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On stability of 3-manifolds

by

Sławomir Kwasik (New Orleans, LA) and Witold Rosicki (Gdańsk)

Abstract. We address the following question: How different can closed , oriented
3-manifolds be if they become homeomorphic after taking a product with a sphere?

For geometric 3-manifolds this paper provides a complete answer to this question.
For possibly non-geometric 3-manifolds, we establish results which concern 3-manifolds
with finite fundamental group (i.e., 3-dimensional fake spherical space forms) and compare
these results with results involving fake spherical space forms of higher dimensions.

The purpose of this paper is to study the following stability problem:

Problem. Let M3, N3 be closed oriented 3-manifolds. Assume that
M3 × Sn and N3 × Sn are homeomorphic (i.e., M3 × Sn ≈ N3 × Sn)
for some n ≥ 1. Are M3 and N3 homeomorphic?

It is not difficult to show that if Σ3 is a homotopy 3-sphere, then Σ3×Sn
≈ S3 × Sn for any n ≥ 1. Therefore, to avoid the unresolved status of the
Poincaré conjecture, until the final section we assume first that 3-manifolds
considered in this paper are geometric in the sense of Thurston (cf. [T]).
The well-known conjecture of Thurston asserts that all 3-manifolds are geo-
metric. Also, for simplicity, we assume all 3-manifolds to be prime (cf. [H]).
Given that, the results of this paper give a complete solution to the stability
problem.

Stability by S1. It turns out that in terms of the behavior under stabi-
lization by S1 one class of 3-manifolds stands out. It is a subclass of Seifert
fibered 3-manifolds. This was already noticed by V. Turaev in [Tu], namely

Theorem 1. Let M3, N3 be closed oriented geometric 3-manifolds. Then
M3 × S1 ≈ N3 × S1 is equivalent to M3 ≈ N3 unless M3 and N3 are
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Seifert fibered 3-manifolds which are surface bundles over S1 with periodic
monodromy and surface genus > 1.

A short sketch of proof of the above theorem was presented in [Tu].
For the convenience of the reader, we insert a detailed proof of Theorem 1,
different from Turaev’s sketch, in the appendix of this paper. Our proof
contains a discussion of the case of “small” Seifert manifolds, which was
not discussed in Turaev’s paper, and a proof that the surface genus must
be greater than 1. This condition is essential in the discussion of the next
natural problem.

Problem. Let Fg be a fixed surface of genus g ≥ 2. How many different
(i.e. nonhomeomorphic) closed oriented 3-manifolds which fiber over S1 with
Fg as fiber become homeomorphic after crossing with S1?

Our main result concerning the above problem is the following:

Theorem 2. Let Fg be a fixed closed oriented surface of genus g ≥ 2.
Then there are at least φ(4g+ 2) nonhomeomorphic 3-manifolds which fiber
over S1 with Fg as fiber and which become homeomorphic after crossing
with S1.

Here φ(−) is the Euler function, i.e., φ(n) is the number of integers q,
0 ≤ q ≤ n, such that q and n are relatively prime.

Proof of Theorem 2. Let Fg be a closed oriented surface of genus g ≥ 2.
By [H1], the maximal cyclic group which can act (nontrivially) on Fg has
order 4g+ 2. Let f : Fg → Fg be a periodic homeomorphism generating the
action of Z4g+2 on Fg (i.e., f4g+2 = id).

It is known (cf. [H1], [BC]) that the quotient space Fg/Z4g+2 is a sphere
S2 and the branched covering p : Fg → Fg/Z4g+2 has indices (2, 2g+1, 4g+2)
(cf. [BC, p. 582]). To be more specific, the corresponding triangle group Γ ,
which determines the action of Z4g+2, has signature (0; 2, 2g + 1, 4g + 2)
(cf. [H1]). This gives the corresponding branched data as observed in [H2,
p. 393]. Let m be an integer relatively prime to 4g+ 2, i.e., (m, 4g+ 2) = 1.
Consider the homeomorphism fm : Fg → Fg. Put fm = h. Clearly h is
periodic of period 4g + 2.

Claim 1. The homeomorphisms f and h determine topologically inequiv-
alent actions of Z4g+2 on Fg.

