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Amenability and Ramsey theory in the metric setting

by

Adriane Käıchouh (Lyon)

Abstract. Moore [Fund. Math. 220 (2013)] characterizes the amenability of the au-
tomorphism groups of countable ultrahomogeneous structures by a Ramsey-type property.
We extend this result to the automorphism groups of metric Fräıssé structures, which en-
compass all Polish groups. As an application, we prove that amenability is a Gδ condition.

Introduction. In recent years, there has been a flurry of activity relat-
ing notions linked to amenability of groups on one side, and combinatorial
conditions linked to Ramsey theory on the other side. In this paper, we
extend a result of Moore [Mo, Theorem 7.1] on the amenability of closed
subgroups of S∞ to general Polish groups. A topological group is said to be
amenable if every continuous action of the group on a compact Hausdorff
space admits an invariant probability measure.

Moore’s result is the counterpart of a theorem of Kechris, Pestov and
Todorčević [KPT] on extreme amenability. A topological group is said to be
extremely amenable if every continuous action of the group on a compact
Hausdorff space admits a fixed point. In the context of closed subgroups
of S∞, which are exactly the automorphism groups of Fräıssé structures,
Kechris, Pestov and Todorčević characterize extreme amenability by a com-
binatorial property of the associated Fräıssé classes (in the case where its
objects are rigid), namely, the Ramsey property. A class K of structures is
said to have the Ramsey property if for all structures A and B in K, and all
integers k, there is a structure C in K such that for every coloring of the
set of copies of A in C with k colors, there exists a copy of B in C within
which all copies of A have the same color.

Thus, extreme amenability, which provides fixed points, corresponds to
colorings having a “fixed”, meaning monochromatic, set. Amenability, on
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the other hand, provides invariant measures. Since a measure is not far from
being a barycenter of point masses, the natural mirror image of the Ramsey
property in that setting should be for a coloring to have a “monochromatic
convex combination of sets”. Indeed, Tsankov (in an unpublished note) and
Moore introduced a convex Ramsey property and proved that a Fräıssé class
has the convex Ramsey property if and only if the automorphism group of
its Fräıssé limit is amenable.

Moreover, the Kechris–Pestov–Todorčević result was extended to general
Polish groups by Melleray and Tsankov [MT1]. They use the framework of
continuous logic [BYBHU] via the observation that every Polish group is
the automorphism group of an approximately homogeneous metric structure
[Me, Theorem 6], that is, of a metric Fräıssé limit (in the sense of [MT1];
these were built by Ben Yaacov [BY]). They define an approximate Ramsey
property for classes of metric structures, and then show that a metric Fräıssé
class has the approximate Ramsey property if and only if the automorphism
group of its Fräıssé limit is extremely amenable.

In this paper, we “close the diagram” by giving a metric version of
Moore’s result. We replace the classical notion of a coloring with the metric
one (from [MT1]) to define a metric convex Ramsey property, and we prove
the exact analogue of Moore’s theorem (Theorem 4.3):

Theorem 0.1. Let K be a metric Fräıssé class, K its Fräıssé limit and
G the automorphism group of K. Then G is amenable if and only if K has
the metric convex Ramsey property.

From this result, we deduce some interesting structural consequences
about amenability. First, we improve the previously known characterization
of amenability mentioned below.

If G is a topological group, all minimal continuous actions of G on com-
pact Hausdorff spaces can be embraced in a single one: the action of G by
translation on its greatest ambit S(G) (see [P1]). In particular, the topological
groupG is amenable if and only if the action ofG on S(G) admits an invariant
Borel probability measure. The greatest ambit of G is none other than the
Samuel compactification, which is characterized by the property that every
right uniformly continuous bounded function on G extends to a continuous
function on S(G). Thus, amenability can be characterized as follows.

Theorem 0.2 (see [P1, Theorem 3.5.12]). Let G be a topological group.
Then the following are equivalent:

(1) G is amenable.
(2) There is an invariant mean (1) on the space RUCB(G) of right uni-

formly continuous bounded functions on G.

(1) Positive linear form of norm 1.
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(3) For every positive integer N and all f1, . . . , fN in RUCB(G), there
exists a mean Λ on RUCB(G) that is invariant on the orbits of
f1, . . . , fN , that is, for every j ≤ N and every g in G, one has
Λ(g−1 · fj) = Λ(fj).

(4) For every ε > 0, every finite subset F of G, every positive integer N
and all f1, . . . , fN in RUCB(G), there is a finitely supported proba-
bility measure µ on G such that for every j ≤ N and every h ∈ F ,
one has ∣∣∣ �

G

fj dµ−
�

G

fj d(h · µ)
∣∣∣ < ε.

The implications (4)⇒(3)⇒(2) follow from the weak∗-compactness of
the space of means on RUCB(G) (which is a consequence of the Banach–
Alaoglu theorem), while the implication (2)⇒(4) follows from an application
of the Riesz representation theorem to the Samuel compactification of G,
and the fact that every Borel probability measure on a compact space can
be approximated by finitely supported probability measures. Condition (4)
is known as Day’s weak∗-asymptotic invariance condition.

In the course of the proof of Theorem 0.1, we provide several reformu-
lations of the metric convex Ramsey property, among which the following
(Theorem 5.1).

