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Fσ-additive covers of Čech complete and
scattered-K-analytic spaces

by

Jǐŕı Spurný (Praha)

Abstract. We prove that an Fσ-additive cover of a Čech complete, or more gener-
ally scattered-K-analytic space, has a σ-scattered refinement. This generalizes results of
G. Koumoullis and R. W. Hansell.

1. Introduction. The main goal of our paper is an extension of results
of A. G. El’kin, G. Koumoullis and R. W. Hansell (see [1], [5, Theorem 2.1]
and [9, Theorem 2]) to nonmetrizable topological spaces.

A. G. El’kin [1] showed that an absolute Suslin metric space is either
discrete or contains a perfect compact subset. (We recall that a metric space
is absolute Suslin if it is homeomorphic to a Suslin subset of a complete
metric space.) G. Koumoullis improved this result in the following way: a
disjoint cover A of an absolute Suslin metric space Y consisting of Fσ-sets is
either σ-discretely decomposable or there exists a compact set K ⊂ Y which
meets uncountably many sets of A. As a corollary, any disjoint Fσ-additive
cover of an absolute Suslin metric space has a σ-discrete refinement (see [5,
Section 3]).

Later on, R. W. Hansell [5, Theorem 2.1] generalized this result for point-
countable families of Fσ-sets by proving that if A is a point-countable cover
of an absolute Suslin metric space Y consisting of Fσ-sets, then either A
has a σ-discrete refinement or there exists a compact set K ⊂ Y which
is not covered by any countable subfamily of A. It follows that a point-
countable Fσ-additive cover of an absolute Suslin metric space has a σ-
discrete refinement (see [5, Theorem 3.3]).
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In Theorem 3.4 we are able to get rid of the assumption of metrizability.
Namely, we prove that an Fσ-additive cover of a Čech complete space has a
σ-scattered refinement.

This result is further generalized in Theorem 4.3, where the same is
proved for an Fσ-additive cover of a scattered-K-analytic space.

Nevertheless, these results for topological spaces are not completely sat-
isfactory since the notion of Fσ-sets is much more special than within metric
spaces. A natural generalization of Fσ-sets are (F ∧G)σ-sets, i.e., sets of the
form

⋃
n(Fn ∩Gn) where each Fn is closed and Gn open. Unfortunately, the

method of proof of Theorem 3.4 does not seem to work for this class of sets.
Partial results under additional set-theoretical assumptions were ob-

tained by R. Pol (see [10, Theorem 1]) and P. Holický (see [6, Theorem 1]).

2. Preliminaries. By a space we mean a completely regular Hausdorff
topological space.

Let F be a family of sets in a topological space X. A family R is a
refinement of F if

⋃
R =

⋃
F and for every R ∈ R there exists F ∈ F with

R ⊂ F .
A family F is called point-countable if each x ∈ X lies in at most count-

ably many sets from F .
If S is a system of sets in X, we say that F is S-additive if

⋃
F0 is in S

for every subfamily F0 of F .
A family D in a topological space X is scattered if it is disjoint and for

every nonempty subfamily D0 of D, D contains an element that is relatively
open in

⋃
D0 (see [4, Definition 6.1]). If F is a scattered family of sets, then

there is a well-ordering ≤ of F and open sets U(F ), F ∈ F , such that

U(F ) ∩
⋃
F =

⋃
{E ∈ F : E ≤ F}.

We call the family {U(F ) : F ∈ F} the associated open sets for F .
An indexed family F = {Fi : i ∈ I} is called σ-scattered resolvable if

each Ei is the union of a family {Fi(n, l) : n ∈ N, l ∈ J(n, i)} such that
{Fi(n, l) : i ∈ I, l ∈ J(n, i)} is scattered for each n ∈ N. We may suppose
that the index sets J(n, i) are all equal (see [8, p. 3]). We remark that the
notions of σ-scattered resolvable family and of σ-scattered-decomposable
family defined in [4, Definition 6.6] are equivalent.

A set-valued mapping f : X → Y between topological spaces is said to be
index-σ-scattered if {f(Fi) : i ∈ I} is σ-scattered resolvable in Y whenever
{Fi : i ∈ I} is σ-scattered resolvable in X.

A topological space X is called Čech complete if X is a Gδ-subset of its
Stone–Čech compactification βX (see [2, Theorem 3.9.1]).

A topological space X is scattered-K-analytic if X is the image of a
complete metric space M under an usco index-σ-scattered map f : M → X
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(see [3, p. 11], [4, Definition 6.7] and [7, Definition 1]). (We recall that a
set-valued map f : X → Y between topological spaces is an usco map if f
has nonempty compact values and

f−1(F ) = {x ∈ X : f(x) ∩ F 6= ∅}
is closed in X for every closed set F ⊂ Y .)