Proof of Claim 1. We will show that f and h are not conjugate in
Homeo+(Fg). The equivalence of the actions of Z4g+2 on Fg can be analyzed
in terms of generating vectors (cf. [Br]). In our case, given the presentation
Z4g+2 = 〈x | x4g+2 = 1〉, the generating vectors for the action determined
by f are given by (x2q+1, x2q, x).
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For the action determined by h the generating vectors are (x(2q+1)m,
x2qm, xm). Since our equivalence of group actions is simply conjugation (the
identity automorphism of Z4q+2), the generating vectors are different and
the actions are inequivalent. On the other hand, it is well known (cf. [N],
[S]) that the actions of cyclic groups on Fg are classified by the “fixed point
data” (or equivalently, by the branched point data).

Let ϕ : Fq → Fq be a homeomorphism and let Mϕ be the mapping torus
of ϕ, i.e.,

Mϕ = Fg × [0, 1]
/
∼,

where ∼ is the equivalence relation identifying Fg × {0} with Fg × {1} via
the homeomorphism ϕ.

Now, if ϕ is periodic, then Mϕ is a Seifert fibered space with the Seifert
invariants uniquely determined by the fixed point data of ϕ (cf. [S, pp.
390–391]). In particular, inequivalent actions, generated by f and fm, lead
to different manifolds Mf and Mfm . Indeed, the manifolds Mf and Mfm

are distinguished by their Seifert invariants.

Claim 2. Mf × S1 ≈Mfm × S1 for each m with (m, 4g + 2) = 1.

Proof of Claim 2. This claim is definitely known. Its proof (in a different
notation) is given in [CR, p. 258]. However, for completeness, we outline here
the argument from [CR].

Let S1 be the circle equipped with the standard free action of a finite
cyclic group. Then the manifolds Mf and Mh are homeomorphic to the
twisted products

Mf = S1 ×
〈f〉
Fq, Mh = S1 ×

〈h〉
Fq,

where 〈f〉 and 〈h〉 are the cyclic groups of order 4q + 2 generated by f and
h, respectively. Both Mf and Mh admit natural actions of Z4g+2. Namely, if
qm = 1, then the action of Z4g+2 on Mf is generated by fm and the action
on Mh is generated by f q. Both of these actions extend to actions of S1. In
particular, these actions are generated by homeomorphisms isotopic to the
identity. As a consequence, we have

S1 ×
〈fm〉

Mf = S1 ×Mf , S1 ×
〈fq〉

Mh = S1 ×Mh.

Consider now the action of Z4g+2 × Z4g+2 on the manifold S1 × S1 × Fg.
This action is generated by f and fm. Namely, 〈f〉 acts on the second and
third factor, and 〈fm〉 on the first and third factor. Clearly these actions
commute. Now factoring out these actions one gets
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[(S1 × S1 × Fq)/〈f〉]/〈f q〉 = S1 ×
〈fm〉

Mf = S1 ×Mf ,

[(S1 × S1 × Fq)/〈f q〉]/〈f〉 = S1 ×
〈fq〉

Mh = S1 ×Mh,

and hence S1 ×Mf = S1 ×Mh as claimed.

Remark. By using the results in [Br] it is probably possible to determine
all nonhomeomorphic 3-manifolds which fiber over S1 with fiber Fg, g = 2, 3,
and which become homeomorphic after stabilization by S1.

Stabilization by even-dimensional spheres. Our main result is the
following

Theorem 3. Let M3, N3 be closed , oriented geometric 3-manifolds.
Then M3 × S2k ≈ N3 × S2k, k ≥ 1, is equivalent to M3 ≈ N3.

Proof. Assume first that π1(M3) is infinite. The existence of a homeo-
morphism M3 × S2k ≈ N3 × S2k implies that π1(M3) = π1(N3) and hence
M3 is homotopy equivalent to N3 (i.e., M3 ' N3). This is because we can
take M3 and N3 to be irreducible and therefore aspherical. Geometric as-
pherical 3-manifolds are determined by their fundamental groups (cf. [KS1,
p. 738]) and hence M3 ≈ N3 in this case.