Theorem 0.3. Let G be a Polish group. Then the following are equiva-
lent:

(1) G is amenable.
(2) For every ε > 0, every finite subset F of G and every left uniformly

continuous map f : G → [0, 1], there exist elements g1, . . . , gn of G
and barycentric coefficients λ1, . . . , λn such that for all h, h′ ∈ F ,
one has ∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G and every f ∈ RUCB(G),
there is a finitely supported probability measure µ on G such that for
every h in F , one has∣∣∣ �

G

f dµ−
�

G

f d(h · µ)
∣∣∣ < ε.

It is a strengthening of Day’s weak∗-asymptotic invariance condition for
Polish groups: to check that a Polish group is amenable, it suffices to verify
Day’s condition for a single function. This result was motivated by a similar
result obtained by Moore for discrete groups [Mo, Theorem 2.1]. Besides,
the same is true for extreme amenability with multiplicative means.
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It is interesting that to make this reduction from multiple functions to
only one function, we need to express the Polish group as the automorphism
group of a metric Fräıssé structure (as in [Me]) and then combine multiple
colorings into one coloring, whereas it is unclear how to directly combine
finitely many right uniformly continuous functions on the group.

Applying the Riesz representation theorem to the Samuel compactifi-
cation, as in Theorem 0.2, we obtain the following as a corollary (Corol-
lary 5.2).

Corollary 0.4. Let G be a Polish group. Then the following are equiv-
alent:

(1) G is amenable.
(2) For every right uniformly continuous bounded function on G, there

exists a mean on RUCB(G) such that for all g ∈ G, one has
Λ(g · f) = Λ(f).

Another advantage of Theorems 0.1 and 0.3 is to express amenability
in a finitary way, which allows us to compute its Borel complexity. In [P1],
it was shown that extreme amenability is equivalent to a Ramsey-theoretic
property called finite oscillation property, a slight reformulation of which
turns out to be a Gδ condition, as observed by Melleray and Tsankov [MT2].
We prove that amenability is also a Gδ condition (Corollary 5.4).

From this, a Baire category argument leads to the following sufficient
condition for a Polish group to be amenable (Corollary 5.6).

Corollary 0.5. Let G be a Polish group such that for every positive
n ∈ N, the set

Fn = {(g1, . . . , gn) ∈ Gn : 〈g1, . . . , gn〉 is amenable (as a subgroup of G)}
is dense in Gn. Then G is amenable.

This is a slight strengthening of the fact that a Polish group whose
finitely generated subgroups are amenable is itself amenable (see [G, Theo-
rem 1.2.7]), and also admits a direct proof (see Remark 5.7).

1. A bit of continuous logic. In this section, we briefly set up the
framework of continuous logic and of metric Fräıssé classes.

Definition 1.1.

• A relational continuous language L is a sequence of pairs (n, k), where
n is an integer and k a positive real number.

• If L is a relational continuous language, then an L-structure is a com-
plete metric space (M,d) endowed, for every l = (n, k) in L, with an
n-ary map Rl : Mn → R which is k-Lipschitz for the supremum metric
on Mn. The maps Rl are called predicates.
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Definition 1.2. Let L be a relational continuous language and M be an
L-structure. An automorphism of M is an isometry of (M,d) that preserves
all the predicates, that is, for every l = (n, k) in L and every (x1, . . . , xn)
in Mn, one has

Rl(g(x1), . . . , g(xn)) = Rl(x1, . . . , xn).

The set of all automorphisms of M is called the automorphism group of M
and is denoted by Aut(M).

We turn Aut(M) into a topological group by endowing it with the topol-
ogy of pointwise convergence. If the structure M is separable, then Aut(M)
is a Polish group.

Definition 1.3. Let L be a relational continuous language, and M and
M ′ two L-structures.

• An embedding of M ′ into M is an isometric map h : M ′ → M that
preserves all the predicates.
• The structure M is said to be approximately ultrahomogeneous if for

every positive ε, every finite subset A of M and every embedding h
of A into M , there exists an automorphism g of M such that for all a
in A, one has d(g(a), h(a)) < ε.

In model-theoretic terms, a structure is approximately ultrahomogeneous
if any two finite tuples having the same quantifier-free type can be sent
arbitrarily close to each other by an automorphism of the full structure.

Melleray [Me, Theorem 6] showed that every Polish group can be realized
as the automorphism group of a separable approximately ultrahomogeneous
metric structure. If M is such a structure, its age, which is the class of
all its finite substructures, has good amalgamation properties. Classes of
finite metric structures that enjoy the same properties are called metric
Fräıssé classes, a precise definition of which can be found in [BY] or [MT1].
A continuous version of the Fräıssé construction was developed by Ben Yaa-
cov [BY], ensuring that every such class is in fact the age of a unique (up
to isomorphism) separable approximately ultrahomogeneous structure, its
Fräıssé limit. For our purposes, however, we may simply take the following
as a definition of a Fräıssé class.

Definition 1.4. Let L be a countable relational continuous language.
A class K of finite L-structures is said to be a metric Fräıssé class if it is
the age of a separable approximately ultrahomogeneous L-structure K. In
that case, K is called the Fräıssé limit of the class K.

Examples 1.5.

• Every classical Fräıssé class can be seen as a metric one by endowing
the structures with the discrete metric.
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• The class of finite metric spaces is a metric Fräıssé class: it is the age
of the universal Urysohn space U.

Remark 1.6. We could allow languages to contain function symbols;
the reasoning would then adapt to classes of finitely generated structures by
considering finite generating sets for them. Fräıssé limits then include the
infinite-dimensional separable Hilbert space, the measure algebra of [0, 1],
Lp spaces.

