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The Complex Stone–Weierstrass Property

by

Kenneth Kunen (Madison, WI)

Abstract. The compact Hausdorff space X has the CSWP iff every subalgebra of
C(X,C) which separates points and contains the constant functions is dense in C(X,C).
Results of W. Rudin (1956) and Hoffman and Singer (1960) show that all scattered X
have the CSWP and many non-scattered X fail the CSWP, but it was left open whether
having the CSWP is just equivalent to being scattered.

Here, we prove some general facts about the CSWP; in particular we show that if X
is a compact ordered space, then X has the CSWP iff X does not contain a copy of the
Cantor set. This provides a class of non-scattered spaces with the CSWP. Among these is
the double arrow space of Aleksandrov and Urysohn. The CSWP for this space implies a
Stone–Weierstrass property for the complex regulated functions on the unit interval.

1. Introduction. All spaces discussed in this paper are Hausdorff.

Definition 1.1. If X is compact, then C(X) = C(X,C) is the algebra
of continuous complex-valued functions on X, with the usual supremum
norm. A v C(X) means that A is a subalgebra of C(X) which separates
points and contains the constant functions.

If A v C(X) is self-adjoint (f ∈ A ↔ f ∈ A), then A is dense in C(X)
by the standard Stone–Weierstrass Theorem for real-valued functions.

Definition 1.2. The compact space X has the Complex Stone–Weier-
strass Property (CSWP) iff every A v C(X) is dense in C(X).

The CSWP may be considered a notion of “smallness” by the following
easy

Lemma 1.3. If X is a closed subspace of the compact space Y , and Y
has the CSWP , then X has the CSWP.
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Proof. If A v C(X), let A′ = {f ∈ C(Y ) : f�X ∈ A}. If A′ is dense in
C(Y ), then A is dense in C(X).

Classical examples show that the CSWP can fail. As usual, let D =
{z ∈ C : |z| < 1} and T = {z ∈ C : |z| = 1}. Let A v C(D) be the disc
algebra; these are the functions in C(D) which are holomorphic on D. Then
A shows that D fails to have the CSWP, and A�T shows that T fails to have
the CSWP. Here, the restricted algebra A�T is defined by:

Definition 1.4. Given A v C(X) and a closed subset H ⊆ X, let
A�H = {f�H : f ∈ A} v C(H).

W. Rudin proved the following basic results about the CSWP:

Theorem 1.5 (Rudin). For all compact X:

(1) If X contains a copy of the Cantor set , then X does not have the
CSWP.

(2) If X is scattered , then X has the CSWP.

As usual, X is scattered if it has no perfect subsets; see also Definition 1.7
below. (1) is proved in [14] and (2) is proved in [15]. Of course, for (1), it is
sufficient (by Lemma 1.3) to prove that the Cantor set itself fails the CSWP,
and this is done by another use of algebras of holomorphic functions.

This theorem completely characterizes the CSWP for compact metric X,
since for such spaces, X is scattered iff X does not contain a copy of the Can-
tor set. However, there are non-metrizable non-scattered compact spaces,
such as βN, which do not contain Cantor subsets.

We do not know a simple characterization of the CSWP which holds
for all compact X, but by the results in this paper and earlier results of
Hoffman and Singer [11], neither of the implications (1) and (2) reverses.
(1) is not an “iff” since βN does not have the CSWP by [11]; see Section 6
for more on their example. (2) also is not an “iff” by the following result,
which shows that (1) is an “iff” for a restricted class of spaces:

Theorem 1.6. Let X be totally ordered by <, and assume that X is
compact in its order topology. Then X has the CSWP iff X does not contain
a copy of the Cantor set.

In particular, the double arrow space of Aleksandrov and Urysohn [1],
which is not scattered, has the CSWP, since it does not contain a copy of
the Cantor set. The double arrow space is usually obtained by replacing
each point in [0, 1] by a pair of neighboring points (see Section 4). It may
also (see Lemma 6.2) be viewed as the maximal ideal space of the algebra
of regulated functions on T or [0, 1] (the functions whose left and right lim-
its exist everywhere). With this identification, the CSWP for the double
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arrow space may be interpreted as a statement about algebras of regulated
functions (see Corollary 6.3).

Of course, one direction of Theorem 1.6 is contained in Theorem 1.5. We
prove the other direction in the case that X is separable in Section 4, which
also lists some elementary properties of compact ordered spaces. In particu-
lar (see Lemma 4.6), if such an X is separable and fails to contain a Cantor
set, then it must be totally disconnected; equivalently (since X is compact),
the subsets of X which are clopen (both closed and open) form a base for the
topology. If H is clopen, then its characteristic function χH ∈ C(X) is an
idempotent. Section 2 contains further results on idempotents; these results
reduce the proof of the separable case of Theorem 1.6 to showing that for
such X, every closed A v C(X) contains a non-trivial idempotent.

The proof of Theorem 1.6, without the restriction that X be separ-
able, is given in Section 5. This is actually quite easy, using the observation
(Lemma 5.2) that if X fails the CSWP, then there is a Y ⊆ X which also
fails the CSWP such that Y is the (closed) support of a measure. In the
case of compact ordered spaces, it is already known that the support of a
measure is separable.

We remark that it is easy to construct a connected non-separable com-
pact ordered space X which does not contain a Cantor set. It is curious that
the proof of the CSWP for X proceeds via the study of idempotents, even
though C(X) itself has only the trivial idempotents.