Now assume that π1(M3) is finite. Again the isomorphism π1(M3) =
π1(N3) implies M3 ≈ N3 unless M3 and N3 are lens spaces. Suppose then
that M3 = L is a lens space. We consider the case k = 1 first. A simple
computation of H3(L× S2;Z) gives

H3(L× S2;Z) ∼= H1(L;Z)⊗H2(S2)⊕H3(L;Z)⊗H0(S2;Z) ∼= Zk ⊕ Z.
It follows that the map

f : M3 i−→M3 × S2 h−→
≈

N3 × S2 p−→ N3

has degree ±1, where i is the natural inclusion and p is the projection. Since
deg(f) = ±1, f is a homotopy equivalence (cf. [C, p. 95]).

Let τ0 = τ(f) ∈ Wh(π1(N3)) be the Whitehead torsion of f . We will
show that τ0 = 0, which implies M3 ≈ N3 (cf. [C, p. 100]). Let j : N 3 ↪→
N3 ×D3 be the standard embedding j(x) = (x, 0). Consider the homotopy
equivalence f = j ◦ f : M3 → N3 → N3 × D3. It can be approximated
by an embedding i (cf. [W1, Cor. 11.34]) and in fact by a smooth one (cf.
[M1, p. 579]). A simple calculation (cf. [M1, p. 579]) shows that the normal
bundle of this embedding is trivial. In particular, the closed disk bundle (its
total space) is given by M3 ×D3. The complement of the disk bundle gives
an h-cobordism (W ;W0;W1) between W0 = M3 × S2 and W1 = N3 × S2.
The Whitehead torsion τ(W ;W0) of this h-cobordism is equal to τ0.
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Let ∆(W0), ∆(W1) be the Reidemeister torsions of W0 and W1, respec-
tively, as defined in [M2, pp. 404–405]. By Theorem 12.8 in [M2] we have

∆(W0) ∼ u2∆(W1),

where u is some unit in the group ring Z[π1(M3)]. Since W1 = N3 × S2 ≈
W0 = M3 × S2, we have ∆(W0) ∼ ∆(W1), which implies that u2 ∼ 1. But
u2 ∼ 1 is equivalent to the triviality of the Whitehead torsion τ(W ;W0),
again by Theorem 12.8 in [M2]. This means that τ0 = 0 and hence τ(f) = 0
and M3 ≈ N3 as claimed.

Now we consider the case k ≥ 2, i.e., we have a homeomorphism

M3 × S2k ≈ N3 × S2k,

where M3, N3 are lens spaces. As in the case k = 1, there is a homotopy
equivalence f : M3 → N3. Again we approximate i ◦ f : M 3 → N3 ×D3 by
a smooth embedding with trivial normal bundle. Let k : M 3 → N3×D3 be
such an embedding. Consider the embedding k′ : M3 → N3 ×D3 ×D2k−2

given by k′(x) = (k(x), 0). The normal bundle for k′ is trivial, which leads
to an h-cobordism (W ;W0,W1) with W0 = M3 × S2k, W1 = N3 × S2k and
τ(W ;W0) = τ(f). The same argument as in the case k = 1 shows τ(f) = 0
and completes the proof of Theorem 3.

Stabilization by odd-dimensional spheres

Theorem 4. Let M3, N3 be closed , oriented geometric 3-manifolds.
Then M3 × S2k+1 ≈ N3 × S2k+1, k ≥ 1, is equivalent to:

(a) M3 ≈ N3 if M3 is not a lens space.
(b) M3 ' N3 if M3 is a lens space and k > 1, and π1(N3) ∼= π1(M3) if

M3 is a lens space and k = 1.

Proof. Part (a) follows directly from the isomorphism π1(M3) ∼= π1(N3).
The second part of (b) is a consequence of result in [M`], more precisely, [M`,
(41), p. 19]. We are then left with the first part of (b). Given a homeomor-
phism M3×S2k+1 ≈ N3×S2k+1, k > 1, we obtain a homotopy equivalence
f : M3 → N3 between two lens spaces (as in the proof of Theorem 3).
Conversely, assume f : M3 → N3 is a homotopy equivalence. Then

f × idS2k+1 : M3 × S2k+1 → N3 × S2k+1

is a simple homotopy equivalence because

τ(f × idS2k+1) = χ(S2k+1)i∗τ(f) + χ(M3)j∗τ(idS2k+1)

