces

RmC −−−−→ Cy y
Spm −−−−→ KmC

and hence a homotopy pushout diagram of spectra
RmkC −−−−→ kCy y
Spm(S) −−−−→ Am

Theorem 4.4 implies that

RmkC/Rm−1kC ' Σ−1(Am/Spm(S))/(Am−1/Spm−1(S)).
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When m = pk, the spectrum on the right is the spectrum M(k), by definition
from (1.8). Thus the spectra M(k) are, in fact, subquotients of the modified
rank filtration.

Corollary 4.5. There is an equivalence M(k) ' RpkkC/Rpk−1kC.

The proof of Theorem 4.3 is by induction on m, the case m = 0 being
obvious because in that case both sides are C(−). The main idea of the
proof is that the augmented Γ -spaces EmC(−) and KmC(−) are obtained
from Em−1C(−) and Km−1C(−), respectively, by means of the same inductive
formula.

We first analyze the construction KmC. Recall that C has an augmenta-
tion ε : C → N. We write Cm for ε−1(m), and we call C m-reduced if |Ci| ' ∗
for i ≤ m. (An augmented permutative category C is always 0-reduced by
Definition 3.7.) The inductive construction of [4] begins with K0C := C,
and the inductive step is equivalent to taking the augmented permutative
category Km−1C, which is (m− 1)-reduced, and using a bar construction to
“kill” its mth component, (Km−1C)m, thereby obtaining the m-reduced aug-
mented permutative category KmC (Construction 3.8 and Proposition 2.5
of [4]). Theorem 3.9 of [4] establishes a stable homotopy pushout diagram
involving the associated spectra, and the following lemma strengthens this
result by using Section 3.2 of the current work to show that the homotopy
pushout diagram in question is still a stable homotopy pushout at each level
of the modified stable rank filtration, i.e., we have a strong augmented stable
homotopy pushout diagram.

Lemma 4.6. There is a strong stable homotopy pushout square of aug-
mented Γ -spaces

B(Km−1C)m+ ∧X −−−−→ (Km−1C)(X)y y
X −−−−→ (KmC)(X)

where the augmentation X → Sp∞(X) of the lower left corner is given by
x 7→ mx.

Proof. Recall from Definition 3.1 of [4] that if D is a small category, then
Free(D) is the free permutative category generated by D. By [4, Proposi-
tion 2.5 and Construction 3.8], KmC is equivalent to the (augmented) bar
construction

KmC ' Bar(Free{m},Free(Km−1C)m,Km−1C).

It now follows by Proposition 3.20 that there is a strong augmented stable
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homotopy pushout square

Free(Km−1C)m(X) −−−−→ Km−1C(X)y y
(Free{m})(X) −−−−→ KmC(X)

Now consider the diagram

(Km−1C)m+ ∧X −−−−→ Free(Km−1C)m(X) −−−−→ Km−1C(X)y y y
X −−−−→ (Free{m})(X) −−−−→ KmC(X)

where the horizontal maps are given by the natural inclusions. We just saw
that the right square is a strong augmented stable homotopy pushout. The
horizontal maps on the left are stable equivalences because they have the
form Y 7→ QY , from [4, Proposition 3.3]; this map is a strong augmented
stable equivalence with the standard augmentation, and the augmentation
here in the bottom row is simply the standard one multiplied by m.

It follows that the outer square is a strong augmented stable homotopy
pushout, which is what we wanted to prove.

Lemma 4.7. There is a strong stable homotopy pushout square of aug-
mented Γ -spaces

Rm[Km−1C(X)] −−−−→ Km−1C(X)y y
Rm[KmC(X)] −−−−→ KmC(X)

Proof. We tack the desired square onto the square obtained by applying
Corollary 3.29 to the (m− 1)-reduced augmented category Km−1C:

(4.8)

((Km−1C)m)+ ∧X −−−−→ Rm[Km−1C(X)] −−−−→ Km−1C(X)y y y
X −−−−→ Rm[KmC(X)] −−−−→ KmC(X)

The left square is a strong augmented stable homotopy pushout square by
Corollary 3.29, since KmC(X) being m-reduced implies that Ri[KmC(X)] '
Ri[N(X)] = Spi(X) for i ≤ m. The outer square of (4.8) is a strong aug-
mented stable homotopy pushout square by Lemma 4.6. Hence the right
square of (4.8) is a strong augmented stable homotopy pushout square.