We say that a family R is σ-scattered if R =
⋃
nRn and each family Rn

is scattered. We remark that a σ-scattered family in a metrizable space is
σ-discretely decomposable due to the existence of a σ-discrete basis.

We denote by {0, 1}<N the space of finite sequences of 0’s and 1’s. Let
|s| be the length of s. We denote by ∅ the empty sequence, of length 0 by
convention. For s ∈ {0, 1}<N and i ∈ {0, 1} we write s∧i for the sequence
(s1, . . . , s|s|, i).

For a sequence σ in the Cantor set {0, 1}N and n ∈ N we write σ�n for
the finite sequence (σ1, . . . , σn). We adopt the convention that σ�0 = ∅.

If F is a family of sets in a space X and A ⊂ X, we denote by F�A the
family {F ∩A : F ∈ F}.

3. Čech complete spaces. We start with the following easy result
whose proof is based upon [3, Lemma 2.2]. As the proof is rather standard,
we omit it.

Lemma 3.1. Let F = {Fi : i ∈ I} be a σ-scattered family of sets in a
space X. For each i ∈ I, let Fi = {Fi,j : j ∈ Ji} be a σ-scattered family
contained in Fi. Then {Fi,j : i ∈ I, j ∈ Ji} is σ-scattered.

Lemma 3.2. Let F be a cover of a space X such that every x ∈ X has
an open neighbourhood U such that F�U has a σ-scattered refinement. Then
F has a σ-scattered refinement.

Proof. We will find by transfinite induction an ordinal κ and an increas-
ing sequence {Uα : α ∈ [0, κ]} of open sets in X such that F�Uα+1\Uα has a
σ-scattered refinement and Uκ = X.

We set U0 := ∅ and find an open set U1 such that F�U1
has a σ-scattered

refinement. Let α be an ordinal and suppose that the construction has been
completed for every ordinal β < α. If α is a limit ordinal, set Uα :=

⋃
β<α Uβ.

If α = η+1 and Uη = X, we stop the construction. Otherwise we use the
assumption on F and find a nonempty open set U such that U∩(X \Uη) 6= ∅
and F�U has a σ-scattered refinement. Then we set Uα := Uη ∪ U . This
finishes the inductive step.

Since Uα’s are strictly increasing, there exists an ordinal κ such that
Uκ = X. Then {Uα+1 \Uα : α ∈ [0, κ)} is a scattered family with associated
open sets {Uα : α ∈ [0, κ]} such that F�Uα+1\Uα has a σ-scattered refinement
for each α ∈ [0, κ). By Lemma 3.1, F has a σ-scattered refinement.
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Lemma 3.3. Let F be a point-countable Fσ-additive cover of a Čech
complete space X. Then there exists F ∈ F with nonempty interior.

Proof. Let F = {Fi : i ∈ I}. Suppose that each Fi has empty interior.
Since X is Čech complete, it is a Gδ-set in every compactification of X. We
select some compactification K of X and find open sets Vn, n ∈ N, in K
such that X =

⋂
Vn. Set V0 := K.

If A ⊂ I, then X \
⋃
i∈A Fi is a Gδ-set in X and consequently in K. Let

{G(A,n)} be a decreasing sequence of open sets in K such that
∞⋂
n=1

G(A,n) = X \
⋃
i∈A

Fi.

Notice that if A ⊂ I is countable and U ⊂ K is nonempty and open, then
(U ∩X) \

⋃
i∈A Fi 6= ∅. Indeed, the union of a countable subfamily of F is

of the first category by our assumption, and thus cannot cover a nonempty
open subset of a Čech complete space (see [2, Theorem 3.9.3]).

We set U∅ := K and pick x∅ ∈ U∅∩X. We also set A∅ := {i ∈ I : x∅ ∈ Fi}
and B∅ := I\A∅. For each s ∈ {0, 1}<N we will find points xs ∈ X, nonempty
open sets Us ⊂ K and sets As, Bs ⊂ I such that

(i) U s∧0 ∪ U s∧1 ⊂ Us ⊂ V|s|, U s∧0 ∩ U s∧1 = ∅;
(ii) xs ∈ Us, xs∧0 = xs, and

xs∧1 /∈
|s|⋃
k=0

⋃
|t|=k

{Fi : i ∈ At};

(iii) As∧1 = {i ∈ I : xs∧1 ∈ Fi}, As∧0 = As and Bs = I \As;
(iv) Us∧0 ⊂ G(Bs∧0, |s∧0|) and

Us∧1 ⊂
|s|⋂
k=1

⋂
|t|=k

G(At, |s∧1|).

