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Fixed points on Klein bottle fiber bundles over the circle
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Abstract. The main purpose of this work is to study fixed points of fiber-preserving
maps over the circle S* for spaces which are fiber bundles over S* and the fiber is the
Klein bottle K. We classify all such maps which can be deformed fiberwise to a fixed point
free map. The similar problem for torus fiber bundles over S* has been solved recently.

Introduction. Given a fiber bundle £ — B and a fiber-preserving map
f: E — E over B, the question whether f can be deformed over B (by a
fiberwise homotopy) to a fixed point free map has been considered by many
authors (see for example [Do74], [FH81], [Go87]). In [FH81], Fadell and Hus-
seini showed that the above problem can be stated in terms of obstructions
(including higher ones). This was done under the hypothesis that the base
space, the total space and the fiber F' are manifolds, and the dimension of
F is greater than or equal to 3. The case where the fiber has dimension 2
was considered in [GPV04], where a few generalities were discussed and the
fixed point problem over B as defined above was completely solved for any
torus fiber bundles over the circle S'. In the present work we study the fixed
point problem over B for Klein bottle fiber bundles over S*.

Recall that a Klein bottle bundle over S! has as total space the mapping
torus M(¢) where ¢ : K — K is a homeomorphism. A relevant step in
solving the problem is to determine, for each fiber bundle M (¢) — S!, the
set of homotopy classes of maps f over S' such that f restricted to the fiber
can be deformed to a fixed point free map. This is done in Theorem 2.4.
The main result of the paper is Theorem 6.26, which gives a classification of
the homotopy classes of fiber-preserving maps given by Theorem 2.4 which
can be deformed over S! to a fixed point free map. Our method is to study
solutions of a system of equations in a free group either by providing an
explicit solution or by considering the system in some quotients of this group.
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The paper is organized in six sections. In Section 1 we give some re-
sults about the Klein bottle, K-bundles and an algebraic formulation of our
main question. In Section 2 we classify all K-bundles over S' and bundle
maps which have the property that their restriction to a fiber can be de-
formed to a fixed point free map (Theorem 2.4). In Section 3 we compute
the fundamental group of the K-bundle M (¢) x g1 M(¢) with suitable base
points. In Section 4 we compute the fundamental group of the K-bundle
M(¢) xg1 M(¢) — A where A is the diagonal. In Section 5 we give neces-
sary and sufficient conditions for the existence of a lifting in the algebraic
diagram (1.1); this existence is equivalent to the map being fiberwise de-
formable to a fixed point free map (Theorem 5.1). Then we reduce the cases
to be analyzed (Corollary 5.4). In Section 6 we derive necessary conditions
for the relevant system of equations on a free group F' to have a solution, by
looking at the system on some quotients of F'. In certain cases we construct
explicit solutions. Then we derive the main result, which is Theorem 6.26.

1. Preliminaries

1.1. The algebraic problem. Let f : E — E be a fiber-preserving map
over S' where F is a fiber bundle over S' with fiber a surface S. From
Corollary 1.3 in [GPV04] we know that all such bundles are of the form

S — M(¢) & S' where ¢ : S — S is a homeomorphism and M (¢) is the
quotient of S x I by the relation (z,0) ~ (¢(z),1).

Let M(¢)x g1 M(¢) be the pullback of p : M(¢) — St along p : M(¢)
— S', and p; + M(¢)x g1 M(¢) — M(¢), i = 1,2, the projections to the
first and the second coordinates, respectively. The fixed point problem for
a fiber-preserving map f over S' is equivalent to the algebraic problem
given by Proposition 1.6 from [GPV04]. So we must compute the groups
and homomorphisms in the following diagram:

Jap 002
(1.1) T (B(M(6) xg1 M(§) — A))~ m (M() xs1 M(¢) — A)
V-7 i a#
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where S is the Klein bottle and the homomorphisms are defined at the
beginning of Section 5. The group w2 (S, S — x¢) is well known and Proposi-
tions 1.7 and 1.8 of [GPV04] tell us how to compute the groups 71 (M (¢))
and 1 (M (¢) x g1 M(¢)), respectively. To compute 71 (M (¢p) x g1 M(¢p) — A)
we will use the proposition below, which holds for any closed surface S
different from S? and RP2.

PROPOSITION 1.1. The fundamental group m (M (¢p) xg1 M(¢) — A) is
isomorphic to the semidirect product w1(S x S — A) xg Z for some action 6.

Proof. The fiber bundle S x S — A — M(¢) x 1 M(¢) — A 222, g1
provides the short exact sequence
1 m(S xS —A) = m(M(¢) xg1 M(¢) — A) 22,751,

and the result follows since Z is free. m

1.2. Generators of m1(K) and the Nielsen number of a continuous map
f:K — K. Let m(K) = (o, 8 | aBa3~1 = 1) be the well known presenta-
tion of the fundamental group of the Klein bottle.

If f: K — K is a continuous map then fyu : m(K) — m(K) is a
homomorphism of the form:

o Type 1: fy(a) =1, f4(B) = aPB,

e Type 2: fy(a) =a", f4(B8) = aPp?atl.
In some situations we will distinguish the two types, but not always.

To compute the Nielsen number of a map f : K — K given by fu(«)
=o', f4(8) = a®B" we have the following result of [DJ93].

THEOREM 1.2. The Nielsen number of the above map f: K — K 1is
N(f) = [t = 1| max{1, |r[}.

COROLLARY 1.3. If f : K — K s a continuous map so that fyu :
m(K) — m1(K) is of type 2, then

_ [ 12rql if r#0,
N = { 12| if r=0.

2. The Klein bottle case—preliminary reductions. We use some
homeomorphisms of the Klein bottle to describe all K-bundles over S up
to fiberwise isotopy.

Let us consider in R? the equivalence relation generated by the relations
(x,y) ~ (z,y+1) and (z,y) ~ (r + 1,1 — y). The quotient space is K and
the equivalence class of (x,y) € R? is denoted by [(x,y)] € K.

Let ¢ be a homeomorphism of K so that ¢([(0,0)]) = [(0,0)] = 2.

As in Section 1, let M (¢) be the quotient space of K X [0, 1], where we
identify ([(z,y)],0) with (¢[(x,y)],1). The class of ([(x,y)], ) in the quotient



266 D. L. Gongalves et al.

is denoted by {([(z,¥)],t). The space M (¢) is a fiber bundle over the circle S*,
where the fiber is the Klein bottle. The projection map p : M(¢) — St is
given by p({[(z, 9)],£)) = (t) € [0, 1]/pmr =~ S1.

We denote by fs(r,t) : a +— ", 3+ o*B the homomorphism on 7 (K)
induced by the restriction of f to K, and by ¢,(e,n) : a — af, B — oPF"
the isomorphism of 71 (K') induced by the homeomorphism ¢. Since ¢p(e,n)
is an isomorphism it follows that ¢ = £1 and n = +£1.

PROPOSITION 2.1.

(1) m(M(¢p(€,n)),0) = (v, B,co | afaB™t =1, coacy™ = af, coBco™t

= ap5n>7 where 0 = <[(07 0)]70>

(2) There are four isotopy classes of homeomorphisms of K where a set

of representatives is given by {po(1,1), ¢1(1,1), po(1, —1), ¢1(1, —1)}.

(3) For any homeomorphism ¢ : K — K, M(¢) is homeomorphic over

St to M(¢p(1,m)) where ¢p(1,m) is given by (1). Further, the
M (¢,(1,7m))’s are not homeomorphic for two different ¢p(1,1m) given
in (2).

Proof. (1) This follows from Proposition 1.7 in [GPV04].

(2) It is a straightforward calculation to show that the number of con-
jugacy classes of isomorphisms of 71 (K) is four and a set of representatives
is given by {¢o(1,1),¢1(1,1), ¢0(1,—1),¢1(1, —1)}. Since the surface K is a
K (m,1) we can identify these classes with the isotopy classes of K.

(3) The first part follows from Proposition 1.2 in [GPV04]. The last
part follows from the fact that the spaces have nonisomorphic fundamental
groups (given before the proposition). m

PROPOSITION 2.2. If f is deformable to a fized point free map over S*
then the Nielsen number of f restricted to the fiber is zero, which implies
that fs(r,t) is of the form fs(r,1).

Proof. The first part is clear. That fs(r,t) is of the form f4(r,1) follows
from Corollary 1.3. =

Let us denote by fs(r,t,c1,c2) @ m (M (¢q(1,m))) — m1(M(pg(1,7))) the
homomorphism a — o, 8 — o®pt and ¢y — o 3%cy. Consequently,
r,s,t,c1,co must satisfy certain equations as a result of the relations in
the group.