Thus, every Polish group is the automorphism group of a Fräıssé limit.
We will use this description of Polish groups to give combinatorial charac-
terizations of amenability.

2. The metric convex Ramsey property. We use the notation of
[MT1].

Definition 2.1. Let L be a relational continuous language, A and B
two finite L-structures and M an arbitrary L-structure.

• We denote by AM the set of all embeddings of A into M. We endow
AM with the metric ρA defined by

ρA(α, α′) = max
a∈A

d(α(a), α′(a)).

• A coloring of AM is a 1-Lipschitz map from (AM, ρA) to [0, 1].
• We denote by 〈AM〉 the set of all finitely supported probability mea-

sures on AM. We will identify embeddings with their associated Dirac
measures.

• If κ : AM→ [0, 1] is a coloring, then we extend κ to 〈AM〉 linearly: if
ν in 〈AM〉 is of the form ν =

∑n
i=1 λiδαi , we set

κ(ν) =

n∑
i=1

λiκ(αi).

• Moreover, we extend composition of embeddings to finitely supported
measures bilinearly. Namely, if ν in 〈AB〉 and ν ′ in 〈BM〉 are of the
form ν =

∑n
i=1 λiδαi and ν ′ =

∑m
j=1 λ

′
jδα′j , we define

ν ′ ◦ ν =
m∑
j=1

n∑
i=1

λ′jλiδα′j◦αi .

• If ν is a measure in 〈BM〉, we denote by 〈AM(ν)〉 the set of all finitely
supported measures which factor through ν, and by AM(ν) the set
of those which factor through ν via an embedding. More precisely, if
ν ∈ 〈BM〉 is of the form

∑n
i=1 λiδβi , we define

AM(ν) = {ν ◦ δα : α ∈ AB}, 〈AM(ν)〉 = {ν ◦ ν ′ : ν ′ ∈ 〈AB〉}.
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Throughout the paper, K will be a metric Fräıssé class in a relational
continuous language, and K will be its Fräıssé limit.

Definition 2.2. The class K is said to have the metric convex Ramsey
property if for every ε > 0 and all structures A and B in K, there exists
a structure C in K such that for every coloring κ : AC → [0, 1], there is ν
in 〈BC〉 such that for all η, η′ ∈ AC(ν), one has |κ(η)− κ(η′)| < ε.

Intuition 2.3. In the classical setting, the Ramsey property states that
given two structures A and B, we can find a bigger structure C such that
whenever we color the copies of A in C, we can find a copy of B in C wherein
every copy of A has the same color. Here, it basically says that we can find
a convex combination of copies of B in C wherein every compatible convex
combination of copies of A has almost the same color (see Figure 1).

A1

A′1

A′′1

A2

A′2

A′′2

(2/3)A1 + (1/3)A2

(2/3)A′1 + (1/3)A′2

(2/3)A′′1 + (1/3)A′′2

(B1, 2/3) (B2, 1/3)

C

Fig. 1. Black points are barycenters of two corresponding copies of A in B1 and B2 with
the coefficients 2/3 and 1/3. The metric convex Ramsey property says that all these points
have almost the same color.

Remark 2.4. One can replace the assumption η, η′ ∈ AC(ν) with the
stronger one η, η′ ∈ 〈AC(ν)〉 in the above definition, as is done in [Mo].
Indeed, the property is preserved under convex combinations.

The following proposition states that the metric convex Ramsey property
allows us to stabilize any finite number of colorings at once.

Proposition 2.5. The following are equivalent:

(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, all positive integers N ∈ N and all structures A and

B in K, there exists a structure C in K such that for all colorings
κ1, . . . , κN : AC → [0, 1], there is µ in 〈BC〉 such that for all j in
{1, . . . , N} and all η, η′ in AC(µ), one has |κj(η)− κj(η′)| < ε.
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Remark. Condition (2) above is equivalent to the metric convex Ram-
sey property for colorings into [0, 1]N , where [0, 1]N is endowed with the
supremum metric. It follows that the metric convex Ramsey property is
equivalent to the same property for colorings taking values in any convex
compact metric space.

Proof of Proposition 2.5. The second condition clearly implies the first.
For simplicity, we prove the other implication for N = 2; the same argument
carries over to arbitrary N . Let A and B be structures in K, and ε > 0. We
apply the metric convex Ramsey property twice consecutively.

We find a structure C1 in K witnessing the metric convex Ramsey prop-
erty for A, B and ε, that is, if κ : AC1 → [0, 1] is a coloring, then there exists
ν ∈ 〈BC1〉 such that for all α, α′ in AB, we have |κ(ν ◦ δα) − κ(νδα′)| < ε.
Then we find a structure C in K witnessing the metric convex Ramsey prop-
erty for A, C1 and ε, that is, if κ : AC→ [0, 1] is a coloring, then there exists
ν ∈ 〈C1C〉 such that for all α, α′ in AC1, we have |κ(ν ◦ δα)−κ(ν ◦ δα′)| < ε.

We now show that C has the desired property. To this end, let κ1, κ2 :
AC→ [0, 1] be two colorings. By definition of the structure of C, there exists
ν ∈ 〈C1C〉 such that for all α, α′ in AC1, we have |κ1(ν◦δα)−κ1(ν◦δα′)| < ε.

