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Borel sets with σ-compact sections for nonseparable spaces

by

Petr Holický (Praha)

Abstract. We prove that every (extended) Borel subset E of X × Y , where X is
complete metric and Y is Polish, can be covered by countably many extended Borel sets
with compact sections if the sections Ex = {y ∈ Y : (x, y) ∈ E}, x ∈ X, are σ-compact.
This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get
a proof of Saint Raymond’s result which does not use transfinite induction.

1. Introduction. We prove a nonseparable version of the theorem [5,
Theorem] of Saint Raymond. Saint Raymond’s theorem states in particular
that each Borel subset B of the product of Polish spaces X and Y with
σ-compact sections Bx = {y ∈ Y : (x, y) ∈ B}, x ∈ X, can be covered by
countably many Borel sets with compact sections. It says even more, namely
that an analytic set A ⊂ X × Y can be separated from another analytic set
B ⊂ X × Y by a countable union of Borel sets with compact sections if the
sections of A can be separated from the sections of B by σ-compact sets.

Our result generalizes that of Saint Raymond to the case of nonseparable
complete metric spaces X and extended Borel sets E ⊂ X × Y . Our proof
does not use the analogue of the Cantor derivatives used in Saint Raymond’s
proof and thus it is different even in the separable case. The reason for our
modification is to avoid a cardinality argument which cannot be used for
the nonseparable case. In fact, several attempts to get the uniformization
presented here, or stronger results corresponding to known improvements
of Saint Raymond’s theorem in the classical setting, failed because of the
lack of a suitable substitute of the boundedness principle for coanalytic
ranks. Therefore we proceed similarly to [3, Theorem 3.1], where we proved
a nonseparable version of a theorem of Luzin and Novikov on (extended)
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Borel sets with countable sections. We work however also with Suslin sets
instead of just (extended) Borel ones. Adjusting our proof from [3] in a
similar fashion, we get a nonseparable version of Luzin–Novikov’s theorem
for Suslin sets.

2. Suslin and extended Borel sets in metric spaces. A subset S
of a topological space X is a Suslin set if

S =
⋃

(n1,n2,...)∈NN

⋂
k∈N

Fn1,...,nk ,

where Fn1,...,nk are closed subsets of X. It is well known that S ⊂ X is Suslin
if and only if it is the projection of a closed subset of X × P , where P is a
separable completely metrizable (i.e., Polish) space.

The set S is co-Suslin in X if its complement is Suslin in X. If S and
its complement in X are Suslin, we say that S is a bi-Suslin set in X. Let
us recall that Suslin subsets of Polish spaces are called analytic spaces and
that bi-Suslin sets in an analytic space coincide with its Borel subsets.

The class of extended Borel subsets of a metric space is the smallest class
containing Borel sets which is a σ-field and which is closed under the unions
of discrete families (see, e.g., [2]).

We recall a lemma ([3, Lemma 2.1]) on projections along separable metric
spaces which we need later. Let us introduce some notation first.

Considering spaces X and Y , we use πX and πY to denote the projections
of X × Y to X and Y , respectively.

In what follows we say that a family F of subsets of a metric space X is
discrete (more precisely metrically discrete) if there is an ε > 0 such that the
distance of any two elements of F is greater than or equal to ε. An indexed
family (Fa : a ∈ A) is discrete if there is an ε > 0 such that the distance of
Fa and Fb is greater than or equal to ε for every pair a, b of distinct elements
of A (the distance is infinite if one of the sets is empty). We then say that
the family F , or the indexed family (Fa : a ∈ A), is ε-discrete.

The above-mentioned lemma now reads as follows.

Lemma 2.1. Let X be a metric space and Y be a separable metric space.
If the indexed family (Da : a ∈ A) of subsets of X×Y is discrete, then there
are sets Da(n) ⊂ X × Y such that

(a) Da =
⋃
n∈NDa(n),

(b) Da(n) = Da ∩ (P × U) for some open sets P in X and U in Y ,
(c) (πX(Da(n)) : a ∈ A) is discrete for every n ∈ N.

The description of Da(n)’s in (b) ensures that they are relatively open
in Da, and thus open, extended Borel, or Suslin, if Da’s were of the respective
type.
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We still need another simple fact about discrete families in metric spaces.
The rather artificial formulation with an auxiliary set Z suits well our ap-
plications.

Lemma 2.2. Let X be a metric space and Z an arbitrary set. Let S =⋃
{Sn : n ∈ N} be a family of subsets of X ×Z such that the indexed family

(πX(S) : S ∈ Sn) is εn-discrete in X for every n ∈ N. Set

PF =
⋂
{πX(S) : S ∈ F}

for every finite F ⊂ S. Then the indexed family

(PF : F a finite subfamily of S)

is σ-discrete.

Proof. Given a finite family F ⊂ S, the set PF may be nonempty only
if each Sn contains at most one element of F . Fix distinct k1, . . . , kn ∈ N.
It is not difficult to check that the indexed family (P{F1,...,Fn} : Fi ∈ Ski ,
i = 1, . . . , n) is ε-discrete, where ε = min{εki : i = 1, . . . , n}.