Sections 3 considers A�ker(X), where ker(X) is defined by:

Definition 1.7. For a topological space X:

(1) Y ⊆ X is perfect iff Y is non-empty and closed and no point of Y is
isolated in Y .

(2) X is scattered iff X has no perfect subsets.
(3) The kernel , ker(X), is ∅ if X is scattered, and the largest perfect

subset of X otherwise.

In (3), one constructs the largest perfect subset by taking the closure of
the union of all perfect subsets. For a compact non-scattered X, all idem-
potents of A�ker(X) extend to idempotents of A (see Lemma 3.2), and X
has the CSWP iff ker(X) has the CSWP (see Corollary 3.7).

Some further remarks on these restrictions A�H: Our definition of the
property “A v C(X)” did not require that A be closed in C(X). Of course,
to verify the CSWP for a given X, one need only consider closedA. However,
we shall frequently be studying restrictions of A. Even if A is closed, A�H
need not be closed in C(H). In fact, by Glicksberg [9], if A v C(X) and
A�H is closed in C(H) for all closed H ⊆ X, then A = C(X). Moreover,
A�H is closed in C(H) if H contains the Shilov boundary (see Section 2),
or if H = ker(X) (see Lemma 3.2).
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If A is a commutative Banach algebra with a unit element, we shall use
M(A) to denote the maximal ideal space or spectrum. Elements of M(A)
may be viewed either as maximal ideals in A, or as homomorphisms from A
to C. The Gel’fand transform maps A into a subalgebra of C(M(A)). For
more on these notions, see e.g. [8, 10, 18].

One may also define a “v” relation between commutative unital Banach
algebras: A v B iff A is a subalgebra of B and A separates the points of
M(B) (mapping A,B into subalgebras of C(M(B))). One might say that
B has the CSWP iff A v B implies A = B. This is related to the Stone–
Weierstrass Property (SWP) discussed by Katznelson and Rudin [12] (or
see [16, §9.3]): B has the SWP iff every self-adjoint A v B equals B.

2. Idempotents and restrictions. We begin with a useful criterion
for telling whether A�H is closed in C(H).

Definition 2.1. ‖f‖H = sup{|f(x)| : x ∈ H}.
Lemma 2.2. Assume that A v C(X) and is closed in C(X). Let H be a

closed subset of X. Then the following are equivalent :

(1) A�H is closed in C(H).
(2) There is a finite constant c ≥ 1 such that for all f ∈ A, there is an

f∗ ∈ A with f�H = f∗�H and ‖f∗‖ ≤ c‖f‖H .

Proof. As pointed out in [9], (1)→(2) follows by applying the Open Map-
ping Theorem to the restriction map from A onto A�H.

For (2)→(1), we repeat one of the steps in the proof of the Open Mapping
Theorem. Suppose that we have fn ∈ A for n ∈ N, with fn�H converging
in C(H). We must find a g ∈ A such that g�H = limn(fn�H). Without loss
of generality, we may assume that each ‖fn+1 − fn‖H ≤ 2−n. For each n,
apply (2) and choose kn ∈ A with kn�H = (fn+1− fn)�H and ‖kn‖ ≤ c2−n.
Let g = f0 +

∑∞
n=0 kn.

If f ∈ C(X), then f is an idempotent iff f 2 = f . Note that f is an
idempotent iff f = χH for some clopen H ⊆ X.

Definition 2.3. Assume that A v C(X) and A is closed.

• BA is the set of all clopen H ⊆ X such that χH ∈ A.
• If x, y ∈ X, then x ∼A y if χH(x) = χH(y) for every H ∈ BA. We

delete the subscript A when it is clear from context.
• For P ⊆ X, P̃ =

⋂{H ∈ BA : P ⊆ H}.
• P ⊆ X factors through ∼ iff P is a union of ∼-equivalence classes.

Some simple observations: BA is a boolean algebra, and each equivalence
class is closed and factors through ∼. Furthermore, P̃ is always closed; and
if P is closed in X, then, by compactness, P factors through ∼ iff P = P̃ .
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Lemma 2.4. Under the assumptions of Definition 2.3, (1)→(2)→(3). The
three are equivalent when X is totally disconnected.

(1) Each equivalence class is a singleton.
(2) A = C(X).
(3) BA contains all clopen subsets of A.

Proof. For (1)→(2), let Ar be the set of all real-valued functions in A.
By (1),Ar separates points, so the usual Stone–Weierstrass Theorem implies
that Ar = C(X,R), which implies that A = C(X,C).

When P = P̃ , Lemma 2.6 below describes BA�P in terms of BA. As in
[14, 11], we need the following lemma for producing elements of BA:

Lemma 2.5. Suppose that A v C(X) and A is closed , and suppose that
h ∈ A and b ∈ R \ Re(h(X)). Then {x ∈ X : Re(h(x)) < b} ∈ BA.

As usual, Re(z) denotes the real part of the complex number z; so Re :
C → R. Note that H := {x ∈ X : Re(h(x)) < b} is clearly clopen, and the
result is trivial unless Re(h(X)) contains elements from both (−∞, b) and
(b,∞). In that case, the lemma is easily proved using Runge’s Theorem (see
[17, §13]), which implies that if F ⊂ C, F is compact, C \ F is connected,
and f is holomorphic on a neighborhood of F , then f may be uniformly
approximated by polynomials on F . Here, F is the union of two convex
subsets, F0, F1, where Re(F1) ⊂ (−∞, b), Re(F0) ⊂ (b,∞), and h(X) ⊆
F = F0 ∪ F1. Applying Runge’s Theorem to the function which is 0 on F0
and 1 on F1, we see that for each ε > 0, there is a polynomial pε such that
‖χH − pε ◦ h‖ < ε, which implies that χH ∈ A.

