The orbits of the Hurwitz action of the braid groups on the standard generators

by

Yoshiro Yaguchi (Hiroshima)

Abstract

The Hurwitz action of the n-braid group B_{n} on the n-fold direct product $\left(B_{m}\right)^{n}$ of the m-braid group B_{m} is studied. We show that the orbit of any n - tuple of the n standard generators of B_{n+1} consists of the $(n-1)$ th powers of $n+1$ elements.

1. Introduction. The n-braid group, denoted by B_{n}, has the following presentation [1, 3]:
where σ_{i} is the i th standard generator represented by a geometric n-braid depicted in Figure 1.1.

Fig. 1.1
Let G be a group. The following action of B_{n} on the n-fold product G^{n} of G is called the Hurwitz action.

Definition 1.1. The Hurwitz action of B_{n} on G^{n} is the right action defined by

$$
\begin{aligned}
& \left(g_{1}, \ldots, g_{i-1}, g_{i}, g_{i+1},\right. \\
& \left.\quad g_{i+2}, \ldots, g_{n}\right) \cdot \sigma_{i} \\
& \quad=\left(g_{1}, \ldots, g_{i-1}, g_{i+1}, g_{i+1}^{-1} g_{i} g_{i+1}, g_{i+2}, \ldots, g_{n}\right)
\end{aligned}
$$

where $\sigma_{1}, \ldots, \sigma_{n-1}$ are the standard generators of B_{n}.

In this paper, we denote the orbit of $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ under the Hurwitz action of B_{n} by $\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n}$.

There is a strong relationship between the Hurwitz actions of B_{n} on G^{n} and the equivalence classes of braided surfaces when G is a braid group [7, 8, 9, 5, 10].

We study the Hurwitz action of B_{n} on $\left(B_{n+1}\right)^{n}$, so $G=B_{n+1}$. Throughout this paper, we use the symbol " s_{i} " to denote the i th standard generator of B_{n+1}, and " σ_{i} " to denote that of B_{n}.

In [4], S. P. Humphries proved the following.
TheOrem 1.2 ([4]). The orbit $\left(s_{1}, \ldots, s_{n}\right) \cdot B_{n}$ consists of $(n+1)^{n-1}$ elements.

The following is our main result.
Main Theorem 1.3. For any permutation φ of $\{1, \ldots, n\}$, the orbit $\left(s_{\varphi(1)}, \ldots, s_{\varphi(n)}\right) \cdot B_{n}$ of the element $\left(s_{\varphi(1)}, \ldots, s_{\varphi(n)}\right)$ consists of $(n+1)^{n-1}$ elements.

In Section 2, we prepare some notions which are used later. Section 3 is devoted to the proof of Theorem 3.2 which is a generalization of Theorem 1.3.

Throughout this paper, n is an integer with $n \geq 2$.
2. Some notions. Throughout this section, A is a fixed subset of $\{2, \ldots, n\}$. For integers i and j with $1 \leq i<j \leq n+1$, we define $s_{i j}^{\mathrm{A}} \in B_{n+1}$ by

$$
s_{i j}^{\mathrm{A}}=\left(\prod_{k=i+1}^{j-1}\left(s_{k}\right)^{\epsilon_{k}}\right)^{-1} s_{i} \prod_{k=i+1}^{j-1}\left(s_{k}\right)^{\epsilon_{k}}
$$

where $\epsilon_{k}=1$ if $k \in \mathrm{~A}$ and $\epsilon_{k}=-1$ if $k \notin \mathrm{~A}$ (see Example 2.1(1)).
We call $s_{i j}^{\mathrm{A}}$ a band generator of B_{n+1} associated with A. Note that a standard generator s_{i} of B_{n+1} is a band generator $s_{i, i+1}^{\mathrm{A}}$.

Let Σ^{A} be the set of band generators $\left\{s_{i j}^{\mathrm{A}} \in B_{n+1} \mid 1 \leq i<j \leq n+1\right\}$ associated with A.