We describe a particular representation of Suslin subsets of the product
of a complete metric space with a Polish space together with some notation.

Lemma 2.3. Let S be a Suslin subset of X×Y , where (X, %) is a complete
metric space and (Y, σ) is a complete separable metric space. Then there is
a closed subset F (S) of (X × Y )×NN and an open base C(S) of F (S) such
that the indexed family (πX(C) : C ∈ C(S)) is σ-discrete. (We then denote
by πS the restriction of πX×Y to F .) Consider the metric max(%, σ, τ) on
X×Y ×NN, where τ is a complete metric on NN compatible with the product
topology. If Cn ∈ C(S) are nonempty such that limn→∞ diamCn = 0 and
Cn+1 ⊂ Cn for n ∈ N, then

⋂
n∈N πS(Cn) is a singleton in S.

Proof. There is a closed set F (S) ⊂ (X × Y ) × NN such that S =
πX×Y (F (S)). As F (S) is a metric space, it has a σ-discrete open base B.
Since Y ×NN is separable, we may find, by Lemma 2.1, an open refinement
C(S) of B, and thus also an open base of F (S), such that (πX(C) : C ∈ C(S))
is σ-discrete. The remaining statement follows by the completeness of F (S)
and continuity of πS .

We need a separation theorem of Hansell, a nonseparable version of the
reduction theorem for co-Suslin sets, and a nonseparable version of the clas-
sical Novikov approximation theorem (cf. [5, Lemma 2]).

Theorem 2.4.

(a) E is extended Borel in a complete metric space X if and only if E
is bi-Suslin in X.
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(b) If Cn, n ∈ N, are co-Suslin subsets of a metric space X, then there
are pairwise disjoint co-Suslin sets Dn ⊂ Cn such that

⋃
n∈NDn =⋃

n∈NCn.
(c) Let Sn be Suslin sets in a metric space X with

⋂
{Sn : n ∈ N} = ∅.

Then there are bi-Suslin sets En in X such that Sn ⊂ En and
⋂
{En :

n ∈ N} = ∅.
Proof. Statement (a) follows from [1, Corollary 4.11 and Theorem 4.15].
Statement (b) follows easily from the nonseparable uniformization theo-

rem (see, e.g., [4, Theorem 7]) applied to the set
⋃
{Cn × {n} : n ∈ N}.

The last statement follows from (b) applied to the sets Cn = X \ Sn.
The sets Dn from (b) form a partition of X consisting of bi-Suslin sets. The
complements En of Dn are the desired sets.

3. A nonseparable version of the Saint Raymond theorem. Our
main result is the following improvement of the Saint Raymond theorem.
We say that A ⊂ Z is separated from B ⊂ Z by a set C ⊂ Z, or that C
separates A from B, if A ⊂ C ⊂ Z \B.

Theorem 3.1. Let S and T be Suslin subsets of the product of a complete
metric space X and a Polish space Y such that Sx can be separated from
Tx by a σ-compact set for every x ∈ X. Then there are extended Borel sets
En, n ∈ N, such that (En)x is compact for each x ∈ X and E =

⋃
n∈NEn

separates S from T .

The following corollary is of particular interest.

Theorem 3.2. Let E ⊂ X×Y be an extended Borel subset of the product
of a complete metric space X and a Polish space Y such that the sections
Ex, x ∈ X, are σ-compact. Then there are extended Borel sets En, n ∈ N,
such that each (En)x is compact and

⋃
n∈NEn = E.

Proof. We apply the preceding theorem to S = E and T = (X × Y ) \ E.
The set E is necessarily the separating set from Theorem 3.1 and so it is a
countable union of extended Borel sets with compact sections.

We may suppose that Y is compact and metric. Indeed, let Ŷ be a metric
compactification of Y . Put T̂ = T ∪ (X × (Ŷ \ Y )). Note that S and T̂ are
Suslin in X × Ŷ since Y is a Gδ subset of Ŷ . Separating S and T̂ as in
Theorem 3.1, we get extended Borel sets En in X × Ŷ , even in X ×Y , with
compact sections.

Further, for T ⊂ X × Y , we denote by ET the family of all extended
Borel subsets E of X × Y with compact sections Ex, x ∈ X, which do not
intersect T . The conclusion of Theorem 3.1 may be restated by saying that
there is an E ∈ (ET )σ with S ⊂ E. We show that (ET )σ coincides with a
formally larger family now.
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Lemma 3.3. Let X be a metric space, Y a separable metric space and
T ⊂ X × Y . Then (ET )σ = {E : E =

⋃
D, D ⊂ ET is σ-discrete}.

Proof. The inclusion (ET )σ ⊂ {E : E =
⋃
D, D ⊂ ET is σ-discrete} is

obvious. To prove the other one, let D be a σ-discrete family of elements
of ET . Let

⋃
n∈N En be a refinement of D such that (πX(E) : E ∈ En) is

discrete as in Lemma 2.1. Every element E ∈ En is a subset of an element
D(E) ∈ D. Thus the set E∩D(E) is in ET and the union En =

⋃
{E∩D(E) :

E ∈ En} is in ET as well. Now
⋃
D =

⋃
n∈NEn ∈ (ET )σ and the lemma is

proved.