To start the construction, we set x0 := x∅, A0 := A∅ and B0 := B∅. We
choose nonempty open sets U0, U1 in K such that x0 ∈ U0 and ∅ = U0∩U1 ⊂
U0 ∪U1 ⊂ V1 and U0 ⊂ G(B0, 1). We pick a point x1 ∈ (U1 ∩X) \

⋃
i∈A0

Fi
and set A1 := {i ∈ I : x1 ∈ Fi}, B1 := I \ A1. This finishes the first step of
the construction.

Let n ∈ N and suppose that the construction has been completed for
each s ∈ {0, 1}<N with |s| ≤ n. Let now s ∈ {0, 1}<N have length n. We
set xs∧0 := xs, As∧0 := As and Bs∧0 := Bs. We choose nonempty open
sets Us∧0, Us∧1 in K such that xs∧0 ∈ Us∧0 and conditions (i) and (iv) are
satisfied. (Notice that

⋂|s|
k=1

⋂
|t|=kG(At, |s∧1|) is a dense open set in K.)
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Further we pick a point xs∧1 ∈ Us∧1 ∩X such that

xs∧1 /∈
|s|⋃
k=1

⋃
|t|=k

{Fi : i ∈ At}.

To finish the inductive step of the construction it is enough to define As∧1

and Bs∧1 according to condition (iii).
Set

C :=
∞⋂
n=1

⋃
|s|=n

U s

and define a mapping ϕ : C → {0, 1}N by the formula

ϕ(x) = σ ∈ {0, 1}N if and only if x ∈
∞⋂
n=1

Uσ�n.

We have C ⊂ X as Us ⊂ V|s| for each s ∈ {0, 1}<N. Moreover, ϕ is a
continuous mapping of C onto {0, 1}N. Let

A := {σ ∈ {0, 1}N : σ = (s1, . . . , s|s|, 0, 0, . . . ) for some σ ∈ {0, 1}N}.

Set IA :=
⋃
{As : s ∈ {0, 1}<N}, IB := I \ IA and define

Â :=
⋃
{Fi : i ∈ IA} and B̂ :=

⋃
{Fi : i ∈ IB}.

We need the following claim.

Claim. We have ϕ−1(A) = C ∩ Â = C \ B̂ and ϕ−1({0, 1}N \ A) =
C ∩ B̂ = C \ Â.

Proof of Claim. We start by showing

(1) ϕ−1(A) ⊂ Â and ϕ−1(A) ∩ B̂ = ∅.
Let σ ∈ A, i.e., σ = (s1, . . . , s|s|, 0, 0, . . . ) for some s ∈ {0, 1}<N. If n > |s|,
it follows from (iv) that

Uσ�n = U(s1,...,s|s|,0,...,0) ⊂ G(Bs, n).

Thus

ϕ−1(σ) =
∞⋂

n=|s|+1

Uσ�n =
∞⋂

n=|s|+1

Uσ�n ⊂
∞⋂

n=|s|+1

G(Bs, n) = X \
⋃
i∈Bs

Fi.

As IB ⊂ Bs, we have ϕ−1(σ)∩ B̂ = ∅. Also ϕ−1(σ) ⊂ Â because F is a cover
of X. Since σ ∈ A is arbitrary, (1) follows.

Further, we show that

(2) ϕ−1({0, 1}N \A) ⊂ B̂ and ϕ−1({0, 1}N \A) ∩ Â = ∅.
Let σ ∈ {0, 1}N \ A, i.e., σ contains digit 1 infinitely often. Let {nk} be an
increasing sequence of natural numbers such that σnk = 1 for all k ∈ N.
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For a fixed sequence t ∈ {0, 1}<N we choose k0 ∈ N such that nk0−1 ≥ |t|.
It follows from (iv) that

U(σ1,...,σnk−1,1) ⊂ G(At, nk)

for each integer k ≥ k0. Hence

ϕ−1(σ) =
∞⋂
n=1

Uσ�n =
∞⋂

k=k0

Uσ�nk ⊂
∞⋂

k=k0

G(At, nk) = X \
⋃
i∈At

Fi.

Since this inclusion holds for each t ∈ {0, 1}<N, we get

ϕ−1(σ) ∩
⋃
{Fi : i ∈ IA} = ϕ−1(σ) ∩ Â = ∅.

Hence ϕ−1({0, 1}N \ A) ∩ Â = ∅. Again we use the fact that F is a cover
to deduce that ϕ−1({0, 1}N \ A) ⊂ B̂. This concludes the proof of(2). By
combining (1) and (2) we finish the proof of the claim.

Now we are ready to finish the proof of the lemma. Since F is Fσ-additive,
the Claim shows that both ϕ−1(A) and ϕ−1({0, 1}N \ A) are Fσ. Since C
is compact and ϕ is continuous, both A and {0, 1}N \ A are also Fσ. But
this is impossible as they are both dense in the Baire space {0, 1}N. This
contradiction finishes the proof.

