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The Z2-cohomology cup-length of real flag manifolds

by

Július Korbaš and Juraj Lörinc (Bratislava)

Abstract. Using fiberings, we determine the cup-length and the Lyusternik–Shni-
rel’man category for some infinite families of real flag manifolds O(n1 + . . . + nq)/
O(n1) × . . . × O(nq), q ≥ 3. We also give, or describe ways to obtain, interesting esti-
mates for the cup-length of any O(n1 + . . .+ nq)/O(n1)× . . .×O(nq), q ≥ 3. To present
another approach (combining well with the “method of fiberings”), we generalize to the
real flag manifolds Stong’s approach used for calculations in the Z2-cohomology algebra
of the Grassmann manifolds.

1. Introduction. For fixed positive integers n1, . . . , nq (q ≥ 2), a flag
of type (n1, . . . , nq) (see e.g. [7]) is defined to be a q-tuple (S1, . . . , Sq)
of mutually orthogonal subspaces in Rn, where n = n1 + . . . + nq and
dim(Si) = ni. The set F (n1, . . . , nq) of all the flags of type (n1, . . . , nq)
may obviously be identified with a quotient space of the orthogonal group,
O(n)/O(n1) × . . . × O(nq). This identification makes F (n1, . . . , nq) into
a closed manifold of dimension δ(n1, . . . , nq) :=

∑
1≤i<j≤q ninj (in some

cases, we shall just write δ, when the sequence (n1, . . . , nq) is clear from
the context). In particular, F (n1, n2) is the Grassmann manifold of all n1-
dimensional vector subspaces in Rn1+n2.

Over the flag manifold F (n1, . . . , nq), one has q canonical vector bundles,
γ1, . . . , γq, with dim(γi) = ni; the fiber of γi over (S1, . . . , Sq)∈F (n1, . . . , nq)
may be identified with Si. The Whitney sum

⊕q
i=1 γi is the trivial n-di-

mensional vector bundle εn.
With any closed positive-dimensional manifold M one can associate a

homotopy invariant called the (Z2-)cup-length of M (briefly: cup(M)), that
is, the maximum c such that there are cohomology classes a1, . . . , ac ∈
H∗(M ;Z2), all of positive dimensions, such that their cup-product a1∪. . .∪ac
is nonzero. The number cup(M) is well known to provide a lower bound for
another very interesting, but not easily calculable, homotopy invariant: the
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Lyusternik–Shnirel’man category of M (briefly, cat(M)). Recall (cf. [6]) that
cat(M) is the minimum number of open subsets of M covering M , each of
which is contractible in M ; one has 1 + dim(M) ≥ cat(M) ≥ 1 + cup(M).
For the flag manifolds, the cup-length and the Lyusternik–Shnirel’man cat-
egory are in general unknown.

In this paper, using suitable fiberings, we explicitly determine the cup-
length for some infinite families of flag manifolds F (n1, . . . , nq), q ≥ 3. Using
the same approach, we also present some estimates, or describe ways to
obtain estimates, for cup(F (n1, . . . , nq)) in general. At the end of the paper,
we adapt to the flag manifolds the approach which Robert Stong used in [14]
for calculations in the Z2-cohomology algebra of Grassmann manifolds (he
succeeded in actually giving explicit formulae for the cup-length of certain
infinite families of Grassmann manifolds).

To obtain an approximation to the value of cup(F (n1, . . . , nq)), one’s
first idea certainly is to use the well known fact that the first cohomo-
logy group H1(F (n1, . . . , nq);Z2) is always nontrivial; more precisely, it
is the direct sum of q − 1 copies of Z2. Then for any nonvanishing
x ∈ H1(F (n1, . . . , nq);Z2) one can ask what is the height of x (denoted
height(x)) or, in other words, what is the maximum p such that xp 6= 0. Of
course, if one finds the answer, then one has the corresponding lower bound
for cup(F (n1, . . . , nq)); at the other extreme, one obviously has

cup(F (n1, . . . , nq)) ≤ δ(n1, . . . , nq).

For all Grassmann manifolds F (n1, n2), the height of the first Stiefel–
Whitney class w1(γ1) = w1(γ2) is known thanks to Stong [14]. More gen-
erally, in the Z2-cohomology H∗(F (n1, . . . , nq);Z2) one always has nontriv-
ial Stiefel–Whitney classes w1(γ1), . . . , w1(γq−1). Some Z2-linear combina-
tions (for instance w1(γ1) + . . . + w1(γq−1) = w1(γq)) will also be nonzero.
In particular, when F (n1, . . . , nq) is nonorientable, then w1(F (n1, . . . , nq))
(which is defined to be the first Stiefel–Whitney class of the tangent bun-
dle of F (n1, . . . , nq) and is a Z2-linear combination of w1(γ1), . . . , w1(γq−1);
cf. [7]) is nonzero. When trying to find an estimate for cup(F (n1, . . . , nq)),
one may start by asking what is the height of any of the above-mentioned
first Stiefel–Whitney classes.