Let $\mathrm{P}_{k}=(k, 0) \in \mathbb{R}^{2}$ for $1 \leq k \leq n+1$. Let C_{1} be the circle in \mathbb{R}^{2} passing through the points P_{1} and P_{n+1} with the length of the segment $\overline{\mathrm{P}_{1} \mathrm{P}_{n+1}}$ in diameter. Take the points $\mathrm{Q}_{k} \in C_{1}$ for $1 \leq k \leq n+1$ such that $\mathrm{Q}_{1}=\mathrm{P}_{1}$, $\mathrm{Q}_{n+1}=\mathrm{P}_{n+1}$ and $\mathrm{Q}_{k}=\left(k, y_{k}\right)$ for each $2 \leq k \leq n$, where $y_{k}<0$ if $k \in \mathrm{~A}$ and $y_{k}>0$ if $k \notin \mathrm{~A}$.

For $1 \leq i<j \leq n+1$, we call the segment $\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$ the segment corresponding to $s_{i j}^{\mathrm{A}}$. (See Example 2.1(2).)

REmARK. The reason to call $\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$ the segment corresponding to $s_{i j}^{\mathrm{A}}$ is as follows.

Let $\mathrm{P}_{0}=\mathrm{Q}_{0}=(0,0) \in \mathbb{R}^{2}$ and $\mathrm{P}_{n+2}=\mathrm{Q}_{n+2}=(n+2,0) \in \mathbb{R}^{2}$. Let C_{2} be the circle in \mathbb{R}^{2} passing through the points P_{0} and P_{n+2} with the length of the segment $\overline{\mathrm{P}_{0} \mathrm{P}_{n+2}}$ in diameter. Let D be the disk in \mathbb{R}^{2} with $\partial D=C_{2}$. Take an isotopy $\left\{h_{u}\right\}_{u \in[0,1]}$ of D such that for each $u \in[0,1], h_{0}=\mathrm{id}$, $\left.h_{u}\right|_{\partial D_{n+1}}=\mathrm{id}$, and for each $u \in[0,1]$ and each $(x, y) \in \bigcup_{i=0}^{n+1} \overline{\mathrm{Q}_{i} \mathrm{Q}_{i+1}}$, $h_{u}(x, y)=(x,(1-u) y)$.

Then $h_{1}\left(\mathrm{Q}_{i}\right)=\mathrm{P}_{i}$ for any i. For $1 \leq i<j \leq n+1$, we define $\alpha_{i j}^{\mathrm{A}}$ to be the $\operatorname{arc} h_{1}\left(\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}\right)$ in D. Note that $\partial \alpha_{i j}^{\mathrm{A}}=\left\{\mathrm{P}_{i}, \mathrm{P}_{j}\right\}, \alpha_{i j}^{\mathrm{A}}$ is above P_{k} if $k \in \mathrm{~A}$ and $\alpha_{i j}^{\mathrm{A}}$ is below P_{k} if $k \notin \mathrm{~A}$ (see Example 2.1(3)).

The braid group B_{n+1} is isomorphic to the mapping class group of $\left(D,\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n+1}\right\}\right)$ relative to the boundary (cf. [2]).

The band generator $s_{i j}^{\mathrm{A}}$ corresponds to the isotopy class of a homeomorphism from $\left(D,\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n+1}\right\}\right)$ to itself which twists a sufficiently small disk neighborhood of the arc $\alpha_{i j}^{\mathrm{A}}$ by a 180° clockwise rotation using its collar neighborhood.

By the homeomorphism $h_{1}:\left(D,\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n+1}\right\}\right) \rightarrow\left(D,\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n+1}\right\}\right)$, we identify the mapping class group of $\left(D,\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n+1}\right\}\right)$ and that of $\left(D,\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{n+1}\right\}\right)$. Then the band generator $s_{i j}^{\mathrm{A}}$ corresponds to the isotopy class of a homeomorphism from $\left(D,\left\{\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{n+1}\right\}\right)$ to itself which twists a sufficiently small disk neighborhood of the segment $\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$ by a 180° clockwise rotation. Therefore, we say that the segment $\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$ corresponds to the band generator $s_{i j}^{\mathrm{A}} \in \Sigma^{\mathrm{A}}$.