Similarly to [5, Lemma 1], we deduce that the vertical closures Av =⋃
{{x} ×Ax : x ∈ X} of Suslin sets are Suslin sets.

Lemma 3.4. Let X be metric, Y Polish, and A ⊂ X×Y be Suslin. Then
the set Av is Suslin.

Proof. Let Un be a countable open cover of Y consisting of sets with
diameter less than 1/n. The sets A∩ (X ×U) are Suslin for U ∈ Un, and so
their projections A(U) to X are Suslin. Now

A
v =

⋂
n∈N

⋃
U∈Un

A(U)× U

is Suslin.

As in [5, Lemma 3], we first need to prove a separation theorem for sets
with compact sections which follows from the (nonseparable) Novikov and
separation theorems. We can repeat the proof of Saint Raymond almost word
for word by simply referring to nonseparable variants of the needed theo-
rems. Let us remark that if we had the Saint Raymond lemma [5, Lemma 3]
proved for a separable metric space X, with (extended) Borel replaced by
bi-Suslin, we could derive the nonseparable version using a separable factor-
ization described in [4, Corollary 2].

Theorem 3.5. Let X be metric, Y compact , and S, T ⊂ X × Y be
Suslin such that Sx ∩ Tx = ∅ for every x ∈ X. Then there is a bi-Suslin set
E ⊂ X × Y with compact sections Ex, x ∈ X, which separates S from T .

Proof. Let {Uni : i = 1, . . . , in} be an open cover of Y by open sets of
diameter less than 1/n for n ∈ N. Define Sni = πX(S ∩ (X ×Uni ))×Uni and
Sn =

⋃
{Sni : i = 1, . . . , in}. Since the closure of Sx does not intersect Tx

for every x ∈ X, it is easy to check that Sv =
⋂
{Sn : n ∈ N} as in the

proof of Lemma 3.4, and
⋂
{Sn ∩ T : n ∈ N} = ∅. Due to Theorem 2.4(c),

we find bi-Suslin sets Nn ⊃ Sn ∩ T such that
⋂
{Nn : n ∈ N} = ∅. Using the

notation Tni for the set (T ∩ (X × Uni )) \ Nn, we get by Theorem 2.4(c) a
bi-Suslin set Bn

i separating πX(Sni ) from πX(Tni ). We may now check easily
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that the set E =
⋂
n∈N

⋃
{Bn

i × Uni : i = 1, . . . , in} fulfils the requirements
of our theorem.

Remark 3.6. Theorem 3.5 and its proof can be used to prove that the
projection of an extended Borel set with compact sections in the product
X × Y of a complete metric space X and a Polish space Y is extended
Borel (cf. the remark following [5, Lemma 3]). Using now our Theorem 3.2,
we get the nonseparable version of the theorem of Arsenin–Kunugui saying
that the projection to X of an extended Borel subset of X × Y with σ-
compact sections is extended Borel (cf. [4, Theorem 6], where another proof
was given). We may now improve Theorem 3.2 so that the sets En have the
same projection as E in the notation of the theorem. Indeed, we may extend
each En obtained in the theorem to

En ∪
⋃{

Em \
(
πX

(⋃
{Ek ∪ En : k < m}

)
× Y

)
: m ∈ N

}
.

These new sets might be called “compact-valued uniformizations of E”.
Also a nonseparable version of Shchegol’kov’s uniformization theorem for
such sets E could be proved similarly to [5, Corollary 12].

Let us point out that by the preceding considerations (see Lemmas 3.3
and 3.4) to prove Theorem 3.1 it is sufficient to find a σ-discrete family S
of Suslin sets such that

⋃
{Sv : S ∈ S} separates S from T .

LetX be a complete metric space, Y a compact metric space, and S, T be
Suslin subsets of X×Y as in the assumptions of Theorem 3.1. Assuming that
S cannot be separated from T by an element of (ET )σ (as in Theorem 3.1),
we are going to construct a homeomorphic copy H of the Cantor set in Y
such that H ⊂ Sx ∪ Tx and H ∩ Tx is a countable dense subset of H for an
x ∈ X. This shows that Sx is not σ-compact, which is a contradiction (as
otherwise the nonempty set H∩Tx would be Gδ in H and of first category in
itself at the same time). To construct H, we shall look for a “Hurewicz-like
scheme” (cf. [5, Lemma 8]).

We apply the above representation Lemma 2.3 for the Suslin sets S and
T , and we fix a choice of the closed subsets F (S) and F (T ) of (X × Y )×NN,
and of the open bases C(S) of F (S) and C(T ) of F (T ) as in Lemma 2.3.
The restrictions of πX×Y to F (S) and F (T ) are denoted by πS and πT ,
respectively. We consider the corresponding maximum metrics in products
of metric spaces as in Lemma 2.3.