It is easy to see that A�H is closed in C(H) for each H ∈ BA. More
generally,

Lemma 2.6. Assume that A v C(X) and is closed in C(X), and assume
that P is closed in X and factors through ∼A. Then

(1) A�P is closed in C(P ).
(2) BA�P = {H ∩ P : H ∈ BA}.
(3) If P is an equivalence class, then BA�P = {∅, P}.
Proof. For (1): We verify (2) of Lemma 2.2, with c = 2. Fix f ∈ A with

f�P not identically 0. Since P = P̃ , we may choose K ∈ BA with P ⊆ K
and ‖f‖K ≤ 2‖f‖P . Now let f∗ = f · χK . Then f∗ ∈ A and ‖f∗‖ ≤ 2‖f‖P ,
and f�P = f∗�P .

For (2): Fix H ∈ BA�P , and we produce an Ĥ ∈ BA with H = Ĥ ∩ P .
Fix f ∈ A such that f�P = χH . Since P = P̃ , we may choose K ∈ BA
such that min(|f(x)|, |f(x)− 1|) < 1/4 for all x ∈ K. Let g = f · χK . Then
1/2 6∈ Re(g(X)), so, by Lemma 2.5, Ĥ := {x ∈ X : Re(g(x)) > 1/2} ∈ BA.

(3) is immediate from (2).
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Note that in (3), if the equivalence class P is not a singleton, then P
cannot be scattered by Theorem 1.5. It may have isolated points (see Ex-
ample 2.8 below), but if Q = ker(P ), then BA�Q = {∅, Q} (see Lemma 3.2).
Our proof of Theorem 1.6 will focus on showing that for appropriate perfect
Q, this cannot happen—i.e., A�Q must contain non-trivial idempotents.

We now define two important closed subsets of X associated with A:

Definition 2.7. Assume that A v C(X) and is closed in C(X). Let H
be a closed subset of X. Then:

• H is essential for A iff for all f, g ∈ C(X) with f�H = g�H, we have
f ∈ A iff g ∈ A.
• E(A) denotes the essential set for A; this is the smallest closed set

which is essential for A.
• H is a boundary for A iff ‖f‖H = ‖f‖ for all f ∈ A.
• X(A) denotes the Shilov boundary ; this is the smallest closed set

which is a boundary for A.

Bear [2] defined the notion of “essential” and proved the existence of
a smallest essential set. The existence of a smallest boundary, X(A), is a
classical result of Shilov; short proofs are given in [3, 8, 18]. If we fixX and let
A vary, then as A increases, E(A) decreases and X(A) increases. E(A) = ∅
iff A = C(X). Furthermore, X(A) is never empty and X(C(X)) = X.
Proposition 6.7 contains some additional properties of E(A) and X(A).

Example 2.8. Let A0 v C(D) be the disc algebra. Let X = T∪H ∪F ,
where H,F ⊂ C are compact scattered, with H ⊂ D and F ∩ D = ∅. Let
A1 = A0�(T ∪ H). Let A = {g ∈ C(X) : g�(T ∪ H) ∈ A1}. Then the
∼A-equivalence classes are P := T ∪H and the singletons in F . Moreover,
ker(P ) = ker(X) = T, A�T is closed in C(T), and BA�T = {∅,T}. Also,
E(A) = T∪H and X(A) = T∪F . Finally, X(A�E(A)) = T; the fact that
X(A�E(A)) is perfect holds in general; see Proposition 6.7.

The next lemma shows that the conclusions (1), (2) of Lemma 2.6 hold
for many closed subsets of X which do not necessarily factor through ∼A:

Lemma 2.9. Assume that A v C(X) and is closed in C(X), and assume
that K is closed in X. If X(A) ⊆ K then (1), (2) below hold. If E(A) ⊆ K,
then (1) holds, and (2) holds when X is totally disconnected.

(1) A�K is closed in C(K).
(2) BA�K = {H ∩K : H ∈ BA}.
Proof. (1) is immediate from Lemma 2.2. For (2), when X(A) ⊆ K, fix

H ∈ BA�K , and then fix f ∈ A such that f�K = χH . Then f2 − f is 0
on K and hence is 0 everywhere, so f is an idempotent. If Ĥ = f−1{1},
then Ĥ ∈ BA and H = Ĥ ∩K.
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Lemma 2.10. Assume that A v C(X) and is closed in C(X), with A 6=
C(X). Then A�E(A) 6= C(E(A)) and A�X(A) 6= C(X(A)).

Proof. The first statement is clear from the definition of E(A). The sec-
ond is clear unless X(A) 6= X, so fix p ∈ X \X(A). Define ϕ : A�X(A)→
C by ϕ(f�X(A)) = f(p). Then ϕ ∈ M(A�X(A)) and ϕ differs from all
point evaluations, so A�X(A) 6= C(X(A)).

The next two lemmas relate X(A) and E(A) to the equivalence classes:

Lemma 2.11. Let A v C(X) be closed. Then X(A) meets every ∼A-
equivalence class.

Lemma 2.12. Let A v C(X) be closed. Let H be closed in X such that
{p} is an ∼A-equivalence class for all p ∈ X \H. Then E(A) ⊆ H.