We then lift the second coloring κ2 to κ̃2 : AC1 → [0, 1] by setting
κ̃2(α) = κ2(ν◦δα). This process corresponds to the classical going color-blind
argument: here, instead of forgetting one color, we forget all embeddings
that are not channelled through C1 via ν. The map κ̃2 we obtain is again a
coloring. Therefore, we may apply our assumption on C1 to κ̃2: there exists
ν1 in 〈BC1〉 such that for all α, α′ in AC1, we have |κ̃2(ν1 ◦δα)− κ̃2(ν1 ◦δα′)|
< ε.

Then µ = ν ◦ ν1 is as desired. Indeed, let η, η′ ∈ AC(µ). There exist
α, α′ ∈ AC1 such that η = µ ◦ δα and η′ = µ ◦ δα′ . Then

|κ2(η)− κ2(η′)| = |κ2(µ ◦ δα)− κ2(µ ◦ δα′)|
= |κ2(ν ◦ ν1 ◦ δα)− κ2(ν ◦ ν1 ◦ δα′)|
= |κ̃2(ν1 ◦ δα)− κ̃2(ν1 ◦ δα′)| < ε.

Moreover, whenever η, η′ ∈ AC(µ), they are in AC(ν) too, hence the as-
sumption on ν yields |κ1(η)− κ1(η′)| < ε.

Remark 2.6. For the sake of simplicity, we state the results for only
one coloring at a time; the previous proposition will imply that we can do
the same with any finite number of colorings.

We now give an infinitary reformulation of the metric convex Ramsey
property, which is what will be used in the proof of Theorem 4.3 in showing
that amenability implies the metric convex Ramsey property.
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Proposition 2.7. The following are equivalent:

(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, all structures A and B in K and all colorings

κ : AK → [0, 1], there exists ν in 〈BK〉 such that for all η, η′

in AK(ν), one has |κ(η)− κ(η′)| < ε.

Proof. (1)⇒(2). Fix ε > 0, two structures A and B in K, and let C ∈ K
witness the metric convex Ramsey property for A, B and ε. We may assume
that C is a substructure of K. Now every coloring of AK restricts to a
coloring of AC, so if ν is the measure given by C for a coloring κ, then ν
has the desired property.

(2)⇒(1). We use a standard compactness argument. Suppose that K
does not have the metric convex Ramsey property. We can then find struc-
tures A, B in K and ε > 0 such that for every C ∈ K, there exists a bad
coloring κC of AC, that is, for all ν ∈ 〈BC〉, the oscillation of κC on AC(ν)
is greater than ε.

We fix an ultrafilter U on the collection of finite subsets of K such that
for every finite D ⊆ K, the set {E ⊆ K finite : D ⊆ E} belongs to U . We
consider the map κ = lim

U
κC on AK defined by

κ(α) = t ⇔ ∀r > 0, {C ⊆ K finite : κC(α) ∈ [t− r, t+ r]} ∈ U .

Note that the assumption on U implies that for all α ∈ AK, the set {C ⊆
K finite : α(A) ⊆ C} is in U , so κC(α) is defined U-everywhere and the
above definition makes sense. Moreover, since all the κC are 1-Lipschitz, so
is κ, and is thus a coloring of AK. We prove that κ fails property (2).

Let ν ∈ 〈BK〉 and write ν =
∑n

i=1 λiδβi with the βi’s in BK. Then, for
all i ∈ {1, . . . , n}, the sets {C ⊆ K finite : βi(B) ⊆ C} belong to U , and so
does their intersection Uν . Furthermore, the set AK(ν), which is the same
as AC(ν) for any C in Uν , is finite—note that this is not true of 〈AK(ν)〉
(so choosing the definition of Remark 2.4 for the Ramsey property would
require an additional appeal to the compactness of 〈AK(ν)〉). For every C
in Uν , there exist η, η′ in AC(ν) such that |κC(η) − κC(η′)| ≥ ε. So there
exist η, η′ in AK(ν) such that the set {C ⊆ K finite : |κC(η) − κC(η′)|
≥ ε} belongs to U . By definition of κ, this implies that |κ(η) − κ(η′)| ≥ ε,
which shows that (2) fails for ν. As ν was arbitrary, this completes the
proof.

3. The metric convex Ramsey property for the automorphism
group. Let G be the automorphism group of K.

In this section, we reformulate the metric convex Ramsey property in
terms of properties of G.
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Definition 3.1. Let A be a finite substructure of K. We define a pseu-
dometric dA on G by

dA(g, h) = max
a∈A

d(g(a), h(a)).

We will denote by (G, dA) the induced metric quotient space.

Remark 3.2. The pseudometrics dA, for finite substructures A of K,
generate the topology on G, and hence also the left uniformity. For an in-
troduction to uniformities, see for example [P1].

The pseudometric dA is the counterpart of the metric ρA on AK on the
side of the group. More specifically, as pointed out in [MT1, Lemma 3.8], the
restriction map ΦA : (G, dA) → (AK, ρA) defined by g 7→ g�A is distance-
preserving, and its image ΦA(G) is dense in AK. As a consequence, every
1-Lipschitz map f : (G, dA)→ [0, 1] extends uniquely, via ΦA, to a coloring
κf of AK, while every coloring κ of AK restricts to a 1-Lipschitz map
fκ : (G, dA)→ [0, 1].

Proposition 3.3. The following are equivalent:

(1) The class K has the metric convex Ramsey property.
(2) For every ε > 0, every finite substructure A of K, every finite subset

F of G and every 1-Lipschitz map f : (G, dA) → [0, 1], there exist
elements g1, . . . , gn of G and barycentric coefficients λ1, . . . , λn such
that for all h, h′ in F , one has∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.