In 2000, Ilori and Ajayi [5] calculated the height of w1(F (n1, . . . , nq)) for
some of those flag manifolds F (n1, . . . , nq) which are nonorientable. More
recently, the second named author has shown in [10] that a slight modifica-
tion of their approach is enough for obtaining a complete result, that is, for
calculating the height of the first Stiefel–Whitney class of any nonorientable
real flag manifold. In Section 2, we show that it also is possible to calcu-
late height(w1(γi)), i = 1, . . . , q. The numbers height(w1(γi)) are sometimes
bigger than height(w1(F (n1, . . . , nq))) in the case of nonorientable flag man-
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ifolds F (n1, . . . , nq). Another advantage is that the numbers height(w1(γi))
are always nontrivial, even when w1(F (n1, . . . , nq)) = 0 (in other words,
when F (n1, . . . , nq) is orientable), giving also in that case interesting lower
bounds for cup(F (n1, . . . , nq)).

In Section 3, we present another way to obtain lower bounds for the
cup-length of F (n1, . . . , nq), based on a lemma of Horanská and Korbaš [4]
(they attribute the lemma to R. Stong), applied to natural fiberings of
F (n1, . . . , nq) with q ≥ 3. We also find some infinite families of flag man-
ifolds F (n1, . . . , nq) (q ≥ 3) with the cup-length equal to δ(n1, . . . , nq).
In addition, we derive a necessary condition for cup(F (n1, . . . , nq)) =
δ(n1, . . . , nq), we derive a nontrivial upper bound for cup(F (n1, . . . , nq))
when the necessary condition is not satisfied, and we determine the num-
ber cup(F (1, 2, n3)) for all n3 ≥ 3. Finally, we generalize to F (n1, . . . , nq)
Stong’s approach from [14], and show how this can be used to calculate
cup(F (n1, . . . , nq)).

In what follows, all cohomology groups will be understood to have coef-
ficients in Z2.

2. Heights of the first Stiefel–Whitney classes

2.1. On height(w1(F (n1, . . . , nq))). Let wi(γj) ∈ H i(F (n1, . . . , nq)) be
the ith Stiefel–Whitney characteristic class of the canonical vector bundle
γj over F (n1, . . . , nq). Recall that, by Borel [2, Theorem 11.1], the coho-
mology ring H∗(F (n1, . . . , nq)) can be represented as a quotient ring of the
polynomial ring

Z2[w1(γ1), . . . , wn1(γ1), . . . , w1(γq), . . . , wnq(γq)]

by the ideal given by the identity
q∏

j=1

(1 + w1(γj) + . . .+ wnj (γj)) = 1.

Of course, the identity comes from the fact that
⊕q

i=1 γi
∼= εn.

In [5], a partial result on the height of w1(F (n1, . . . , nq)) for nonori-
entable flag manifolds F (n1, . . . , nq) has been derived. Recently, J. Lörinc
[10] proved the following complete result.

Theorem 2.1.1 (Lörinc [10]). Let F (n1, . . . , nq) for q ≥ 2 be any nonori-
entable real flag manifold ; hence not all of n1, . . . , nq have the same par-
ity. Letting p be the sum of all even numbers among n1, . . . , nq, put k =
min{p, n − p}. If s is the uniquely determined integer such that 2s < n
≤ 2s+1, then
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height(w1(F (n1, . . . , nq))) =





n− 1 if k = 1,

2s+1 − 2 if k = 2 or

if k = 3 and n = 2s + 1,

2s+1 − 1 otherwise.

For any orientable flag manifold, its first Stiefel–Whitney class vanishes,
hence it makes no sense to define its height.

2.2. Heights of the first Stiefel–Whitney classes of the canonical vector
bundles. Regardless of orientability of the flag manifold F (n1, . . . , nq), the
heights of w1(γi) (i = 1, . . . , q) are always of interest, because they always
provide a nontrivial lower bound for cup(F (n1, . . . , nq)).

The height of w1(γ1) = w1(γ2) ∈ H∗(F (p, n − p)) is known due to
Stong [14]: If s is such that 2s < n ≤ 2s+1 and k = min{p, n− p}, then

height(w1(γ1)) =





n− 1 if k = 1,

2s+1 − 2 if k = 2 or

if k = 3 and n = 2s + 1,

2s+1 − 1 otherwise.

We observe that now for any F (n1, . . . , nq) the numbers height(w1(γi))
(i = 1, . . . , q) can readily be computed. One just needs to use a suitable
fibering of the manifold F (n1, . . . , nq) over a Grassmann manifold. For in-
stance, for i = 1, one uses the fiber bundle

F (n2, . . . , nq) ↪→ F (n1, . . . , nq)

↓
F (n1, n2 + . . .+ nq)

(1)

More generally (see e.g. [13, 7.4]), one has the fiber bundle with the bundle
projection defined by sending the flag (S1, . . . , Sq) ∈ F (n1, . . . , nq) to the
flag (S1, . . . , St, St+1⊕ . . .⊕Sq) ∈ F (n1, . . . , nt, nt+1 + . . .+nq), for a fixed t
(in (1), we have t = 1). For any of these fiber bundles the Leray–Hirsch
theorem applies. Indeed, if i : F (nt+1, . . . , nq) ↪→ F (n1, . . . , nq) is the fiber
inclusion, then the pullbacks i∗(γt+1), . . . , i∗(γq) can obviously be identified
with the canonical vector bundles over F (nt+1, . . . , nq). Keeping in mind the
description of the cohomology ring H∗(F (n1, . . . , nq)) and the well known
properties of the Stiefel–Whitney classes, we see that the map i induces an
epimorphism in Z2-cohomology. This fact will be used repeatedly in what
follows.