Let U(A, r) denote the open r-neighbourhood of A for r > 0. We use î j
to denote the sequence (i1, . . . , in, j) whenever i = (i1, . . . , in) ∈ {0, 1}n for
some n ∈ N and j ∈ {0, 1}.

Definition 3.7. An indexed family

((Sj, Tj, Cj, Dj) : j ∈ {0, 1}n, n ∈ N)
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of quadruples of sets such that Sj, Tj ⊂ X × Y , Cj ∈ C(S), and Dj ∈ C(T )
forms a Hurewicz-like scheme if for every n ∈ N, using the abbreviation i
for (i1, . . . , in−1) ∈ {0, 1}n−1, we have

(a) Siˆ1 = πS(Ciˆ1) ⊂ Si, C∅ = F (S), Ci1,...,ik,0 = Ci1,...,ik for k < n,
Ciˆ1 ⊂ Ci, and diamCiˆ1 < 1/n. In particular, diamSiˆ1 < 1/n.

(b) Tiˆ0 = πT (Diˆ0) (⊂ Ti), D∅ = F (T ), Di1,...,ik,1 = F (T ) for k < n,
Diˆ0 ⊂ Di, and diamDiˆ0 < 1/n. In particular, diamTiˆ0 < 1/n and,
if in−1 = 0, Tiˆ0 ⊂ Ti.

(c) Siˆ0 = Si ∩ U(Tiˆ0, riˆ0), where

riˆ0 = max{1/k : k ∈ N, diamU(Tiˆ0, 1/k) < 1/n,
1/k < (1/3)dist(πY (Siˆ1), πY (Tiˆ0))}.

In particular, diamSiˆ0 < 1/n and Siˆ0 ⊂ Si.
(d) Tiˆ1 = T ∩ U(Siˆ1, riˆ1), where

riˆ1 = max{1/k : k ∈ N, diamU(Siˆ1, 1/k) < 1/n,
1/k < (1/3)dist(πY (Siˆ1), πY (Tiˆ0))}.

In particular, diamTiˆ1 < 1/n and Tiˆ1 ⊂ T .
(e) The family

(πY (Sj ∪ Tj) : j ∈ {0, 1}n)

is disjoint.
(f) ⋂

{πX(Sj
v ∩ Tj) : j ∈ {0, 1}n} 6= ∅.

Let us remark that we could weaken some requirements of Definition 3.7.
In particular, item (d) could be omitted for our purposes. Nevertheless, we
use (d) to make some of the formulations (for example that of (e)) simpler.
Similarly, we could define Di1,...,ik if ik = 0 only. In fact, the Hurewicz-like
scheme is uniquely determined by the sets Ciˆ1 and Diˆ0 for i ∈ {0, 1}k,
k = 0, 1, . . . .

We say that an indexed family

Pn = ((Si, Ti, Ci, Di) : i ∈ {0, 1}k, k ≤ n)(1)

is admissible if it meets the requirements (a) to (e) of the above Definition 3.7
restricted to Pn.

The family

Q = ((Sk, Tk, Ck, Dk) : k ∈ {0, 1}n+1)

is an admissible extension of the admissible family Pn from (1) if the family

Pn+1 = ((Si, Ti, Ci, Di) : i ∈ {0, 1}k, k ≤ n+ 1)

is admissible.
Similarly to [5, Lemma 7], we prove
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Lemma 3.8. Let the indexed family

((Sj, Tj, Cj, Dj) : j ∈ {0, 1}n, n ∈ N)

form a Hurewicz-like scheme. Then there is a homeomorphic copy H of the
Cantor set such that H ⊂ Sx ∪ Tx and H ∩ Tx is a countable dense subset
of H for some x ∈ X.

Proof. We are going to define a mapping ϕ : {0, 1}N → X × Y first. Let
(i1, i2, . . .) ∈ {0, 1}N.

If (i1, i2, . . .) ∈ I0, where

I0 = {(i1, i2, . . .) ∈ {0, 1}N : there is an n0 ∈ N such that in = 0 if n ≥ n0},

we set ϕ(i1, i2, . . .) equal to the unique element of
⋂
{T i1,...,in : n ≥ n0} ⊂ T

(cf. Lemma 2.3). Here n0 stands, e.g., for the smallest n0 from the definition
of I0. This definition is correct because the sets Ti1,...,in , n ≥ n0, form a
decreasing sequence of sets with diameters tending to zero by (b) and they
are nonempty by (f) of Definition 3.7.

If (i1, i2, . . .) ∈ {0, 1}N \ I0, i.e., the sequence contains infinitely many
one’s, then we define ϕ(i1, i2, . . .) as the unique element of

⋂
{Si1,...,in :

n ∈ N} ⊂ S (cf. Lemma 2.3). This is correct because the sets Si1,...,in ,
n ∈ N, form a decreasing sequence of sets with diameters tending to zero by
(a) and (c), and they are nonempty by (f) of Definition 3.7.

We now prove that ϕ is a homeomorphism of {0, 1}N onto a subset of
Sx ∪ Tx for some x ∈ X. It follows from (e) of Definition 3.7 that ϕ is
injective.