3. Restricting to the kernel. We consider the restrictions of A v
C(X) to K = ker(X) and to K̃ (see Definition 2.3). In Example 2.8, K̃
properly contains K (i.e., K does not factor through ∼), and K is neither
a boundary nor essential. Nevertheless, the next two lemmas show that the
conclusions (1), (2) of Lemmas 2.6 and 2.9 hold for K:

Lemma 3.1. Assume that A v C(X) and is closed in C(X). Assume
that X is not scattered and let K = ker(X). Then X(A�K̃) ⊆ K.

Proof. If not, then K is not a boundary for A�K̃, so fix f ∈ A such that
‖f‖K < ‖f‖

K̃
. Multiplying by a constant, we may assume that ‖f‖K ≤ 1

and f(p) = 1 + 2ε > 1 for some p ∈ K̃. Let W ⊂ X be clopen with K ⊆W
and f(W ) ⊆ B(0; 1 + ε), so that Re(f(W )) ⊆ (1− ε, 1 + ε). Since X \W is
scattered and compact, so is Re(f(X \W )), so we can fix b ∈ (1 + ε, 1 + 2ε)
such that b 6∈ Re(f(X)). Let H = {x ∈ X : Re(f(x)) < b}. Then K ⊆ H

and p 6∈ H, and by Lemma 2.5, H ∈ BA, contradicting p ∈ K̃.

Lemma 3.2. Assume that A v C(X) and is closed in C(X), and let
K = ker(X). Then

(1) A�K is closed in C(K).
(2) BA�K = {H ∩K : H ∈ BA}.
Proof. Use Lemmas 3.1, 2.6, and 2.9.

Definition 3.3. The compact space X has the NTIP iff every closed
AvC(X) has a non-trivial idempotent (i.e., of the form χH with ∅(H(X).

So, the NTIP is trivially false of connected spaces. If X is not connected,
then the CSWP implies the NTIP. There are totally disconnected X which
have the NTIP but not the CSWP; see Example 6.6. Lemma 3.2 and The-
orem 1.5 imply immediately:
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Lemma 3.4. If X is compact scattered and |X| ≥ 2, then X has the
NTIP. For any compact non-scattered X, if ker(X) has the NTIP then X
has the NTIP.

The converse is false even for totally disconnected X; see Example 6.6.

Lemma 3.5. Assume that X is compact and every perfect subset of X
has the NTIP. Then X has the CSWP.

Proof. Let A v C(X) be closed but not all of C(X). Then by Lemma
2.4, there must be a ∼A-equivalence class P which is not a singleton. By
Lemma 2.6, BA�P = {∅, P}, so P does not have the NTIP, so P is not
scattered. If Q = ker(P ), then Q is perfect and does not have the NTIP by
Lemma 3.4.

Lemma 3.6. Let A v C(X), assume that X is not scattered , and let
K = ker(X). If A�K is dense in C(K), then A is dense in C(X).

Proof. Without loss of generality, A is closed in C(X), so A�K = C(K)
by Lemma 3.2. By Lemma 3.1, we have X(A�K̃) ⊆ K, so thatA�K̃ = C(K̃)
by Lemma 2.10, which implies that K̃ = K. It now follows by Rudin’s
Theorem 1.5 that each point in X \K is a ∼-equivalence class, so E(A) ⊆ K
by Lemma 2.12. This, plus A�K = C(K), implies that A = C(X).

Corollary 3.7. X has the CSWP iff ker(X) has the CSWP.

4. Compact ordered spaces. A linearly ordered topological space, or
LOTS, is a topological space X with a total order < such that the topology
on X is the order topology generated by <. We begin with some notation
and well known facts about such spaces.

Definition 4.1. In any set X totally ordered by <:

• 0X and 1X (or 0, 1, when X is clear from context) denote, respectively,
the first and last elements of X (when these elements exist).
• x− l x+ holds iff x− < x+ and there are no points of X strictly

between x− and x+. In that case, we call {x−, x+} a neighboring pair ,
and say that x− and x+ are neighbors.

If X is a compact LOTS with no isolated points, then the points 0 and 1
exist and have no neighbors; and each x ∈ X \{0, 1} has either no neighbors
(when it is a limit point from the left and the right), or exactly one neighbor
(when it is a limit point from one side and not the other).

The standard unit interval in the reals is connected, so there are no
neighboring pairs, but one can form examples with neighboring pairs by
doubling points in the interval:
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Definition 4.2. If E ⊆ (0, 1) ⊆ R, then D(E) = [0, 1]× {0} ∪ E × {1},
ordered lexicographically.

Equivalently, we form D(E) by doubling every x in E (with x− repre-
sented by (x, 0) and x+ represented by (x, 1)), and not doubling the points
of [0, 1] \ E. We never double 0 or 1, since that would create an isolated
point.

Proposition 4.3. For every E ⊆ (0, 1) ⊆ R, the space D(E) is a com-
pact separable LOTS with no isolated points. D(E) contains a copy of the
Cantor set iff in the reals, (0, 1) \E contains a copy of the Cantor set.

The double arrow space is D((0, 1)). The proof of Theorem 1.6 will involve
only spaces of the form D(E), by the following four lemmas. The first is from
Lutzer and Bennett [13].

Lemma 4.4. If X is a separable LOTS and H ⊆ X, then H is separable
and Lindelöf in its relative topology inherited from X.