As a consequence of the Leray–Hirsch theorem, the Z2-cohomology ho-
momorphism induced by the bundle projection considered in (1) is a mono-
morphism. Hence the height of w1(γ1) ∈ H∗(F (n1, . . . , nq)) is the same as
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the height of w1(γ1) ∈ H∗(F (n1, n2 + . . . + nq)). In general, if we define
(as always) n = n1 + . . . + nq, if s is such that 2s < n ≤ 2s+1, and if
ki = min{ni, n− ni}, then for γi over F (n1, . . . , nq),

height(w1(γi)) =





n− 1 if ki = 1,

2s+1 − 2 if ki = 2 or

if ki = 3 and n = 2s + 1,

2s+1 − 1 otherwise.

For any F (n1, . . . , nq) nonorientable, we know (cf. 2.1.1) the value of
the height of w1(F (n1, . . . , nq)). But the following example shows that, in
infinitely many cases, the height of the first Stiefel–Whitney class of some
of the canonical vector bundles may even exceed height(w1(F (n1, . . . , nq))).

Example 2.2.1. Let q ≥ 3, and let t2, . . . , tq be integers such that 2 ≤
t2 ≤ . . . ≤ tq and 2s < 1 + 2t2 + . . . + 2tq < 2s+1, for a suitable integer s.
Then height(w1(F (1, 2t2, . . . , 2tq))) = 2t2 + . . .+2tq, while height(w1(γ2)) =
2s+1 − 1. Of course, height(w1(γ2)) > height(w1(F (1, 2t2, . . . , 2tq))).

3. On the cup-length of flag manifolds

3.1. When is cup(F (n1, . . . , nq)) = δ(n1, . . . , nq)? We first derive a par-
tial answer to the question of for which flag manifolds their cup-length and
dimension coincide.

For the Grassmann manifolds, Berstein proved the following.

Lemma 3.1.1 (Berstein [1]). For F (k, n−k) one has cup(F (k, n−k)) =
δ(k, n− k) only if k = 1, or if k = 2 and n is one plus a power of 2.

To obtain a similar (although not so complete) piece of information for
the flag manifolds F (n1, . . . , nq) with q ≥ 3, we shall use the following lemma
from Horanská and Korbaš [4].

Lemma 3.1.2. Let p : E → B be a smooth fiber bundle with connected
base B and connected fiber F . Suppose that the fiber inclusion induces an
epimorphism in Z2-cohomology. Then cup(E) ≥ cup(F ) + cup(B).

For a = 1 or 2, we will abbreviate

a...k = a, . . . , a︸ ︷︷ ︸
k

.

We are now able to prove the following.

Theorem 3.1.3. (a) For any m ≥ 1, k ≥ 1, one has

cup(F (1...k,m)) = δ(1...k,m),

cat(F (1...k,m)) = 1 + δ(1...k,m).
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(b) Let m ≥ 2, d > 0 and j > 0 be integers. Taking t to be the integer
such that 2t ≤ m < 2t+1, suppose that j ≥ 2t+d −m− 2d+ 1. Then

cup(F (1...j , 2...d,m)) = δ(1...j , 2...d,m)

and , as an obvious consequence,

cat(F (1...j , 2...d,m)) = 1 + δ(1...j , 2...d,m).

Remark (a). If the condition j ≥ 2t+d−m−2d+1 is not satisfied, then
it need not be true that cup(F (1...j , 2...d,m)) = δ(1...j , 2...d,m); this will be
seen in 3.2.4. At the same time, we do not know whether or not in general
j < 2t+d −m − 2d + 1 implies that cup(F (1...j , 2...d,m)) < δ(1...j , 2...d,m).
In this context, see also Remark (c) after 3.2.2.

Proof of Theorem 3.1.3. (a) It is enough to prove the result on cup-
length. We have the fiber bundle

F (1,m) ↪→ F (1...k+1,m)

↓
F (1...k,m+ 1).

Using Lemma 3.1.2 and induction on k (for F (1,m), the claim is obviously
true), one immediately obtains

δ(1...k+1,m) ≥ cup(F (1...k+1,m)) ≥ δ(1...k+1,m).

This proves part (a).
(b) Again, we shall prove the result on cup-length. We proceed by in-

duction on d. For d = 1, the conditions are j > 0, j ≥ 2t+1 − m − 1. If
j − 2t+1 +m+ 1 = 0, we have a sequence of fiber bundles

F (1,m) ↪→ F (1...j , 2,m)

↓
F (1,m+ 1) ↪→ F (1...j−1, 2,m+ 1)

↓
...

↓
F (1, 2t+1 − 2) ↪→ F (1, 2, 2t+1 − 2)

↓
F (2, 2t+1 − 1)

Then 3.1.2 and 3.1.1 imply (in the right-hand “tower”, we go from the
penultimate to the first space) that cup(F (1, 2, 2t+1− 2)) = δ(1, 2, 2t+1− 2)
etc., and cup(F (1...j , 2,m)) = δ(1...j , 2,m).
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If j − 2t+1 +m+ 1 > 0 we again form a sequence of fiber bundles

F (1,m) ↪→ F (1...j , 2,m)

↓
F (1,m+ 1) ↪→ F (1...j−1, 2,m+ 1)

↓
...