As each
Si1,...,in ∪ Ti1,...,in ⊂ U(Si1,...,in , 1/n)

by (f), (b), and (d) of Definition 3.7, and diamSi1,...,in < 1/n by (a) and
(c), we may easily check that ϕ is continuous.

We see from the definition of ϕ that

πX(ϕ({0, 1}N)) ⊂
⋃
{πX(Sj) ∪ πX(Tj) : j ∈ {0, 1}n}

for every n ∈ N. Given a fixed n ∈ N, the family of all sets πX(Sj) and
πX(Tj) for j ∈ {0, 1}n has nonempty intersection by (f). All these sets have
diameter less than 1/n by (a)–(d). Thus the projection to X of ϕ({0, 1}N)
has diameter less than 2/n for every n ∈ N, and so it is a singleton.

Now, H = πY (ϕ({0, 1}N)) is the required set. Indeed, H∩Tx = πY ◦ϕ(I0)
is countable and dense in H since I0 is countable and dense in {0, 1}N, and
πY ◦ ϕ({0, 1}N \ I0) = H ∩ Sx.

An important role in our approach is played by the following notions
related to property (f) of Definition 3.7.
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Definition 3.9.

(a) An indexed family P = ((Si, Ti) : i ∈ {1, . . . , n}) of pairs of subsets
of X × Y is partially separated if

(∀x ∈ X)(∃i ∈ {1, . . . , n}) (Si)x ∩ (Ti)x = ∅.
(b) We say that an indexed family ((Si, Ti) : i ∈ {1, . . . , n}) of pairs

of subsets of X × Y can be partially separated if there is a set C ∈
(ET )σ such that the family ((Si \ C, Ti) : i ∈ {1, . . . , n}) is partially
separated.

Note that this definition does not depend on whether we consider the
family as an indexed family or just as the set of pairs of sets Si and Ti.
We prefer to speak about indexed families because we are going to apply
these notions to subfamilies of the Hurewicz-like scheme which is an indexed
family.

We prove a lemma concerning partial separation of families of the par-
ticular form ((Si, T ) : i ∈ {1, . . . , n}).

Lemma 3.10. Let Si ⊂ X × Y , i ∈ {1, . . . , n}, be Suslin sets such that

(∀x ∈ X)(∃i ∈ {1, . . . , n}) (Si)x ∩ Tx = ∅.
Then there is a set D ∈ ET such that

(∀x ∈ X)(∃i ∈ {1, . . . , n}) (Si \D)x = ∅.

Proof. We consider the sets Ci = {x ∈ X : (Si)x ∩Tx = ∅}. The comple-
ment of Ci is Suslin in X since it is the projection of the intersection of the
Suslin sets T and S

v
i (cf. Lemma 3.4).

The sets Ci, i = 1, . . . , n, cover X by our assumptions. By the reduc-
tion theorem (Theorem 2.4(b) above) there are complements of Suslin sets
Bi ⊂ Ci which form a partition of X. The separation theorem recalled in
Theorem 2.4(a) shows that all Bi’s are extended Borel.

Applying Theorem 3.5 to the pairs of Suslin sets S′i = Si ∩ (Bi× Y ) and
T , we get sets Ei ∈ ET with S′i ⊂ Ei. The set D =

⋃
{Ei : i = 1, . . . , n}

satisfies our requirements.

We conclude our proof of Theorem 3.1 by proving the inductive step of
the construction of a Hurewicz-like scheme. Recall that we assume that the
conclusion of the theorem does not hold. So our construction may and shall
begin with the choice S∅ = S, T∅ = T , C∅ = F (S), and D∅ = F (T ). We say
that a family

((Si, Ti, Ci, Di) : i ∈ {0, 1}k)
of quadruples is (can be) partially separated if the family ((Si, Ti) : i ∈
{0, 1}k) is (can be) partially separated, respectively.
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Lemma 3.11. Let n ∈ {0, 1, . . .} and

Pn = ((Si, Ti, Ci, Di) : i ∈ {0, 1}k, k = 0, 1, . . . , n)

be an admissible family such that the family

((Sj, Tj) : j ∈ {0, 1}n)

cannot be partially separated. Then there is an admissible extension

((Sk, Tk, Ck, Dk) : k ∈ {0, 1}n+1)

of Pn which cannot be partially separated.

Proof. Suppose that every admissible extension Q of Pn can be partially
separated. We choose for every such extension

Q = ((Sk, Tk, Ck, Dk) : k ∈ {0, 1}n+1)

a set C(Q) ∈ (ET )σ as in Definition 3.9(b), thus we have

(∀x ∈ X)(∃k ∈ {0, 1}n+1) (Sk \ C(Q))x ∩ (Tk)x = ∅.(2)

We put

F(Q) = {Cjˆ1 : j ∈ {0, 1}n} ∪ {Djˆ0 : j ∈ {0, 1}n}.
By Lemma 2.2 applied to the family S = {C : C ∈ C(S)} ∪ {D : D ∈ C(T )}
of subsets of X × Z with Z = Y × NN, the indexed family

(PF(Q) : Q is an admissible extension of Pn),

and thus also the indexed family (PF(Q)×Y : Q is an admissible extension of
Pn), is σ-discrete. Note that Q is uniquely given by a choice of ((Cjˆ1, Djˆ0) :
j ∈ {0, 1}n) due to Definition 3.7.