The relative topology on H is not in general the LOTS topology induced
by the order restricted to H, but

Lemma 4.5. If X is a compact LOTS and H is a closed subset of H,
then the relative topology and the order topology agree on H.

Lemma 4.6. If X is a compact separable LOTS and X does not contain
a copy of the Cantor set , then X is totally disconnected.

Proof. If a < b and [a, b] ⊆ X is connected, then [a, b] is isomorphic to a
closed interval in R, and hence contains a Cantor subset.

Proposition 4.7. If X is a compact separable LOTS with no isolated
points, then X is isomorphic to D(E) for some E ⊆ (0, 1) ⊆ R.

To prove Theorem 1.6, we need to show that every compact separable
LOTS Y which does not contain a copy of the Cantor set has the CSWP. By
Lemma 3.5, it is enough to show that if X is any perfect subset of Y , then
X has the NTIP. By Lemmas 4.4 and 4.5, X is also a compact separable
LOTS and does not contain a Cantor subset. By Lemma 4.6, X and Y are
totally disconnected. Propositions 4.3 and 4.7 are not used in the proof of
Theorem 1.6, but they characterize the spaces to which Theorem 1.6 applies.

Lemma 4.15 will establish the NTIP for X. It is proved by analyzing
step functions. In general, σ ∈ C(X) is a step function if σ(X) is finite. If
X is compact and totally disconnected, then the step functions are dense in
C(X). If X is also a LOTS, then there is a simple description of such step
functions:

Definition 4.8. If X is a compact totally disconnected LOTS with no
isolated points and S ⊆ X, then:
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• A step function with endpoints in S is a function of the form
∑n

i=0 ziχIi ,
where n ≥ 0, each zi ∈ C, and each Ii = [a+

i , a
−
i+1] is a clopen interval

in X, with 0 = a+
0 < a−1 l a+

1 < · · · < a−n l a+
n < a−n+1 = 1, where

a+
0 , a

−
1 , a

+
1 , . . . , a

−
n , a

+
n , a

−
n+1 ∈ S.

• S is nice iff S is of the form {0, 1}∪ ⋃α{x−α , x+
α}, where each x−α l x+

α .
• SF(S) is the set of all step functions with endpoints in S.

When studying step functions with endpoints in S, we consider only
nice S because only 0, 1, and neighboring pairs get used as endpoints. Note
that SF(S) is always a subalgebra of C(X). SF({0, 1}) is the set of constant
functions (the n = 0 case of Definition 4.8). SF(S) is dense in C(X) in
the case that S contains all neighboring pairs. However, if S omits some
neighboring pair {x−, x+}, then χ[0,x−] is a step function which has distance
1/2 from SF(S).

Definition 4.9. For X a compact LOTS, f ∈ C(X) and ε > 0,

JMPε(f) = {0, 1} ∪
⋃
{{x−, x+} : x− l x+ & |f(x−)− f(x+)| ≥ ε},

JMP(f) =
⋃
{JMPε : ε > 0}.

So, JMP(f) contains all neighboring pairs at which f jumps. By com-
pactness of X and continuity of f ,

Lemma 4.10. Each JMPε(f) is finite, and JMP(f) is countable.

Now, suppose that the X of Definition 4.8 is separable but not second
countable. Then we may choose a nice S with S countable and dense in X,
but there are uncountably many neighboring pairs, so SF(S) will not be
dense in C(X). Specifically, say f ∈ C(X), ε > 0, and x± ∈ JMP2ε(f) \ S.
Then there is a step function σ with ‖f − σ‖ < ε, but the endpoints a±i will
not all lie in S, since x± is among the a±i . However, we can choose b±i ∈ S
with a+

i < b−i l b+i < a−i+1, and then “describe” σ just using points in S as
follows:

Definition 4.11. If X is a compact totally disconnected LOTS with no
isolated points and S ⊆ X, then a step function descriptor from S is a finite
array of the form

∆ =
(

z0 z1 · · · · · · zn

b−0 , b
+
0 b−1 , b

+
1 · · · · · · b−n , b

+
n

)
,

where 0 < b−0 l b+0 < b−1 l b+1 < · · · < b−n l b+n < 1 in X, with each b±i ∈ S
and each zi ∈ C. Then STEP(∆) is the set of all step functions σ which meet
this description in the sense that σ =

∑n
i=0 ziχIi for some Ii = [a+

i , a
−
i+1],
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where

0 = a+
0 < b−0 l b+0 < a−1 l a+

1 < b+1 l b+1
< · · · < a−n l a+

n < b+n l b+n < a−n+1 = 1.

Note that the endpoints of σ are not required to be in S.

Lemma 4.12. Suppose ∆ is as in Definition 4.11, σ, τ ∈ STEP(∆), ε > 0,
and f, g ∈ C(X) with ‖f − σ‖ < ε and ‖g − τ‖ < ε. Let h = f − g. Then

h(X) ⊆ B(0; 2ε) ∪
⋃

i<n

B(wi; 2ε),

where each wi is either zi − zi+1 or zi+1 − zi.
With appropriate values of the zi, and ε small enough, this will force

Re(h(X)) to be disconnected, so that we can apply Lemma 2.5 to get a
non-trivial idempotent in A. We shall prove that Re(h(X)) is disconnected
by using:

Lemma 4.13. Assume r ≥ 1, F ⊆ C, F ∩B(0; 1) 6= ∅, F ∩B(w0; 1/(3r))
6= ∅, and F ⊆ B(0; 1)∪⋃k<r B(wk; 1/(3r)) for some w0, . . . , wr−1 ∈ C with
w0 = ±2. Then Re(F ) is not connected.