↓
F (1, 2t+1 − 1) ↪→ F (1...j−2t+1+1+m, 2, 2t+1 − 1)

↓
F (1...j−2t+1+1+m, 2t+1 + 1)

Then 3.1.1, 3.1.2, and 3.1.3(a) imply that

cup(F (1...j−2t+1+1+m, 2, 2t+1 − 1)) = δ(1...j−2t+1+1+m, 2, 2t+1 − 1)

etc., and cup(F (1...j , 2,m)) = δ(1...j , 2,m). We have verified the claim for
d = 1.

Now suppose that d ≥ 2 and that the claim is true for d−1. To deal with
the flag manifold F (1...j , 2...d,m), we also in this case construct a sequence
of obvious fiber bundles

F (1,m) ↪→ F (1...j , 2...d,m)

↓
F (1,m+ 1) ↪→ F (1...j−1, 2...d,m+ 1)

↓
...

↓
F (2, 2t+1 − 1)) ↪→ F (1...j−2t+1+1+m, 2...d, 2t+1 − 1)

↓
F (1...j−2t+1+1+m, 2...d−1, 2t+1 + 1)

with fibers covered by Lemma 3.1.1. Note that the number j− 2t+1 +m+ 1
is now positive.

The last base space in the right-hand tower satisfies the assumptions of
Theorem 3.1.3(b). That means that the induction hypothesis applies. Using
Lemma 3.1.2, one readily deduces that the cup-length of

F (1...j−2t+1+1+m, 2...d, 2t+1 − 1)

is the same as its dimension. Then applying Lemma 3.1.2 to the penultimate
fiber bundle in the above sequence, we also find that for its total space
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the cup-length and dimension coincide. After a finite number of repetitions
of this step we conclude that δ(F (1...j , 2...d,m)) = cup(F (1...j , 2...d,m)), as
needed. This completes the proof of Theorem 3.1.3.

3.2. On cup(F (n1, . . . , nq)) < δ(n1, . . . , nq). Usually, Lemma 3.1.2 (ap-
plied to suitable fiber bundles) can be used to obtain lower bounds for
cup(F (n1, . . . , nq)) higher than those given merely by the heights of the
first Stiefel–Whitney classes.

Example 3.2.1. For cup(F (1, 2, 3, 4, 5, 6)), we have 31 as a lower bound,
given e.g. by height(w1(F (1, 2, 3, 4, 5, 6))). A better result can be derived
from the following sequence of obvious fiber bundles:

F (5, 6) ↪→ F (1, 2, 3, 4, 5, 6)

↓
F (4, 11) ↪→ F (1, 2, 3, 4, 11)

↓
F (3, 15) ↪→ F (1, 2, 3, 15)

↓
F (2, 18) ↪→ F (1, 2, 18)

↓
F (1, 20)

Indeed, using Stong’s results [14] we calculate that

cup(F (2, 18)) = 33, cup(F (3, 15)) = 38, cup(F (4, 11)) = 27.

For F (5, 6), we have height(w1(γ1)) = 15; by Poincaré duality, there is a
cohomology class b ∈ H15(F (5, 6)) such that w15

1 ∪ b 6= 0. Since the co-
homology ring H∗(F (5, 6)) is generated by wi(γ1), i = 1, 2, 3, 4, 5, and we
have H30(F (5, 6)) ∼= Z2, it is clear that cup(F (5, 6)) ≥ 18. Then we ap-
ply Lemma 3.1.2 to the last fiber bundle and obtain cup(F (1, 2, 18)) ≥ 53
(in 3.2.4, we shall see that cup(F (1, 2, 18)) = 53). Hence from the penul-
timate fiber bundle we obtain cup(F (1, 2, 3, 15)) ≥ 91 etc. Eventually, we
arrive at cup(F (1, 2, 3, 4, 5, 6)) ≥ 136. Since δ(1, 2, 3, 4, 5, 6) = 175, we have
136 ≤ cup(F (1, 2, 3, 4, 5, 6)) ≤ 175.

It is natural to try to find (if possible) some upper bound smaller than
that given by the dimension. We first derive the following result on upper
bounds, and then come back to the above example.

Proposition 3.2.2. Let h(i) := height(w1(γi)), i = 1, . . . , q− 1, and let
S := h(1) + . . .+ h(q − 1). If S < δ(n1, . . . , nq), then

cup(F (n1, . . . , nq)) ≤ S +
[
δ(n1, . . . , nq)− S

2

]
< δ(n1, . . . , nq).
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In particular , a necessary condition for cup(F (n1, . . . , nq)) = δ(n1, . . . , nq)
is S ≥ δ(n1, . . . , nq).

Proof. We know the structure of the cohomology ringH∗(F (n1, . . . , nq)).
The fact that the top nonzero cohomology group,

Hδ(n1,...,nq)(F (n1, . . . , nq)),

is Z2 implies (cf. Horanská and Korbaš [4, p. 26]) that any cup-product of
maximum length in H∗(F (n1, . . . , nq)) can be expressed as a monomial in
the Stiefel–Whitney classes of the canonical vector bundles γ1, . . . , γq−1.