Replacing C(Q) by its intersection with the closed set PF(Q) × Y , we
may and shall assume that

C(Q) ⊂ PF(Q) × Y.
Thus the family (C(Q) : Q an admissible extension of Pn) becomes σ-
discrete and, by Lemma 3.3, the set C =

⋃
{C(Q) : Q an admissible exten-

sion of Pn} belongs to (ET )σ.
We define

N = {x ∈ X : (∀j ∈ {0, 1}n) (Sj \ C)x ∩ (Tj)x 6= ∅}.
Note that N is Suslin in X as a finite intersection of projections to X of the
Suslin sets (Sj \ C)

v ∩ Tj (cf. Lemma 3.4).
Consider families

R = ((C0
jˆ1, C

1
jˆ1) ∈ C(S)× C(S) : j ∈ {0, 1}n)

of pairs of sets such that, for j ∈ {0, 1}n and j = 0, 1,

• Sjjˆ1 = πS(Cjjˆ1) ⊂ Sj,
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• Cjjˆ1 ⊂ Cj,

• diamCjjˆ1 < 1/(n+ 1)

(as in (a) of the definition of the Hurewicz-like scheme; the sets Sjjˆ1 are
“potential candidates for Sjˆ1”) such that moreover

πY (S0
jˆ1) ∩ πY (S1

jˆ1) = ∅.

We denote by R the set of all such families R.
Suppose that an

R = ((C0
jˆ1, C

1
jˆ1) : j ∈ {0, 1}n) ∈ R

is fixed and Sjjˆ1 = πS(Cjjˆ1). In the case that

(∀x ∈ N)(∃j ∈ {0, 1}n)(∃j = 0, 1) (Sjjˆ1 \ C)x ∩ Tx = ∅,(3)

we know from Lemma 3.10 applied to the family of Suslin sets

(Sjjˆ1 \ C) ∩ (N × Y )

that there is a set D(R) ∈ ET such that

(∀x ∈ N)(∃j ∈ {0, 1}n) (∃j = 0, 1) (Sjjˆ1 \ (C ∪D(R)))x = ∅.(4)

We may and do assume that D(R) ⊂ PF(R) × Y by replacing it with its
intersection with PF(R)×Y , where F(R) = {Cjjˆ1 : j = 0, 1, j ∈ {0, 1}n} and
PF(R) is the closed set defined in Lemma 2.2 (we use here {C : C ∈ C(S)}
as the family S of subsets of X × Z, with Z = Y × NN, in that lemma).
This ensures that the family (D(R) : R ∈ R) is σ-discrete, and so its union
D =

⋃
{D(R) : R ∈ R} is in (ET )σ due to Lemma 3.3.

Since the family
((Sj, Tj) : j ∈ {0, 1}n)

cannot be partially separated by our assumptions, also the family

((Sj \ (C ∪D), Tj) : j ∈ {0, 1}n)

is not partially separated. Thus there is an x ∈ X such that

(∀j ∈ {0, 1}n) (Sj \ (C ∪D))x ∩ (Tj)x 6= ∅.

Necessarily, x ∈ N . Consequently, there are distinct

sjjˆ1 ∈ (Sj \ (C ∪D))x, j = 0, 1,

for every j ∈ {0, 1}n. We choose a family

R0 = ((C0
jˆ1, C

1
jˆ1) : j ∈ {0, 1}n) ∈ R
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such that Sjjˆ1 = πS(Cjjˆ1) 3 sjjˆ1. This is possible since Sj is a relatively open
subset of πS(Cj) and C(S) is an open base of F (S) (Lemma 2.3). We have

(∀j ∈ {0, 1}n)(∀j = 0, 1) (Sjjˆ1 \ (C ∪D))x 6= ∅.

This implies the negation of (4) as D(R0) ⊂ D and our choice of R0 ensures
the negation of (3), i.e., that

(∃x0 ∈ N)(∀j ∈ {0, 1}n)(∀j = 0, 1) (Sjjˆ1 \ C)x0 ∩ Tx0 6= ∅.(5)

As x0 ∈ N , we also have a

tjˆ0 ∈ (Sj \ C)x0 ∩ (Tj)x0(6)

for every j ∈ {0, 1}n. We may now choose Sjˆ1 equal either to S0
jˆ1 or to S1

jˆ1

so that tjˆ0 /∈ (Sjˆ1)x0 for each j = (i1, . . . , in) ∈ {0, 1}n.
We choose Djˆ0 ∈ C(T ) so that

• Tjˆ0 = πT (Djˆ0) 3 (x0, tjˆ0),
• Djˆ0 ⊂ Dj,
• diamDjˆ0 < 1/(n+ 1)

(i.e., satisfying assumptions (b) from the definition of the Hurewicz-like
scheme). This is possible since Tj = πT (Dj) if in = 0 (and Tj is a rela-
tively open subset of T if in = 1), and C(T ) is an open base of F (T ) from
Lemma 2.3.

