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A new and stronger central sets theorem
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Abstract. Furstenberg’s original Central Sets Theorem applied to central subsets of
N and finitely many specified sequences in Z. In this form it was already strong enough
to derive some very strong combinatorial consequences, such as the fact that a central
subset of N contains solutions to all partition regular systems of homogeneous equations.
Subsequently the Central Sets Theorem was extended to apply to arbitrary semigroups
and countably many specified sequences. In this paper we derive a new version of the
Central Sets Theorem for arbitrary semigroups S which applies to all sequences in S at
once. We show that the new version is strictly stronger than the original version applied
to the semigroup (R, +). And we show that the noncommutative versions are strictly
increasing in strength.

1. Introduction. In [3] Furstenberg defined a central subset of the set
N of positive integers in terms of some notions from topological dynamics.
He showed that if N is partitioned into finitely many classes, one of these
classes contains a central set. Then he proved the following theorem. (For
any set X, we write Pf(X) for the set of finite nonempty subsets of X.)

1.1. The Original Central Sets Theorem (Furstenberg). Let l ∈ N
and for each i ∈ {1, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in Z. Let C be a central
subset of N. Then there exist sequences 〈an〉∞n=1 in N and 〈Hn〉∞n=1 in Pf(N)
such that

(1) for all n, maxHn < minHn+1,
(2) for all F ∈ Pf(N) and all i ∈ {1, . . . , l},

∑
n∈F (an +

∑
t∈Hn yi,t) ∈ C.

Proof. [3, Proposition 8.21].

He pointed out that an immediate consequence is that whenever N is
divided into finitely many classes, and a sequence 〈xn〉∞n=1 is given, one of
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the classes must contain arbitrarily long arithmetic progressions with the
increment d ∈ FS(〈xn〉∞n=1) = {

∑
n∈F xn : F ∈ Pf(N)}. (To see this, let

l ∈ N and for i ∈ {0, 1, . . . , l} let yi,n = i · xn. Pick a cell of the partition
which contains a central set C and pick 〈an〉∞n=1 and 〈Hn〉∞n=1 as guaranteed
by the Central Sets Theorem. Now throw away all but the first term of
each sequence. Let d =

∑
t∈H1

xt. Then for i ∈ {0, 1, . . . , l}, a1 + id =
a1 +

∑
t∈H1

yi,t ∈ C.) Furstenberg also used central sets to prove Rado’s
theorem [7] by showing that any central subset of N contains solutions to
all partition regular systems of homogeneous linear equations.

Subsequently, after looking at an early draft of the paper [4] by Fursten-
berg and Katznelson which derived Ramsey-theoretic results using idem-
potents in enveloping semigroups, Vitaly Bergelson had the idea that one
might be able to derive the conclusion of the Central Sets Theorem for a
set C ⊆ N which had an idempotent in the smallest ideal of βN in its clo-
sure. (Here βN is the Stone–Čech compactification of N. We shall present a
brief introduction to its structure later in this section.) He was right. This
suggested the following definition which makes sense in any semigroup.

1.2. Definition. Let S be a discrete semigroup and let C be a subset
of S. Then C is central if and only if there is an idempotent p in the smallest
ideal of βS such that p ∈ clC.

In [1] it was shown, with the assistance of B. Weiss, that a subset C of
N is central according to Definition 1.2 if and only if C is central according
to Furstenberg’s original definition. Furstenberg’s original definition extends
naturally to an arbitrary semigroup and in [8] Hong-ting Shi and Hong-wei
Yang showed that this extended definition is equivalent to that of Defini-
tion 1.2.

In [2], the Central Sets Theorem was extended to arbitrary semigroups.
The version for commutative semigroups extended Theorem 1.1 by allowing
the choice of the sequence which was used to vary as n varied. (We shall
deal with noncommutative versions later.) For purposes of comparison with
the noncommutative versions we introduce the following notation.

1.3. Definition. Let (S,+) be a commutative semigroup, let a ∈ S,
let H ∈ Pf(N), and let 〈yt〉∞t=1 be a sequence in S. Then x(a,H, 〈yi〉∞t=1) =
a+

∑
t∈H yt.

With this notation, conclusion (2) of Theorem 1.1 becomes “for all F ∈
Pf(N) and all i ∈ {1, . . . , l},

∑
n∈F x(an, Hn, 〈yi,t〉∞t=1) ∈ C.”

1.4. Theorem. Let (S,+) be a commutative semigroup. Let l ∈ N and
for each i ∈ {1, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a central
subset of S. Then there exist sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf(N)
such that
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(1) for all n, maxHn < minHn+1,
(2) for all F ∈Pf(N) and f : F→{1, . . . , l},

∑
n∈F x(an, Hn, 〈yf(n),t〉∞t=1)

∈ C.

Proof. [2, Corollary 2.10].

The alert reader may have noticed that in Theorem 1.1, C is central in N
while the sequences 〈yi,n〉∞n=1 are allowed to come from Z. It is a fact, which
follows from [6, Exercise 4.3.5 and Theorem 1.65], that any set central in
(N,+) is also central in (Z,+), so Theorem 1.1 does follow from Theorem 1.4.

In [6] we extended the Central Sets Theorem further by dealing with
countably many sequences at a time. The straightforward extension of The-
orem 1.4 to countably many sequences (in which conclusion (2) would read
“for all F ∈ Pf(N) and all f : F → N,

∑
n∈F x(an, Hn, 〈yf(n),t〉∞t=1) ∈ C”) is

not valid. One can see this because it would easily imply that any central
set in N, and thus one cell of any finite partition of N, would contain infinite
arithmetic progressions. One needs to restrict oneself to dealing with finitely
many sequences at one time, so we use the following set of functions. Given
sets X and Y , we write XY for the set of functions from X to Y .

1.5. Definition. Φ = {f ∈ NN : for all n ∈ N, f(n) ≤ n}.
1.6. Theorem. Let (S,+) be a commutative semigroup and for each

i ∈ N, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a central subset of S. Then
there exist sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf(N) such that

(1) for all n, maxHn < minHn+1,
(2) for all F ∈ Pf(N) and f ∈ Φ,

∑
n∈F x(an, Hn, 〈yf(n),t〉∞t=1) ∈ C.

Proof. [6, Theorem 14.11].

In this paper we prove an extension of the Central Sets Theorem for
commutative semigroups which applies to all sequences in S at once and we
prove the corresponding extension for the Central Sets Theorem for non-
commutative semigroups.

In Section 2 we shall derive the new commutative version. We shall
also show that there exist commutative semigroups, including (R,+), in
which the conclusion of Theorem 1.4 is strictly stronger than the obvious
generalization of Theorem 1.1 to arbitrary commutative semigroups.

In Section 3 we shall derive the new noncommutative version and inves-
tigate those members of βS all of whose members satisfy the new Central
Sets Theorem.

In Section 4 we shall show that in the free semigroup on ω1 generators
the new Central Sets Theorem is strictly stronger than the noncommutative
version of Theorem 1.6. We shall also show in that section that in the free
semigroup on c generators, the noncommutative version of Theorem 1.6 is
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strictly stronger than the noncommutative version of Theorem 1.4, which is
in turn strictly stronger than the noncommutative version of Theorem 1.1.

We now present a very brief review of basic facts about (βS, ·). For
additional information see [6].