We shall get h = f − g ∈ A by applying the following lemma:

Lemma 4.14. Assume that X is a compact separable totally disconnected
LOTS with no isolated points and A v C(X). Then there is a countable
dense nice S ⊆ X such that for all step function descriptors ∆ from S and
all ε > 0:

(∗) If there is a σ ∈ STEP(∆) and an f ∈ A with ‖f − σ‖ < ε, then there
is a step function τ ∈ STEP(∆) with endpoints in S and some g ∈ A
with ‖g − τ‖ < ε.

Proof. Call a step function descriptor ∆ rational if the zi from Defini-
tion 4.11 all have rational real and imaginary parts. Observe that in proving
the lemma, it is sufficient to obtain (∗) for all rational ε and all rational ∆.
Let S0 ⊆ X be nice and countable and dense. Then we obtain an increasing
chain S0 ⊆ S1 ⊆ S2 ⊆ · · · as follows:

Given Sn, and given a rational step function descriptor ∆ from Sn and a
rational ε > 0: If there exists a σ ∈ STEP(∆) and an f ∈ A with ‖f−σ‖ < ε,
then let σn∆,ε ∈ STEP(∆) and fn∆,ε ∈ A be some such σ, f . Let Sn+1 be Sn
together with all the endpoints of all the σn∆,ε.

Let S =
⋃
n∈N Sn.

Putting these together, we get:

Lemma 4.15. Assume that X is a compact totally disconnected LOTS
which is separable but not second countable. Then X has the NTIP.
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Proof. Note that by Lemma 4.4, ker(X) is also separable but not sec-
ond countable, and it is sufficient to prove that ker(X) has the NTIP by
Lemma 3.4. Thus, we may assume that X is perfect.

Let A v C(X) be closed. First, fix S ⊆ X as in Lemma 4.14. Then,
since X is not second countable, we can fix a neighboring pair q− l q+ with
q± 6∈ S. Then fix an f ∈ A with f(q+) = 1 and f(q−) = −1.

Let R = JMP1/3(f), which is finite by Lemma 4.10, and let |R| = 2r+ 2;
that is, R contains 0 and 1 plus r neighboring pairs. Then r ≥ 1, since
q± ∈ R.

Fix a step function σ with ‖f − σ‖ < 1/(6r). Say σ =
∑n

i=0 ziχIi , where
each zi ∈ C, each Ii = [a+

i , a
−
i+1], and 0 = a+

0 < a−1 l a+
1 < · · · < a−n l a+

n <

a−n+1 = 1. Then n ≥ r, since the a±i include in particular the neighboring
pairs from R.

Choose the b±i ∈ S and ∆ as in Definition 4.11 so that σ ∈ STEP(∆), and
then apply (∗) from Lemma 4.14 and choose τ ∈ STEP(∆) with endpoints
in S and g ∈ A with ‖g − τ‖ < 1/(6r). We now have

0 = a+
0 < b−0 l b+0 < a−1 l a+

1 < b+1 l b+1
< · · · < a−n l a+

n < b+n l b+n < a−n+1 = 1,

0 = c+
0 < b−0 l b+0 < c−1 l c+

1 < b+1 l b+1
< · · · < c−n l c+

n < b+n l b+n < c−n+1 = 1,

where the c±i ∈ S and τ =
∑n

i=0 ziχJi , with each Ji = [c+
i , c
−
i+1]. Let h =

f − g. By Lemma 4.12, we have

F := h(X) ⊆ B(0; 1/(3r)) ∪
⋃

i<n

B(wi; 1/(3r)),

where each wi is either zi − zi+1 or zi+1 − zi.
Next, note that |wi| ≤ 2/3 for all but at most r indices i: this holds

because ‖f −σ‖ < 1/6, so if |wi| > 2/3, then |f(a−i )− f(a+
i )| > 1/3, so that

a±i is one of the r neighboring pairs in R.
Now, F ∩ B(0; 1) 6= ∅ because h(0) ∈ B(0; 1). Also, one of the a±i is the

pair q±, and this wi = ±2. Since this a±i = q± 6= S, while c±i ∈ S, we get
F ∩B(wi; 1/(3r)) 6= ∅.

Furthermore, whenever |wi| ≤ 2/3, we have B(wi; 1/(3r)) ⊆ B(0; 1), and
this holds for all but at most r of the indices i. It now follows by Lemma
4.13 that Re(h(X)) is disconnected, so that by Lemma 2.5, A contains a
non-trivial idempotent.

This lets us prove Theorem 1.6 in the separable case:

Lemma 4.16. Let X be totally ordered by <, and assume that X is com-
pact and separable in its order topology. Then X has the CSWP iff X does
not contain a copy of the Cantor set.
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Proof. To prove that X has the CSWP, it is sufficient, by Lemma 3.5,
to prove that every perfect P ⊆ X has the NTIP, and this holds by Lemma
4.15.

The reader familiar with elementary submodel techniques (see Dow [6])
will note that one could simplify somewhat the proof of Lemma 4.15, at
the expense of introducing some new concepts into the proof. Specifically,
if θ is a suitably large regular cardinal and A,X ∈ M ≺ H(θ), with M
countable, then we can simply define S in Lemma 4.15 to be M ∩ X, and
omit Lemma 4.14 entirely.