Example 2.1. Let $n=4$ and $\mathrm{A}=\{2\}$.
(1) The band generator $s_{14}^{\mathrm{A}} \in \Sigma^{\mathrm{A}}$ is $s_{3}\left(s_{2}\right)^{-1} s_{1} s_{2}\left(s_{3}\right)^{-1}$ (see Figure 2.1).
(2) Figure 2.2 shows the segment $\overline{\mathrm{Q}_{1} \mathrm{Q}_{4}}$ corresponding to $s_{14}^{\mathrm{A}} \in \Sigma^{\mathrm{A}}$.
(3) Figure 2.3 shows the $\operatorname{arc} \alpha_{14}^{\mathrm{A}}=h_{1}\left(\overline{\mathrm{Q}_{1} \mathrm{Q}_{4}}\right)$.

Fig. 2.1

For an element $\left(g_{1}, \ldots, g_{n}\right)$ of the n-fold product $\left(\Sigma^{\mathrm{A}}\right)^{n}$ of Σ^{A}, we call an n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of the segments a_{i} corresponding to g_{i} the segment system corresponding to $\left(g_{1}, \ldots, g_{n}\right)$.

Fig. 2.2. $n=4$ and $\mathrm{A}=\{2\}$

Fig. 2.3

Let a and a^{\prime} be the segments corresponding to elements g and g^{\prime} of Σ^{A}. If $\partial a=\left\{\mathrm{Q}_{i}, \mathrm{Q}_{i^{\prime}}\right\}, \partial a^{\prime}=\left\{\mathrm{Q}_{i}, \mathrm{Q}_{i^{\prime \prime}}\right\}$ and $\mathrm{Q}_{i^{\prime}} \neq \mathrm{Q}_{i^{\prime \prime}}$, i.e., a and a^{\prime} share a common end point Q_{i}, then we say that a and a^{\prime} are adjacent (at Q_{i}). Moreover, if the end points $\mathrm{Q}_{i^{\prime}}, \mathrm{Q}_{i}$ and $\mathrm{Q}_{i^{\prime \prime}}$ appear on C_{1} counterclockwise in this order, then we say that a^{\prime} is right adjacent to a (at Q_{i}), or a is left adjacent to a^{\prime}.

Definition 2.2. An element $\left(g_{1}, \ldots, g_{n}\right)$ of $\left(\Sigma^{\mathrm{A}}\right)^{n}$ is A-good if the segment system $\left(a_{1}, \ldots, a_{n}\right)$ corresponding to $\left(g_{1}, \ldots, g_{n}\right)$ satisfies the following conditions:
(i) If $k \neq l$, then a_{k} and a_{l} are disjoint or adjacent,
(ii) If $k<l$ and a_{k} and a_{l} intersect, then a_{l} is right adjacent to a^{\prime}.
(iii) The union $a_{1} \cup \cdots \cup a_{n}$ is a tree as a graph.

Example 2.3. Let $n=4$ and $\mathrm{A}=\{2\}$. Then $\left(s_{23}^{\mathrm{A}}, s_{24}^{\mathrm{A}}, s_{13}^{\mathrm{A}}, s_{25}^{\mathrm{A}}\right)$ is A good. The segments a_{1}, \ldots, a_{4} corresponding to $s_{23}^{\mathrm{A}}, s_{24}^{\mathrm{A}}, s_{13}^{\mathrm{A}}, s_{25}^{\mathrm{A}}$ are depicted in Figure 2.4.

Fig. 2.4
Let $\left(g_{1}, \ldots, g_{n}\right)$ be an element of $\left(\Sigma^{\mathrm{A}}\right)^{n}$ that is A-good and let $\left(a_{1}, \ldots, a_{n}\right)$ be the corresponding segment system.

Suppose that a_{l} is right adjacent to a_{k} at Q_{i} for some $k, l(k<l)$ and some i. Put $a_{k}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{i^{\prime}}}$ and $a_{l}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{i^{\prime \prime}}}$. Then the points $\mathrm{Q}_{i^{\prime}}, \mathrm{Q}_{i}$ and $\mathrm{Q}_{i^{\prime \prime}}$ appear counterclockwise in this order and the following lemma holds:

LEMMA 2.4. If $a_{k} \cap a_{m} \cap a_{l}=\left\{\mathrm{Q}_{i}\right\}$ for $m \in\{1, \ldots, n\}, m \neq k, l$, then a_{m} intersects $\operatorname{Int} \overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}$ if and only if $k<m<l$. In particular, if $l=k+1$, then a_{m} and $\operatorname{Int} \overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}$ are disjoint.