Given a discrete semigroup (S, ·) we take the points of the Stone–Čech
compactification βS of S to be the ultrafilters on S, the principal ultrafilters
being identified with the points of S. Given A ⊆ S, A = {p ∈ βS : A ∈ p},
and the set {A : A ⊆ S} is a basis for the open sets (and a basis for
the closed sets) of βS. Given p, q ∈ βS and A ⊆ S, A ∈ p · q if and only if
{x ∈ S : x−1A ∈ q} ∈ p, where x−1A = {y ∈ S : x·y ∈ A}. In particular, the
operation · on βS extends the operation · on S. If the operation is denoted
by +, then A ∈ p + q if and only if {x ∈ S : −x + A ∈ q} ∈ p. The reader
should be warned however, that even if S is commutative, βS seldom is. In
particular, the algebraic centers of (βN, ·) and (βN,+) are both equal to N.

With this operation, (βS, ·) is a compact Hausdorff right topological
semigroup with S contained in its topological center. That is, for each p
in βS, the function %p : βS → βS defined by %p(q) = q · p is continuous
and for each x ∈ S, the function λx : βS → βS defined by λx(q) = x · q is
continuous. A nonempty subset I of a semigroup T is a left ideal provided
T · I ⊆ I, a right ideal provided I · T ⊆ I, and a two-sided ideal (or simply
an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup T has a smallest
two-sided ideal K(T ) =

⋃
{L : L is a minimal left ideal of T} =

⋃
{R : R

is a minimal right ideal of T}. Given a minimal left ideal L and a minimal
right ideal R, L∩R is a group, and in particular contains an idempotent. An
idempotent in K(T ) is a minimal idempotent. If p and q are idempotents in
T we write p ≤ q if and only if pq = qp = p. An idempotent is minimal with
respect to this relation if and only if it is a member of the smallest ideal.

Thus a subset C of S is central if and only if it is a member of a minimal
idempotent of βS.

2. The new commutative Central Sets Theorem. As with the
older versions, the new Central Sets Theorem for commutative semigroups
is a consequence of the general result for all semigroups. However, the com-
mutative version is much simpler to state, and so we present its derivation
separately.

We present a nearly self-contained proof, relying only on a few basic facts
about compact right topological semigroups. We do this to make clear the
simplicity of the proof of the new Central Sets Theorem. We begin with the
following special case of Theorem 1.4. A subset C of S is piecewise syndetic
if and only if C ∩ K(βS) 6= ∅. In particular, any central set is piecewise
syndetic.
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As the referee pointed out, the following theorem is an immediate conse-
quence of the corresponding result which does not require that minH > m.
(One may simply delete the first m terms of each sequence.) However, we
need this version, and it is no harder to prove than the superficially more
restricted version.

2.1. Theorem. Let (S,+) be a commutative semigroup and let l ∈ N.
For each i ∈ {1, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a piecewise
syndetic subset of S and let m ∈ N. There exist a ∈ S and H ∈ Pf(N) such
that minH > m and for each i ∈ {1, . . . , l}, x(a,H, 〈yi,t〉∞t=1) ∈ C.

Proof. Let Y =×l
t=1 βS. Then by [6, Theorem 2.22], Y is a compact

right topological semigroup and if s ∈×l
t=1 S, then λs is continuous. For

i ∈ N, let

Ii = {(x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)) :
a ∈ S, H ∈ Pf(N), and minH > i}

and let Ei = Ii ∪ {(a, . . . , a) : a ∈ S}.
Let E =

⋂∞
i=1Ei and I =

⋂∞
i=1 Ii. We claim that E is a subsemigroup of

Y and I is an ideal of E. To see this, let p, q ∈ E. We show that p+ q ∈ E
and if either p ∈ I or q ∈ I, then p+ q ∈ I. Let U be an open neighborhood
of p + q and let i ∈ N. Since %q is continuous, pick a neighborhood V of p
such that V + q ⊆ U . Pick x ∈ Ei ∩ V with x ∈ Ii if p ∈ I. If x ∈ Ii so
that x = (x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)) for some a ∈ S and some
H ∈ Pf(N) with minH > i, let j = maxH. Otherwise, let j = i. Since
λx is continuous, pick a neighborhood W of q such that x + W ⊆ U . Pick
y ∈ Ej ∩W with y ∈ Ij if q ∈ I. Then x+ y ∈ Ei ∩ U and if either p ∈ I or
q ∈ I, then x+ y ∈ Ii ∩ U .

By [6, Theorem 2.23], K(Y ) =×l
t=1K(βS). Pick p ∈ K(βS)∩C. Then

p = (p, . . . , p) ∈ K(Y ). We claim that p ∈ E. To see this, let U be a
neighborhood of p, let i ∈ N, and pick A1, . . . , Al ∈ p with×l

t=1At ⊆ U .
Pick a ∈

⋂l
t=1At. Then a = (a, . . . , a) ∈ U ∩ Ei. Thus p ∈ K(Y ) ∩ E

and consequently K(Y ) ∩ E 6= ∅. Then by [6, Theorem 1.65], K(E) =
K(Y ) ∩ E and so p ∈ K(E) ⊆ I. Then Im ∩×l

t=1C 6= ∅ so pick z in
Im ∩×l

t=1C and pick a ∈ S and H ∈ Pf(N) with minH > m such that
z = (x(a,H, 〈y1,t〉∞t=1), . . . , x(a,H, 〈yl,t〉∞t=1)).

The following is the new Central Sets Theorem for commutative semi-
groups.

2.2. Theorem. Let (S,+) be a commutative semigroup and let T = NS,
the set of sequences in S. Let C be a central subset of S. There exist functions
α : Pf(T )→ S and H : Pf(T )→ Pf(N) such that
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(1) if F,G ∈ Pf(T ) and F ( G, then maxH(F ) < minH(G),
(2) whenever m ∈ N, G1, . . . , Gm ∈ Pf(T ), G1 ( · · · ( Gm, and for

each i ∈ {1, . . . ,m}, 〈yi,n〉∞n=1 ∈ Gi, one has
m∑
i=1

x(α(Gi), H(Gi), 〈yi,t〉∞t=1) ∈ C.

Proof. Pick a minimal idempotent p of βS such that C ∈ p. Let
C? = {x ∈ C : −x+ C ∈ p}.

As p+p = p, C? ∈ p. Also by [6, Lemma 4.14], if x ∈ C?, then −x+C? ∈ p.
We define α(F ) ∈ S and H(F ) ∈ Pf(N) for F ∈ Pf(T ) by induction on

|F | satisfying the following inductive hypotheses:

(1) if ∅ 6= G ( F , then maxH(G) < minH(F ),
(2) if n ∈ N, ∅ 6= G1 ( · · · ( Gn = F , and 〈fi〉ni=1 ∈×n

i=1Gi, then∑n
i=1 x(α(Gi), H(Gi), fi) ∈ C?.

Assume first that F = {f}. By Theorem 2.1 pick a ∈ S and L ∈ Pf(N)
such that x(a, L, 〈f(t)〉∞t=1) ∈ C?. Let α({f}) = a and H({f}) = L.

Now assume that |F | > 1 and α(G) and H(G) have been defined for all
proper subsets G of F . Let K =

⋃
{H(G) : ∅ 6= G ( F} and m = maxK.

Let

M =
{ n∑
i=1

x(α(Gi), H(Gi), fi) : n ∈ N, ∅ 6= G1 ( · · · ( Gn ( F,

and 〈fi〉ni=1 ∈
n×
i=1

Gi

}
.