5. Measures and supports

Definition 5.1. If µ is a regular complex Borel measure on the compact
spaceX, then |µ| denotes its total variation, and supt(µ) = supt(|µ|) denotes
its (closed) support; that is, supt(µ) = X \⋃{U ⊆ X : U is open and |µ|(U)
= 0}.

Lemma 5.2. Assume that X is compact and that supt(µ) has the CSWP
for all regular Borel measures µ. Then X has the CSWP.

Proof. Suppose we have A v C(X) with A closed in C(X) and A 6=
C(X). Just viewing A and C(X) as Banach spaces, fix ϕ ∈ C(X)∗ such
that ϕ(f) = 0 for all f ∈ A, but such that ϕ(g) 6= 0 for some g ∈ C(X).
Let µ be a regular complex Borel measure such that ϕ(f) =

�
f dµ for all

f ∈ C(X). Let H = supt(µ).
Then

�
H h dµ = 0 for all h ∈ A�H, but

�
H(g�H) dµ = ϕ(g) 6= 0, so A�H

is not dense in C(H). Thus, H does not have the CSWP.

In the case of a LOTS, it is easy to see (by a minor modification of the
proof of Theorem 1.0 in [7]):

Lemma 5.3. Assume that X is a compact LOTS and µ is a regular Borel
measure on X. Then supt(µ) is separable.

Proof of Theorem 1.6. Immediate from Lemmas 4.16, 5.2, and 5.3.

6. Remarks and examples. Much is known about the maximal ideal
space,M(A), for some standard commutative unital Banach algebrasA. For
example, it is well known that M(L∞(T)) is st(B), where B is the measure
algebra of T (the measurable sets modulo the null sets) and st(B) denotes
its Stone space.

Hoffman and Singer [11] (see also [8, 10]) discuss M(H∞), where H∞

consists of those elements of L∞(T) whose negative Fourier coefficients
vanish. One may view H∞ as a closed subalgebra of C(M(H∞)) via the
Gel’fand Transform (which is an isometry in this case). [11] shows, among
other things, that with this identification, X(H∞) is homeomorphic to
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M(L∞(T)) = st(B), and hence H∞ v C(st(B)), establishing that st(B)
fails to have the CSWP. Since each of st(B) and βN contains the other, it
follows, as mentioned in the Introduction, that βN (and hence every com-
pact space containing βN) fails to have the CSWP. Also, M(H∞) contains
an open copy of D, and by [11], M(H∞) properly contains D ∪X(H∞).
By Carleson’s Corona Theorem (see [8]), D is dense in M(H∞); hence,
E(H∞) = M(H∞), since E(H∞) ⊇ D follows from that fact that each
function in H∞ is holomorphic on D.

We also have C(T) ↪→ L∞(T). That is, with the natural identification of
f ∈ C(T) with its equivalence class [f ] ∈ L∞(T), we identify C(T) with a
closed subalgebra of L∞(T).

Between C(T) and L∞(T), there is the algebra of functions which have
everywhere a left and right limit. Note that the usual notion of left and
right limits make sense on the circle. If g : T → C and z = eiθ ∈ T, then
by limw→z+ g(w) we mean limϕ→θ+ g(eiϕ) and by limw→z− g(w) we mean
limϕ→θ− g(eiϕ).

Definition 6.1. J(T) is the set of all g : T → C such that for all z:
limw→z+ g(w) and limw→z− g(w) exist and

g(z) = ( lim
w→z+

g(w) + lim
w→z−

g(w))/2.

We require g(z) to be the average of its left and right limits so that if
g, h ∈ J(T) and g 6= h, then {z : g(z) 6= h(z)} contains an interval, so g, h
define different elements of L∞. We now have C(T) ⊂ J(T) ↪→ L∞(T). Note
that if f ∈ J(T), then the left and right limits of f must be equal except
at a countable set of points. J(T) is the closure (in the supremum norm)
of the algebra of piecewise continuous functions; these are the f ∈ J(T)
whose left and right limits are equal except at a finite set of points. We can
identifyM(J(T)) as the double arrow space by the following, due essentially
to Berberian [4]:

Lemma 6.2. J(T) is isometric with C(D((0, 1))), so that M(J(T)) is
homeomorphic to D((0, 1)).

Proof. Define Ψ : C(D((0, 1)))→ J(T) so that for f ∈ C(D((0, 1))) and
z ∈ T, we compute (Ψ(f))(z) as follows: Let z = e2πix, with x ∈ [0, 1]. If x ∈
(0, 1), we have x± ∈ D((0, 1))), and we let (Ψ(f))(z) = (f(x+) + f(x−))/2.
If x ∈ {0, 1}, so that z = 1, we let (Ψ(f))(1) = (f(0) + f(1))/2.

Thus, by Theorem 1.6,

Corollary 6.3. Suppose that A is a subalgebra of J(T) which contains
the constant functions and separates the points of T, and assume that for
each z ∈ T, some function in A has a discontinuity at z. Then A is dense
in J(T).
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In particular, J(T) ∩H∞ = C(T) ∩H∞, since otherwise, by rotational
symmetry, J(T)∩H∞ would contradict Corollary 6.3. However, this special
case of 6.3 can be seen directly by integrating with the Poisson kernel; in
fact, by Zalcman [19], if f ∈ H∞ is essentially discontinuous at a point
z ∈ T, then its essential range at z is uncountable, so in particular it cannot
have a simple jump discontinuity.