Proof. Put $a_{m}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$.
(Case I) Suppose that $m<k<l$. Then a_{m} is left adjacent to a_{k} and a_{l} by condition (ii) of Definition 2.2. Hence, the points $\mathrm{Q}_{j}, \mathrm{Q}_{i}, \mathrm{Q}_{i^{\prime \prime}}$ and $\mathrm{Q}_{i^{\prime}}$ appear counterclockwise in this order. Then a_{m} and Int $\overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}$ are disjoint.
(Case II) Suppose that $k<m<l$. Then a_{m} is right adjacent to a_{k} and left adjacent to a_{l} by condition (ii) of Definition 2.2. Hence, the points $\mathrm{Q}_{i^{\prime}}$,
$\mathrm{Q}_{i}, \mathrm{Q}_{i^{\prime \prime}}$ and Q_{j} appear counterclockwise in this order. Then a_{m} intersects Int $\overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}$.
(Case III) Suppose that $k<l<m$. Then a_{m} is right adjacent to a_{k} and a_{l} by condition (ii) of Definition 2.2. Hence, the points $\mathrm{Q}_{i^{\prime}}, \mathrm{Q}_{i}, \mathrm{Q}_{j}$ and $\mathrm{Q}_{i^{\prime \prime}}$ appear counterclockwise in this order. Then a_{m} and $\operatorname{Int} \mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}$ are disjoint.

Thus, a_{m} intersects $\operatorname{Int} \overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}$ if and only if $k<m<l$.
3. Proof of Theorem 1.3. The following lemma is the first step towards the proof of Theorem 1.3.

Lemma 3.1. For an element $\varphi \in \operatorname{Sym}\{1, \ldots, n\}$, let $\mathrm{A}=\{i \in \mathbb{N} \mid$ $\left.\varphi^{-1}(i-1)<\varphi^{-1}(i), 2 \leq i \leq n\right\}$. Then $\left(s_{\varphi(1)}, \ldots, s_{\varphi(n)}\right)$ is an element of $\left(\Sigma^{\mathrm{A}}\right)^{n}$ and it is A-good.

Proof. Since the standard generators of B_{n+1} belong to Σ^{A}, it follows that $\left(s_{\varphi(1)}, \ldots, s_{\varphi(n)}\right) \in\left(\Sigma^{\mathrm{A}}\right)^{n}$. The arc a_{m} corresponding to $s_{\varphi(m)}$ is $\overline{\mathrm{Q}_{\varphi(m)} \mathrm{Q}_{\varphi(m)+1}}$. Suppose that $a_{k} \cap a_{l} \neq \emptyset$ for $k<l$. Then $a_{k} \cap a_{l}=\left\{\mathrm{Q}_{\varphi(k)}\right\}$ or $\left\{\mathrm{Q}_{\varphi(l)}\right\}$, and $|\varphi(k)-\varphi(l)|=1$. Assume $\varphi(l)-\varphi(k)=1$, so that $a_{k} \cap a_{l}=$ $\left\{\mathrm{Q}_{\varphi(l)}\right\}$ and $\varphi(l) \in \mathrm{A}$. Then the points $\mathrm{Q}_{\varphi(k)}, \mathrm{Q}_{\varphi(l)}$ and $\mathrm{Q}_{\varphi(l)+1}$ appear counterclockwise in this order since the y-coordinate of $\mathrm{Q}_{\varphi(l)}$ is negative. Thus, a_{l} is right adjacent to a_{k}. Assume $\varphi(k)-\varphi(l)=1$, so that $a_{k} \cap a_{l}=\left\{\mathrm{Q}_{\varphi(k)}\right\}$ and $\varphi(k) \notin \mathrm{A}$. Then the points $\mathrm{Q}_{\varphi(k+1)}, \mathrm{Q}_{\varphi(k)}$ and $\mathrm{Q}_{\varphi(l)}$ appear counterclockwise in this order since the y-coordinate of $\mathrm{Q}_{\varphi(l)}$ is positive. Thus, a_{l} is right adjacent to a_{k}. We easily see that the graph $a_{1} \cup \cdots \cup a_{n}$ is a tree.