Proof of Theorem 4.3. Our plan is to establish an inductive formula for
EmC that corresponds to the formula provided by Lemma 4.7 for KmC.
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Consider the following diagram of augmented Γ -spaces:

(4.9)

Rm[C(X)] −−−−→ C(X)y y
Rm[Em−1C(X)] −−−−→ Em−1C(X)y y

Spm(X) −−−−→ EmC(X)

By definition from diagram (4.2), the outer square is an augmented pushout
square, and it remains so after application of Ri, so it is a strong aug-
mented pushout square. The top horizontal map is a cofibration, so the
outer square is also a strong augmented homotopy pushout square. There-
fore Rm[EmC(X)] ' Spm(X).

If we prove that the bottom square is an augmented stable homotopy
pushout square, then we will have an inductive formula for EmC(X) that
matches the one for KmC(X). To accomplish this, it is enough to prove that
the upper square is a strong augmented stable homotopy pushout square.

Diagram (4.2) for m− 1 gives us a strong augmented pushout square

Rm−1[C(X)] −−−−→ C(X)y y
Spm−1(X) −−−−→ Em−1C(X)

and applying Rm to it and using the fact that RmRm−1 = Rm−1 gives the
strong augmented pushout square

Rm−1[C(X)] −−−−→ Rm[C(X)]y y
Spm−1(X) −−−−→ Rm[Em−1C(X)]

Consider the diagram

Rm−1[C(X)] −−−−→ Rm[C(X)] −−−−→ C(X)y y y
Spm−1(X) −−−−→ Rm[Em−1C(X)] −−−−→ Em−1C(X)

The outer square and left square are augmented pushouts, respectively by
definition and by the above discussion. It follows that the right square is
an augmented pushout, and since the top map is a cofibration, it is also a
homotopy pushout. Thus the upper square of (4.9) is a homotopy pushout,
and therefore the lower square is likewise.
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To prove the theorem, suppose given (by induction) a strong augmented
stable equivalence Km−1C → Em−1C. The induced map Rm[Km−1C] →
Rm[Em−1C] is also a strong augmented stable equivalence, and we have the
following diagram in which all the vertical maps are strong augmented sta-
ble equivalences, in the case of the leftmost arrow by Corollary 3.29 because
KmC is m-reduced:

Rm[KmC] ←−−−− Rm[Km−1C] −−−−→ Km−1Cy y y
Spm ←−−−− Rm[Em−1C] −−−−→ Em−1C

As a consequence, there is an augmented stable equivalence from the homo-
topy pushout of the top row to the homotopy pushout of the bottom row.
But that is a stable augmented equivalence from KmC to EmC, as required.

4.2. Comparing stable rank filtrations. In the previous section, we
related two filtrations of a K-theory spectrum kC: the modified stable rank
filtration constructed in Section 3.1, and the filtration of kC constructed
in [4]. In this section, we relate the construction of Section 3.1 to the original
stable rank filtration of Rognes constructed in [15]. We also justify our use
of the terminology “modified stable rank filtration” by explaining how the
two filtrations come from the same idea applied to two different infinite loop
space machines.

Our plan is to use a comparison of Segal’s and Waldhausen’s K-theory
constructions to describe a canonical map from the modified stable rank fil-
tration to the original stable rank filtration. In general, this map need not be
an equivalence of filtrations. In particular, if the category being considered
is the category of finite-dimensional free modules over a ring R satisfying
dimension invariance, then the comparison of filtration quotients amounts
to including the set of diagonal matrices into the set of upper triangular
matrices. However, for matrices over a contractible topological ring, such as
R or C, this inclusion is in fact a homotopy equivalence. Thus in the special
case of complex topological K-theory, we establish the following equivalence.
(The proposition also applies to real topological K-theory.)

Proposition 4.10. Let C be the topological category of finite-dimensio-
nal complex vector spaces, let RmkC be the modified stable rank filtration of
kC = bu, and let Fmbu be the mth stable rank filtration of Rognes as ap-
plied to complex topological K-theory. Then the canonical map of filtrations
RmkC → Fmbu is a homotopy equivalence of spectra for each m.

As a consequence, the homotopy pushout square of spectra in Theo-
rem 4.4, when applied to topological complex K-theory, gives us a good
understanding of Rognes’s stable rank filtration for this case. In particu-
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lar, Rognes conjectures in [15] that the subquotient FmkR/Fm−1kR is
(2m − 3)-connected for a large class of rings R, and we establish that this
connectivity conjecture actually holds sharply for infinitely many filtration
quotients of topological complex K-theory.