Suppose now that S < δ(n1, . . . , nq) and put k = δ(n1, . . . , nq)−S. Then
no candidates for nonzero cup-products are longer than

w
h(1)
1 (γ1) . . . wh(q−1)

1 (γq−1)wk/22 (γj)

if k is even, or

w
h(1)
1 (γ1) . . . wh(q−1)

1 (γq−1)w(k−3)/2
2 (γj)w3(γt)

if k is odd, where j, t ∈ {1, . . . , q − 1}. Hence then

cup(F (n1, . . . , nq)) ≤ S +
[
δ(n1, . . . , nq)− S

2

]
,

and the proof is complete.

Remark (b). In general, if we just know that S ≥ δ(n1, . . . , nq), we
cannot claim that cup(F (n1, . . . , nq)) = δ(n1, . . . , nq). Indeed, for the latter
we would need ws11 (γ1) . . . wsq−1

1 (γq−1) 6= 0 for some si ≤ h(i) (i = 1, . . .
. . . , q − 1) such that s1 + . . . + sq−1 = δ(n1, . . . , nq). A procedure for this
will be described in 3.3.

Remark (c). If the condition j ≥ 2t+d −m − 2d + 1 of Theorem 3.1.3
is not satisfied, let k be the maximum nonnegative integer such that
j < 2t+d−k − m − 2d + 1. Using 3.2.2, one can verify that if

(
j
2

)
< 2d2 +

2md− d · 2t+d−k, then

cup(F (1...j , 2...d,m)) < δ(1...j , 2...d,m);

one has S < δ in these cases.

We do not know what is cat(F (1...j , 2...d,m)) if S < δ. We are just able
to prove, using Korbaš’s [7, 1.1] and Koschorke’s [9, 3.10], that if λi is the
orientation bundle of the canonical vector bundle γi over F (1...j , 2...d,m) with
S < δ, then the δ-multiple, δλ1⊗ . . .⊗λj+d, of the line bundle λ1⊗ . . .⊗λj+d
over F (1...j , 2...d,m) has a nowhere vanishing cross-section. As a consequence
of Korbaš and Szűcs’s [8, 1.1], the latter is a geometric necessary condition
for

cat(F (1...j , 2...d,m)) ≤ δ.
We believe that the following may be a reasonable general conjecture.
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Conjecture. For the flag manifolds F (n1, . . . , nq), let λi be the ori-
entation bundle of the canonical vector bundle γi. Then cat(F (n1, . . . , nq))
≤ δ(n1, . . . , nq)) if and only if the vector bundle δλ1 ⊗ . . . ⊗ λq has a
nowhere vanishing cross-section. (We observe that, in view of Korbaš and
Szűcs’s [8, 1.1], “only” the if-part of our conjecture remains to be proved
(or disproved).)

Using Proposition 3.2.2, we now improve the upper bound given in Ex-
ample 3.2.1.

Example 3.2.3. Proposition 3.2.2 implies that cup(F (5, 6)) ≤ 22; using
results of [14], one readily verifies that w14

1 (γ1)w8
2(γ1) is nonzero, hence we

have cup(F (5, 6)) = 22. In addition, again applying 3.2.2, we now obtain
δ(1, 2, 3, 4, 5, 6)− S = 175− 140 = 35, hence

140 ≤ cup(F (1, 2, 3, 4, 5, 6)) ≤ 157.

It turns out that (at least in some cases) the upper bounds given by 3.2.2
are very good: for instance, they allow us to compute the exact value of
cup(F (1, 2, n3)) for any n3 ≥ 3.

Proposition 3.2.4. For any integer n3 ≥ 3, let s be the only integer
such that 2s ≤ n3 < 2s+1. Then

cup(F (1, 2, n3)) =





3n3 + 2 (= δ(1, 2, n3)) if n3 = 2s+1 − 1 or

if n3 = 2s+1 − 2,

2s + 2n3 + 1 otherwise.

As a consequence, cat(F (1, 2, n3)) = 1 + δ(1, 2, n3) if n3 = 2s+1 − 1 or if
n3 = 2s+1 − 2, and cat(F (1, 2, n3)) ≥ 2s + 2n3 + 2 if 2s ≤ n3 ≤ 2s+1 − 3.

Proof. We just prove the result on the cup-length; the result on the cate-
gory is then obvious. If n3 = 2s+1−1 or n3 = 2s+1−2, then F (1, 2, n3) satis-
fies the assumptions of Theorem 3.1.3(b), hence cup(F (1, 2, n3)) = δ(1, 2, n3)
in these cases. In the remaining cases we have 2s ≤ n3 ≤ 2s+1 − 3. To ob-
tain a lower bound for cup(F (1, 2, n3)), we apply Lemma 3.1.2 to the fiber
bundle

F (2, n3) ↪→ F (1, 2, n3)

↓
F (1, 2 + n3)

One has cup(F (1, 2 + n3)) = 2 + n3. In addition, as a consequence of
Hiller’s results [3] (see Remark (e) below), we have cup(F (2, n3)) = n3+2s−1
if 2s ≤ n3 ≤ 2s+1 − 3. Therefore cup(F (1, 2, n3)) ≥ 2 + n3 + n3 + 2s − 1 =
2n3 + 2s + 1 if 2s ≤ n3 ≤ 2s+1 − 3.