Theorem 1.3 is obtained from the following theorem by Lemma 3.1.
Theorem 3.2. Let A be a subset of $\{2, \ldots, n\}$. For any element $\left(g_{1}, \ldots, g_{n}\right) \in\left(\Sigma^{\mathrm{A}}\right)^{n}$ that is A-good, the orbit $\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n}$ consists of $(n+1)^{n-1}$ elements.

The rest of this paper is devoted to proving Theorem 3.2.
For $\left(g_{1}, \ldots, g_{n}\right) \in\left(\Sigma^{\mathrm{A}}\right)^{n}$, it is not always the case that $\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n}$ $\subset\left(\Sigma^{\mathrm{A}}\right)^{n}$. However, we have

Lemma 3.3. Let A be a subset of $\{2, \ldots, n\}$. If $\left(g_{1}, \ldots, g_{n}\right) \in\left(\Sigma^{\mathrm{A}}\right)^{n}$ is A-good, then, for any $k \in\{1, \ldots, n-1\}$ and any $\epsilon \in\{1,-1\}$, we have:
(1) $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{\epsilon} \in\left(\Sigma^{\mathrm{A}}\right)^{n}$,
(2) $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{\epsilon}$ is A-good.

Proof. Let $\left(a_{1}, \ldots, a_{n}\right)$ be the segment system corresponding to $\left(g_{1}, \ldots, g_{n}\right)$, and let $\left(b_{1}, \ldots, b_{n}\right)$ be that corresponding to $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$.

First we consider the case where a_{k} and a_{k+1} are disjoint. Then g_{k} and g_{k+1} are commutative, and

$$
\begin{aligned}
\left(g_{1}, \ldots, g_{k-1}, g_{k}, g_{k+1},\right. & \left.g_{k+2}, \ldots, g_{n}\right) \cdot \sigma_{k} \\
& =\left(g_{1}, \ldots, g_{k-1}, g_{k}, g_{k+1}, g_{k+2}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{-1} \\
& =\left(g_{1}, \ldots, g_{k-1}, g_{k+1}, g_{k}, g_{k+2}, \ldots, g_{n}\right)
\end{aligned}
$$

Thus, we obtain (1).
For the proof of (2), it is enough to prove $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ is A-good. Since $b_{k}=a_{k+1}, b_{k+1}=a_{k}$ and $b_{p}=a_{p}$ for $p \neq k, k+1$, we see that $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ satisfies conditions (i) and (iii) of Definition 2.2. Suppose that b_{p} and b_{q} intersect for some p and $q(p<q)$. Let $b_{p}=a_{p^{\prime}}, b_{q}=a_{q^{\prime}}$. Note that $(p, q) \neq(k, k+1)$ and $\left(p^{\prime}, q^{\prime}\right) \neq(k+1, k)$ because $b_{k} \cap b_{k+1}=a_{k+1} \cap a_{k}=\emptyset$. Thus, we have $p^{\prime}<q^{\prime}$ because $p<q$. Since $a_{p^{\prime}}$ and $a_{q^{\prime}}$ satisfy condition (ii) of Definition 2.2, so do b_{p} and b_{q}. We have (2).

Now consider the case where a_{k} and a_{k+1} intersect. Let $\mathrm{Q}_{x}, \mathrm{Q}_{y}, \mathrm{Q}_{z}$ $(x<y<z)$ be the points such that $\left\{\mathrm{Q}_{x}, \mathrm{Q}_{y}, \mathrm{Q}_{z}\right\}=\partial a_{k} \cup \partial a_{k+1}$.