Proposition 4.11. The subquotient spectrum Fmbu/Fm−1bu of the sta-
ble rank filtration of Rognes is contractible unless m = pk for some
prime p. If m = pk, then the bottom nontrivial homotopy group of Fmbu/
Fm−1bu occurs in dimension 2m− 2.

To begin the work of comparing the modified stable rank filtration of
Definition 3.9 and the original stable rank filtration defined by Rognes, we
recapitulate from [17, Section 1.8] some elements of the comparison between
Segal’s Γ -space construction and Waldhausen’s S• construction. This is be-
cause the modified and original stable rank filtrations are based, respectively,
on filtrations of these constructions.

We reformulate slightly, in two stages. First, an alternative (isomorphic)
construction of the Segal K-theory of C comes from thinking of Sk as the
k-simplicial set S1∧· · ·∧S1, evaluating the nerve of C(−) levelwise to obtain
a k-simplicial space, and then taking the geometric realization to obtain the
kth space in the K-theory spectrum of C. (Note that for k = 1, a k-simplicial
set is just a classical simplicial set, and for k = 2, it is a bisimplicial set,
or simplicial space.) Second, for a pointed set S, the category C(S) is again
a category with sums. That is, it is a category to which Segal’s construc-
tion may be applied. Thus we can iterate by applying Segal’s construction
with the simplicial category C(S1) to the simplicial set S1 to obtain a bisim-
plicial category. The following lemma formalizes the equivalence of these
constructions.

Lemma 4.12. The natural map C(S ∧ T ) → C(S)(T ) is an equivalence
of categories.

The lemma follows from the fact that both categories are equivalent to
the product category

∏
S∧T C.

Corollary 4.13. The natural map C(S1 ∧S1)→ [C(S1)](S1) of bisim-
plicial sets is an equivalence on geometric realizations.

By induction, we conclude that we can construct the kth space in the
Segal K-theory spectrum of C by iterating Segal’s construction for the cat-
egory C: we take the k-simplicial category with sums that we have at the
kth stage and use it to evaluate Segal’s construction on the simplicial set
S1 to obtain a (k+ 1)-simplicial category. This is a useful phrasing because
Waldhausen describes his K-theory of C in terms of an iterated construction.

We summarize Waldhausen’s construction next. Recall that if C is a
category with cofibrations and weak equivalences, then wS•C is a simplicial
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category whose objects are determined by data of the following form, where
� denotes a cofibration in C:

(B1 � · · ·� Bq, choices of subquotients).

Morphisms are pointwise weak equivalences between such objects. See [17]
for more details. If C is a category with cofibrations and weak equiva-
lences, then S•C is again a category with cofibrations and weak equiva-
lences, and thus one may iterate the S• construction k times to obtain the
k-simplicial category Sk•C. Considering only the morphisms that are weak
equivalences gives us the k-simplicial category wSk•C: the objects of the cate-
gory wSq1 . . . SqkC are cofibrant q1×· · ·× qk-arrays of objects in C, together
with choices of certain subquotients, and morphisms are objectwise weak
equivalences of such arrays. As with the Segal construction, we take the
sequence wC, wS•C, . . . , wSk•C, . . . and obtain the prespectrum that is Wald-
hausen’s K-theory of C by applying nerves levelwise and then taking the
geometric realization of the resulting k-simplicial spaces. This prespectrum
is in fact an Ω-spectrum after the first map.

To compare the modified stable rank filtration to the original stable rank
filtration, we need a map between Segal’s construction and Waldhausen’s
construction. Recall from Section 3.1 that for Segal’s Γ -category S 7→ C(S),
the objects of C(S) are pairs (f, α∗), where f is a function taking pointed
subsets of S to objects of C, and α∗ is a collection of compatible isomorphisms
αS1,S2 : f(S1)⊕ f(S2)

∼=−→ f(S1 ∨ S2). If we take the simplicial model for S1

that has the set q in simplicial dimension q, then there is a functor sending
the q-simplices (f, α∗) of C(S1) to wSqC as follows. Let Ai denote f({i})
and let Bi = f({1, . . . , i}), where {i} and {1, . . . , i} implicitly contain the
basepoint. Then (f, α∗) provides structure maps