PROPOSITION 2.3. Let f : M(¢q(1,1)) — M(¢4(1,m)) be a map over S,
where q¢ € {0,1} and n = 1. If the Nielsen number of f restricted to the
fiber is zero then fu @ mi(M(pq(1,7m))) — m(M(dq(1,7m))) has the form
fs(r, 1,1, c2) where

() (-1 =
(i) 261 = 5[l = (~1)*] +qlr — (~1)°2.
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Conversely, for each homomorphism fs(r,1,c1,c2) @ m(M(pq(1,1n))) —
m1(M (pq(1,7m))), with ¢ € {0,1} and n = 1, where (1, s, c1, ¢z, q) satisfy the
condztzons (i) and (ii) above, there is a map f: M(¢q(1,m)) — M(¢pq(1,7))
over St such that fu = fs(r,1,c1,c2) and the Nielsen number of f restricted
to the fiber is zero.
Proof. Since f : M(pq4(1,n)) — M(¢4(1,m)) is a map over S we have
the following commutative diagram:

1 —— m(K) —— m(M(¢)) —— m(S") —— 1

| e o | a |

1 —— m(K) —— m(M($)) —— m(S") —— 1
Because f|x has Nielsen number zero, (f|x)4 = fs(r,1) for some r,s € Z.
Therefore fyu = fs(r,1,c1, c2).

Now we will show (i) and (ii).

Because m1 (M (¢4(1,1))) = {a, B,co | afaf™t=1, coacgl =a, coﬁcal =
a?3") by Proposition 2.1, we must have fy (coozcal) = fu(o) and fy (coﬁcgl)
= fu(a4p"). Using

r(14+(— st : :
(a7 @) = {az[l([ e 1)ﬁ+ t ?ft ?s even,
2 " "B if ¢ is odd,
we have (—1)%r = r and 2¢; = s[1 — (—1)°®] 4+ ¢[r — (—1)2]. This finishes
the proof of the first part.
For the converse we first observe that py o fs(r,1,¢1,¢c2) = px. Because
all spaces are K(m, 1) there exists g : M(¢q(1,m)) — M(¢pq(1,7n)) and a
homotopy H : M(¢4(1,m)) x I,z1 x I) — (S1,1) so that H(z,0) = po
g(z) and H(x,1) = p(x) and g = fs(r,1,¢c1,c2). The map G : (xq x I U
M(64(1,)) X 0,21 % T) = (M(6y(1, 1)), 23) defined by G(z,0) = g(z) and
G(z1 x I) = 2 makes the diagram

(21 % TUM(¢g(1,1m)) % 0,1 x I) —Z> (M(¢g(1,7)), z2)

(M(g(1,m) x Iy x ) — (s".1)
commutative. Since p : (M (¢4(1,7)), z2) — (S1,1) is a fiber bundle it follows
o(1,

that there exists L : (M(¢q(1,m)) x I,z1 x I) — (M(¢q(1,7m)),x2) such

that po L = H and f = L( 1)« (M(¢q(1,m)),21) — (M(g(1,n)),22)
is over S', and the induced homomorphism on the fundamental group is

fs(r,1,c1,¢); indeed, po f =po L(,1) = H(,1) =pand fg = L(,0)% =
g# = fS(T, 1,61,62). ]
Then we have
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THEOREM 2.4. Let f : M(¢q(1,m)) — M(¢4(1,m)) be a map over S,
where q € {0,1} and n = £1. If the Nielsen number of f restricted to the

fiber is zero then fu : i (M(¢q(1,m))) — mi(M(pg(1,n))) is given by the
table:

Case I I.1: fs(r,1,0,2k) = a”, B a®B, co— B r,s, k€L
$o(1,1) | L2: fs(0,1,8,2k+1):a—1, B a®B, co— a®B2k+tlc s,keZ
Case IT fs(2r +1,1,7,2k) : a— a®*1 B a®B, co — a” ey r,s,k €Z
$1(1,1)

Case 11T | IIL.1: fs(r,1,0,2k) s a— a”, B a®B, co — %o r,s,k €L
¢o(1,—1)| II1.2: £s(0,1,8,2k+1) s a1, B+ a®B, co+— a’B2Ftlc s,k €Z
Case IV fs(2r +1,1,7,2k) : a — a®™ 1, B a®B, co— a"B%*cy s, k€L
$1(1,-1)

Proof. By Proposition 2.3, we have 2¢; = s[1 — (—1)®] + ¢[r — (—1)%]
and (—1)2r = r. Using these equations for various values of n € {1,—1}
and ¢ € {0,1} yields the result. m

3. Calculation of 71 (M (¢p) x g1 M (¢), ({x2,0),(z;,0))), i = 1,2. Recall
that o = [(0,0)] and set x1 = [(0,¢q)] for ¢ small. Later we will choose ¢
such that also ¢(z1) = x1. We have the short exact sequence

Vs (K, 25) 5w (M(6) x 51 M(6), (22, 0), (4, 0)) 2255 7y (M(9), (2, 0)) —1

where [ is the homomorphism induced by the map [ : K — M () x g1 M (¢)
given by x — ((z2,0), (x,0)), and (p1)x is induced by the map p; : M(¢) X g1
M(¢) — M(¢) given by ({(x,1), (y,1)) — (z,1).

We will define an explicit set of generators for 71 (K). For this we start
by choosing a set of elements of 7 (K — z) which will also be used in the
next section. Let 011, 012, B12 and 021, 022 be the elements of 71 (K — x9, 21)
and 71 (K — x1,22), as defined in [S69], respectively. See Figures 1 and 2.

B

Fig. 1. The braids g;1 and g:1 Fig. 2. The braid Bi2
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By abuse of notation denote also by p;; the element of 71 (K) which is
the image of the g;; defined above under the map induced by the inclusion
K—-—x— K.

We consider the presentations (K, z;) = (a;, b; | aibiaibf = 1) where
a; = o0n0i2 and b; = 0" and T (M(¢), (x2,0)) = (o, B,co | aBaf™' =1,
coacy ' = a, coBeyt = aPB")) where n = +1 and p € {0,1}.

Denote by a1, 51, co1, u1,v1 the homotopy classes of the loops given re-
spectively by the pairs of loops (a(t), (x1,0)), (8(t), (x1,0)), (co(t), (z1,1)),
((x2,0),a1(t)), ({(z2,0),b1(t)); and aw, Pa2, coz, uz, v2 the homotopy classes of
the loops given respectively by the pairs of loops («(t), (x2,0)), (5(t), (z2,0)),

(co(t), co(t)), ({x2,0), a(t)), ({x2,0),5(t))-

THEOREM 3.1. Let ¢,(1,7) be one of the four cases given by Theorem 2.4
and oy, B, coi, ui, v; the elements in w1 (M(p) x g1 M (), ((x2,0), <l‘1,0>))
Then 7T1(M(qz5) x g1 M(), ((2,0), (24,0))) = (v, Bi, coi, i, vi | wvsuiv; =1,
alﬂlalﬁ* =1, colalcalla;l =1, coifBicoi” 1[31 ozlp 1, alulal S = uy,
it =y, BB = wg, BBt = i, copuicy; = i, covico; = ubvl).

Pmof. The result follows promptly from Proposition 1.8 of [GPV04].

Also it is a corollary of Theorem 4.1 by letting B be the trivial element in
the presentation given by that theorem. =

4. Calculation of 7 (M (¢) xg1 M(¢) — A, ({(x2,0), (x1,0))). As before
we have zo = [(0,0)], z1 = [(0,q)], and ¢ : K — K is a homeomorphism
such that ¢(z2) = z9 and ¢(z1) = 1.

In order to compute 71 (M () x g1 M () — A, ({x2,0), (x1,0))) we consider
the fiber bundle

P1)

(K —@5,21) 2 (M(9) x51 M(6) = A, ({22,0), (21,0))) =5 (M(9), (w2,0))
where jo 1 K — 29 — M(¢) xg1 M(¢) — A is given by y — ((z2,0), (y,0))
and py : M(p) xg1 M(¢p)—A — M(¢) is given by ((z,1), (y,t)) (with y # x)
— (z,t). The homotopy sequence of this bundle is

Jogu (P1)#
1= m(K—z2,01) — > m1(M(9) X g1 M(¢)—A,((x2,0),(21,0))) — 71 (M(9),(z2,0)) — 1.

We consider the presentations 7 (K — 332, x1) = (a,b) (the free group on the
set {@,b}) where a = Q11Q12 and b= 912 , and 71 (M (¢), (x2,0)) = (o, B, co |
afafl =1 coaco = q, coﬁco = aPf") where n = £1, p € {0,1}. The
0i; were defined in the prev1ous section, and «a, 3,¢o : I — M(¢) are given
by a = (021022,0), 8 = (922 ,0) and ¢p = (zg,t). Finally, consider the
elements &, 3, ¢, a,b: I — M(¢) xq1 M(¢) — A given by & = (a, (1,0)),
B = (ﬁv <1’1,0>), Co = (CO, <$13t>)a a= (<l’2,0>, <C_l, 0>) and b = (<$27 0>7 <bv O>)
According to [Jo76, Chap. 13, Theorem 1], there is a presentation
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where p;(a, b),j=1,...,9, are words in a and b.