(cf. [C, 23.2, p. 77]).
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Now the Sullivan–Wall surgery exact sequence (cf. [W1, p. 107])

→ [Σ(M3 × S2k+1);G/Top]
θ2k+1−−−→ Ls2k+1(π1(M3))

γ→ STop(N3 × S2k+1)
η→ [N3 × S2k+1;G/Top]

θ2k−→ Ls2k(π1(N3))
easily implies that the class of f × idS2k+1 is trivial in the structure set
STop(N3 × S2k+1). This is because:

(i) f being a homotopy equivalence is normally cobordant to the iden-
tity (cf. [KS2], and hence f × idS2k+1 is normally cobordant to the
identity as well (i.e., η(f × idS2k+1) = 0).

(ii) The group Ls2k+1(π1(N3)) is either 0 or Z2 (cf. [W2, p. 33]). In the
case Ls2k+1(π1(N3)) ∼= Z2, it turns out that im θ2k+1

∼= Z2. This
leads to the triviality of f × idS2k+1 in STop(N3×S2k+1) as claimed.
But the triviality of f × idS2k+1 in STop(N3 × S2k+1) simply means
that f × idS2k+1 is homotopic to a homeomorphism. In particular,
N3 × S2k+1 ≈M3 × S2k+1.

Dropping the geometricity assumption for 3-manifolds with fi-
nite fundamental groups. In this section we look closer at 3-manifolds
with finite fundamental groups. To be more specific, we consider 3-manifolds
of the form S3/G, where G is a finite group acting freely (not necessarily
linearly) on S3. It turns out, as announced in [R] (cf. [L]), that G has to be
a subgroup of SO(4). Many of these groups have to act linearly (cf. [R]), but
it is still a conjecture that all of them do. A complete list of corresponding
groups G (up to isomorphism with the direct product with a cyclic group of
coprime order) is given in Table 1 of [Th]. The manifold M 3 = S3/G with
an arbitrary free action of the group G from the list in [Th] will be called a
fake spherical space form.

The following (cf. [JK, Theorem 1]) will be useful in our considerations.

Fact 5. Let f : M3 → N3 be a homotopy equivalence of oriented 3-
manifolds. Then the normal invariant η(f) ∈ [N 3;G/Top] is trivial.

Remark. It has been proved in [Th] that every fake spherical space
form S3/G is homotopy equivalent to a linear one.

Let us consider first the stabilization of fake spherical space forms by
odd-dimensional spheres. Let M 3, N3 be fake spherical space forms. Then
clearly M3 × S1 ≈ N3 × S1 ⇔ M3 is h-cobordant to N3. Therefore, we
assume k > 1 in S2k+1.

Theorem 6. Let M3, N3 be closed oriented (prime) 3-manifolds.

(a) If |π1(M3)| = ∞ or M3, N3 are fake spherical space forms, then
M3 × S3 ≈ N3 × S3 ⇔ π1(M3) ∼= π1(N3).

(b) M3 × S2k+1 ≈ N3 × S2k+1, k ≥ 2 ⇔ M3 ' N3.
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Proof. (a) Let us consider first manifolds with finite fundamental groups.
Write M3 = S3/G1, N3 = S3/G2.

Case 1: G1 nonabelian. In this case there is a unique linear space form
X3 = S3/G1 and homotopy equivalences f1 : X3 →M3 and f2 : X3 → N3.
In particular we have a homotopy equivalence f : M 3 → N3. Let F : W →
N3× I be a normal cobordism between f and the identity idN3 : N3 → N3.
Crossing F with idS3 gives a normal map F×idS3 with a surgery obstruction
Θ(F × idS3) ∈ Ls3(π1(N3)) (we recall that χ(S3) = 0 so indeed we have an
obstruction in the simple surgery group Ls(−)). It turns out however that
this obstruction is trivial by the surgery product formula in [Mo, p. VI]. This
means that f×idS3 : M3×S3 → N3×S3 is homotopic to a homeomorphism,
in particular M3 × S3 ≈ N3 × S3.