Then M is finite and by hypothesis (2), M ⊆ C?. Let

B = C? ∩
⋂
x∈M

(−x+ C?).

Then B ∈ p, so by Theorem 2.1 pick a ∈ S and L ∈ Pf(N) such that
minL > m and for each f ∈ F , x(a, L, 〈f(t)〉∞t=1) ∈ B. Let α(F ) = a and
H(F ) = L.

Since minL ≥ m, hypothesis (1) is satisfied. To verify hypothesis (2),
let n ∈ N, ∅ 6= G1 ( · · · ( Gn = F , and 〈fi〉ni=1 ∈×n

i=1Gi. If n = 1, then∑n
i=1 x(α(Gi), H(Gi), f1) = x(a, L, f1) ∈ B ⊆ C?. So assume that n > 1

and let y =
∑n−1

i=1 x(α(Gi), H(Gi), fi). Then y ∈ M so x(a, L, fn) ∈ B ⊆
(−y + C?) and thus

∑n
i=1 x(α(Gi), H(Gi), fi) = y + x(a, L, fn) ∈ C? as

required.

As a simple application, we present the following corollary which is not
directly derivable by a single application of Theorem 1.6. The point of the
corollary is that an arithmetic progression A is chosen which “works” for
every length k and every sequence 〈yn〉∞n=1.
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2.3. Corollary. Let C be a central subset of N, let 〈xn〉∞n=1 be a se-
quence in N, and let l ∈ N. There exist a ∈ N and d ∈ FS(〈xn〉∞n=1) such
that A = {a + d, a + 2d, . . . , a + ld} ⊆ C and whenever 〈yn〉∞n=1 is a se-
quence in N and k ∈ N there will exist b ∈ N and c ∈ FS(〈yn〉∞n=1) such that
B = {b+ c, b+ 2c, . . . , b+ kc} ⊆ C and A+B ⊆ C.

Proof. Pick functions α and H as guaranteed by the new Central Sets
Theorem. Let F = {〈xn〉∞n=1, 〈2xn〉∞n=1, . . . , 〈lxn〉∞n=1}. Let a = α(F ) and let
d =

∑
t∈H(F ) xt. Given 〈yn〉∞n=1 and k, let G = F ∪ {〈yn〉∞n=1, 〈2yn〉∞n=1, . . . ,

〈kyn〉∞n=1}. Let b = α(G) and let c =
∑

t∈H(G) yt.

Honesty compels us to admit that we could have derived Corollary 2.3 by
two applications of Theorem 1.6, or even of Theorem 1.1, by first producing
a ∈ N and d ∈ FS(〈xn〉∞n=1) such that A = {a+ d, a+ 2d, . . . , a+ ld} ⊆ C?

and then applying Theorem 1.1 to the central set
⋂l
t=1(−(a+ d) + C?).

Notice that Theorem 1.6 is an easy consequence of Theorem 2.2. To
see this, notice that one can assume that the sequences in the statement
of Theorem 1.6 are distinct. Then given such sequences, for each n ∈ N,
let Fn = {〈y1,t〉∞t=1, 〈y2,t〉∞t=1, . . . , 〈yn,t〉∞t=1} and let an = α(Fn) and Hn =
H(Fn).

We cannot prove that Theorem 2.2 is strictly stronger than Theorem 1.6
or even Theorem 1.4. (In Section 4 we will show that the corresponding non-
commutative versions are indeed strictly increasing in strength.) We can,
however, show that Theorem 1.4 is strictly stronger than the obvious gen-
eralization of Theorem 1.1 to arbitrary commutative semigroups which we
state now.

2.4. Theorem. Let (S,+) be a commutative semigroup. Let l ∈ N and
for each i ∈ {1, . . . , l}, let 〈yi,n〉∞n=1 be a sequence in S. Let C be a central
subset of S. Then there exist sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf(N)
such that

(1) for all n, maxHn < minHn+1,
(2) for all F ∈ Pf(N) and i ∈ {1, . . . , l},

∑
n∈F x(an, Hn, 〈yi,t〉∞t=1) ∈ C.

The following semigroup contains much of the known algebraic structure
of βN and occurs as a subsemigroup of βS for many semigroups S. (See [6,
especially Section 6.1].)

2.5. Definition. H =
⋂∞
n=1 clβN(2nN).

We shall need the following technical lemma. Recall that ω = N∪ {0} is
the first infinite ordinal.

2.6. Lemma. Let (S,+) be a commutative semigroup with identity 0 and
no other idempotents. Let m ∈ N and for each i ∈ {1, . . . ,m}, let 〈yi,n〉∞n=1

be a sequence in S. Assume that ψ : ω 1-1−→onto
S, ψ(0) = 0, and the restriction of
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ψ̃ to H is an injective homomorphism, where ψ̃ : βω → βS is the continuous
extension of ψ. Assume further that all idempotents of βS \ S are in ψ̃[H].
Then for each r ∈ N, there exists H ∈ Pf(N) such that minH > r and for
all i ∈ {1, . . . ,m}, ψ−1(

∑
t∈H yi,t) ∈ 2r · ω.

Proof. Consider the semigroup (Pf(N),∪) and denote the extended op-
eration in βPf(N) by ∪∗. (We cannot follow our usual custom of denoting the
extended operation by the same symbol as used for the original semigroup
since p∪q already means something.) For each n ∈ N let Bn = {H ∈ Pf(N) :
minH > n}. Then by [6, Theorem 4.20], B =

⋂∞
n=1 clβPf(N)Bn is a subsemi-

group of (βPf(N),∪∗) so pick an idempotent p ∈ B. For each i ∈ {1, . . . ,m}
define θi : Pf(N)→ S by θi(H) =

∑
t∈H yi,t.

Now let i ∈ {1, . . . ,m} be given. By [6, Theorem 4.21], if θ̃i : βPf(N)→
βS is the continuous extension of θi, then the restriction of θ̃i to B is a
homomorphism. Consequently, θ̃i(p) is either 0 or an idempotent in ψ̃[H].
Thus ψ̃−1(θ̃i(p)) is either 0 or an idempotent in H. In any event, 2r · ω is a
neighborhood of ψ̃−1(θ̃i(p)) in βω, so pick Ai ∈ p such that ψ̃−1(θ̃i[Ai]) ⊆
2r · ω.

Pick H ∈ Br ∩
⋂m
i=1Ai. Then minH > r and for each i ∈ {1, . . . ,m},

ψ−1
(∑
t∈H

yi,t

)
= ψ−1(θi(H)) ∈ 2r · ω.

As noted before the proof of [6, Theorem 7.28] the word “metrizable” is
not really needed in the following theorem.

2.7. Theorem. For each ι < c let (Sι,+) be a semigroup containing
(ω,+) with |Sι| ≤ c. Assume further that either S0 = ω or S0 is a countably
infinite group which can be mapped into a compact metrizable group by an
injective homomorphism. Let S =

⊕
ι<c Sι. Then there is a subset A of

S which satisfies the conclusion of Theorem 2.4 but not the conclusion of
Theorem 1.4.

Proof. Given σ < c define e(σ) ∈ S by e(σ)(σ) = 1 and e(σ)(ι) = 0
if ι 6= σ. We shall use two notions of “support” in this proof. For x ∈ S,
supp(x) = {σ < c : x(σ) 6= 0}. For x ∈ N, supp2(x) ∈ Pf(ω) is defined by
x =

∑
t∈supp2(x) 2t and supp2(0) = ∅.