α{1,...,i},{i+1} : Bi ⊕Ai+1 → Bi+1

and the object (f, α∗) in the Segal category is sent to the object in the S•
construction

B1 � · · ·� Bq,

together with the choices of quotient maps given by the inverse of the iso-
morphisms from α∗ followed by projection: Bi+1

∼=−→ Bi ⊕Ai+1 � Ai+1.
This simplicial functor generalizes to a k-simplicial functor that for each

k takes the k-fold iterate of Segal’s construction for C on S1 to the k-fold
iterate wSk•C. Hence it induces a k-simplicial functor

C(Sk)→ wSk•C.
Together these simplicial functors induce a map from Segal’s K-theory to
Waldhausen’s K-theory, which is a homotopy equivalence when cofibrations
in Cn are “splittable up to weak equivalence” ([17, Theorem 1.8.1]).
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The example that is most relevant to us is the category of free modules
over a ring R satisfying the dimension invariance property. In this case,
both constructions give a model for the free K-theory of R that coincides
with Quillen’s K-theory above dimension zero ([17, Sections 8 and 9]). Here
we include the case when R is R or C, in which case C is the topologically
enriched category of (real or complex) vector spaces, and both constructions
give a model for connective topological K-theory.

We need to understand the two stable rank filtrations in these terms.
Recall from Section 3.1 that the modified rank filtration of an augmented
Γ -space F is defined as the pullback of the filtration of Sp∞ by {Spm}∞m=0.
On C(Sk), this amounts to filtering by the maximal dimension of the modules
appearing in an object (f, α∗). Similarly, the original stable rank filtration is
obtained by filtering wSk•C by the maximal dimension of the modules in the
k-dimensional array of cofibrations (see [15] for more details). It is easy to
see that the map from Segal’s spectrum to Waldhausen’s spectrum respects
the two filtrations.

Now we are ready to prove Propositions 4.10 and 4.11.

Proof of Proposition 4.10. Let R be R or C. The map of k-simplicial
categories

(4.14) C(Sk)→ wSk•C

respects the filtrations (modified rank filtration in the domain, rank filtra-
tion in the codomain). Therefore it is sufficient to check that it induces a
homotopy equivalence on the filtration quotients.

Both the domain and the codomain are k-simplicial groupoids, so they
are equivalent, in each dimension, to a disjoint union of groups, and the
map (4.14) is a map of k-simplicial groupoids. The category C(Sk) is equiv-
alent, in total dimension exactly n, to the disjoint union of automorphism
groups of certain ordered direct-sum decompositions of Rn. Such a group
is equivalent to a group of invertible block diagonal matrices. The cate-
gory wSk•C is equivalent, in each dimension, to a disjoint union of groups
of automorphisms of a certain lattice of subspaces of Rn for various n.
Such a group is equivalent to a certain group of invertible block upper tri-
angular matrices. In these terms, the map C(Sk) → wSk•C amounts, on
each connected component of the filtration quotients, to the inclusion of a
group of block diagonal matrices into a corresponding group of block up-
per triangular matrices. In the topological case, such an inclusion is always
a homotopy equivalence. Thus the map C(Sk) → wSk•C induces a homo-
topy equivalence on each connected component of each filtration quotient.
Therefore, the whole map between K-theory spectra is a homotopy equiva-
lence.
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As a consequence, we may verify Rognes’s connectivity conjecture for
complex K-theory. Let Fmbu be the mth stage in the original stable rank
filtration of bu, as defined by Rognes.

Proof of Proposition 4.11. By Proposition 4.10, we may substitute the
modified stable rank filtration for the original one, that is,

Fmbu/Fm−1bu ' Rm/Rm−1bu.

We use the homotopy pushout square of spectra in Theorem 4.4 to find
the connectivity of Rmbu/Rm−1bu by considering Spm(S)/Spm−1(S) and
Σ−1Am/Am−1. It follows from Theorems 9.5 and 9.7 of [4] thatΣ−1Am/Am−1

is (2m − 2)-connected when m = pk and is contractible if m 6= pk. On
the other hand, we know that Spm(S)/Spm−1(S) is also contractible unless
m = pk for some prime p, and that a basis for the mod p cohomology of
Spp

k
(S)/Spp

k−1(S) is given by admissible words of length k in A/Aβ, where
A is the Steenrod algebra [14]. The lowest dimension of an admissible se-
quence of length k is 2pk−2, which completes the proof of the proposition.
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