For j ∈ {0, 1}n, let Sjˆ0 and Tjˆ1 be the sets uniquely prescribed by (c)
and (d) of Definition 3.7, and Cjˆ0 = Cj, Djˆ1 = F (T ) as in (a) and (b) of
Definition 3.7.

Conditions (a)–(f) are now satisfied and we denote the admissible exten-
sion ((Sk, Tk, Ck, Dk) : k ∈ {0, 1}n+1) by Q0.

Moreover, the family ((Sk \ C, Tk) : k ∈ {0, 1}n+1) is not partially sepa-
rated since, for every j ∈ {0, 1}n,

(Sjˆ0 \ C)x0 ∩ (Tjˆ0)x0 3 tjˆ0
by (6) as Sjˆ0 is an open neighbourhood of Tjˆ0 3 (x0, tjˆ0) intersected with
Sj, and

(Sjˆ1 \ C)x0 ∩ Tx0 6= ∅

by (5).
This contradicts (2) since C(Q0) ⊂ C, and the lemma is proved.

4. Luzin–Novikov theorem for Suslin sets. Using some ideas of
the proof of Theorem 3.1, we improve [3, Theorem 3.1] (Luzin–Novikov
theorem for extended Borel sets) to get the following nonseparable version
of the Luzin–Novikov theorem for Suslin sets.
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Theorem 4.1. Let S be a Suslin subset of the product of a complete
metric space X and a Polish space Y such that Sx is a countable set for
every x ∈ X. Then there are Suslin sets An, n ∈ N, such that each (An)x
contains at most one point for every x ∈ X and S =

⋃
n∈NAn.

As a corollary we get a “nonseparable separation version” of the Luzin–
Novikov theorem.

Corollary 4.2. Let S and T be two disjoint Suslin subsets of the prod-
uct of a complete metric space X and a Polish space Y such that Sx is a
countable set for every x ∈ X. Then there are extended Borel sets En, n ∈ N,
such that each (En)x, x ∈ X, contains at most one point , S ⊂

⋃
n∈NEn,

and
⋃
n∈NEn ∩ T = ∅.

It is clear that Theorem 4.1 is an immediate consequence of Corol-
lary 4.2 since we may choose T = ∅, use Corollary 4.2 to get En’s, and
put An = S ∩ En. We shall however prove Theorem 4.1 first and observe
that using Lemma 4.3 below, we get Corollary 4.2 as an easy consequence of
Theorem 4.1 (we may put En = Ân for An’s from Theorem 4.1). Lemma 4.3
says in particular that a Suslin graph S can be extended to an extended
Borel one. This is a well known result in the classical case because S is
necessarily the graph of a Borel measurable mapping from the analytic pro-
jection πX(S) into Y if X is Polish, and it is well known that it can be
extended to a Borel measurable mapping of the whole X into Y . The state-
ment of the following lemma follows by combining several known results.
However, we give a direct proof for the convenience of the reader.

Lemma 4.3. Let S, T ⊂ X × Y be disjoint Suslin subsets of the product
of a metric space X and a Polish space Y , and suppose the sections Sx,
x ∈ X, contain at most one point each. Then there is a bi-Suslin set Ŝ such
that S ⊂ Ŝ, (Ŝ)x contains at most one point for every x ∈ X, and Ŝ∩T = ∅.

Proof. Fix a sequence of countable partitions Un, n ∈ N, of Y into Suslin
sets (or even into differences of open sets) such that each Un consists of sets
with diameter less than 1/n.

The Suslin sets SU = πX(S ∩ (X × U)), U ∈ Un, form a countable
partition of πX(S) for every n ∈ N. Using the separation theorem for pairs
of Suslin sets (see, e.g., Theorem 2.4(c) for pairs of disjoint sets) inductively,
we find bi-Suslin sets BU ⊃ SU , U ∈ Un, in X which are pairwise disjoint.
The set

G =
⋂
n∈N

⋃
{BU × U : U ∈ Un}

is bi-Suslin, S ⊂ G, and Gx contains at most one point for every x ∈ X.
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By the separation theorem (see, e.g., Theorem 2.4(c) again), there is a
bi-Suslin set H ⊂ X×Y such that S ⊂ H and H∩T = ∅. The set E = G∩H
fulfils all requirements of our lemma.

The next lemma plays a similar role in this section as Lemma 3.10 in
the previous one.

Lemma 4.4. Let S1, . . . , Sn be Suslin subsets of X × Y , where X is a
metric space, Y a Polish space, and let

(∀x ∈ X)(∃i ∈ {1, . . . , n}) card (Si)x ≤ 1.