If S0 = ω, let ψ : ω → ω be the identity. If S0 is a countably infinite
group which can be mapped into a compact metrizable group by an injective
homomorphism, then by [6, Theorem 7.28] we may pick ψ : ω 1-1−→onto

S such
that ψ(0) = 0, the restriction of ψ̃ to H is an injective homomorphism,
and all idempotents of βS \ S are in ψ̃[H]. In any event the hypotheses of
Lemma 2.6 are satisfied.
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Notice that |S| = c, and so if T = NS, we have |Pf(T )| = c. Enumerate
Pf(T ) as 〈Fσ〉σ<c and for each σ < c, let m(σ) = |Fσ|. Write

Fσ = {〈yσ,i,t〉∞t=1 : i ∈ {1, . . . ,m(σ)}}.
Let {En : n ∈ N} be a partition of N into infinite sets and define θ : N→ N
by n ∈ Eθ(n). Let D = {σ < c : σ is a limit ordinal} and choose γ : c

1-1−→D
such that for all σ < c,

sup
(m(σ)⋃
i=1

∞⋃
t=1

supp(yσ,i,t)
)
< γ(σ).

We choose inductively for σ < c sequences 〈aσ,n〉∞n=1 in S and 〈Hσ,n〉∞n=1

in Pf(N) as follows. Let σ < c be given and assume 〈aτ,n〉∞n=1 and 〈Hτ,n〉∞n=1

have been chosen for all τ < σ. Choose k1 ∈ Em(σ) and Hσ,1 ∈ Pf(N)
such that for each i ∈ {1, . . . ,m(σ)}, 2k1+1 divides ψ−1(

∑
t∈Hσ,1 π0(yσ,i,t)) =

ψ−1(π0(
∑

t∈Hσ,1 yσ,i,t)), which one can do by Lemma 2.6. Choose k2 ∈ Em(σ)

with ψ−1(π0(
∑

t∈Hσ,1 yσ,i,t)) < 2k2 for each i ∈ {1, . . . ,m(σ)} and k2 > k1.
(The last inequality is redundant unless π0(

∑
t∈Hσ,1 yσ,i,t) = 0 for each i ∈

{1, . . . ,m(σ)}, which is possible.) Let

aσ,1 = ψ(2k1 + 2k2) · e(0) + e(γ(σ) + 1).

Now let n ∈ N and assume that aσ,n and Hσ,n have been chosen. Pick
k2n+1 ∈ Em(σ) such that k2n+1 > k2n and pick Hσ,n+1 ∈ Pf(N) such that
minHσ,n+1 > maxHσ,n and 2k2n+1+1 divides ψ−1(π0(

∑
t∈Hσ,n+1

yσ,i,t)) for
each i ∈ {1, . . . ,m(σ)}. Pick k2n+2 ∈ Em(σ) such that k2n+2 > k2n+1 and
ψ−1(π0(

∑
t∈Hσ,n+1

yσ,i,t)) < 2k2n+2 for each i ∈ {1, . . . ,m(σ)}. Let

aσ,n+1 = ψ(2k2n+1 + 2k2n+2) · e(0) + e(γ(σ) + n+ 1).

Now for each σ < c, let Aσ =
⋃m(σ)
i=1 FS(〈x(aσ,n, Hσ,n, 〈yσ,i,t〉∞t=1)〉∞n=1)

and A =
⋃
σ<cAσ.

Observe that if σ < c and x ∈ Aσ, then

(1) θ(min supp2 ψ
−1(π0(x))) = θ(max supp2 ψ

−1(π0(x))) = m(σ),
(2) there exist i ∈ {1, . . . ,m(σ)} and G ∈ Pf(N) such that

x =
∑
n∈G

x(aσ,n, Hσ,n, 〈yσ,i,t〉∞t=1)

where
(a) γ(σ) < max supp(x) < γ(σ) + ω,
(b) supp(x) ∩ (γ(σ), γ(σ) + ω) = {γ(σ) + n : n ∈ G}.

We see directly that A satisfies the conclusion of Theorem 2.4. Suppose
that A satisfies the conclusion of Theorem 1.4. Let f1(n) = e(0) and f2(n) =
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2 · e(0) for each n ∈ N. Pick sequences 〈an〉∞n=1 in S and 〈Hn〉∞n=1 in Pf(N)
such that maxHn < minHn+1 for each n ∈ N and whenever K ∈ Pf(N) and
g : K → {1, 2}, then ∑

n∈K
x(an, Hn, fg(n)) ∈ A.

For r ∈ N \ {1} and l ∈ {2, . . . , r}, let

b(l, r) =
l∑

n=2

x(an, Hn, f1) +
r+1∑
n=l+1

x(an, Hn, f2)

and note that for each l ∈ {2, . . . , r − 1}, π0(b(l, r)) > π0(b(l + 1, r)).
Now let B = {1, . . . ,max supp2 ψ

−1(π0(x(a1, H1, f1)))}. We claim that
{θ(max supp2 ψ

−1(π0(b(l, r)))) : r ∈ N \ {1} and l ∈ {2, . . . , r}} ⊆ θ[B]. To
see this, let r ∈ N \ {1} and l ∈ {2, . . . , r}. If

min supp2 ψ
−1(π0(b(l, r))) ≤ max supp2 ψ

−1(π0(x(a1, H1, f1))),

then min supp2 ψ
−1(π0

(
b(l, r))) ∈ B, so

θ(max supp2 ψ
−1(π0(b(l, r)))) = θ(min supp2 ψ

−1(π0(b(l, r)))) ∈ θ[B].

So assume min supp2 ψ
−1(π0(b(l, r))) > max supp2 ψ

−1(π0(x(a1, H1, f1)))
and let x = x(a1, H1, f1) + b(l, r). Then x ∈ Aσ for some σ, so

θ(max supp2 ψ
−1(π0(b(l, r)))) = θ(max supp2 ψ

−1(π0(x)))
= θ(min supp2 ψ

−1(π0(x))) = θ(min supp2 ψ
−1(π0(x(a1, H1, f1)))) ∈ θ[B].

Now let k = max θ[B] and let r = k + 2. For each l ∈ {2, . . . , r} and
any ι with 0 < ι < c, πι(b(l, r)) = πι(

∑r+1
n=2 an), which is independent

of l. Thus by observation (2) there exist σ < c and G ∈ Pf(N) such that
for each l ∈ {2, . . . , r} there is some i ∈ {1, . . . ,m(σ)} such that b(l, r) =∑

n∈G x(aσ,n, Hσ,n, 〈yσ,i,t〉∞t=1). Further, since b(2, r) ∈ Aσ, we have m(σ) =
θ(max supp2 ψ

−1(π0(b(2, r)))) ≤ k. But we have seen that

π0(b(2, r)) > π0(b(3, r)) > · · · > π0(b(r, r)),

so |{b(l, r) : l ∈ {2, . . . , r}}| = k + 1 while∣∣∣{∑
n∈G

x(aσ,n, Hσ,n, 〈yσ,i,t〉∞t=1) : i ∈ {1, . . . ,m(σ)}
}∣∣∣ ≤ m(σ) ≤ k.

This contradiction completes the proof.