(3) For every ε > 0, every finite subset F of G and every left uniformly
continuous map f : G → [0, 1], there exist elements g1, . . . , gn of G
and barycentric coefficients λ1, . . . , λn such that for all h, h′ in F ,
one has ∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.

Remark 3.4. The finite subset F of G in condition (2) is the counterpart
of the structure B in the Ramsey property: by approximate ultrahomogene-
ity of the limit K, it corresponds, up to a certain error, to the set of all
embeddings of A into B.

Proof of Proposition 3.3. (1)⇒(2). We set B = A ∪
⋃
h∈F h(A). Let κf

be the unique coloring of AK that extends f . We then apply Proposition 2.7
to A, B, ε and κf : there is ν in 〈BK〉 such that for all α, α′ in AB(ν), we
have |κf (ν ◦ δα)− κf (ν ◦ δα′)| < ε.
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Write ν =
∑n

i=1 λiδβi with the βi’s in BK. Since the structure K is a
Fräıssé limit, it is approximately ultrahomogeneous. This implies that for
each i in {1, . . . , n}, there exists an element gi of its automorphism group
G such that ρB(gi, βi) < ε. It is straightforward to check, using the triangle
inequality and the 1-Lipschitzness of the coloring κf , that these gi’s and λi’s
have the desired property.

(2)⇒(3). We approximate uniformly continuous functions by Lipschitz
ones. More precisely, let f : G → [0, 1] be left uniformly continuous and
let ε > 0. There exists an entourage V in the left uniformity UL(G) on G
such that for all x, y in G, if (x, y) ∈ V , then |f(x) − f(y)| < ε. Moreover,
Remark 3.2 implies that there exist a finite substructure A of K and r > 0
such that for all x, y in G, if dA(x, y) < r, then (x, y) ∈ V .

Now, for a positive integer k, we can define a map fk : (G, dA) → [0, 1]
by

fk(x) = inf
y∈G

(f(y) + kdA(x, y)).

It is k-Lipschitz as the infimum of k-Lipschitz functions. Note also that fk
is smaller than f .

Take k large enough that 3/k < r, and let x be any element of G. By
definition of fk, there exists an element y of G such that f(y) +kdA(x, y) ≤
fk(x) + ε. Since both f and fk are bounded by 1, this implies that for small
enough ε, we have dA(x, y) ≤ 3/k < r. Thus, the left uniform continuity of f
gives |f(x)− f(y)| < ε. But then

|f(x)− fk(x)| = f(x)− fk(x) ≤ f(x)− f(y)− kdA(x, y) + ε

≤ f(x)− f(y) + ε < 2ε.

We have therefore obtained a good uniform approximation of f by a Lip-
schitz function.

We then apply (3) to fk/k, which is 1-Lipschitz, and to ε/k: for every
finite subset F of G, there exist elements g1, . . . , gn of G and barycentric
coefficients λ1, . . . , λn such that for all h, h′ ∈ F , we have∣∣∣∣ n∑

i=1

λi
1

k
fk(gih)−

n∑
i=1

λi
1

k
fk(gih

′)

∣∣∣∣ < ε

k
,

hence ∣∣∣ n∑
i=1

λifk(gih)−
n∑
i=1

λifk(gih
′)
∣∣∣ < ε.

Then, for all h, h′ ∈ F , the triangle inequality gives∣∣∣ n∑
i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < 3ε.
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(3)⇒(1). Let A and B be two structures in K, let ε > 0 and let κ :
AK→ [0, 1] be a coloring. Since K is approximately ultrahomogeneous, for
every α in AB, we may choose hα in G such that ρA(hα, α) < ε. Let F be
the (finite) set of all such hα’s.

Now consider the restriction fκ of the coloring κ to (G, dA). It is left
uniformly continuous from G to [0, 1]. We apply condition (3) to fκ, F and ε:
there exist elements g1, . . . , gn of G and barycentric coefficients λ1, . . . , λn
such that for all hα, hα′ in F , one has∣∣∣ n∑

i=1

λifκ(gihα)−
n∑
i=1

λifκ(gihα′)
∣∣∣ < ε.

Set ν =
∑n

i=1 λiδgi ∈ 〈BK〉. Using the triangle inequality and the Lipschitz-
ness of κ, it is now straightforward to check that ν witnesses the metric
convex Ramsey property for A, B and 3ε.

Notice that conditions (3) and (4) do not depend on the Fräıssé class,
but only on its automorphism group.

By Remark 2.6, the metric convex Ramsey property is equivalent to
condition (3) for any finite number of colorings at once. It is that condition
which will imply amenability in Theorem 4.3.

Moreover, if G is endowed with a compatible left-invariant metric, Lip-
schitz functions are uniformly dense in left uniformly continuous bounded
ones (the proof is similar to that of (2)⇒(3) above), so we can replace left
uniformly continuous maps by 1-Lipschitz maps in (3) to obtain the following.

Corollary 3.5. Let d be any compatible left-invariant metric on G.
Then the following are equivalent:

• The class K has the metric convex Ramsey property.
• For every ε > 0, every finite subset F of G and every 1-Lipschitz map
f : (G, d)→ [0, 1], there exist elements g1, . . . , gn of G and barycentric
coefficients λ1, . . . , λn such that for all h, h′ in F , one has∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.