J(T) is closely related to the algebra R0(T) ⊃ J(T) of regulated func-
tions; these have left and right limits everywhere, but need not satisfy the
requirement that g(z) be the average of its left and right limits. R0(T) is a
Banach algebra with the usual supremum norm; it cannot be identified as a
subalgebra of L∞(T). Because g(z) can have an arbitrary value, each point
evaluation is an element of the maximal ideal space, so thatM(R0(T)) con-
tains 2ℵ0 isolated points. It can be obtained by replacing each z ∈ T by a
triple of points, {z−, z0, z

+}, where z0 corresponds to evaluation at z, and
z−, z+ correspond to the left and right limits. M(R0(T)) is discussed in
Berberian [4] and Blatter [5]. SinceM(R0(T)) has the CSWP, one can state
an analogue to Corollary 6.3 for R0(T).

Usually, regulated functions are considered to be defined on an interval
[a, b] ⊆ R, rather than on T, but this leads to essentially the same theory.

The following lemma and corollary describe a class of spaces with the
NTIP:

Lemma 6.4. Suppose that the compact X is not second countable but
ker(X) is second countable. Then X has the NTIP.

Proof. If ker(X) is empty, then X is scattered, so X has the CSWP by
Rudin’s Theorem 1.5(2). So, assume that X is not scattered.

Let A v C(X) be closed. Then A�ker(X) is closed by Lemma 3.2. Fur-
thermore, A is not separable (since it separates points in X, which is not
second countable), while A�ker(X) is separable, so the restriction map from
A to A�ker(X) is not 1-1. Fix a non-zero f ∈ A such that its restriction to
ker(X) is zero. We may assume that Re(f(X)) contains more than just 0.
But also, Re(f(X)) is scattered (since it is a continuous image of the com-
pact scattered X/ker(X)), and hence Re(f(X)) is disconnected, so that A
contains a non-trivial idempotent by Lemma 2.5.

Corollary 6.5. Suppose that X is totally disconnected , with ker(X)
second countable and non-empty. Then X has the NTIP iff X is not second
countable.

Proof. One direction is by Lemma 6.4. For the other direction: Note
that ker(X) is homeomorphic to the Cantor set. Assume that X is second
countable, and follow [14]: We may assume that X ⊂ C ⊂ S2, the Riemann
sphere, and that all non-empty (relatively) open subsets of ker(X) have pos-
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itive Lebesgue measure. Let A v C(S2) consist of the functions holomorphic
on S2 \ ker(X). Then f(ker(X)) = f(X) = f(S2) for all f ∈ A, so all f(X)
are connected.

Example 6.6. There are compact totally disconnected X,Y such that:

(1) X has the NTIP but ker(X) does not have the NTIP.
(2) Y has the NTIP but not the CSWP.

Proof. For (1), use Corollary 6.5 with any X such that X is not sec-
ond countable but ker(X) is the Cantor set; for example, X can be the
Aleksandrov duplicate of the Cantor set.

For (2), Y can be the same X. Or, Y can be the disjoint sum of the
Cantor set and the double arrow space. This is a compact LOTS and has
the NTIP by Lemma 4.15.

Some additional properties of the Shilov boundary and the essential set
are given by:

Proposition 6.7. Assume that A v C(X) and A is closed in C(X ).
Then

(1) E(A) ∪X(A) = X.
(2) E(A)∩X(A) 6= ∅ unless E(A) = ∅ (equivalently , unless A = C(X)).
(3) If p ∈X(A) and is isolated in X(A), then p is isolated in X and

χ{p} ∈ A, so p 6= E(A).
(4) If E(A) 6= ∅, then X(A�E(A)) is perfect.

Proof. For (1), if p 6∈ E(A) ∪X(A), fix f ∈ C(X) with f(E(A) ∪
X(A)) = {0} and f(p) = 1. Then f ∈ A because E(A) is essential, but f
contradicts the fact that X(A) is a boundary.

For (2), if E(A) ∩ X(A) = ∅ and E(A) 6= ∅, fix f ∈ C(X) with
f(E(A)) = {1} and f(X(A)) = {0}. Then f yields a contradiction as
in (1).

For (3), assume that p is an isolated point of X(A). ThenH :=X(A)\{p}
is closed and is not a boundary, so fix f ∈ A such that ‖f‖ = 1 but ‖f‖H < 1.
Then |f(p)| = 1, since X(A) is a boundary; multiplying by a constant, we
may assume that f(p) = 1. Then fn → χ{p} on X(A) as n → ∞. Since
A�X(A) is closed in C(X(A)) (see Lemma 2.9), there is a g ∈ A such
that g�X(A) = χ{p}. Then g2 − g is 0 on X(A), and hence everywhere, so
g = χK for some clopen K, with p ∈ K and H ∩K = ∅. If K = {p}, then
χ{p} ∈ A. If K 6= {p}, fix q ∈ K \ {p}, and then fix h ∈ A with h(q) = 1
and h(p) = 0; then h · χK contradicts the fact that H ∪ {p} is a boundary.

For (4), note that E(A�E(A)) = E(A), so that applying (3) to A�E(A)
shows that no p ∈X(A�E(A)) is isolated in X(A�E(A)).
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(4) immediately implies Rudin’s Theorem 1.5(2); also, (4) yields another
proof of Lemma 3.6 (using Lemmas 2.9 and 2.10).
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