2.8. Corollary. There is a subset of (R,+) which satisfies the con-
clusion of Theorem 2.4 but not the conclusion of Theorem 1.4.

Proof. (R,+) is isomorphic to
⊕

ι<cQ and (Q,+) can be mapped into
the circle group T by an injective homomorphism.

We ask the following question in the broadest terms, but we do not know
the answer for S = N or S = R.
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2.9. Question. Do there exist a commutative semigroup (S,+) and a
subset C of S establishing that the conclusions of Theorems 1.4, 1.6, and 2.2
are not all equivalent?

We shall see in Section 4 that the noncommutative versions of these
theorems are strictly increasing in strength.

3. Rich sets, strongly rich sets, and the new noncommutative
Central Sets Theorem. As is customary, we use multiplicative notation
for a not necessarily commutative semigroup. The versions of the noncom-
mutative Central Sets Theorem are more complicated because the translates
an or α(F ) must be split into several parts. That is the function of the notion
Im which we introduce now.

3.1. Definition. For m ∈ N, Im = {(H(1), . . . ,H(m)) : each H(j) ∈
Pf(N) and for any j ∈ {1, . . . ,m− 1}, maxH(j) < minH(j + 1)}.

The following is the version of the noncommutative Central Sets Theo-
rem given in [6]. In a noncommutative semigroup, by

∏
t∈F xt we mean the

product taken in increasing order of indices.

3.2. Theorem. Let (S, ·) be a semigroup, let C be a central subset of
S, and for each l ∈ N, let 〈yl,i〉∞i=1 be a sequence in S. There exist sequences
〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)(m(n)) < minH(n+ 1)(1),

(2) for each f ∈ Φ and F ∈ Pf(N),∏
n∈F

(m(n)∏
j=1

(
a(n)(j) ·

∏
t∈H(n)(j)

yf(n),t

))
· a(n)(m(n) + 1) ∈ C.

Proof. [6, Theorem 14.15].

In [5] it was shown that central sets were not the only sets satisfying
the conclusion of the Central Sets Theorem (Theorem 1.4) in commutative
semigroups. Sets satisfying the conclusion of Theorem 1.4 were called rich
and it was shown that any quasi-central set, i.e., a set which is a member
of an idempotent in the closure of the smallest ideal, is rich. Further it was
shown that in (N,+) there are quasi-central sets which are not central and
there are rich sets which are not quasi-central.

In this section, we extend the notion of rich to arbitrary semigroups,
and introduce the notion of strongly rich. The new stronger Central Sets
Theorem (Corollary 3.10) is the assertion that any central set is strongly
rich. We show that there is a closed two-sided ideal J of βS such that a set
is strongly rich if and only if it is a member of an idempotent in J .
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We introduce some special notation. The notation does not reflect all of
the variables upon which it depends.

3.3. Definition. Let (S, ·) be a semigroup.

(a) T = NS.
(b) Y = NT .
(c) Given m ∈ N, a ∈ Sm+1, H ∈ Im, and f ∈ T ,

x(m, a,H, f) =
( m∏
j=1

(
a(j) ·

∏
t∈H(j)

f(t)
))
· a(m+ 1).

(d) Given Y = 〈〈yl,t〉∞t=1〉∞l=1 ∈ Y and A ⊆ S, A is a JY -set if and only
if for all n ∈ N there exist m ∈ N, a ∈ Sm+1, and H ∈ Im such that
minH(1) ≥ n and for all l ∈ {1, . . . , n}, x(m, a,H, 〈yl,t〉∞t=1) ∈ A.

(e) A ⊆ S is a J-set if and only if for each F ∈ Pf(T ) and each n ∈ N,
there exist m ∈ N, a ∈ Sm+1, and H ∈ Im such that minH(1) ≥ n
and for each f ∈ F , x(m, a,H, f) ∈ A.

(f) Given Y ∈ Y, JY = {p ∈ βS : for all A ∈ p, A is a JY -set}.
(g) J = {p ∈ βS : for all A ∈ p, A is a J-set}.
(h) A ⊆ S is rich iff for each Y = 〈〈yl,i〉∞i=1〉∞l=1 ∈ Y, there exist sequences
〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)(m(n)) < minH(n+ 1)(1),

(2) for each f ∈ Φ and F ∈ Pf(N),∏
n∈F

x(m(n), a(n), H(n), 〈yf(n),t〉∞t=1) ∈ A.

(i) A ⊆ S is strongly rich if and only if there exist m : Pf(T ) → N,
α ∈×F∈Pf(T ) S

m(F )+1, and H ∈×F∈Pf(T ) Im(F ) such that

(1) if F,G ∈ Pf(T ) and F ( G, then

maxH(F )(m(F )) < minH(G)(1),

(2) whenever n ∈ N, G1, . . . , Gn ∈ Pf(T ), G1 ( · · · ( Gn, and for
each i ∈ {1, . . . , n}, 〈yi,t〉∞t=1 ∈ Gi, one has

n∏
i=1

x(m(Gi), α(Gi), H(Gi), 〈yi,t〉∞t=1) ∈ A.

We omit the routine proof of the following theorem.

3.4. Theorem. Let S be a semigroup and let A ⊆ S. Then A is a J-set
if and only if for each Y ∈ Y, A is a JY -set. In particular , J =

⋂
Y ∈Y JY .

3.5. Theorem. For each Y ∈ Y, JY is a closed two-sided ideal of βS.
Consequently , J is a closed two-sided ideal of βS and so clK(βS) ⊆ J .
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Proof. Let Y ∈ Y. By Theorem 3.2 any idempotent in K(βS) is in JY
and thus JY 6= ∅. If p ∈ βS \ JY , pick A ∈ p such that A is not a JY -set.
Then A is a neighborhood of p missing JY . Thus JY is closed.

Now let p ∈ JY and let q ∈ βS. To see that p · q ∈ JY , let A ∈ p · q
and let n ∈ N. Let B = {z ∈ S : z−1A ∈ q}. Then B ∈ p, so pick m ∈ N,
a ∈ Sm+1, and H ∈ Im such that minH(1) ≥ n and for all l ∈ {1, . . . , n},
x(m, a,H, 〈yl,t〉∞t=1) ∈ B. Pick z ∈

⋂n
l=1 x(m, a,H, 〈yl,t〉∞t=1)−1A. Define b ∈

Sm+1 by, for t ∈ {1, . . . ,m+ 1},

b(t) =
{
a(t) if t ≤ m,
a(m+ 1) · z if t = m+ 1.

Then for all l ∈ {1, . . . , n}, x(m, b,H, 〈yl,t〉∞t=1) ∈ A.
To see that q · p ∈ JY , let A ∈ q · p and n ∈ N. Let B = {z ∈ S :

z−1A ∈ p}. Then B ∈ q and is therefore nonempty, so pick z ∈ B. Pick m ∈
N, a ∈ Sm+1, and H ∈ Im such that minH(1) ≥ n and for all l ∈ {1, . . . , n},
x(m, a,H, 〈yl,t〉∞t=1) ∈ z−1A. Define b ∈ Sm+1 by, for t ∈ {1, . . . ,m+ 1},

b(t) =
{
z · a(1) if t = 1,
a(t) if t ≥ 2.

Then for all l ∈ {1, . . . , n}, x(m, b,H, 〈yl,t〉∞t=1) ∈ A.

We note now a strong relationship between rich sets and the ideals JY
and between strongly rich sets and the ideal J .