4. A criterion for amenability. Given a compact space X, we denote
by P (X) the set of all Borel probability measures on X. It is a subset of
the dual space of continuous maps on X. Indeed, if µ is in P (X) and f is
a continuous function on X, we set µ(f) =

	
X f dµ. Moreover, if we endow

P (X) with the induced weak∗ topology, it is compact.
If G is a group that acts on X, then one can define an action of G on

P (X) by

(g · µ)(f) =
�

X

f(g−1 · x) dµ(x).
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Definition 4.1. A topological group G is said to be amenable if every
continuous action of G on a compact Hausdorff space X admits a measure
in P (X) which is invariant under the action of G.

Although amenability is not preserved under subgroups (not even closed
subgroups), it is preserved when taking dense subgroups.

Proposition 4.2. A subgroup of a topological group is amenable (with
respect to the induced topology) if and only if such is its closure.

Proof. LetH be a dense subgroup ofG. It is straightforward to show that
that every continuous action of H on a compact Hausdorff space extends to
a continuous action of G. Thus, if G is amenable, then so is H.

We are now ready to prove the main theorem.

Theorem 4.3. Let K be a metric Fräıssé class, K its Fräıssé limit and
G the automorphism group of K. Then the following are equivalent:

(1) The topological group G is amenable.
(2) The class K has the metric convex Ramsey property.

Proof. (1)⇒(2). Suppose G is amenable. Let A,B be structures in the
class K, let ε > 0 and let κ0 : AK → [0, 1] be a coloring. We show that
there exists ν ∈ 〈BK〉 such that for all α, α′ ∈ AB, we have |κ0(ν ◦ δα) −
κ0(ν ◦ δα′)| < ε, which will imply the metric convex Ramsey property (by
Proposition 2.7). We adapt Moore’s proof [Mo, (6)⇒(1) in Theorem 7.1] to
the metric setting.

The group G acts on the compact Hausdorff space [0, 1]
AK by g ·κ(α) =

κ(g−1 ◦ α). Denote by Y the orbit of the coloring κ0 under this action, and
by X its closure, which is compact Hausdorff. Note that all the functions in
X are colorings as well. We consider the restriction of the action to X: it
is continuous. Thus, since G is amenable, there is an invariant probability
measure µ on X.

The map α 7→
	
X κ(α) dµ(κ) is constant on AK. Indeed, the invariance

of µ implies that it is constant on every orbit of the action of G on AK.
But, by the approximate ultrahomogeneity of K, every such orbit is dense
in AK, so our map is constant on the whole of AK because it is continuous
(even 1-Lipschitz).

Let r denote this constant value.
Further, Y being dense in X, the collection of finitely supported proba-

bility measures on Y is dense in P (X). In particular, there exist barycentric
coefficients λ1, . . . , λn and elements g1, . . . , gn of G such that for all α in AB,
we have |

∑n
i=1 λiκ0(g

−1
i ◦ α)− r| < ε.

Finally, we may assume that B is a substructure of K, and set βi =
g−1i �B for i in {1, . . . , n}, and ν =

∑n
i=1 λiδβi ∈ 〈BK〉. Then ν is as desired.
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Indeed, if α, α′ are in AB, and thus in AK, then

|κ0(ν ◦ δα)−κ0(ν ◦ δα′)| =
∣∣∣ n∑
i=1

λiκ0(βi ◦α)−
n∑
i=1

λiκ0(βi ◦α′)
∣∣∣

≤
∣∣∣ n∑
i=1

λiκ0(βi ◦α)− r
∣∣∣+ ∣∣∣r− n∑

i=1

λiκ0(βi ◦α′)
∣∣∣

=
∣∣∣ n∑
i=1

λiκ0(g
−1
i ◦α)− r

∣∣∣+ ∣∣∣r− n∑
i=1

λiκ0(g
−1
i ◦α

′)
∣∣∣

< 2ε.

(2)⇒(1). Conversely, suppose that K has the metric convex Ramsey
property, and let G act continuously on a compact Hausdorff space X. We
show that X admits an invariant probability measure. Since P (X) is com-
pact, it suffices to show that if f1, . . . , fN : X → [0, 1] are uniformly contin-
uous with respect to the unique (see [P1, Exercise 1.1.3]) uniformity on X,
ε > 0 and F is a finite subset of G, then there exists µ in P (X) such that
for all j in {1, . . . , N} and all h in F , |h · µ(fj)− µ(fj)| < ε.

Fix x in X. For j in {1, . . . , N}, we lift fj to a map f̃j : G → [0, 1] by

setting f̃j(g) = fj(g
−1 ·x). Since the action of G on X is continuous and X is

compact, for all x in X the map g 7→ g−1 ·x is left uniformly continuous (see
[P1, Lemma 2.1.5]). It follows that the map f̃j is left uniformly continuous.

We then apply Proposition 3.3 to F ∪ {1}, ε and f̃1, . . . , f̃N to obtain
barycentric coefficients λ1, . . . , λn and elements g1, . . . , gn of G such that for
all j in {1, . . . , N} and all h in F (and h′ = 1), we have∣∣∣ n∑

i=1

λif̃j(gih)−
n∑
i=1

λif̃j(gi)
∣∣∣ < ε.

Then µ =
∑n

i=1 λiδg−1
i ·x

is as desired. Indeed, let j ∈ {1, . . . , N} and h ∈ F .