To obtain upper bounds, we shall use Proposition 3.2.2. One has S =
h(1) + h(2) = 2 + n3 + 2s+1 − 2 = n3 + 2s+1 if 2s ≤ n3 ≤ 2s+1 − 3.
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Hence (by 3.2.2) we obtain

cup(F (1, 2, n3)) ≤ n3 + 2s+1 +
3n3 + 2− n3 − 2s+1

2
= 2n3 + 2s + 1

if 2s ≤ n3 ≤ 2s+1 − 3. We see that our upper and lower bounds for
cup(F (1, 2, n3)) coincide, which finishes the proof.

Remark (d). One readily verifies that the manifold F (1, 2, n3) consid-
ered in 3.2.4 has its cup-length equal to its dimension precisely when the
condition j ≥ 2t+d −m− 2d+ 1 from Theorem 3.1.3(b) is satisfied.

Remark (e). Due to Hiller (cf. [3] or [4]), it is known that if n ≥ 4,
2s < n ≤ 2s+1, then w2s+1−2

1 (γ1)wn−2s−1
2 (γ1) ∈ H2(n−2)(F (2, n − 2)) re-

alizes the cup-length of F (2, n − 2). Of course, for F (1, n − 1), the coho-
mology class wn−1

1 (γ1) realizes its cup-length. Then the method of proof
of Theorem 3.1.3 together with the Leray–Hirsch theorem (see the proof
of Lemma 3.1.2 in [4]) enables one to write down a monomial in the co-
homology of any of those flag manifolds covered by 3.1.3 which realizes
its cup-length. A similar observation applies to the manifolds F (1, 2, n3) of
Proposition 3.2.4.

Remark (f). For the flag manifold F (n1, . . . , nq) one has its universal
covering (consisting of oriented flags)

F̃ (n1, . . . , nq) = SO(n1 + . . .+ nq)/SO(n1)× . . .× SO(nq).

Then clearly (cf. [6] if needed) cat(F̃ (n1, . . . , nq)) ≤ cat(F (n1, . . . , nq)), and
therefore any lower bound for cat(F̃ (n1, . . . , nq)) is also a lower bound
for cat(F (n1, . . . , nq)). If SO(n1) × . . . × SO(nq) is a maximal torus in
the group SO(n1 + . . . + nq), then the Lyusternik–Shnirel’man category
cat(F̃ (n1, . . . , nq)) can be calculated. Namely, from [12, Theorem 2], one
knows that

cat(G/T ) = 1
2(dim(G)− rank(G)) + 1

if G is a compact connected Lie group and T is a maximal torus of G.
Applying this, we obtain

cat(F̃ (1, 2...n)) = n2 + 1,(2)

cat(F̃ (2...n)) = n2 − n+ 1.(3)

We note that the same result can be obtained in another way: the lower
bound implied by the (Z-cohomology) cup-length of F̃ (1, 2...n) or F̃ (2...n)
(these cup-lengths can readily be found using the results of T. Watanabe
[15]) coincides with the Grossman upper bound (see e.g. James [6, 5.1]).
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As a consequence of (2) and (3), we have

cat(F (1, 2...n)) ≥ n2 + 1,(4)

cat(F (2...n)) ≥ n2 − n+ 1.(5)

It is possible to show that the lower bounds given in (4) and (5) are in fact
worse than the lower bounds which we can derive from suitable fiberings,
using Lemma 3.1.2 (we illustrated such a procedure in 3.2.1).

3.3. An “easy” way to find cup(F (n1, . . . , nq)). We adapt to the case
of real flag manifolds the approach which R. Stong [14] used for the special
case of the Grassmann manifolds.

For the flag manifold F (1...m), we define ei := w1(γi). From Borel’s
description (cf. 2.1) of the cohomology algebra H∗(F (1...m)), one can derive
(or find in [14]) that the nonzero monomials in the top dimension, hence in
H(m2 )(F (1...m)), are precisely those of the form em−1

σ(1) . . . e
m−i
σ(i) . . . e

0
σ(m) for any

permutation σ of the set {1, . . . ,m}, hence the monomials with no repeated
exponents.

For the flag manifold F (n1, . . . , nq), we put νj := n1 + . . . + nj for j =
0, . . . , q (in particular, ν0 = 0 and νq = n). The map

p : F (1...n1 , . . . , 1...nq)→ F (n1, . . . , nq),

p(S1, . . . , Sn1 , . . . , Sνq−1+1, . . . , Sn) = (S1⊕ . . .⊕Sn1 , . . . , Sνq−1+1⊕ . . .⊕Sn),

is obviously the projection of the corresponding fiber bundle with fiber

F (1...n1)× . . .× F (1...nq).

The Leray–Hirsch theorem now applies; therefore the induced homo-
morphism p∗ : H∗(F (n1, . . . , nq)) → H∗(F (1...n1 , . . . , 1...nq)) is injective
and the cohomology algebra H∗(F (1...n1 , . . . , 1...nq)) is a free module over
H∗(F (n1, . . . , nq)), via p∗, with the obvious basis. In particular, since the
top class of the basis is

en1−1
1 en1−2

2 . . . eν1−1e
n2−1
ν1+1e

n2−2
ν1+2 . . . eν2−1 . . . e

nq−1
νq−1+1e

nq−2
νq−1+2 . . . eνq−1,

we have the following generalization of Stong’s [14, Observation, p. 106].