By condition (ii) of Definition 2.2, a_{k} and a_{k+1} satisfy one of the following conditions:
(A1) $y \in \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{y}}, a_{k+1}=\overline{\mathrm{Q}_{y} \mathrm{Q}_{z}}$,
(A2) $y \in \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{y} \mathrm{Q}_{z}}, a_{k+1}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{z}}$,
(A3) $y \in \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{z}}, a_{k+1}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{y}}$,
(A4) $y \notin \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{y} \mathrm{Q}_{z}}, a_{k+1}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{y}}$,
(A5) $y \notin \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{y}}, a_{k+1}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{z}}$,
(A6) $y \notin \mathrm{~A}$ and $a_{k}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{z}}, a_{k+1}=\overline{\mathrm{Q}_{y} \mathrm{Q}_{z}}$.
Then $\left(g_{k}, g_{k+1}\right)=\left(s_{x y}^{\mathrm{A}}, s_{y z}^{\mathrm{A}}\right),\left(s_{y z}^{\mathrm{A}}, s_{x z}^{\mathrm{A}}\right),\left(s_{x z}^{\mathrm{A}}, s_{x y}^{\mathrm{A}}\right),\left(s_{y z}^{\mathrm{A}}, s_{x y}^{\mathrm{A}}\right),\left(s_{x y}^{\mathrm{A}}, s_{x z}^{\mathrm{A}}\right)$ or $\left(s_{x z}^{\mathrm{A}}, s_{y z}^{\mathrm{A}}\right)$. By direct calculations $\left(g_{k+1},\left(g_{k+1}\right)^{-1} g_{k} g_{k+1}\right)=\left(s_{y z}^{\mathrm{A}}, s_{x z}^{\mathrm{A}}\right)$, $\left(s_{x z}^{\mathrm{A}}, s_{x y}^{\mathrm{A}}\right),\left(s_{x y}^{\mathrm{A}}, s_{y z}^{\mathrm{A}}\right),\left(s_{x y}^{\mathrm{A}}, s_{x z}^{\mathrm{A}}\right),\left(s_{x z}^{\mathrm{A}}, s_{y z}^{\mathrm{A}}\right)$ or $\left(s_{y z}^{\mathrm{A}}, s_{x y}^{\mathrm{A}}\right)$, respectively. This implies that $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ and $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{2}$ are elements of $\left(\Sigma^{\mathrm{A}}\right)^{n}$ and $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{3}=\left(g_{1}, \ldots, g_{n}\right)$. Note that $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{-1} \in\left(\Sigma_{\mathrm{A}}\right)^{n}$ since $\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{-1}=\left(g_{1}, \ldots, g_{n}\right) \cdot\left(\sigma_{k}\right)^{2}$. Thus, we obtain (1).

For (2), it is sufficient to prove $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ is A-good. Note that $b_{k}=a_{k+1}, b_{k+1}$ is the edge of the boundary of $\left|\mathrm{Q}_{x} \mathrm{Q}_{y} \mathrm{Q}_{z}\right|$ that is neither a_{k} nor a_{k+1}, and $b_{p}=a_{p}$ for $p \neq k, k+1$. Thus, we see that b_{p} and b_{k} are disjoint or $b_{p} \cap b_{k}=\left\{\mathrm{Q}_{i}\right\}$ for $p \neq k, k+1$ and some i, and b_{p} and b_{q} are disjoint or $b_{p} \cap b_{q}=\left\{\mathrm{Q}_{i}\right\}$ for $p \neq q \in\{1, \ldots, n\} \backslash\{k, k+1\}$ and some i. By Lemma 2.4, for $p \neq k, k+1, a_{p}$ and Int b_{k+1} are disjoint. Thus, b_{p} and b_{k+1} are disjoint or $b_{p} \cap b_{k+1}=\left\{\mathrm{Q}_{i}\right\}$ for $p \neq k, k+1$ and some i, and $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ satisfies condition (i) of Definition 2.2.

Let X be the space defined by

$$
\begin{aligned}
X & =a_{1} \cup \cdots \cup a_{k-1} \cup\left|\mathrm{Q}_{x} \mathrm{Q}_{y} \mathrm{Q}_{z}\right| \cup a_{k+2} \cup \cdots \cup a_{n} \\
& =b_{1} \cup \cdots \cup b_{k-1} \cup\left|\mathrm{Q}_{x} \mathrm{Q}_{y} \mathrm{Q}_{z}\right| \cup b_{k+2} \cup \cdots \cup b_{n} .
\end{aligned}
$$

Note that X is homotopy equivalent to $a_{1} \cup \cdots \cup a_{n}$ and $b_{1} \cup \cdots \cup b_{n}$. Since $a_{1} \cup \cdots \cup a_{n}$ is a tree, we see that $b_{1} \cup \cdots \cup b_{n}$ is a tree. Thus, $\left(g_{1}, \ldots, g_{n}\right) \cdot \sigma_{k}$ satisfies condition (iii) of Definition 2.2.