We have

µ(fj) =

n∑
i=1

λifj(g
−1
i · x) =

n∑
i=1

λif̃j(gi)

and

h · µ(fj) =
n∑
i=1

λi(h · fj)(g−1i · x) =
n∑
i=1

λifj(h
−1g−1i · x) =

n∑
i=1

λif̃j(gih),

so finally

|h · µ(fj)− µ(fj)| =
∣∣∣ n∑
i=1

λif̃j(gih)−
n∑
i=1

λif̃j(gi)
∣∣∣ < ε,

which completes the proof.
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Example 4.4. Let K be the class of finite sets with no additional struc-
ture. The Fräıssé limit of K is the countable set N. It is well known that
its automorphism group, S∞, is amenable, as the union of the finite (hence
amenable) symmetric groups is dense in S∞ (see e.g. [BdlHV, Proposition
G.2.2.(iii)]), but not extremely amenable [P2, Theorem 6.5]. In fact, the
class of finite sets has the classical Ramsey property (by the Ramsey theo-
rem [R]), but since finite sets are not rigid (every permutation is an auto-
morphism), the Kechris–Pestov–Todorčević result does not apply. However,
we can still use this classical Ramsey property to recover the amenability
of S∞: we circumvent the problem of non-rigidity by averaging the colors
of all permutations of the small structure to obtain the convex Ramsey
property.

More precisely, let A be a finite set in K. An embedding of A into N is
given by its image, which is a copy of A in N, together with an automor-
phism of A, sending A to its copy A′. Let now B be another structure in K,
κ : AN→ [0, 1] be a coloring and ε > 0. Without loss of generality, we may
assume that the coloring κ takes its values in a finite set {1, . . . , k} for a
large enough k.

For each automorphism σ of A, consider the coloring κσ of the set(N
A

)
of copies of A in N defined as follows. For each copy A′ of A in the

Fräıssé limit, κσ(A′) is the color that κ gives to the embedding defined by
A′ and σ. Apply the Ramsey property to each coloring κσ to get a copy
Bσ of B in N such that κσ is constant on the set

(
Bσ
A

)
of all copies of A

in Bσ. Then the isobarycenter of these structures Bσ is the desired mea-
sure.

We do not know if this technique generalizes to other non-rigid classes.

5. Structural consequences. As a consequence of Theorem 4.3, Pro-
position 3.3 and the fact that every Polish group is the automorphism group
of some metric Fräıssé structure [Me, Theorem 6], we obtain the following
intrinsic characterization of amenability (and its reformulation in terms of
finitely supported measures).

Theorem 5.1. Let G be a Polish group. Then the following are equiva-
lent:

(1) G is amenable.
(2) For every ε > 0, every finite subset F of G and every left uniformly

continuous map f : G → [0, 1], there exist elements g1, . . . , gn of G
and barycentric coefficients λ1, . . . , λn such that for all h, h′ ∈ F ,
one has ∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.
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(3) For every ε > 0, every finite subset F of G and every f ∈ RUCB(G)
there is a finitely supported probability measure µ on G such that for
every h in F , one has |µ(f)− (h · µ)(f)| < ε.

The equivalence of (2) and (3) follows from the fact that inversion ex-
changes left and right uniformly continuous functions.

We recognize Day’s weak∗-asymptotic invariance condition with only one
function from RUCB(G) needed to check the amenability of G.

Corollary 5.2. Let G be a Polish group. Then the following are equiv-
alent:

(1) G is amenable.
(2) For every right uniformly continuous bounded function on G, there

exists a mean on RUCB(G) such that for all g ∈ G, one has Λ(g · f)
= Λ(f).

Proof. (1)⇒(2). If G is amenable, then the action of G on its Samuel
compactification S(G) admits an invariant Borel probability measure µ. The
integral against µ gives rise to an invariant mean on the space of all contin-
uous functions on S(G). But continuous functions on the Samuel compact-
ification of G are exactly right uniformly continuous bounded ones, hence
condition (2) is satisfied.

(2)⇒(1). Since RUCB(G) is exactly the space of all continuous functions
on the Samuel compactification S(G), we can apply the Riesz representation
theorem: for each f in RUCB(G), there exists a Borel probability measure
on S(G) such that for all g in G, we have µ(g · f) = µ(f).

But since G is dense in S(G), every Borel probability measure on S(G)
can be approximated by finitely supported measures on G. Thus, for every
ε > 0, every finite subset F of G and every f ∈ RUCB(G), there is a finitely
supported probability measure µ on G such that for every h in F , one has
|µ(f)− (h · µ)(f)| < ε. Theorem 5.1 then shows that G is amenable.

Similarly, Corollary 3.5 gives the Lipschitz counterpart of Theorem 5.1.

Theorem 5.3. Let G be a Polish group and d a left-invariant metric
on G which induces the topology. Then the following are equivalent:

(1) The topological group G is amenable.
(2) For every ε > 0, every finite subset F of G and every 1-Lipschitz

map f : (G, d) → [0, 1], there exist elements g1, . . . , gn of G and
barycentric coefficients λ1, . . . , λn such that for all h, h′ ∈ F , one
has ∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.
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It follows that amenability is a Gδ condition in the following sense (see
[MT2, Theorem 3.1]).

Corollary 5.4. Let Γ be a countable group and G a Polish group. Then
the set of representations of Γ in G whose image is an amenable subgroup
of G is Gδ in the space of representations of Γ in G, endowed with the
topology of pointwise convergence.