3.6. Theorem. Let (S, ·) be a semigroup and let A ⊆ S. Then A is rich
if and only if for every Y ∈ Y there is an idempotent p ∈ JY ∩A.

Proof. For S commutative, this is [5, Corollary 2.11]. The adjustments
to the proof needed for the general case can be deduced from the proof of
Theorem 3.8 below, which we present in full detail.

We shall need the following lemma from [6].

3.7. Lemma. Let P be a set , let (D,≤) be a directed set , and let (S, ·)
be a semigroup. Let 〈Ti〉i∈D be a decreasing family of nonempty subsets of
S such that for each i ∈ D and each x ∈ Ti there is some j ∈ D such
that x · Tj ⊆ Ti. Let Q =

⋂
i∈D clβS Ti. Then Q is a compact subsemigroup

of βS. Let 〈Ei〉i∈D and 〈Ii〉i∈D be decreasing families of nonempty subsets
of×t∈P S with the following properties:

(a) for each i ∈ D, Ii ⊆ Ei ⊆×t∈P Ti,
(b) for each i ∈ D and x ∈ Ii there exists j ∈ D such that x · Ej ⊆ Ii,
(c) for each i ∈ D and x ∈ Ei\Ii there exists j ∈ D such that x·Ej ⊆ Ei

and x · Ij ⊆ Ii.
Let Y =×t∈P βS, let E =

⋂
i∈D clY Ei, and let I =

⋂
i∈D clY Ii. Then E is

a subsemigroup of×t∈P Q and I is an ideal of E. If , in addition, either
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(d) for each i ∈ D, Ti = S and {a ∈ S : a /∈ Ei} is not piecewise
syndetic, or

(e) for each i ∈ D and a ∈ Ti, a ∈ Ei,
then given any p ∈ K(Q), one has p ∈ E ∩K(×t∈P Q) = K(E) ⊆ I.

Proof. [6, Lemma 14.9]

As the referee has observed, only the “sufficiency” portion of the fol-
lowing theorem (which is the part with the easier proof) is needed for the
corollaries that follow.

3.8. Theorem. Let (S, ·) be a semigroup and let A ⊆ S. Then A is
strongly rich if and only if there is an idempotent p ∈ J ∩A.

Proof. Sufficiency. Pick p = p · p ∈ J ∩ A. Recall from the proof of
Theorem 2.2 that A? = {x ∈ A : x−1A ∈ p} and if x ∈ A?, then x−1A? ∈ p.
We define m(F ), α(F ), and H(F ) for F ∈ Pf(T ) by induction on |F | so
that

(1) if ∅ 6= G ( F , then maxH(G)(m(G)) < minH(F )(1),
(2) whenever n ∈ N, ∅ 6= G1 ( · · · ( Gn = F , and τ ∈×n

i=1Gi, then
n∏
i=1

x(m(Gi), α(Gi), H(Gi), τ(i)) ∈ A?.

Assume first that F = {f}. Then A? is a J-set, so pick m(F ) ∈ N, α(F ) ∈
Sm(F )+1, and H(F ) ∈ Im(F ) such that x(m(F ), α(F ), H(F ), f) ∈ A?.

Now assume that |F | > 1 and m(G), α(G), and H(G) have been defined
for all proper subsets G of F . For ∅ 6= G ( F , let l(G) = maxH(G)(m(G))
and k = max{l(G) : ∅ 6= G ( F}+ 1. Let

M =
{ n∏
i=1

x(m(Gi), α(Gi), H(Gi), τ(i)) :

∅ 6= G1 ( · · · ( Gn ( F and τ ∈
n×
i=1

Gi

}
.

Then M is a finite subset of A? so B = A? ∩
⋂
b∈M b−1A? ∈ p and so B

is a J-set. Pick m(F ) ∈ N, α(F ) ∈ Sm(F )+1, and H(F ) ∈ Im(F ) such that
minH(F )(1) ≥ k and for each f ∈ F , x(m(F ), α(F ), H(F ), f) ∈ B.

Hypothesis (1) is satisfied directly. To verify (2), let n ∈ N, let ∅ 6= G1 (
· · · ( Gn = F , and let τ ∈×n

i=1Gi. If n = 1, then

x(m(G1), α(G1), H(G1), τ(i)) ∈ B ⊆ A?,
so assume that n > 1. Let b =

∏n−1
i=1 x(m(Gi), α(Gi), H(Gi), τ(i)). Then b ∈

M so x(m(Gn), α(Gn), H(Gn), τ(i)) ∈ B ⊆ b−1A? so
∏n
i=1 x(m(Gi), α(Gi),

H(Gi), τ(i)) ∈ A? as required.
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Necessity. Pick
m : Pf(T )→ N, α ∈ ×

F∈Pf(T )

Sm(F )+1, and H ∈ ×
F∈Pf(T )

Im(F )

as guaranteed by the fact that A is strongly rich. For F ∈ Pf(T ) define

TF =
{ n∏
i=1

x(m(Fi), α(Fi), H(Fi), τ(i)) : n ∈ N,

each Fi ∈ Pf(T ), F  F1  · · ·  Fn, and τ ∈
n×
i=1

Fi

}
.

Note that if F,G ∈ Pf(T ), then TF∪G ⊆ TF ∩ TG, so Q =
⋂
F∈Pf(T ) TF

6= ∅. We claim that Q is a subsemigroup of βS. For this it suffices by [6,
Theorem 4.20] to show that for all F ∈ Pf(T ) and all u ∈ TF , there is
some G ∈ Pf(T ) such that u · TG ⊆ TF . So let F ∈ Pf(T ) and u ∈ TF
be given. Pick strictly increasing 〈Fi〉ni=1 in Pf(T ) such that F ( F1 and
u =

∏n
i=1 x(m(Fi), α(Fi), H(Fi), τ(i)). Then u · TFn ⊆ TF .

Now we claim that K(Q) ⊆ A ∩ J , so that any idempotent in K(Q)
establishes the theorem. We see that each TF ⊆ A so Q ⊆ A. Let p ∈ K(Q).
We need to show that p ∈ J , so let B ∈ p. We shall show that B is a J-set.
So let F ∈ Pf(T ) and k ∈ N be given. We shall produce v ∈ N, c ∈ Sv+1,
and M ∈ Iv such that minM(1) ≥ k and for each f ∈ F , x(v, c,M, f) ∈ B.
Note that we can assume that |F | ≥ k so if G ∈ Pf(T ) and F ⊆ G, then
minH(G)(1) ≥ k.

We shall apply Lemma 3.7 with P = F and D = {G ∈ Pf(T ) : F ⊆ G}.
Note that Q =

⋂
G∈D TG as in Lemma 3.7. For G ∈ D we shall define a

subset IG of×f∈F S as follows. Let w ∈×f∈F S. Then w ∈ IG if and only
if there is some n ∈ N \ {1} such that

(1) there exist disjoint nonempty sets C1 and C2 such that {1, . . . , n} =
C1 ∪ C2,

(2) there exist strictly increasing 〈Gi〉ni=1 in Pf(T ) with G ( G1,
(3) there exists τ ∈×i∈C1

Gi,

such that for each f ∈ F , if γf ∈×n
i=1Gi is defined by

γf (i) =
{
τ(i) if i ∈ C1,
f if i ∈ C2,

then w(f) =
∏n
i=1 x(m(Gi), α(Gi), H(Gi), γf (i)).