We have already seen that b_{k} and b_{k+1} satisfy condition (A2), (A3), (A1), (A5), (A6) or (A4) if a_{k} and a_{k+1} satisfy (A1), (A2), (A3), (A4), (A5) or (A6), respectively. Let $p \neq q \in\{1, \ldots, n\} \backslash\{k, k+1\}$. If $b_{p}\left(=a_{p}\right)$ and b_{q} $\left(=a_{q}\right)$ intersect, then they satisfy condition (ii) of Definition 2.2. If b_{k} and b_{p} intersect, then $b_{k}=a_{k+1}$ and $b_{p}=a_{p}$ satisfy condition (ii) of Definition 2.2 since $p<k$ iff $p<k+1$.

The remainder of the proof of (2) is to check that b_{k+1} and b_{p} satisfy condition (ii) of Definition 2.2 if b_{k+1} and b_{p} intersect for $p \in\{1, \ldots, n\} \backslash$ $\{k, k+1\}$.

Let $b_{k} \cap b_{k+1}=\left\{\mathrm{Q}_{i}\right\}, b_{k}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{i^{\prime}}}$ and $b_{k+1}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{i^{\prime \prime}}}$. Then we have already seen that $a_{k}=\overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}, a_{k+1}=b_{k}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{i^{\prime}}}$ and the points $\mathrm{Q}_{i^{\prime \prime}}, \mathrm{Q}_{i^{\prime}}$ and Q_{i} appear counterclockwise in this order.
(Case 1) Suppose that b_{p} is adjacent to b_{k+1} at Q_{i} and let $b_{p}=\overline{\mathrm{Q}_{i} \mathrm{Q}_{j}}$.
(Case 1-1) Suppose that $p<k$. Then we have seen that b_{p} is left adjacent to b_{k}. Since b_{k} is left adjacent to b_{k+1}, we see that b_{p} is left adjacent to b_{k+1}.
(Case 1-2) Suppose that $p>k$. Then we have seen that b_{p} is right adjacent to b_{k} and the points $\mathrm{Q}_{i^{\prime}}, \mathrm{Q}_{i}$ and Q_{j} appear counterclockwise in this order. By Lemma 2.4, the points $\mathrm{Q}_{i^{\prime \prime}}, \mathrm{Q}_{i}$ and Q_{j} appear counterclockwise in this order. Thus, b_{p} is right adjacent to b_{k+1}.
(Case 2) Suppose that b_{p} is adjacent to b_{k+1} at $\mathrm{Q}_{i^{\prime \prime}}$ and let $b_{p}=\overline{\mathrm{Q}_{i^{\prime \prime}} \mathrm{Q}_{j}}$.
(Case 2-1) Suppose that $p<k$. Then we have seen that $b_{p}\left(=a_{p}\right)$ is right adjacent to $\overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}=a_{k}$ at $\mathrm{Q}_{i^{\prime \prime}}$ by condition (ii) of Definition 2.2. Thus, $\mathrm{Q}_{j}, \mathrm{Q}_{i^{\prime \prime}}$ and $\mathrm{Q}_{i^{\prime}}$ appear counterclockwise in this order. By Lemma 2.4, Q_{j}, $\mathrm{Q}_{i^{\prime \prime}}$ and Q_{i} appear counterclockwise in this order. Thus, b_{p} is left adjacent to b_{k+1}.
(Case 2-2) Suppose that $p>k$. Then we have seen that $b_{p}=a_{p}$ is right adjacent to $\overline{\mathrm{Q}_{i^{\prime}} \mathrm{Q}_{i^{\prime \prime}}}=a_{k}$ at $\mathrm{Q}_{i^{\prime \prime}}$ by condition (ii) of Definition 2.2. Note that a_{k} is right adjacent to b_{k+1}. Thus, b_{p} is right adjacent to b_{k+1}.

Consequently, b_{k+1} and b_{p} satisfy condition (ii) of Definition 2.2 in the case where $b_{k+1}=\overline{\mathrm{Q}_{x} \mathrm{Q}_{z}}$, and this completes the proof of Lemma 3.3.