Case 2: G1 abelian. Let f1 : X3 →M3 and f2 : Y 3 → N3 be homotopy
equivalences with X3, Y 3 linear lens spaces. As before, we have X3 × S3 ≈
M3×S3 and Y 3×S3 ≈ N3×S3. But X3×S3 ≈ Y 3×S3 by Theorem 4(b)
and hence M3×S3 ≈ N3×S3 as well. The converse M3×S3 ≈ N3×S3 ⇒
G1
∼= G2 is obvious.
If |π1(M3)| =∞, then the isomorphism π1(M3) ∼= π1(N3) is equivalent

to existence of a homotopy equivalence f : M 3 → N3. Since f is normally
cobordant to the identity, f × idS3 is homotopic to a homeomorphism by
the surgery product formula, as in the finite fundamental group case.

(b) We simply observe that the homeomorphism M 3 × S2k+1 ≈ N3 ×
S2k+1, k ≥ 2, gives a degree one map f : M 3 → N3 inducing an isomor-
phism f# : π1(M3) → π1(N3). By Lemma 1.1 in [S] this gives a homotopy
equivalence M3 ' N3. As before, a homotopy equialence M 3 ' N3 leads
to the existence of a homeomorphism M 3 × S2k+1 ≈ N3 × S2k+1 via the
surgery product formula from [Mo].

Remark 7. By using Fact 5 one can show that Theorem 6(b) holds for
all closed (not necessarily prime) oriented 3-manifolds. In Theorem 6(a) for
many groups, for example: quaternionic 2-groups D∗2q, tetrahedral groups
T ∗v , v ≥ 2, cyclic groups Zk, one can replace S3 by a homotopy 3-sphere Σ3

in the definition of M3 and N3, i.e., M3 = Σ3/G1, N3 = Σ3/G2.

We now consider the following families of 4-periodic finite groups:

1. Generalized quaternionic groups Q(8p, q, r),
2. Cyclic groups Zk,
3. Platonic groups T ∗1 , O∗ and I∗.

The particular interest in these groups is because:

1. The groups Q(8p, q, r) are not subgroups of SO(4) but potentially can
act freely on some homotopy S3.
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2. The groups Zk for some k > 3 can potentially act nonlinearly on S3

(cf. [R]).
3. There are homotopically exotic actions of T ∗1 , O∗ and I∗ (cf. [Th,

Corollary on p. 293]).

Theorem 8. Let M3 = Σ3/G1, N3 = Σ3/G2 be fake spherical space
forms, where Σ3 is a homotopy 3-sphere and G1, G2 are groups from the
families 1–3 above. Then M3 × S2k ≈ N3 × S2k, k ≥ 1 ⇔ M3 and N3 are
simply homotopy equivalent.

Proof. Assume M3 ×S2k ≈ N3× S2k. Then there is a homotopy equiv-
alence f : M3 → N3. We will show that the Whitehead torsion τ(f) is
trivial. As in the proof of Theorem 3, we obtain an h-cobordism W between
M3 × S2k and N3 × S2k whose torsion is that of f . To conclude that W is
in fact an s-cobordism we argue as in the proof of Theorem 3. The only new
ingredients needed here are:

(a) The involution on the Whitehead group Wh(π1(N3)) is trivial (cf.
[KS1, Theorem 2.1]).

(b) The Whitehead group Wh(π1(N3)) is torsion free for the groups in
question (cf. [KS1]).

On the other hand, if f : M 3 → N3 is a simple homotopy equivalence,
then

f × idS2k : M3 × S2k → N3 × S2k, k ≥ 1,

is homotopic to a homeomorphism by the surgery product formula in [Mo].

We end this paper with an example which shows that Theorem 3 cannot
be extended to manifolds of dimension higher than 3 and that the assertion
of Theorem 8 is the best one can hope for.

Example 9. There are simple homotopy equivalent but nonhomeomor-
phic fake lens spaces L1 and L2 (in every dimension 2n + 1, n ≥ 2) such
that L1 × S2k ≈ L2 × S2k for each k ≥ 1.

Proof. Let Zr, r ≥ 2, be the finite cyclic group. Let Ls0(Zr) be the
surgery obstruction group and let L̃s0(Zr) be the reduced group L̃s0(Zr) =
Ls0(Zr)/Ls0(0). The group L̃s0(Zr) is torsion free and is detected by the mul-
tisignature (cf. [W2]). Let L2 be a seven-dimensional linear lens space with
π1(L2) ∼= Zr.