THEOREM 4.1. Let ¢,,(1,7) be one of the four cases given by Theorem 2.4
and &, 3,¢y,a,b the elements in w1 (M(¢) xg1 M(¢) — A, ((x2,0), (x1,0)))
defined above. Then

T(M(d) xg1 M(¢) — A, ({22,0), (x1,0)))
= (&, (3, ¢0,a,b | aBaf™t = p1(a,b), Goacy 'a~" = pa(a,b),
GoBe ' BTaP = p3(a,b), aaa " = pa(a,b), aba~" = ps(a,b),
Baf~" = ps(a,b), BbB~" = pr(a,b), Goacy" = ps(a,b), éobéy " = po(a,b))

where p;(a, 5), j=1,...,9, are words in @ and b given by the tables

aBaB'= B = abab~!
(4.1) aaa~! = BaB™! BaBt=b"ta b
aba—' = B(a'ba~"B~' | Bbf~t=b"1(Bb)b
and
Case I oy = @ Gyt =0
do(1,1) Goacy = a Gobeyt =b
Case II Goaiy ! = @ Goféyt = B'ap
(42) $1(1,1) Goacy ' =a 5011551 = bNd_l
Case Il | Gac,' = B~ 'a Gofeyt = gt
do(1,—1) | &aéyt =aB~! &by = Bb !B~
Case IV | &ac,' = B~ la Gyt =apt
o1(1,-1) | &aéyt =aB™'  &béy' = Bbtat

Proof. To simplify we set & = g21022 and 3 = 922 Since (afaf™!,z1)

= (02102205 021022022, 71) = (031035, %1) is homotopic to (02, 0, 0%)
(wo,abab~ 1) it follows that

apaf" = (apap™", (21,0)) = ((afaf™",0), (x1,0))
= ((x2,0), (@bab—*,0)) = abab~".
We set B = abab~"'. Then afaf ' =
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In order to compute aad !, 07564*1, B&Bil and Bi)ﬁll as elements of the
kernel we consider the presentation 71 (K, *) = (01, 02 | 0305 = 1).
Since the short exact sequence

7

1= mi(K x K — Ag, (w9,21)) & mi(M(9) x g1 M(¢) — A, ({(2,0), (z1,0)))

T (81 (0) ~ Z — 1
splits we have & = ix(&), 3 = i#(B),d = iy(a) and b = z#(i)) where &, 3,
and b are the generators of m (K x K — Ak, (z2,x1)).

If we denote by jy : m (K — x2,21) — 71 (K, 21) the homomorphism
induced by the inclusion j : K — 2o — K, and by ky : m(K — z1,22) —
71 (K, x2) the homomorphism induced by the 1nclu51on k: K-z — K
then @ = 011012, b = 015, @ = 21022 and 3 = g5, where 011, 012 are the
generators of 71 (K — xg,21) such that ju(o11) = 01 and jx(012) = 02, and
021, 022 are the generators of 7y (K — w1,x2) such that kx(g21) = o1 and
ku(022) = 02.

Also, if we denote by (i2)g : (K — 22, 21) — m (K x K — Ak, (22, 21))
the homomorphism induced by io : K — 29 — K x K — Ag given by
io(x) = (x2,2), and by (i1)x the homomorphism induced by i; : K — 21 —
KXK—AK given by il(l’)A: (LL’, a:l), then d = (ig)#(guglg), B = (ig)#(gl_Ql),
& = (i1)#(021022) and § = (il)#(ggzl), or equivalently, a = (i2)x(a),
b= (i2)4(b), & = (i1)x(@) and 3 = (i1)%(3) where @,b,@ and J3 are the
generators of m (K — xz9,x1) and 71 (K — x1, 22), respectively.

Let Bio be as given in Figure 2 of Section 3, and Bs; = B1_21.

Using [S69] and the convention that the product cd of two elements in
71 is the class of a representative of ¢ followed by a representative of d we
obtain the following presentation for 71 (K x K — A, (x2,x1)):

Bia = ot10%, By' = 031052,

02101105 = ouBry, 02101205] = Bi207) Bi2oui01207; By 01 By
9213129511 = Blzgﬁleglgangl, Q229119521 = 011,

022012057 = 012B13, 022B12055 = Bi207; By 012815,

051 011021 = 011 B3 017, 051 012021 = 011B12077 B12012B1,' 011 By, 017
Q§11312@21 = Quszlgﬁl, 9521911Q22 = 011,

033 012022 = 012 B3 015, 035 B12022 = 012B1, 075

We have aaa—! = (il)#(Q21Q22)(i2)#(Qllglz)(il)#(g2_2192_11). Using the re-
lations above we obtain 021(022(011012) 055 )03 = 021(011012B15 ) 051 =
Bi2011012 B12 = BaB™!. Therefore Gaa—! = BaB™".

Similarly we obtain all the other relations of the table (4.1).
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The fiber bundle

(K X K — AK? (%2,%1)) _Z> (M(¢) Xgt M(d)) - Av (<l‘2, 0>7 <$17 0>))
where i(z,y) = ((z,0), (y,0)), provides the short exact sequence

popy|
—_—

Sl

1= (K x K —Ag, (22, 71)) 25 m(M(6) x 1 M(¢)—A, ({z2,0), (x1,0)))
P, (ST, (0)) ~ Z — 1,

which splits since the quotient is Z. The action of Z — Aut(m (K x K —
Ak, (z2,71))) which comes from the section sg is given by c¢- o = coc™! =
(¢ x ¢)x(0), where ¢ = p o pyu(so) is the generator of m(S'), hence
T (M(¢) xg1 M(¢p) — A, ({x2,0),(x1,0))) is isomorphic to the semidirect
product w1 (K x K — Ag, (z2,21)) % Z.

Using the homeomorphism h : M (¢) x g1 M (¢) — M (¢x ¢) over S* given
by h({z,t),(y,t)) = (z,y,t) we obtain by restriction the homeomorphism
hy: M(¢) xg1 M(¢) — A — M(¢ x ¢) — h(A) over S*.

In M(¢ x ¢) — h(A) the loops &, 3, ¢, d,b can be seen as & = (@, x1,0),
8= (B,21,0), éo = (w2, 21,t), @ = (22,a,0) and b= (x2,b,0), and they can
be viewed as classes of the representative loops in K x K — Ag of natural
form.

So the loops &, B, Co, EL,B can be interpreted as follows: EL,I; are elements
in the second copy K of K x K and &, 3 are elements in the first copy K of
K x K. So

coacy &' = (¢ % )
Goficy ' BT = (6 x ¢)
Goacy ' = (¢ % ¢)
cobco = ( )
Now we are going to calculate
(¢ x @) : m(K X K — A, (z2,71)) — m(K x K — Ak, (22, 71)).
For this:
(i) We consider the commutative diagrams

(¢))
7T1(K—1‘2,$1) j>7T1(K - x2,x1)

j#i ij#
P4

T (K, x1) T (K, z1)
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and
(é)
m (K — x2,71) - T (K — @2, 1)
(i2)% I(Zé)#

(PX @)1
7T1(KXK—AK,(CL‘Q,xl))Hﬂ'l(KXK AK,(xg,Il))
(‘Zl)#l i(fm)#
¢
(K, 2) - ™1 (K, z2)

where jy is induced by the inclusion j : K — x9 — K, (i2)4 is
induced by is : K —x9 — K X K — Ak given by is(x) = (z2, ), and
(q1])# is induced by ¢ : K x K — Ag — K given by ¢y(7,y) = z.
(ii) We denote by a, b, & and ﬁ the generators of 71 (KxK — A, (v2, 1))
such that ix(a ) = a, 2#(b) = b, iy(a) = &, z#(ﬁ) B and igy(a)

= a, izy(b) = b, ir4(a) = &, i14() = f.
(iii) We consider the identities

God (&5 \ado) *—1551 = (Goacy Ma(Goa ey "),
God(&y 'bég)a gt = (Goacy Mb(Goa e ),
aoB@alaco)ﬂ et = (@fe Haeos e,
GoB(ey "be0) B eyt = (GoBeg b(GoS )

(iv) We write 71 (K, %) = <C_l,b | abab~' = 1) and 71 (K — z, %) = (a,b).
If we,wp € m (K — x,%) are such that wawbwawb_1 = abab™! or
W WhWq, wb_l = ba~'b~'a~! then by Theorem 1.1 of [Sko87] there
exists a homeomorphism ¢ : K — K such that (¢|)x maps a — w,
and b — wp.

Now we are going to use the above diagrams in each of the four cases.