Let S_{n+1} be the symmetric group of degree $n+1$.
Lemma 3.4 ([6]). Let $\tau_{1}, \ldots, \tau_{n}$ be the transpositions in S_{n+1} satisfying $\tau_{i} \neq \tau_{j}(i \neq j)$. Then the orbit of $\left(\tau_{1}, \ldots, \tau_{n}\right)$ under the Hurwitz action of B_{n} on $\left(S_{n+1}\right)^{n}$ consists of $(n+1)^{n-1}$ elements.

For groups G, H and a homomorphism $f: G \rightarrow H$, let $f^{n}: G^{n} \rightarrow H^{n}$ be the map defined by $\left(g_{1}, \ldots, g_{n}\right) \mapsto\left(f\left(g_{1}\right), \ldots, f\left(g_{n}\right)\right)$. The following lemma is easily seen.

Lemma 3.5. For any $\beta \in B_{n}$,

$$
f^{n}\left(\left(g_{1}, \ldots, g_{n}\right) \cdot \beta\right)=\left(f^{n}\left(g_{1}, \ldots, g_{n}\right)\right) \cdot \beta
$$

Proof of Theorem 3.2. Note that the restriction $\left.p\right|_{\Sigma^{\mathrm{A}}}$ of the canonical projection $p: B_{n+1} \rightarrow S_{n+1}$ to Σ^{A} is injective and the image $p\left(\Sigma^{\mathrm{A}}\right)$ is the set of all transpositions of S_{n+1}. By Lemma 3.3, we see $\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n} \subset$ $\left(\Sigma^{\mathrm{A}}\right)^{n}$. Hence, $\#\left(\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n}\right)=\#\left(p^{n}\left(\left(g_{1}, \ldots, g_{n}\right) \cdot B_{n}\right)\right)$. By Lemma 3.5, \#($\left.p^{n}\left(\left(g_{1}, \ldots, g_{n}\right)\right) \cdot B_{n}\right)=\#\left(\left(p^{n}\left(g_{1}, \ldots, g_{n}\right)\right) \cdot B_{n}\right)$. By the definition of A-good, $g_{k} \neq g_{l}$ for $k \neq l$ (since the arcs a_{k} and a_{l} corresponding to g_{k} and g_{l} are disjoint or they meet only in their end point). Hence, $p^{n}\left(g_{1}, \ldots, g_{n}\right)$ is an element whose components are mutually distinct transpositions of S_{n+1}. By Lemma 3.4, we obtain the result.

Acknowledgments. The author would like to thank Professors Takao Matumoto, Seiichi Kamada and Makoto Sakuma for their help. He is partly supported by JSPS Research Fellowships for Young Scientists.

References

[1] E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925), 47-72.
[2] J. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton Univ. Press, 1974.
[3] F. Bohnenblust, On algebraic braid groups, Ann. of Math. 48 (1947), 127-136.
[4] S. P. Humphries, Finite Hurwitz braid group actions for Artin groups, Israel J. Math. 143 (2004), 189-222.
[5] S. Kamada, Braid and Knot Theory in Dimension Four, Math. Surveys Monogr. 95, Amer. Math. Soc., 2002.
[6] P. Kluitmann, Hurwitz action and finite quotients of braid groups, in: Contemp. Math. 78, Amer. Math. Soc., 1988, 299-325.
[7] B. G. Moishezon, Stable branch curves and braid monodromies, in: Algebraic Geometry, Lecture Notes in Math. 862, Springer, 1981, 107-192.
[8] B. Moishezon and M. Teicher, Braid group technique in complex geometry I. Line arrangements in $\mathbb{C P}^{2}$, in: Contemp. Math. 78, Amer. Math. Soc., 1988, 425-555.
[9] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1-37.
[10] Y. Yaguchi, Isotropy subgroup of Hurwitz action of the 3-braid group on the braid systems, J. Knot Theory Ramif. 18 (2009), 1021-1030.

Yoshiro Yaguchi
Department of Mathematics
Hiroshima University
Higashi-Hiroshima, 739-8526 Japan
E-mail: d083645@hiroshima-u.ac.jp