Let 0 6= α ∈ L̃s0(Zr) be a nontrivial element. Realize α by a normal map

F : (W ; ∂0W,∂1W )→ (L2 × I, L2 × {0}, L2 × {1})
with Θ(F ) = α ∈ L̃s0(Zk) and f = F |∂1W : ∂1W → L1 × {1} a simple
homotopy equivalence. Put ∂1W = L1. Clearly, L1 is a fake lens space.

Claim. L1 6≈ L1.
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Suppose L1 ≈ L2. Then their %-invariants are the same (cf. [W1]). But
this would imply α = 0, a contradiction.

Now applying the surgery product formula, we see that f × idS2k is
homotopic to a homeomorphism and hence L1×S2k ≈ L2×S2k. By replacing
L̃s0(Zr) by L̃s2(Zr) and using the fact that the torsion free part of L̃s2(Zr)
is determined by the multisignature (cf. [W2]) we infer that the analogous
construction for five-dimensional lens spaces leads to the desired result in
all odd dimensions.

Appendix: Proof of Theorem 1. There are two cases to be consid-
ered:

Case 1: π1(M3) is finite.

Case 2: π1(M3) is infinite.

Moreover, for clarity of our argument, Case 2 is split further into:

Case 2.A: M3 is a “large” Seifert manifold.

Case 2.B: M3 is a “small” Seifert manifold.

Proof of Case 1. The homeomorphism M 3 × S1 ≈ N3 × S1 implies
that π1(N3) is finite as well. If π1(M3) is nonabelian, then so is π1(N3)
and both groups are isomorphic. Now, 3-manifolds with finite nonabelian
fundamental groups are classified by those groups (cf. [KS1, p. 737], [TS,
p. 567]). If π1(M3) is abelian, then π1(N3) is also abelian and we have two
lens spaces (cf. [O]). The homeomorphism h : M 3×S1 → N3×S1 lifts to a
homeomorphism h̃ : M3×R→ N3×R. Indeed, if h# : Zk×Z→ Zk×Z is the
induced homomorphism on the fundamental groups, then h#(Zk) = Zk and
h#(Z) = Z. The existence of a homeomorphism h̃ implies the existence of an
h-cobordism between M3 and N3. Now the Atiyah–Bott fixed point theorem
(cf. [M2, Corollary 12.12]) implies that M 3 and N3 are homeomorphic.

Proof of Case 2 (general comments). To simplify the notation, let G =
π1(M3), H = π1(N3) and let h# : G× Z→ H × Z be the induced isomor-
phism. Let Z(G) be the center of G.

Claim. If Z(G) = {1}, then Z(H) = {1}.
Proof of claim. The center of G×Z consists of a copy of Z (i.e., {1}×Z in

G×Z). Consider the image h#({1}×Z) of the center. If h#({1}×Z) = {1}×Z
in H ×Z, then we are done. Suppose then that h#({1}× t) = (p, s), p ∈ H,
where t is a generator of Z and p 6= {1}. The manifold N 3, being prime,
is either a K(π1(N3), 1)-manifold or S1 × S2 (cf. [H]). In both cases the
fundamental group of N3, i.e., H, is torsion free (cf. [H]). Let C be the
cyclic subgroup of H generated by p. It follows that the center of H × Z
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contains Z× Z. The inverse isomorphism h−1
# sends the center of H × Z to

the center of G×Z. This implies that the center of G is nontrivial, which is
a contradiction. As a consequence, h#({1} × Z) = {1} × Z ⊂ H × Z, which
proves the claim.

Now given the claim, in the absence of the center of G, the homeomor-
phism h : M3 × S1 → N3 × S1 lifts to a homeomorphism h̃ : M3 × R →
N3×R. In particular, we have an isomorphism h# : π1(M3)→ π1(N3). This
in turn implies the existence of a homeomorphism between M 3 and N3 (cf.
[KS1]). Consider now the case of nontrivial center of π1(M3). Without loss
of generality, we can assume that M 3 is irreducible (the only reducible case
of S1 × S2 is fully understood). Now M3 being closed, oriented, irreducible
with infinite π1(M3) and nontrivial center is Seifert fibered by the algebraic
characterization of Seifert manifolds (cf. [CJ], [G]).