CASE I: ¢o(1,1). In this case let ¢ : K — K be the identity. We have

(pPx : @ — a, b — b and so (¢ X @)z : &~»—> a, b — b. T}}erefor~e
Coacy | (qb X O)(8) = (6)4(8) = & and &by = (6 x () = b

Since in this case ¢; bco = b and Co 1Géy = a it follows from the identi-
ties coa(co aco) éal = (coacol) (coa™ 100 ) and coa(co bco) 1551 =
(Goacy Mb(Epa 01) that py(a@,b) must satisfy BaB~! = py(a,b)BaB™*
po(a,b)~ and Ba~'(ba~2)aB~' = pa(a,b)Ba ' (ba2)aB 'py(a,b)~'. So
p2(@,b) commutes with the subgroup generated by BaB~! and Ba~*(ba2)
-aB~'. Suppose that pa(a, b) # 1. From Exercise 7 in Section 1.4 of [MKS66]
we know that some nontrivial power of BaB~! is also a power of po(a, l~))

Similarly for Ba~!(ba—2)aB~'. By Exercise 4 in Section 1.4 of [MKS66]
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the two elements BaB~! and Ba'(ba2)aB~' commute, so they gener-
ate a cyclic subgroup. But the subgroup generated by BaB~' and Ba !
- (ba—2)aB~"! cannot be cyclic since it is not cyclic in the abelianization.
So we get pg(d b) = 1. Also, from the identities 503(651(160)5*1651 =
(€05 M)a(é@B ¢ ") and coﬁ(colbco)ﬁ legt = (eofey! )~(505—1551~) we find
that ps(a, b) must satisfyb a b= ps(a, b)b a'b+ps(a,b)~' and b= (Bb)b
= p3(a,b)b=1(Bb)bps(a, b) 1. So ps(a, b) = 1 is the unique solution. There—
fore égaéy @' = pa(a,b) = 1 and coﬁco 131 = ps(a, b) = 1. As Gac, 'a~!

= (¢ x ¢)jz(a@)a™! =1 and oyt = (¢ x ¢)|#(ﬂ)ﬂ L= 1 it follows
that (¢ x 6) (@) = & and (6 x &)(B) = f.

Case II: ¢1(1,1). By (iv) we can take ¢ such that (¢)4 : a — d, b
ba~!. Now, by diagrams in (i) we have ¢ = ¢1(1, 1) and (¢ X qﬁ) 141G a,
b ba~'. So Gyacy —(<;5><¢)|#( a) = a and &béy ! (¢><<;5)|#(5) !
Now, as in Case I, it follows from the identities (iii) that ps(a,b)
ps(a, l~)) = B~! are the unique solutions Therefore 6007651671 = po(a, 5) =1
and & (¢, 3 a~" = p3(a,b) = B~ As & coaco = (px P)p(@at =
and 6035613_16[_1 = (¢ x ¢)|#(ﬁ)ﬁ 1=t = B~! where B = abab~!

follows that (¢ x ¢)4(&) = & and (¢ x ¢)4(8) = B~'ap.

CaAsE III: ¢o(1,—1). By (iv) We can take ¢ such that ((b‘) Da e
aba~'v7'a=! = aE~!', b — abab'a"'bla"! = Eb"'E! where £ =
abab—t. Now, by diagrams in (i) we have ¢y = d)o(l, —1) and (¢ x @)% :
a — aba~lblal = ak 1, l; — df)&f)‘lfz_lf)_lg_l = Eb'E~! where
E = abab™! Therefore coaco = (¢ x ¢)jx(a) = aba'b~'a' = aB~! and
Gobéy " = (¢ x ¢)14(b) = abab~'a~'b~*a~! = Bb~B~! where B = abab .
Now, as in Case I, it follows from the identities (iii) that ps(@,b) = B~! and
ps(a, b) = 1 are the unique solutions. Therefore Goaéytat = pg (a,b) = B!
and COBCO 18 = p3(a,b) = 1. As éac, 'a! = (¢ x P)x(@)a ! = B! and
G0yt = (¢ x gb)|#(ﬁ)ﬂ = 1 it follows that (¢ X ¢)x(@) = B~'a and
(&% @)y(B) =B~

CASE IV ¢1(1 —1). By (iv) we can take ¢ such that (¢|)4 : a — aE™,
b— Eb~'a~! where E = abab—'. Now, by diagrams in (i) we have ¢y =
¢1(1,—1) and (¢x @)y : @ — aE~1, b— Eb~'a~! where E = abab~'. There-
fore Goac, ' = (¢ x ¢)4(@) = aB~! and éobe, ' = (¢ % ¢)|#(~) = Bb'a'.

So, it follows from the identities (iii) that po(a,b) = U and ps(a,b)
= 1 are the unique solutions. Therefore coaco lof = pg(a b) B~ and
éoBe,  pat = ps(a, b) = 1. As Goacytat = (¢ x ¢)jx(@)a ! = B~ and



Fized points on Klein bottle fiber bundles 275

oPey 'Bat = (¢ x ¢)(B)Ba~! = 1 it follows that (¢ x ¢)4(d) = B~la
and (¢ X <Z>)‘#(5~) = @3~!. This settlesall the cases from the table (4.2).

REMARK 4.1. We observe that every word p(a, b) can be written as a
word in w = aba~'b~'a"! and v = ab because @ = v w v and b = v wv.
For the next sections it will be convenient to calculate the conjugates of the
generators v and w by @, B and &. They are given in the tables (4.3) and

(4.4) below.

ava™! = wow a tva =w tvw™!
awa™! = w & 'wa = w
aBa ' =a(w v lwTw)a™!t | a7 'Ba=at(w v iwT)a
(4.3) = w ' Bw = wBw™!
pus "l =v B lvB=v
Bwﬁ_l =y lw B_lwﬁ =pw vt
BBB_l =v 'wB vt ﬁ_lBﬁ =ywB lw lv™!
Case I Govéyt =w Gowéyt = w éBé =B
$o(1,1) & tvég = v &y twéy = w é&t'Bé =B
Case II Govéy ' = wv Gowéy ' = w éBé ' =B
(4.4) #1(1,1) & tvég = w ™t & twég = w é'Bé =B
. Case III Govéy = vt Gowéy' =vlwly &BE ' =BTt
$o(1,—1) étvéo =v7t Elwéy =vlwlv & 'BéE = B!
Case IV Eovégl =y ™! 6011)651 =y tw o EoBéal = B!
#1(1,-1) étvéo = v G lwég = v lwTly & 'Bé = B!

5. The lifting problem and some reductions. Now we study the
existence of the lift in the algebraic diagram (1.1) given in Subsection 1.1.
The homomorphism jo4 is the induced by the map

J2: (K - 1:271‘1) - (M(¢) X1 M(¢) — A, (<:L‘230>7 <$170>))

given by y — ((z2,0), (y,0)). The homomorphism 05 is the connecting ho-
momorphism of the homotopy exact sequence of the pair (K, K — x3),

1— WQ(K,K —xg,.’El) 2 7'['1(K—$2,$1) j—ﬂ> 7'['1(K,:E1) —1
and the homomorphism

Wl(M((b) X51 M(¢) — A, (<x270>7 <x1’0>))

Joe

Wl(M(¢) X 51 M(¢)7 (<:132, 0>7 <$27O>))
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is given by the composition

T (M(¢) xg1 M(9) = A, ((22,0), (x1,0)))

%

T (M(¢) x5 M(9), ((x2,0), (x1,0)))

|-

T (M(§) X g1 M(9), ((22,0), (22,0))).

Here 7(n) = v=nv where v : I — M(¢) xg1 M(¢) is given by v(t) =
({(x2,0),(o(t),0)) with ¢ : I — K a path joining z; to x2 and k is the
homomorphism given by a — «y, ,@ — B1, ¢o — Cco1, @ — U1, b — v
In order to compute 7! o (1, f)# we will compute the homomorphism
(1, f)# and the homomorphism 7! of the above diagram, where fu =
fs(r,1,¢1,¢2) is given in the table from Theorem 2.4. From Sections 1, 3
and 4 we have

7T1(M(¢), <l’2,0>) = <Oé,ﬁ,60 | Oéﬁ()éﬁ_l = 1700acal = achﬁcal = apﬁ"l%
Wl(M(Qj) X g1 M(¢)7 ((l’g,O), <l’2,0>)) = <062,52,002,UQ,'U2 | u2v2u2v2_1 = 11
azfBaafByt =1, copancor tay ! =1, coafacyy By g P =1, asusay !t =us,

1 1 1 1 e 1_ . p
QU0 - =2, fouafy T =g, Bavafly T =2, CoaUaCyy =Us, CoaV2CHs =Usv2"),