Theorem 3.4. Let F be a point-countable Fσ-additive cover of a Čech
complete space X. Then F has a σ-scattered refinement.

Proof. Set

G :=
⋃
{U : U open and F�U has a σ-scattered refinement}.

We claim that G = X.
Indeed, assuming the contrary, we set H := X \ G and consider the

restriction F�H . According to Lemma 3.2, F�G has a σ-scattered refinement.
Since H is a Čech complete (see [2, Theorem 3.9.6]), Lemma 3.3 yields an
F ∈ F such that F ∩H has nonempty interior in H. Let U ⊂ X be an open
set such that U ∩H 6= ∅ and U ∩H ⊂ F ∩H. Then F�U∩H has a σ-scattered
refinement. Since F�U\H has a σ-scattered refinement as well, F�U has a
σ-scattered refinement. Thus U ⊂ G, contrary to U ∩H 6= ∅.

Thus G = X and F has a σ-scattered refinement by Lemma 3.2.

4. Scattered-K-analytic spaces. This section is devoted to a gener-
alization of Theorem 3.4 to scattered-K-analytic spaces. We start with the
following lemma proved in [8] as Lemma 2.5.

Lemma 4.1. Let Y and X be spaces and suppose Y has a σ-scattered
network N . Let p : Y ×X → X be the projection. For every scattered family
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T of sets in Y × X there are open sets UNT ⊂ X, N ∈ N , T ∈ T , so that
the sets TN = T ∩ (N × UNT ), N ∈ N , satisfy

• T =
⋃
N∈N T

N for each T ∈ T ;
• {p(TN ) : T ∈ T } is a scattered family in X with associated open sets
UNT = U(p(TN )), T ∈ T , for every N ∈ N .

The proof of the following proposition closely follows the proof of [8,
Lemma 2.6].

Proposition 4.2. Let X be a scattered-K-analytic space. Then there
exists a (single-valued) continuous mapping p from a Čech complete space
Z onto X such that p maps scattered families in Z to families admitting a
σ-scattered refinement.

Proof. Let f : Y → X be an index-σ-scattered usco mapping of a com-
plete metric space Y onto X. Let Z be the graph of f , i.e.,

Z = {(y, x) ∈ Y ×X : x ∈ f(y)}.
Then Z is Čech complete by [2, Theorem 3.9.10], since the projection Z → Y
is a perfect map.

To finish the proof it is enough to show that the projection p : Z → X
maps scattered families to families admitting a σ-scattered refinement. Let
T be a scattered family in Z with associated open sets {U(T ) : T ∈ T }. Let
N be a σ-scattered network for Y . (Since Y is a metric space, we can take
N to be a σ-discrete basis.) Given N ∈ N , Lemma 4.1 provides open sets
UNT , T ∈ T , in X such that

T =
⋃
N∈N

T ∩ (N × UNT ), T ∈ T .

Moreover, if we set TN := T∩(N×UNT ), then {p(TN ) : T ∈ T } is a scattered
family in X with associated open sets UNT , T ∈ T .

As
p(TN ) = p(T ∩ (N × UNT )) ⊂ f(N)

for each N ∈ N and {f(N) : N ∈ N} is even σ-scattered resolvable, the
family {p(TN ) : N ∈ N} is σ-scattered resolvable for each T ∈ T . Since
{p(TN ) : T ∈ T } is scattered for each N ∈ N , Lemma 3.1 implies that
{p(TN ) : T ∈ T , N ∈ N} has a σ-scattered refinement. Thus the family
{p(T ) : T ∈ T } has a σ-scattered refinement as well. This concludes the
proof.

Theorem 4.3. Let F be a point-countable Fσ-additive cover of a scat-
tered-K-analytic space. Then F has a σ-scattered refinement.

Proof. Using Proposition 4.2 we find a continuous mapping f of a Čech
complete space Y onto X such that f maps scattered families to families



138 J. Spurný

admitting a σ-scattered refinement. Then F̂ := {f−1(F ) : F ∈ F} is an
Fσ-additive cover of Y . According to Theorem 3.4, F̂ has a σ-scattered
refinement. Thus F itself has a σ-scattered refinement and we are done.
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[8] P. Holický and V. Komı́nek, Descriptive properties of mappings between nonsepara-

ble Luzin spaces, ibid. 57 (132) (2007), 201–224.
[9] G. Koumoullis, Cantor sets in Prohorov spaces, Fund. Math. 74 (1984), 155–161.

[10] R. Pol, Remark on the restricted Baire property in compact spaces, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys. (8) 24 (1976), 599–603.

Faculty of Mathematics and Physics
Charles University
Sokolovská 83
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