Proof of Case 2.A. We consider the case when M and N are “large”
Seifert manifolds (cf. [O, pp. 91–92]). Let π = π1(M) and π′ = π1(N).
These groups are given by central extensions

0→ C
i→ π

p→ Γ → 0, 0→ C ′
i′→ π′

p′→ Γ ′ → 0,

where C ≈ C ′ ≈ Z. The homomorphisms i, i′ are the natural inclusions and
p, p′ the projections. Now the Hopf formula (cf. [B, p. 41]) applied to these
extensions leads to the following exact sequences in homology of groups (cf.
[B, p. 47]):

H2(π)→ H2(Γ )
β∗→ H1(C) i∗→ H1(π)

p∗→ H1(Γ )→ 0,

H2(π′)→ H2(Γ ′)
β′∗→ H1(C)

i′∗→ H1(π′)
p′∗→ H1(Γ ′)→ 0.

Suppose that, say, M does not fiber over S1 with periodic monodromy. This
is equivalent to the condition that the class 〈h〉 represented by the generator
h of C is of finite order in H1(π) (cf. [O, p. 122] and [J, VI.31, p. 106]). This is
then equivalent to the condition imβ∗ 6= 0 in the exact homology sequence.

Let f : M ×S1 → N ×S1 be a homeomorphism. The natural extensions

0→ C × Z i×id−→ π × Z p→ Γ → 0,

0→ C ′ × Z i′×id−→ π′ × Z p′→ Γ ′ → 0

lead to the commutative diagram

H2(π×Z) H2(Γ ) H1(C×Z) H1(π×Z) H1(Γ ) 0

H2(π′×Z) H2(Γ ′) H1(C ′×Z) H1(π′×Z) H1(Γ ′) 0

∼= f∗
��

// β∗ //

∼=
��

∼=
��

(i×id)∗//

∼= f∗
��

p∗ //

∼=
��

//

// β′∗ // (i′×id)∗// p′∗ // //
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Since imβ∗ can be naturally identified with imβ∗ (and the same for β′∗), it
follows that imβ∗ 6= 0 implies imβ′∗ 6= 0. This shows that the isomorphism
f on C×Z→ C ′×Z must be a product isomorphism. As a consequence, the
homeomorphism f : M × S1 → N × S1 can be lifted to a homeomorphism
f̃ : M × R→ N × R. This, however, means that π ≈ π′ and hence M ≈ N .

Proof of Case 2.B. We now assume that M (or N) is a “small” Seifert
manifold (cf. [O, pp. 91–92]). In the notation of [O] the possibilities for these
manifolds are classes (iii), (iv) or (ix) in [O, pp. 124–125] (we recall that our
manifolds are orientable). Class (iii) consists of a single manifold X which is
a torus bundle over S1 with periodic monodromy of period 2. Class (ix) con-
sists of manifolds which either have a fundamental group with trivial center
or are homeomorphic to X. Since the case of trivial center has already been
considered, we are left with the manifold X and class (iv). For the manifolds
in class (iv), the class 〈h〉 has finite order in H1(π) (cf. [O, p. 124]). In view of
[O, Theorem 12.10, p. 131], the argument used for the case of “large” Seifert
manifolds shows that if M , N are in class (iv) and M × S1 ≈ N × S1, then
M ≈ N . For the manifold X in (iii), the corresponding class 〈h〉 is of infinite
order in H1(π) and hence X 6≈M for any M in class (iv). As a consequence,
if M is a “small” Siefert manifold and M × S1 ≈ N × S1, then M ≈ N .

Finally, if M is a T 2 bundle over S1 with periodic monodromy and N is
a surface bundle over S1 with periodic monodromy with M ×S1 ≈ N ×S1,
then it follows that N is a T 2 bundle over S1 as well. Given the classification
of T 2 bundles over S1 with periodic monodromy in [H, Ex. 12.3, p. 122],
one concludes that if M , N are such bundles with M × S1 ≈ N × S1, then
M ≈ N . Indeed, if M 6≈ N , then H1(M × S1;Z) 6∼= H1(N × S1;Z).
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