T1(M($) x51 M(9) — A, ((z2,0), (z1,0)))
= (&, B3,¢,a,b | aBaf " = abab ' = B, éaé, a = (¢ x ¢)x(a)a ",
GoBey ' BaTP = (¢ x ¢)4(B)B AP, aaa~' = BaB™!,

aba—' = Ba~'ba'B7Y, gapgt = b ta"t, BbG! = b1 (Bb)b,
coady' = (& % O)4(a), Gobdy " = (& x )4 (D)
and
T (M(p) x g1 M(9), ((z2,0),(x1,0))) = (a1, b1, co1,u1,v1 | ulvlulvl_l =1,
arfron Bt =1, conancy oy © =1, co1 iyl By "eq P =1, aqurag !t = u,
aqviagt = v, frur Byt =, Broi Bt =1, corurcy) = uf, corvicol = k),

where p € {0,1}, e = +1 and n = £1.
We have (1, f)4((a(t))) = ((1, f) o a(t))
t

= ((a(t), f o a(t))). But (a(?),
foa(t) ~or (a(t), (x2,0)) * ((22,0), f o a(t)).
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Since fyu(a) = " it follows that

(L flg({a)) = (L, f) o a) = {(a, f o))
= (e, (z2,0)))(({z2,0), f o )
= (@, (2,0)))(({z2,0),0")) = aguj.
Similarly, as fu(8)=a’3 we have (1, f)x((5)) = Bauzvs. Also, (1, f)4((co))
= ((1, f)oco) = ((co, focp)). But, since f (co) = a3 ¢ we have (cg, focp)

~or ({x2,0),a)*({x2,0), 3)*(co, o). So
rizing, in all cases, if fu = fo(r,1,¢1,c2) th
B+ Baujve and ¢y — ug'vs*cps.

For

v mi(M(¢) xg1 M(9), ((x2,0), (x1,0))) — m(M(d) x51 M(0), ((x2,0), (2,0)))
we have
v(ar) = v agw = ((22,0), (071, 0)) (e, (1, 0)) ((22,0), (0, 0))
= (o, (2,0)) = .
Similarly v(31) = (B2, v(co1) = co2, P(u1) = ug and v(vy) = ve.
Therefore, in all cases, if fx = fs(r,1,c1, c2) then
Yo (1, )y s m(M(9), (x2,0)) — mi(M(9) x g1 M(), ({x2,0), {x1,0)))

is given by a — aqul, 8 — fiufvr and ¢o — uftvi*cor.
The next theorem describes the homomorphisms of diagram (1.1).

) =
(1, f)u(co) = us'v5*co2. Summa-
en (1, f)# is given by a — agub,

THEOREM 5.1. Let fs(r,1,c1,c2) be one of the four cases given by The-
orem 2.4, a, 3,co loops in M(¢p) based at (x2,0) given respectwely by a =

(021022,0), B = (059,0), co(t) = (w2,t), and a = p11012, b = 075 ZOOPS in
K — x9 based at x1. Then:

(1) The homomorphism
(17 f)# : 7T1(M(¢)7 <£C2, 0>) - ﬂl(M((b) Xg1 M(‘b)? ((va 0)? <.132, 0>))

s given by
ar— aguy, B fousve, oo U2lv§2002
(2) The homomorphism U is given by v(n) = v=nv where v : I —

M(¢) x g1 M(¢) is given by v(t) = ((x2,0),(c(t),0)) witho : I — K
a path joining x1 to xa, and the homomorphism k is given by & — ax,
ﬁ — (1, o — Co1, @ — Up andbr—>v1

(3) The lifting homomorphism

YT (M(), (22,0)) — m(M(9) x51 M(d) — A, ((x2,0), (x1,0)))
exists if and only if we can find elements Zy,Za,7Z35 € ma(K,
K — 332,331) and A, F,C € 7T1(M(¢)) X g1 M(qb) — A, (<:L“2,0>, <$Cl,0>)
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such that
ar— Z1A  with k(A) = aqu if fu(a) =a’,
Y:q B ZoF  with k(F) = Brujvy if fx(B) = B,
co — Z3C  with k(C) = ui'vi*cor if fu(co) = a®B%c,
and it must satisfy Y(afap™l) = 1, w(coacalofe) = 1 and
P(coBey B aP) =1 where p € {0,1}, e = £1 and n = £1.

Proof. (1) and (2) follow from the considerations before.

Therefore it is enough to prove (3). First we observe that if ¢(a) = =
and fy(a) = o then r(x) = 771 o (1, f)x(a) = ayu]. On the other hand,
if K(A) = aquj then zA™' = Zi, where Z; € mo(K, K — x9,21) = kernel
of m (K — x9,21) — m (K, 1), and the result follows. Similarly we argue
for 3 and cg. Now the equalities ¥ (aBaB71) = 1, w(coacalofe) =1 and
P(coBey B "aP) = 1 follow from the relations in 1 (M(¢), (x2,0)). =

Now we will derive the equations that Zy, Zo, Z3, A, I, C' must satisfy in
order that there exists a lifting

(U 7T1(M(¢)7 <x270>) - Wl(M(¢) X g1 M(¢) - A, (<x2,0>, <$170>))

in each of the four cases given by Theorem 2.4.
From the theorem above, for fu = fs(r,1,c1,¢2), ¢ is of the form

a—Z1A with kK(A) = aquf,

B — ZoF  with k(F) = fiujvy,

co— Z3C  with k(C) = uf'v{*cor1,
and it must satisfy ¢ (aBaB1) =1, ¥ (coacy 'a~¢) = 1 and ¢ (cofBey ' B aP)
=1 where p € {0,1},e = £1 and n = 1. Hence, there exists a lift ¢ if and
only if the system of equations
Z1(AZy A" (AFAF Y (FAT Z AR 1 2,1 =1,
Z3(CZC~ ) (CACTHTA Y (AZ T A Yzt =1,
Z3(CZyC~ Y (CFC FMA™P)(APF" Z; P F~MA™P)

A(APFO-D2 7 p(=n)/2 A=P) 7P = 1

(1)

has a solution in Z7, Zo, Z3.

We refer to (I) as the system generated by the input data (A, F,C;r,s,
(c1,¢2)) where k(A) = ajuf, k(F) = frufvr and £(C) = ui*vi?cor.

Each equation in (I) involves a product where all the factors are conju-
gates of Z;, except one. The factor which is not a conjugate of Z; is called
the constant term of the equation; these are AFAF~!, CAC'A~! and
CFC~'F~1A~P respectively. Since the variables Zj belong to the normal
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subgroup 7I'2<K, K — x2, .%'1) of ﬂ—l(M<¢) X5t M(¢) - Av (<$2, 0>7 <$1, 0>)>7 all
factors (including the constant terms) belong to mo(K, K — 2, 21).

PROPOSITION 5.2. There is a solution of the system generated by the
input data (Ay, Fy,Ch;r, s, (c1,c2)) if and only if there exist solutions for all
systems generated by any input data (A, F,C;r, s, (c1,c2)).

Proof. Suppose that X7, X2, X3 is a solution for the system generated by
(A1, F1,Cy;1y 8, (c1,¢2)). As k(A1) = k(A), k(F1) = k(F) and k(C1) = k(C)
we can write Ay = Y14, Fi = YoF and C = Y3C for some Y; € m(K,
K — x9,21). When we substitute these in the above system we obtain

XA Yo FX VY AF-Y X =1,
X3YsCX1 Vi ACT Y ' X Ay X =1,
XgYaCXo Yo POy L X (P G (AT TP = 1

Therefore Z7 = X1Y1, Zo = XoYs, Z3 = X3Y3 is a solution of the system
generated by the input data (A, F,C;r, s, (c1,c2)). The converse is immedi-
ate. m

Conjugating the equations of the system by a word ¢ in @ and b (or v
and w) we find that x(q) = u{"v] and so we obtain

THEOREM 5.3. Let ¢ = ¢p(1,m) be one of the four cases given by Theo-
rem 2.4. If ¢ denotes a word so that k(q) = u"v} then conjugating by q the
equations of the system (I) generated by the input data (A, F,C;r, s, (c1,c2)),
we obtain a new system generated by

(A', F' .5 (=1)"r,2m + (—1)"s,

(= =0 (e (A iy, o) )

where A" = qAq™', F' = qFq~' and C' = qCq~'. Moreover, if (Z1,Z2, Z3

is a solution of the system (I) then (Z) = qZiq™,ZY = qZsq7 1,7} =
qZ3q~1) is a solution of the new system given above.

Proof. The final part is straightforward. For the first part it is sufficient
to calculate k(A’), k(F’) and k(C").
Using the relations in m (M (¢) xg1 M (), ({x2,0), (x1,0))) we obtain

K(A) = k(gAg™") = uPvlarulv; "uy™ = agay?