Proof. Let π be a homomorphism from Γ to G and let d be a compatible
left-invariant metric on G. By Proposition 4.2, the image π(Γ ) is amenable
if and only if such is its closure, and its closure is Polish (as a closed subset
of a Polish space). Then, by Theorem 5.3, π(Γ ) is amenable if and only if
for every ε > 0, every finite subset F of π(Γ ) and every 1-Lipschitz function
f : (π(Γ ), d)→ [0, 1], there exist elements g1, . . . , gn of π(Γ ) and barycentric
coefficients λ1, . . . , λn such that for all h, h′ in F , one has∣∣∣ n∑

i=1

λif(gih)−
n∑
i=1

λif(gih
′)
∣∣∣ < ε.

Using the same compactness argument as in Proposition 2.7, one can show
that the condition is equivalent to the following:

∀ε > 0, ∀F ⊆ π(Γ ) finite, ∃K ⊆ π(Γ ) finite,

∀f : (KF, d)→ [0, 1] 1-Lipschitz, ∃k1, . . . , kn ∈ K, ∃λ1, . . . , λn, ∀h, h′ ∈ F,∣∣∣ n∑
i=1

λif(kih)−
n∑
i=1

λif(kih
′)
∣∣∣ < ε.

It is easily seen that this is again equivalent to the following:

∀ε > 0, ∀F ⊆ Γ finite, ∃K ⊆ Γ finite,

(∗)



∀f : KF → [0, 1] if ∀γ, γ′ ∈ KF, |f(γ)− f(γ′)| ≤ d(π(γ), π(γ′)),

then

∃k1, . . . , kn ∈ K, ∃λ1, . . . , λn, ∀h, h′ ∈ F,∣∣∣ n∑
i=1

λif(kih)−
n∑
i=1

λif(kih
′)
∣∣∣ < ε.

We now prove that, if ε, F and K are fixed, the set of representations π
satisfying condition (∗) above is open, which will imply that the condition
is indeed Gδ. We prove that its complement is closed. To that end, take a
sequence (πk) of representations in the complement that converges to some
representation π. Let fk : KF → [0, 1] witness that πk is in the complement.
Since KF is finite, the maps from KF to [0, 1] form a compact set, so we
may assume that (fk) converges to some f . Since being Lipschitz is a closed
condition, for all γ, γ′ in KF , we have |f(γ)− f(γ′)| ≤ d(π(γ), π(γ′)).
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By the choice of fk, for all k1, . . . , kn in K and all λ1, . . . , λn, there exist
hk, h

′
k in F such that∣∣∣ n∑

i=1

λifk(kihk)−
n∑
i=1

λifk(kih
′
k)
∣∣∣ ≥ ε.

Since F is finite, we may again assume that there are h and h′ in F such
that for all k, we have hk = h and h′k = h′. We then take the limit of the
above inequality to get∣∣∣ n∑

i=1

λif(kih)−
n∑
i=1

λif(kih
′)
∣∣∣ ≥ ε,

which implies that π does not satisfy condition (∗) either, and thus completes
the proof.

Remark 5.5. The same argument works if, instead of condition (2) of
Theorem 5.3, we use a version of Day’s weak∗-asymptotic invariance condi-
tion with Lipschitz maps. Thus, Corollary 5.4 holds more generally for all
topological groups.

This yields the following criterion for amenability, which can however be
obtained without the use of Ramsey theory.

Corollary 5.6. Let G be a Polish group such that for every positive n
in N, the set

Fn = {(g1, . . . , gn) ∈ Gn : 〈g1, . . . , gn〉 is amenable}

is dense in Gn. Then G is amenable.

Proof. We use a Baire category argument. By the above corollary applied
to the free group Fn on n generators (identifying Hom(Fn, G) with Gn), for
all n, the set Fn is dense Gδ in Gn. By the Baire category theorem, the set

F = {(gk) ∈ GN : ∀n, (g1, . . . , gn) ∈ Fn}

is dense and Gδ too. Further, the set of sequences which are dense in G is
also dense and Gδ. Then the Baire category theorem gives a sequence (gk)
in their intersection. Thus, the group generated by the gk’s is dense and
amenable, hence so is G.

Remark 5.7. The criterion of Corollary 5.6 can also be proven directly
using the following compactness argument. Let G act continuously on a com-
pact Hausdorff space X. For every finite subset F of G and every entourage
V in the uniformity on P (X), we approximate the elements of F by a tuple
in some Fn to find a measure µF,V in P (X) which is V -invariant under every
element of F . Since P (X) is compact, the net {µF,V } admits a limit point,
which is invariant under the action of G.
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The same argument works with extreme amenability as well, and it allows
one to slightly simplify the arguments of [MT2]: to show that the groups
Iso(U), U(H) and Aut(X,µ) are extremely amenable, Melleray and Tsankov
use their Theorem 7.1 along with the facts that extreme amenability is a Gδ
property, and that Polish groups are generically ℵ0-generated. This is not
necessary, as the core of their proof is basically the above criterion: in each
case, they prove that the set of tuples which generate a subgroup that is
contained in an extremely amenable group (some L0(U(m)), as it happens)
is dense.

6. Concluding remarks. One would expect the characterization of
Theorem 4.3 to yield new examples of amenable groups, or at least simpler
proofs of the amenability of known groups. However, proving the convex
Ramsey property for a concrete Fräıssé class is quite technical and difficult.

Maybe our characterization can be used the other way around, that is,
to find new Ramsey-type results. There is also hope that the criterion of
Corollary 5.6 may lead to (new) examples of amenable groups.
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