For G ∈ D, let EG = IG ∪ {b : b ∈ TG}.
We claim that 〈EG〉G∈D and 〈IG〉G∈D satisfy statements (a), (b), (c),

and (e) of Lemma 3.7. Statements (a) and (e) hold trivially.
To verify (b), let G ∈ D and w ∈ IG. Pick n, C1, C2, 〈Gi〉ni=1, and τ as

guaranteed by the fact that w ∈ IG. We claim that w · EGn ⊆ IG. So let
z ∈ EGn .
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Assume first that z = b for some b ∈ TGn . Pick n′ ∈ N, strictly increasing
〈Fi〉n

′
i=1 in Pf(T ) with Gn ( F1, and τ ′ ∈×n′

i=1 Fi such that

b =
n′∏
i=1

x(m(Fi), α(Fi), H(Fi), τ ′(i)).

Let C ′′1 = C1 ∪ {n+ 1, . . . , n+ n′}, and for i ∈ {1, . . . , n+ n′}, let

Li =
{
Gi if i ≤ n,
Fi−n if i > n.

Define τ ′′ ∈×i∈C′′1
Li by setting, for i ∈ C ′′1 ,

τ ′′(i) =
{
τ(i) if i ≤ n,
τ ′(i− n) if i > n.

Then n+ n′, C ′′1 , C2, 〈Li〉n+n′

i=1 , and τ ′′ establish that w · z ∈ IG.
Now assume that z ∈ IGn . Pick n′, C ′1, C ′2, 〈Fi〉n

′
i=1, and τ ′ as guaranteed

by the fact that z ∈ IGn . Let C ′′1 = C1∪{n+i : i ∈ C ′1}, let C ′′2 = C2∪{n+i :
i ∈ C ′2}, and for i ∈ {1, . . . , n+ n′} let

Li =
{
Gi if i ≤ n,
Fi−n if i > n.

Define τ ′′ ∈×i∈C′′1
Li by setting, for i ∈ C ′′1 ,

τ ′′(i) =
{
τ(i) if i ≤ n,
τ ′(i− n) if i > n.

Then n+ n′, C ′′1 , C ′′2 , 〈Li〉n+n′

i=1 , and τ ′′ establish that w · z ∈ IG.
To verify (c) let G ∈ D and w ∈ EG \ IG. Pick b ∈ TG such that

w = b. Pick n ∈ N, strictly increasing 〈Gi〉ni=1 in Pf(T ) with G ( G1,
and τ ∈×n

i=1Gi such that b =
∏n
i=1 x(m(Gi), α(Gi), H(Gi), τ(i)). Then as

above one has w · EGn ⊆ EG and w · IGn ⊆ IG.
It follows from Lemma 3.7 that p ∈ I =

⋂
G∈D IG. Now×f∈F B is

a neighborhood of p so pick w ∈ IF ∩×f∈F B. Pick n, C1, C2, 〈Gi〉ni=1,
and τ ∈×i∈C1

Gi as guaranteed by the fact that w ∈ IF . Let r = |C2|
and let h1, . . . , hr be the elements of C2 listed in increasing order. Let v =∑r

i=1m(Ghi). If h1 = 1, let c(1) = α(G1)(1). If h1 > 1, let

c(1) =
h1−1∏
i=1

(x(m(Gi), α(Gi), H(Gi), τ(i))) · α(Gh1)(1).

For 1 < j ≤ m(Gh1) let c(j) = α(Gh1)(j) and M(j) = H(Gh1)(j).
Now let s ∈ {1, . . . , r − 1} and u =

∑s
i=1m(Ghi). If hs+1 = hs + 1 let

c(u+ 1) = α(Ghs)(m(Ghs) + 1) · α(Ghs+1)(1).
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If hs+1 > hs + 1, let

c(u+ 1)

= α(Ghs)(m(Ghs) + 1) ·
(hs+1−1∏
i=hs+1

x(m(Gi), α(Gi), H(Gi), τ(i))
)
·α(Ghs+1)(1).

And for u < j ≤
∑s+1

i=1 m(Ghi), let M(j) = H(Ghs+1)(j − u).
If hr = n, let c(v + 1) = α(Gn)(m(Gn) + 1). If hr < n, let

c(v + 1) = α(Ghr)(m(Ghr) + 1) ·
n∏

i=hr+1

(x(m(Gi), α(Gi), H(Gi), τ(i))).

Then c ∈ Sv+1, M ∈ Iv such that minM(1) ≥ k, and for each f ∈ F ,
x(v, c,M, f) ∈ B as required.

3.9. Corollary. Let (S, ·) be a semigroup. Every quasi-central subset
of S is strongly rich.

Proof. Apply Theorems 3.5 and 3.8.

We isolate the following corollary with a full statement of the conclusion
because it is the new Central Sets Theorem.

3.10. Corollary. Let (S, ·) be a semigroup and let C be a central
subset of S. There exist m : Pf(T ) → N, α ∈×F∈Pf(T ) S

m(F )+1, and
H ∈×F∈Pf(T ) Im(F ) such that

(1) if F,G ∈ Pf(T ) and F ( G, then maxH(F )(m(F )) < minH(G)(1),
(2) whenever n ∈ N, G1, . . . , Gn ∈ Pf(T ), G1 ( · · · ( Gn, and for each

i ∈ {1, . . . , n}, 〈yi,t〉∞t=1 ∈ Gi, one has
n∏
i=1

x(m(Gi), α(Gi), H(Gi), 〈yi,t〉∞t=1) ∈ C.

Proof. A central set is quasi-central.

Theorem 4.4 below gives an example of a rich set in the free semigroup
on ω1 generators which is not strongly rich.

By Theorem 3.8, the example of [5, Theorem 5.5] of a subset of N which
is rich and not quasi-central is in fact strongly rich. By Theorems 3.6 and
3.8 the example given in Theorem 4.4 of a subset of the free semigroup on
ω1 generators is a member of an idempotent in JY for each Y ∈ Y but is
not a member of any idempotent in J .

4. Strength of the versions of the Central Sets Theorem in
noncommutative semigroups. Each of Theorems 1.1 and 1.4 has natural
noncommutative versions which we now state. They are, of course, each
corollaries of Theorem 3.2.
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4.1. Theorem. Let S be a semigroup, let Z ∈ Pf(T ), and let C be a cen-
tral subset of S. There exist sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1

such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)(m(n)) < minH(n+ 1)(1),

(2) for each f ∈ Z and F ∈ Pf(N),
∏
n∈F x(m(n), a(n), H(n), f) ∈ A.

4.2. Theorem. Let S be a semigroup, let Z ∈ Pf(T ), and let C be a cen-
tral subset of S. There exist sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1

such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)(m(n)) < minH(n+ 1)(1),

(2) for each F ∈ Pf(N) and f : F → Z,∏
n∈F

x(m(n), a(n), H(n), f(n)) ∈ A.

We now show that Theorems 4.1, 4.2, 3.2, and Corollary 3.10 are strictly
increasing in strength. For the following, recall that any ordinal is the set
of its predecessors. In particular, the cardinal ω1 is the set of countable
ordinals.

4.3. Theorem. Let S be the free semigroup on the alphabet c. There
exist subsets A and B of S such that A satisfies the conclusion of Theorem
4.1 but not that of Theorem 4.2, and B satisfies the conclusion of Theorem
4.2 but not that of Theorem 3.2.