_ m,m, T, —n, —m __ m, (=" n —n_ —m __ (=)™
= aju vl "uy " = ajutyy vivy "u™ = aquy .

ulvioquivy "uy ™

Similarly k(F') = ﬁluimﬂfl)nsvl.
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For the system (I) we have
! -1 m,n, Ci,C —n,,—m
K(C7) = k(qCq ") = ug*vyui' vy* corvy "y
m,n, C1,C -n, —m —1
= uyviuy v*co1vy uy ey Cot

1—(=1)c2+@=mn]m 4 [(—1)n+e2 1-(=n" S (—1)" 1_
:“[1 (=1 Jm+[(—1) (—5=)lp+( )Clviz-&-( n)nCOLI

REMARK 5.1. As a consequence of the above theorem the existence of a

lifting for fs(r,1,c1,2k) or fs(r,1,s,2k + 1) is equivalent to the existence of
a lifting for fop,i(—1)ns((—=1)"r, 1, —(17(;1) )p+ (=1)"c1, (1 —n)n + 2k) or

Fomer(<1ys ((=1)77, 1, 2 (G )t (1), (1—)n+2k+1) respectively.

Using the results above we can reduce the cases to be analyzed.

COROLLARY 5.4. In order to study the problem of existence of solution
of the system generated by the input data (A, F,C;r, s, (c1,c2)) it suffices to
solve the problem for input data given by the homomorphisms fs(r,1,c1,c2)
listed in the following table:

Case I |L.1: f5(r,1,0,2k) : a— a”, 8 — a®B,co — B%Fco, 7> 0,5 € {0,1},k € Z
$0(1,1) |L2: £5(0,1,5,2k+1) : a+— 1,8 — a®B,co — a*F%kT1cy, s € {0,1},k € Z

Case 11 | fs(2r +1,1,7,2k) : a — a®"T1 B a®B,co — a"B3%Fco, r > 0,5 € {0,1},k € Z
$1(1,1)

Case III [TI1.1: fs(r,1,0,2k) : a — a”, 8 — a°B3,co — B**co, r > 0,s € {0,1},k € {0,1}
do(1, =1)[1IL.2: £5(0,1,5,1) : @ — 1,8 — a*B,co — a’Beo, s € {0,1}

Case IV | fs(2r +1,1,7,0) : a+ o?™ 1 8+ a®B,co — a"co, r € Z,s € {0,1}
$1(1, 1)

Proof. Let S be the system generated by (A, F,C;r,s,(c1,c2)) where
fs(r,1,¢1,c2) is given by the table of Theorem 2.4. From Theorem 5.3, by
straightforward calculation in each of the four cases, it follows that there
is a system &', generated by (A", F',C';1' s, (¢}, cy)) where fyo(r',1,¢},ch)
belongs to the table in the statement of the corollary, such that S has a
solution if and only if &’ has a solution.

Now from Proposition 5.2 there is a solution for S’ if and only if there
exist solutions for all systems S§” determined by fy (r', 1, ¢}, c}). So the result
follows. m

6. The systems on some quotients and the main classification
theorem. The system (/) given after Theorem 5.1 is on o (K, K —x2,x1) =
mo. Now, we will look at the equations of that system on some quotients of
the abelianized 7o, which is (m2)a, = m2/[m2, m2]. Whenever one of those
equations on the abelianization (m2),1, has no solution, we can infer that the
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initial system has no solution. On the other hand, if the system has a solu-
tion on the abelianization we will try to find a solution on 7o itself. In order
to decide whether the equations on the abelianization (m2)a,, have no solu-
tion, we project the system to Z using the augmentation homomorphism & :
(m2)ab — Z and study if the corresponding equation on Z has a solution or
not. We will show that one system has a solution if and only if the other does.

We recall that the group 71 (K, x1) acts on ma/[ma, ma] = (72)ap since for
each & € m1(K — x9,x1) we have the commutative diagram

1 —— mo(K, K — x9,7) L>771(K — T9, 1) i>7r1(K,1:1) —1

Tél Tgi | l

1 —— mo(K, K — x9,27) i>771(K — x9, 1) Lﬂl(K,xl) —1

where 77 = jx(€).

We note that my is the kernel of the map j, : (w,0) = m (K — z2,21) —
m(K,r1) = (w,v | w oo 1o = 1) and we set B = wlv~!
w, v are as in Remark 4.1.

w™ v where

THEOREM 6.1.

(1) There is an isomorphism (ma)ap = Zm1(K)], where Zlm(K)] is the
group ring of the fundamental group of the Klein bottle.

(2) The abelianization homomorphism A : o — (m2)an sends the ele-
ment p(w, v) B(p(w,v)) ™" to L[p(w, )] where [p(@,7)] = jx(p(, 7).

Proof. This follows from [Ly50, end of page 650]. =

Let A : mo(K, K — z9,21) = m9 — mo/[ma, m2] = (m2)ap be the projec-
tion. Then A(p(w,v)Bt(p(w,v))™1) = t.(w*v¥) where p(w,v)Bip(w,v)~! =
jog (p(w, ) E*(p(w, ) ~) and jir(p(w,v)) = w*0Y for some x,y € Z, where
p(w,v) and p(w, v) denote the same words in w, v and w, v respectively. Now
we define the m (K, z1)-homomorphism & : (m2)a, — Z by E(t.(w"0Y)) = t.

In the first subsection we study the system on the abelianization and in
the second subsection we prove the classification result.

6.1. The system of equations on quotients of (w2)ap = Zlm(K)]. In
this subsection we will calculate AFAF~! & o A(CAC~'A7!) and € o
A(CFC7'FA™P), p=0,1, where AFAF~', CAC~'A~Y and CFC~'FA~P
are the constant terms of the equations of the system. Then we apply £o.A to
the equations. In certain cases we project the system onto another quotient.

If fs(r,1,c1,c2) is the homomorphism on 7 (M (¢(1,7))) defined before,
then the terms appearing in the system are denoted by A = aw", r € Z,
F = Bow'=5, s € {0,1}, and C = w (vw)®&.

Because w = aba~'b~'a~! and v = ab we have k(v) = k(ab) = ujvy,
k(w) = r(aba='b'a"") = ui(viuy 'o; 'urt) = uy and therefore x(aa") =
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r(aw") = Kk(A), H(Bdsé) — H(ﬂ”vwlfs)f k(F) and k(C) = r(w" (vw)©2é)
= uft (urv1ur) e = uftvZegr = k(a1 b%2é).

PROPOSITION 6.2. If A = aw", F = fow'™* where r € Z and s € {0,1}
then AFAF~' = 1. Hence £ c A(AFAF~1) = 0.
Proof. We have
AFAF™ = auw" fow'*aw ™ w* o 137!
— &w’l‘&—ldngl—sg—ld—l(&B&B—l)gwr+8—1v—lé—l
— wr+sUwB,Uflwfrfs+1 — wr+sflwfrfs+1 —1.
The second part is clear. m

Now, let us consider the term CAC 1A~ If we let a = = ;" then we
have

CACTTA™! = w™ (vw)2Eaw" e, H(vw) " 2w M w " a !

= w (vw)2 B*av w v~ (vw) " 2w Cw "G

= (w (vw)? B*(vw) 2w~ )
(W (vw) 2 (wow) W (wvw) T (wvww) " 2w w D).
In Cases I and II we have n = 1 and therefore a = 0. So
CACT'A™! = w [(vw) 2w (wvww) ™ 2w " Jw ™.
PROPOSITION 6.3. Ifn =1 then £ o A(CACT*A™Y) = cy. Hence:

(1) In Cases 1.1 and 11, £ c A(CAC™1A™Y) =2k, k € Z.
(2) In Case 1.2, E0c A(CACTIA Y)Y =2k +1, k€ Z.

Proof. Consider CAC~*A~! for r = 0, which is w° [(vw)2 (w=tBv~1)2]
~w~. We will show that &€ o A((vw)2(w™1 Bv=1)%) = ¢y for ¢y € Z, which
implies the assertion for Case 1.2.

If ¢ = 1 then (vw)?(w™'Bv™1) = vww 'Bv~! = vBv~! and there-
fore £ o A(vBv~!) = 1. Suppose that the assertion is true for co — 1. Then

(vw)2(w ' Bv™H2 = (vw)2 ! (vw)(w ' By~ ) (w By~ )2t
= (vw)? (wBv ) (w By )2t
= [(vw)2 Y (wBv ™) (vw) 72 (vw) 2~ (wT By )2 L
Therefore
£ o A((vw)2(wBv™1)%2) = £ 0 A((vw)?  (vBv ™) (vw)1~¢2)
+ & o A((vw)2 H (w™ BuTh)e2 ™)
:1+(62—1):CQ.

The proof for Cases 1.1 and II follows from the two lemmas below. =
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LEMMA 6.4. € o A([v?,w"]) =0 for any r > 0.

Proof. The case r = 0 is trivial. The rest of the proof is straightforward
induction on 7. m

LEMMA 6.5. If cg is even then £ o A((vw)?w" (w™tBv™1)2w™) = c,.

Proof. The case ca = 0 is trivial. If co = 2 the conclusion follows by
straightforward calculation using Lemma 6.4. For the general case we use
induction on c9. =

In Cases III and IV we have n = —1 and therefore a = —1. So
CAC1A™! = (w (vw)2 B~ (vw) 2w ™)
- (w (vw)? (wow) " (wow) (woww) 2w Tw ).