Observation. The value of u ∈ H top(F (n1, . . . , nq)) on the fundamen-
tal class of F (n1, . . . , nq) (briefly: the value of u) is the same as the value
of

p∗(u) · en1−1
1 en1−2

2 . . . eν1−1e
n2−1
ν1+1e

n2−2
ν1+2 . . . eν2−1 . . . e

nq−1
νq−1+1e

nq−2
νq−1+2 . . . eνq−1

on the fundamental class of F (1...n1 , . . . , 1...nq) (note that the latter is, in the-
ory, always easily calculable, because we know when a monomial in e1, . . . , en
in H(n2)(F (1...n1 , . . . , 1...nq)) vanishes and when it is nonzero).
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In the use of the Observation, it is important to keep in mind (see Borel’s
description of H∗(F (n1, . . . , nq)) in 2.1) that

• the class u can always be expressed in terms of the Stiefel–Whitney
classes of just q − 1 of the canonical vector bundles, e.g. γ1, . . . , γq−1;
• the pull-back p∗(γi) splits as the Whitney sum of line bundles, p∗(γi) =

γνi−1+1 ⊕ γνi−1+2 ⊕ . . .⊕ γνi , for i = 1, . . . , q;
• as a consequence, p∗(wj(γi)) (where j = 1, . . . , ni, i = 1, . . . , q) is the

jth elementary symmetric function in eνi−1+1, eνi−1+2, . . . , eνi .

The inclusion a : Rn−1 ↪→ Rn, a(x1, . . . , xn−1) = (x1, . . . , xn−1, 0), in-
duces inclusions

ai : F (n1, . . . , ni−1, ni − 1, ni+1, . . . , nq) ↪→ F (n1, . . . , ni−1, ni, ni+1, . . . , nq)

(i = 1, . . . , q) such that a∗i (γt) = γt if t 6= i and a∗i (γi) = γi ⊕ ε1 (as a
consequence, the classes a∗i (w(γt)) and w(γt) are the same for t = 1, . . . , q).
Now we have the following generalization of Stong’s [14, Lemma 1, p. 107];
it is useful in applications.

Lemma 3.3.1. If x ∈ Hδ(n1,...,ni,...,nq)−n+ni(F (n1, . . . , ni, . . . , nq)), then
the value of a∗i (x) in Htop(F (n1, . . . , ni−1, . . . , nq)) is the same as the value
of

x · wn1(γ1) . . . wni−1(γi−1) · wni+1(γi+1) . . . wnq(γq)

in Hδ(n1,...,ni,...,nq)(F (n1, . . . , ni, . . . , nq)).

Proof. Since, for fixed (n1, . . . , nq) and any permutation σ of the set
{1, . . . , q}, the manifolds F (n1, . . . , nq) and F (nσ(1), . . . , nσ(q)) are diffeo-
morphic, it is enough to prove the lemma for one value of i. So we shall take
i = q in the rest of the proof. The value of a∗q(x) (cf. the Observation) is

∆n−1 := p∗(a∗q(x)) · en1−1
1 en1−2

2 . . . eν1−1

× en2−1
ν1+1e

n2−2
ν1+2 . . . eν1+n2−1 . . . e

nq−1−1
νq−2+1

× enq−1−2
νq−2+2 . . . eνq−2+nq−1−1e

nq−2
νq−1+1e

nq−3
νq−1+2 . . . en−2.

Since a∗q(x) can be expressed using just the Stiefel–Whitney classes of the
vector bundles γ2, . . . , γq, the term p∗(a∗q(x)) can and will be understood as
a function symmetric in each of the following sets of variables:

{eν1+1, . . . , eν1+n2 = eν2}, . . . , {eνq−1+1, . . . , eνq−1+nq−1 = en−1}.
At the same time, the value of x · wn1(γ1)wn2(γ2) . . . wnq−1(γq−1) is

∆n := p∗(x) · e1e2 . . . eν1eν1+1 . . . eν1+n2 . . . eνq−2+1 . . . eνq−2+nq−1

× en1−1
1 . . . eν1−1e

n2−1
ν1+1 . . . eν1+n2−1 . . . e

nq−1−1
νq−2+1 . . . eνq−2+nq−1−1

× enq−1
νq−1+1e

nq−2
νq−1+2 . . . eνq−1+nq−1,
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that is,

p∗(x) · en1
1 en1−1

2 . . . eν1e
n2
ν1+1 . . . eν1+n2 . . . e

nq−1
νq−2+1 . . . eνq−2+nq−1

× enq−1
νq−1+1e

nq−2
νq−1+2 . . . eνq−1+nq−1.