Proof. Enumerate Pf(T ) as 〈Zσ〉σ<c. Choose an injective mapping σ 7→
zσ from c to c \ ω such that if f ∈ Zσ, n ∈ N, and δ occurs in f(n), then
δ < zσ.

Let Aσ = {
∏
n∈F z

2n−1
σ f(n)zσ : F ∈ Pf(N) and f ∈ Zσ} and A =⋃

σ<cAσ. To see that A satisfies the conclusion of Theorem 4.1, let Z in
Pf(T ) be given and pick σ < c such that Z = Zσ. For each n ∈ N,
let m(n) = 1, a(n) = (z2n−1

σ , zσ), and H(n) = ({n}). Then for n ∈ N
and f ∈ Z, x(m(n), a(n), H(n), f) = z2n−1

σ f(n)zσ, so for each F ∈ Pf(N),∏
n∈F x(m(n), a(n), H(n), f) ∈ A.

Now suppose that A satisfies the conclusion of Theorem 4.2. Let g1(n)
= 1 and g2(n) = 2 for all n ∈ N and let Z = {g1, g2}. Pick sequences
〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and 〈H(n)〉∞n=1 as guaranteed for Z. Pick σ < c
such that x(m(1), a(1), H(1), g1) ∈ Aσ. Pick r ∈ N such that 2r−1 > |Zσ|.
Words in Aσ begin and end with zσ. Therefore, given f : {1, . . . , r} →
{g1, g2} with f(1) = g1, there exist F ∈ Pf(N) and h ∈ Zσ such that∏r
i=1 x(m(i), a(i), H(i), f(i)) =

∏
n∈F z

2n−1
σ h(n)zσ. Let d be the number

of occurrences of zσ in
∏r
i=1

∏m(i)+1
j=1 a(i)(j). Then d =

∑
n∈F 2n so F
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does not depend on f . But there are 2r−1 distinct products of the form∏r
i=1 x(m(i), a(i), H(i), f(i)) where f : {1, . . . , r} → {g1, g2} and f(1) = g1

while there are only at most |Zσ| distinct products
∏
n∈F z

2n−1
σ h(n)zσ for

h ∈ Zσ, a contradiction.
Now let Bσ = {

∏
n∈F z

2n−1
σ f(n)(n)zσ : F ∈ Pf(N) and f : F → Zσ}

and B =
⋃
σ<cBσ. To see that B satisfies the conclusion of Theorem 4.2,

let Z ∈ Pf(T ) be given and pick σ < c such that Z = Zσ. For each n ∈ N,
let m(n) = 1, a(n) = (z2n−1

σ , zσ), and H(n) = ({n}). Then for n ∈ N
and f : F → Z, x(m(n), a(n), H(n), f(n)) = z2n−1

σ f(n)(n)zσ, so for each
F ∈ Pf(N), ∏

n∈F
x(m(n), a(n), H(n), f(n)) ∈ B.

To see that B does not satisfy the conclusion of Theorem 3.2, for each
l, n ∈ N let gl(n) = l. Suppose we have sequences 〈m(n)〉∞n=1, 〈a(n)〉∞n=1, and
〈H(n)〉∞n=1 such that

(1) for each n ∈ N, m(n) ∈ N, a(n) ∈ Sm(n)+1, H(n) ∈ Im(n), and
maxH(n)(m(n)) < minH(n+ 1)(1),

(2) for each f ∈ Φ and F ∈ Pf(N),
∏
n∈F x(m(n), a(n), H(n), gf(n)) ∈ B.

Pick σ < c such that b = x(m(1), a(1), H(1), g1) ∈ Bσ. Pick r ∈ N
such that r > |Zσ|. For i ∈ {1, . . . , r} let ci = x(m(r), a(r), H(r), gi). Then
for each i ∈ {1, . . . , r}, ci ∈ B and bci ∈ B. Since b begins with zσ and
each element of B begins and ends with the same letter, ci ends with zσ
and therefore ci ∈ Bσ. Assume that H(r) = (L1, . . . , Lm(r)) and for j ∈
{1, . . . ,m(r)}, let lj = |Lj |. Then for each i ∈ {1, . . . , r},

ci = a(r)(1)il1a(r)(2)il2 · · · ilm(r)a(r)(m(r) + 1).

Let d be the number of occurrences of zσ in
∏m(r)+1
j=1 a(r)(j). If d =

∑
n∈F 2n,

then for each i ∈ {1, . . . , r}, we have ci =
∏
n∈F z

2n−1
σ hi(n)(n)zσ for some

hi : F → Zσ.
We see that zσ occurs in a(r)(1) and in a(r)(m(r) + 1). Let j be the

least member of {2, . . . ,m(r) + 1} such that zσ occurs in a(r)(j). Then
a(r)(1) = uz2n−1

σ v and a(r)(j) = wzσy where n ∈ F , v and w are possibly
empty words over the letters less than zσ, u and y are possibly empty words
over the letters less than or equal to zσ, and u is either empty or ends in a
single occurrence of zσ. (Recall that if g ∈ Zσ, n ∈ N, and δ occurs in g(n),
then δ < zσ.)

Thus for each i ∈ {1, . . . , r},
z2n−1
σ hi(n)(n)zσ = z2n−1

σ vil1a(r)(2) · · · a(r)(j − 1)ilj−1wzσ.

Therefore there are r distinct values for hi(n)(n), while each hi(n) ∈ Zσ,
a contradiction.
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4.4. Theorem. Let S be the free semigroup on the alphabet ω1. There
is a subset C of S such that satisfies the conclusion of Theorem 3.2, but not
that of Corollary 3.10.

Proof. For each λ < ω1, let Sλ denote the free semigroup on {ι < ω1 :
ι ≤ λ}, regarded as a subsemigroup of S. Let

C =
⋃
λ<ω1

λSλ.

So C is the set of words s in S whose first letter is greater than or equal to
any other letter in s. We observe that, for each λ < ω1, λSλ is central in Sλ,
because it is a right ideal of Sλ. If Y =

〈
〈yi,t〉∞t=1

〉∞
i=1
∈ Y, we can choose

λ < ω1 such that {yi,t : i, t ∈ N} ⊆ Sλ. It follows from Theorem 3.2 applied
to the semigroup Sλ that C satisfies the conclusion of Theorem 3.2.

We claim that C does not satisfy the conclusion of Corollary 3.10. To
see this, suppose that, on the contrary, there exist functions m, α and H
satisfying that conclusion. Choose F = {f} ∈ Pf(T ). Then choose λ < ω1

such that x(m(F ), α(F ), H(F ), f) ∈ λSλ. Choose µ satisfying λ < µ < ω1.
Put g = 〈µ, µ, . . .〉 and G = {f, g} ∈ Pf(T ).

We are assuming that

s = x(m(F ), α(F ), H(F ), f)x(m(G), α(G), H(G), g) ∈ νSν
for some ν < ω1. This implies that the first letter of s is ν and hence
that ν = λ, because the first letter of s is equal to the first letter of
x(m(F ), α(F ), H(F ), f). However, µ occurs in s and hence µ ≤ λ, a contra-
diction.

Notice that none of our examples involve a countable semigroup S.

4.5. Question. Do there exist a countable semigroup S and a subset C
of S satisfying the conclusion of one of Theorems 4.1, 4.2, or 3.2, but not of
one or all of the stronger statements?
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