Then there is a bi-Suslin set E ⊂ X × Y such that

• Ex contains at most one point for every x ∈ X;
• (∀x ∈ X)(∃i ∈ {1, . . . , n}) Si \ E = ∅.
Proof. Let B be a countable open base of Y . The sets {x ∈ X : (Si)x ∩

Uj 6= ∅ if j = 0, 1}, i = 1, . . . , n, are Suslin for all pairs U0, U1 of disjoint
(nonempty) elements of B, and so their union is the Suslin set {x ∈ X :
card (Si)x > 1}. So the sets Ci = {x ∈ X : card (Si)x ≤ 1} are co-Suslin and,
by our assumptions, they form a cover of X. Theorem 2.4(b), (c) ensures the
existence of a partition of X consisting of bi-Suslin sets Di ⊂ Ci. Now, let
Ŝi ⊃ Si be a bi-Suslin set such that (Ŝi)x, x ∈ X, contains at most one point
(we use Lemma 4.3 with S = Si and T = ∅). The set E =

⋃n
i=1 Ŝi∩(Di×Y )

is as desired.

To prove Theorem 4.1 we proceed by contradiction. We suppose that the
conclusion of the theorem is false for some S.

Let F (S), C(S), and πS form the representation of S as in Lemma 2.3
above.

We are going to find a Cantor-like scheme by choosing Cj ∈ C(S), j ∈
{0, 1}n, such that, for every n ∈ N and j = (i1, . . . , in) ∈ {0, 1}n,

(an) Sj = πS(Cj);
(bn) Ci1,...,in ⊂ Ci1,...,in−1 and diamCi1,...,in < 1/n;
(cn) (πY (Sj) : j ∈ {0, 1}n) is disjoint;
(dn)

⋂
{πX(Sj) : j ∈ {0, 1}n} 6= ∅.

We say that the family Pn = (Sj : j ∈ {0, 1}n) is partially covered
if for every x ∈ X there is a j ∈ {0, 1}n such that (Sj)x = ∅. We say
that the family can be partially covered if there are bi-Suslin graphs Gk of
mappings from X to Y such that (Sj \

⋃
k∈NGk : j ∈ {0, 1}n) is partially

covered. Denote by E the set of all bi-Suslin graphs of mappings from X
to Y .

Proceeding similarly to the proof of Theorem 3.1 above, we can find a
Cantor-like scheme by induction. We begin by choosing S∅ = S and C∅ =
F (S).
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Lemma 4.5. Let Pn = (Ci : k ≤ n, i ∈ {0, 1}k) for some n = 0, 1, . . .
satisfy (ak)–(dk) for k = 1, . . . , n and suppose (Sj = πS(Cj) : j ∈ {0, 1}n)
cannot be partially covered. Then there is an extension Q = (Ck : k ∈
{0, 1}n+1) of Pn such that (Sk = πS(Ck) : k ∈ {0, 1}n+1) cannot be partially
covered and such that Pn+1 = (Ci : k ≤ n+1, i ∈ {0, 1}k) satisfies (ak)–(dk)
for k = 1, . . . , n+ 1.

Proof. We proceed by contradiction. Suppose that for every extension
Q which gives Pn+1 satisfying (ak)–(dk) for k = 1, . . . , n + 1, there is a set
C(Q) ∈ Eσ such that (πS(Ck)\C(Q) : k ∈ {0, 1}n+1) is partially covered. Let
PQ be the sets defined in Lemma 2.2 applied to F = Q and S = C(S). We
may restrict ourselves to possibly smaller bi-Suslin C(Q) such that C(Q) ⊂
PQ × Y , and we get C as the union of the sets C(Q) over all admissible ex-
tensions Q of Pn. The family (πS(C(Q)) : Q an admissible extension of Pn)
is σ-discrete and thus C belongs to Eσ.

In the case that

(∀x ∈ X)(∃j ∈ {0, 1}n) card (Sj \ C)x < 2,

we see by Lemma 4.4 that (Sj : j ∈ {0, 1}n) can be partially covered, a
contradiction.

In the case that

(∃x0 ∈ X)(∀j ∈ {0, 1}n) card (Sj \ C)x0 ≥ 2,

we easily find, using the fact that C(S) is an open base of F (S) and πS
is continuous, an admissible extension Q0 = (Ck : k ∈ {0, 1}n+1) of Pn
so that (πS(Cjˆi))x0 ∩ (Sj \ C)x0 6= ∅ for j ∈ {0, 1}n and i ∈ {0, 1}. Thus
(πS(Ck) \ C : k ∈ {0, 1}n+1) is not partially covered. This contradicts our
choice of C ⊃ C(Q0), and the lemma is proved.

Now, having a Cantor-like scheme, the set⋂
n∈N

⋃
j∈{0,1}n

Sj

is a homeomorphic copy of the Cantor set contained in an Sx0 ; as Sx0 is
countable, this is a contradiction.

The author thanks to J. Spurný and M. Zelený for many useful comments
during the process of preparation of this note.
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[5] J. Saint Raymond, Boreliens à coupes Kσ, Bull. Soc. Math. France 104 (1976), 389–
400.

Department of Mathematical Analysis
Faculty of Mathematics and Physics
Charles University
Sokolovská 83
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