The term p∗(x) is understood here as a function symmetric in each of the
following sets of variables:

{eν1+1, . . . , eν1+n2 = eν2}, . . . , {eνq−1+1, . . . , eνq−1+nq = en}.
The factor e1e2 . . . en−1, coming from

en1
1 en1−1

2 . . . eν1e
n2
ν1+1 . . . eν1+n2 . . . e

nq−1
νq−2+1 . . . eνq−2+nq−1

× enq−1
νq−1+1e

nq−2
νq−1+2 . . . en−1,

annihilates all those monomials in the expansion of p∗(x) which contain en.
Therefore ∆n corresponds to

p∗(a∗q(x)) · en1
1 en1−1

2 . . . eν1e
n2
ν1+1 . . . eν1+n2 . . . e

nq−1
νq−2+1 . . . eνq−2+nq−1

× enq−1
νq−1+1e

nq−2
νq−1+2 . . . en−1,

where p∗(a∗q(x)) is “the same” as p∗(a∗q(x)), except that it lies in the cohomol-
ogy of F (1...n). That means that we have a 1-1 correspondence between the
monomials in the expansion of ∆n−1, and the monomials in the expansion
of ∆n, with each degree being raised by 1. The monomials with (no) re-
peated exponents in ∆n are in 1-1 correspondence with the monomials with
(no) repeated exponents in ∆n−1. Hence (cf. the Observation) the value of
a∗i (x) is (non)zero precisely when the value of x · wn1(γ1) . . . wnq−1(γq−1) is
(non)zero. This finishes the proof.

Now we describe how to calculate the cup-length of any real flag mani-
fold, using what we said above (in particular, the Observation).

Procedure 3.3.2. For any F (n1, . . . , nq),

(1) one calculates the numbers h(1), . . . , h(q − 1) (see 3.2.2);
(2) one constructs all possible (always finitely many) monomials in

Hδ(n1,...,nq)(F (n1, . . . , nq))

of the form ws11 (γ1) . . . wsq−1
1 (γq−1) times a monomial in the Stiefel–Whitney

classes higher than the first, where si ≤ h(i) (i = 1, . . . , q − 1);
(3) using the Observation, one “easily” decides, about each of the mono-

mials constructed in (2), whether or not it vanishes;
(4) one finds the maximum length of the nonzero monomials from (3),

which is then cup(F (n1, . . . , nq)).

Of course, one could try to calculate cup(F (n1, . . . , nq)) using just the
explicit description of the algebra H∗(F (n1, . . . , nq)) (see 2.1); this approach
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may be called a frontal attack. But calculations in H∗(F (n1, . . . , nq)) turn
out to be extremely difficult. It is the main purpose of Procedure 3.3.2 to
make the calculation of cup(F (n1, . . . , nq)) more manageable, even if not
really easy; because of our doubts about the easiness, we put quotation
marks round the word easy in the title of the present section and in 3.3.2(3).

The realization of Procedure 3.3.2 can sometimes be facilitated, for in-
stance, by the use of previously known facts or by suitable ad hoc ideas. We
illustrate this with the following.

Example 3.3.3. To calculate cup(F (1, 2, 2, 2)), first observe that S =
h(1)+h(2)+h(3) = 18 = δ(1, 2, 2, 2). Now we use the Observation to decide
whether or not w6

1(γ1)w6
1(γ2)w6

1(γ3) vanishes. For this we calculate, in the
cohomology of F (1, 1, 1, 1, 1, 1, 1),

p∗(w6
1(γ1)w6

1(γ2)w6
1(γ3)) · e2e4e6,

hence
e6

1(e2 + e3)6(e4 + e5)6 · e2e4e6.

One readily calculates that the latter is zero; therefore cup(F (1, 2, 2, 2))
< 18.

Further one can use Lemma 3.3.1. We have the inclusion

a2 : F (1, 1, 2, 2) ↪→ F (1, 2, 2, 2)

and we know, from Theorem 3.1.3, that cup(F (1, 1, 2, 2)) = δ(1, 1, 2, 2) = 13.
Using the proof of 3.1.3(b) and the Leray–Hirsch theorem, one sees that the
cup-length of F (1, 1, 2, 2) can be realized by w2

1(γ1)w5
1(γ2)w6

1(γ3).
From 3.3.1, it follows that

w2
1(γ1)w5

1(γ2)w6
1(γ3)w1(γ1)w2(γ3)w2(γ4)

is nonzero in the top cohomology group of F (1, 2, 2, 2). Expressing w2(γ4)
in terms of the Stiefel–Whitney classes of γ1, γ2, and γ3 (using the fact that
the sum of all the canonical bundles is trivial), we deduce that

w5
1(γ1)w5

1(γ2)w6
1(γ3)w2(γ3) + w4

1(γ1)w6
1(γ2)w6

1(γ3)w2(γ3)

+ w3
1(γ1)w5

1(γ2)w6
1(γ3)w2

2(γ3) + w3
1(γ1)w5

1(γ2)w6
1(γ3)w2(γ2)w2(γ3)

is nonzero. Of course, this already implies that cup(F (1, 2, 2, 2)) ≥ 16. Now
we start testing the monomials. If we take

w4
1(γ1)w6

1(γ2)w6
1(γ3)w2(γ3)

and calculate its value using the Observation, we see that e4
1(e2 + e3)6

× (e4 + e5)6e4e5e2e4e6 6= 0, and therefore

cup(F (1, 2, 2, 2)) = 17, 18 ≤ cat(F (1, 2, 2, 2)) ≤ 19.
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