PROPOSITION 6.6. If n = —1 then £ o A(CAC™'A™Y) = o + 7 — 1.
Hence:

(1) In Case 1111, Eo A(CACTTA™ Y =2k +7r—1,7>0, k € {0,1}.
(2) In Case I11.2, £ o A(CAC~1A~Y) = 0.
(3) In Case IV, E0c A(CACT'A ) =r -1, r € Z

Proof. Consider CAC~'A~! in Case II1.2, where ¢ = 1, ¢; = s and
r = 0. So we have

CACT'A™! = (w'(vw) B~ (vw) 1w ™)
- (w® (vw) (wow) " (wvw) (woww) Lw™*)
= (w*(vw) B~ (vw) ') (wivBv w ™),

and therefore £ 0o A(CACT1A™Y) = -1+ 1=0.
The proof for Cases II1.1 and IV follows from the two lemmas below. =

LEMMA 6.7. £ o A(v lw™"vw™) = r and € o A((vw) 1w ™" (vw)w™)
=r forr € Z.

1

Proof. For the first part assume that » > 0. The case r < 0 is similar
and left to the reader.

If r = 0 then the assertion is trivial. The rest of the proof is induction
onr. m

LEMMA 6.8. If co is even then
EoACACTIA™ ) = =1 + € o A((vw) ™ Tvww™) + cs.
Proof. We have
CACT'A™! = (w (vw)2 B~ (vw) 2w ™)
(W (vw) 2 (wow) " w " (wow) (woww) " 2w Tw ).

Using Lemma 6.5 we obtain the result. u
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Now consider the term CFC~1FA~P. We compute £ o A(CFC~1FA~P)
in Cases III and IV. Because we will show that the necessary conditions
obtained so far for Cases I and II are also sufficient, we do not need to

compute € o A(CFC~FA~P) in Cases I and II.

PROPOSITION 6.9. In Case 111, where p = 0, we have
—2k+s—1 in CaseIll.1,
-2, in Case 111.2.

Proof. In Case IIL.1 we have F = fow'™® with s € {0,1} and C =
(vw)?*éy with k € {0,1}. So CFC'F = (vw)? v~ w!'Sv(vw ™) =2kl =5,

If k=0 and s = 0 then CFC~'F = v~lwvw = B~! and it follows that
EoA(CFC™'F) = —1.

If k =0and s = 1 then CFC~'F = v~'v = 1 and hence Eoc A(CFC~'F)
=0.

If k=1 and s =0 then

CFC7'F = [(vw)?B~(vw) ] (v?*B o™ 2) (w™wB o™ w)

and so £ o A(CFC™F) = —3.

If k=1and s =1 then CFC~'F = (2 B 'v72)(v*wB~'w~1v=2) and
therefore £ 0o A(CFC™IF) = —2.

In Case I11.2 we have F = Bow'~* and C' = w*vwéy where s € {0,1}. So
CFC™'F = (w*lwB v 1w!=*)(wvB~'v~lw) and the result follows. =

Now we consider Case IV. Then A = aw? !, F = fow! =% and C = w"&
where r € Z and s € {0,1}.

PROPOSITION 6.10. In Case IV we have & o A(CFCIFA™ ) =5 -1
where F = pow'~%, s € {0,1}.
Proof. We have

CFCTFA~! = wréoﬁvwlfséalw*’ﬂﬁvwlfsw*?r*l&*l

£o0 A(CFC™F) = {

=w'af v lw ot T low T Bow

If s =1, then CFC~!FA~! = 1 and therefore £ 0o A(CFC'FA~Y) = 0. If

s=0,then CFC 'FA™! = w"'B~'w™" and so Ec A(CFC'FA ) = —1. u

Now, we are going to study the behavior of £ o A after conjugating the

variable Z = w™v"Bfv~"w™™ by &,a" 1,3, 5~ and & in each case of
ép(1,7), where B = w™lv~lw™lv.

—S—27‘d—1 .

PROPOSITION 6.11. If Z = w™v"BFv™"w™™ then

(1) EoA(Z)=EoAaZa")=EoAa™'Za) = —E 0 A(BZ37Y)
= —Eo0AB71ZB) = k.

(2) In each case of ¢,(1,m) we have € o A(GoZéy*) = nk.
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Proof. In fact, since Z = w™v"B*y™"w™™ and since @aB&a~! = w™'Bw
from the table (4.3), it follows that £ o A(Z) = k and £ o A(aZa™ 1) = k.
Also BB~ = v 'wB~'w'v and so £ 0 A(BZB7') = —k.

Now & 'Ba& = wBw ™" and therefore £ 0 A(G~'Za) = k. Also f~'Bj =
vwB lw v~ and therefore & o A(@_IZB) = —k. Finally, according to the
table (4.4), & Bé,* = B" and therefore € 0 A(oZé,") = nk. m

COROLLARY 6.12. If Z = w™"BFv™"w™™ A = aw", F = Bow'™*
and C = w (vw) ¢y, then in each case of ¢p(1,1m),

e E0A(AZA™Y) = E0 A(FAT'ZAF™Y) = —E0 A(APFMZF~"AP) =k,

e 0 A(CZCO™Y) = nk.

Proof. This is an immediate consequence of Proposition 6.11. =

Now, we will apply £ o A to the second and the third equations of the
system (I). By Corollary 6.12 and Proposition 6.2 we do not obtain any
information if we apply the homomorphism to the first equation.

Let

s ot e T
A :Hw“%}”lBtlv ViT%, Zy :melv”’BtQU Tigy™™,
7
. . T . P ;
Zs :Hw“vy’Bt?’v Yiw™ and tj; = E t;
i

where t§ is the exponent of B in the ith factor of Z;.

THEOREM 6.13. If we apply € o A to the second equation of the system
(I) we obtain co = 0 in Cases I and I, and —2t; — 1+ co +r = 0 in cases
IIT and IV.

Proof. This follows from Corollary 6.12 and Propositions 6.3 and 6.6. =

We will see that the conditions given by Theorem 6.13 are also sufficient
to solve the problem for Cases I and II.
For the other cases we have

THEOREM 6.14. In Cases I1II.1 and 1V, i.e. ¢p(1,—1) where p = 0,1
respectively, if we apply € o A to the third equation of the system (I) we
obtain 2(tg — ta) —pt1 —ca+s—1=0.

Proof. This follows from Corollary 6.12 and Propositions 6.9 and 6.10. =

In order to solve Case III.1 completely we need some further results. The
strategy will now change slightly.

Let us consider Case II1.I, which corresponds to ¢o(1, —1). We first con-
sider the maps f;(r, 1,0,0) with r odd, r > 3.
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Recall that from the system generated by the input data (A = aw”, F =
Bv,C = cp;1,1,(0,0)) the second equation is

Z3(C 2,01 (H w'Bw ™) (AZ5 AT 2T =1

once CAC~'A~! = T['Z w'Bw™".
For Z; and Z3 as above we have

A(CZiC7Y) =) (—two ™,

Az = Y0 (e

)

A(AZ1 AT = (et
Zs) = thw"ivY,
r—1 4
A(CACTIATY) =) 1w,

We claim that the second equation does not have a solution.
PROPOSITION 6.15. For Case II1.1 with ¢o(1,—1) and fi(r,1,0,0) with

r > 3, the second equation of the system,

Z3(CZ,C~H(CACT A (AZ; P A Yz =1,

has no solution where A = aw” and C = ¢y.

Proof. The second equation is
Z5(C 2,0 (H w' Buw™ ) (AZ7'A Yz =1

and by taking A(second equation) = 0 we get

r—1

A(Zs) — w" A(Zs)yw™" = 2A(Z1) + > _ 10" = 0.

i=1
Let H C Z[m(K)] be the subring generated by the homogeneous elements
of the form w’ for i € Z. As a group, H is isomorphic to the free abelian
group generated by @’ with i € Z. It is easy to see that H is a subring which
can be identified with the ring of Laurent polynomials over the integers. If
we project the equation above on the group H (the projection maps w"i vV
to 0 if v; # 0 and to w" otherwise), and if by abuse of notation we write Z;
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for the projection of Z; to H, we get

A(Z3)(1 —a" 1) — 2A(Z) + i 1w’ =0,
i=1

which is equivalent to
A(Z3) (1 — @) (1 + @+ -+ 0" 2) = 2A(Z)) + 0(1 + @ +--- + 0" 2%) = 0.
Now let us look at this equation on H/2H. Then we obtain

(A(Z3) 1 —w) +w)(1+w+--+w"2) =0.
This is an equation in the ring H/2H and this ring has no zero divisors by
Theorem 1.4 in [KLMS88]. Therefore we must have

A(Z3)(1—w)+w=0, or A(Z3)(w—1)=w

since r > 3. But the last equation has no solution (set w = 1). Hence the

result follows. m

Now we will consider the maps fi(r,1,0,2) with r odd, » > 1. This will
complete the analysis of Case III.1.

We have A = aw”, F = Bv and C = (vw)?cy. In order to study the
second equation we need the following calculation:

CACA™! = [(vw)?B(vw) ) (v?*B~2v2) (vw! "vBv tw "ty
X f[ vwi—'rBwr—iU—l
i=0

and therefore

A(CACTIATY) =107 — 20° + 10" '0% + > 1w s,
i=0
Moreover,

We claim:

PROPOSITION 6.16. For Case I11.1 with ¢o(1,—1) and fi(r,1,0,2) with
r > 0, the second equation of the system,

Z3(CZ,C~H(CACT A Y (AZ P A Yz =1,
has no solution.

Proof. As before we consider A(second equation) = 0. The summands
A(Z3) and A(AZ; A7) are as stated before Proposition 6.15. The sum-
mands A(CZ;C~') and A(CAC~1 A1) are calculated above. So we deduce
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that

Ztlwxlvyl—i—z —) @i 5>V (1—w) (14w -+~ 2) +Z 10" "%

+ ) (—thyam D g Y (e = 0,
% %

where the indices run over the ¢’s such that v; = y; = 1.

A homogeneous summand of Z3 and its conjugate which appear in the
equation are indexed by elements of the same horizontal line. A homoge-
neous summand of Z; and its conjugate which appear in the equation are
indexed by elements of two horizontal lines symmetric to the line w = 1.
In particular, if a summand is indexed by an element which belongs to the
line w = 1 its conjugate is also a summand which is indexed by an element
which belongs to the line w = 1. So we let H be the abelian group generated
by the elements w'0 with i € Z and we project the equation on H. Then we
obtain the equation

T
AR OB LY R DEALAED D
i i 1=0

where the last equality follows from the fact that Z[mi(K)] has no zero
divisors (see Theorem 1.4 in [KLMS88]).

Now we consider this equation mod 2H, and using the fact that the
group ring Zs[Z] has no zero divisors (Theorem 1.4 in [KLMS88]) we obtain

(S th) 1= (o) + 31w =0
i=0 i=0
But this implies that
(Z tgwffi)u — @) +1=0,

which, as we have already seen in the proof of Proposition 6.15, does not
have a solution. So the result follows. u

6.2. The classification theorem. Let us consider first the cases:

L.1. ¢o(1,1) and fs(r,1,0,2k), 7 >0, s € {0,1} and k € Z,

1.2, ¢p(1,1) and f5(0,1,s,2k+ 1), s € {0,1} and k € Z,

IT. ¢1(1,1) and fs(2r +1,1,7,2k), r >0, s € {0,1} and k € Z.

PROPOSITION 6.17.

(i) Cases 1.1 and II have no solution for k # 0 and Case 1.2 has no
solution for all k € Z.

(ii) In Case 1.1 for fs(r,1,0,0) and II for fs(2r +1,1,7,0), r > 0, s €
{0,1} there is a lifting.
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Proof. For (i) we have ¢z # 0 and the result follows from Theorem 6.13.

For (ii) let us first consider Case I.1. It is sufficient to prove that the sys-
tem generated by the input data (4 = aw”, F = fow' =%, C' = &;0,0, (0,1))
has trivial solution. In fact, in this case we have

AFAF ' =CAC'A ' =CFC'F 1 =1.

So we have the trivial solution.

Similarly for II, if we take A = aw? 1 F = fow!™* and C = w"&
then the system generated by the data (A, F,C;2r + 1,s,(r,0)) has trivial
solution. m

Now, let us consider Case III.1 with ¢¢(1,—1) and fs(r,1,0,2k), s €
{0,1}, » > 0 and k € {0,1}.
COROLLARY 6.18. Case II1.1 has no solution for r even or s even.

Proof. The condition from Theorem 6.13 is not satisfied modulo 2 for
r even. The condition from Theorem 6.14 is not satisfied modulo 2 for s
even. =

COROLLARY 6.19. In Case II1.1 if r > 3 is odd then the system generated
by the input data (A = aw", F = Pv,C = ép;r,1,(0,0)) has no solution.

Proof. This follows from Proposition 6.15. =

COROLLARY 6.20. In Case IIL1, if r > 1 is odd then the system gener-
ated by the input data (A = aw”, F = pv,C = (vw)%éy;r,1,(0,2)) has no
solution.

Proof. This follows from Proposition 6.16. =
THEOREM 6.21. In Case II1.1, if s = 1, r = 1 and co = 0 then the

system generated by the input data (A = Gw,F = fv,C = é&;1,1,(0,0))
has a solution.

Proof. In fact, using the tables (4.3) and (4.4) we obtain
AFAF ' =CAC'A™' =CFC™'F=1. u
Now let us consider Case II1.2 with ¢o(1, —1) and fs(0,1,s,1),s € {0,1}.

THEOREM 6.22. The system generated by the input data (A = &, F =
pow! =, C = w¥1éy; 0, s, (s,1)) for s € {0,1} has trivial solution. So there
is a lifting for f5(0,1,s,1) with s € {0,1}.

Proof. In fact, we have AFAF~! = 1 (see proof of Proposition 6.2).
Moreover, using the tables (4.3) and (4.4) we obtain

CAC'A ' =CFC'F=1.u
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Now let us consider Case IV with ¢;(1,—1) and fs(2r+1,1,7,0), r € Z,
s € {0,1}.

PROPOSITION 6.23. In Case IV, if r —s = 2l, 1 € Z and s € {0,1},
then the system generated by the input data (A = aw* ', F = pow!'™*,
C =w"éy;2r+1,s,(r,0)) has no solution.

Proof. In fact, in Case IV, p = 1 and ¢3 = 0 and therefore the hypotheses
make it impossible to solve the system
& o A(second equation) _ —2t14+2r=0
£ o A(third equation) — | 2(ts—t2) —t1 +s—1=0. =
Now it is necessary to decide whether or not there is a lifting in each of
the cases fo(2r +1,1,r,0) with r odd, and f1(2r + 1,1, r,0) with r even.

LEMMA 6.24. In Case IV, if ¢ = v wv then

aga ' =wlquw

flgf=wt | BgBt=vlq M0
Buwp™t=q~* & 'qéo=w!
Eglwéo =q! Eowéal =q !

Proof. All the above relations follow immediately from the tables (4.3)
and (4.4). m

PROPOSITION 6.25. In Case IV of Corollary 5.4 there is a lifting for
fs(2r+1,1,7,0) andr+s=2l+ 1,1 €Z and s € {0,1}.

Proof. Consider the system generated by the input data (A = CFC~'F,
F = Buws v, C = ¢! swt—s¢5=1-1¢; 41 + 3 — 2, s, (20 4+1—s,0)), where
q = v tww.

It follows from Lemma 6.24 that AFAF~! = 1 and CAC~1A™! = 1.
Also, since A = CFC™'F we have CFC~'FA~! = 1. Therefore the system
generated by the input data above has trivial solution and so there is a

lifting for fs(4l +3 —2s,1,2l+1—s5,0),l € Z and s € {0,1}. =

The considerations above together with Remark 5.1 allow us to state the
main result. Let ¢ be a homeomorphism of K, where K denotes the Klein
bottle, and let M (¢) be K x [0,1] with (z,0) with (¢(z), 1) identified. Then
M () is a fiber bundle over the circle S with fiber K.

THEOREM 6.26. Let f : M(¢) — M(¢) be a fiber-preserving map over S*.
If f belongs to one of the cases of Theorem 2.4 then it can be deformed to
a fized point free map g by a fiberwise homotopy over S' if and only if f
belongs to the corresponding case in the table below.
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Case I fs(r,1,0,0) : a— a”,B+— a*B,co — co, 1,8 E L

¢o(1,1)

Case 11 fs(2r+1,1,7,0) : a = a?"t1 B a®B,co = a’co, 1,8 €L

$1(1,1)

Case 1T | fas+1(1,1,0,4k) : a — a, B — a?*t18 co — B¢y, 5,k € Z

$o(1,=1) | fas+1(—1,1,0,4k +2) : a s a™ 1, B+ a?T13,co s B4*+2¢c, s,k € Z
fs(0,1,82k+1): 1,8 a®B,co — a®B% Ty s,k €Z

Case IV | fas(4l +3,1,20 + 1,4k) : o= o713, 3 — o233, co — a2 H18% ¢y, 5, k,1 € Z

$1(1,—1) | fas(4l +1,1,20,4k +2) : o — o*F1, 3 — a3, g — a2 f4%*+2¢q, s, k,1 € Z

fost1(41+3,1,20 + 1,4k +2) : a = M3 3= a?5t18 ¢ s @2 H1 34642 5 ke
fos+1(41+1,1,21,4k) : a — a¥t1 B a?5F18 co — a? 3% cy, 5,k, 1 € Z
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