
FUNDAMENTA

MATHEMATICAE

226 (2014)

A groupoid formulation of the Baire Category Theorem
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Abstract. We prove that the Baire Category Theorem is equivalent to the following:
Let G be a topological groupoid such that the unit space is a complete metric space, and
there is a countable cover of G by neighbourhood bisections. If G is effective, then G is
topologically principal.

1. Introduction

Theorem 1.1 (The Baire Category Theorem; see, for example, [7, The-
orem 7.7.2]). Suppose X is a complete metric space. If {Cn} is a countable
collection of closed subsets of X, each with empty interior, then

⋃
nCn has

empty interior.

The proof of the Baire Category Theorem, originally formulated by Baire
in the 1890’s [1], requires a variant of the Axiom of Choice [4, Chapter 13].
In fact, [2] and [5] show that the Baire Category Theorem is equivalent to
the Principle of Dependent Choice which says:

Suppose X is a set and R ⊆ X ×X is a relation such that for each
x ∈ X, there exists y ∈ X such that (x, y) ∈ R. Then there is a
sequence {xn} ⊆ X such that (xn, xn+1) ∈ R for all n.

The Principle of Dependent Choice falls strictly between the Countable Ax-
iom of Choice and the Axiom of Choice; see [6] for more details.

In this note, we show under the Zermelo–Fraenkel axioms ZF (no choice)
that the Baire Category Theorem is equivalent to Theorem 3.4 below. The-
orem 3.4 is a strengthening of [9, Proposition 3.6] and provides hypotheses
on a topological groupoid to ensure that effective implies topologically prin-
cipal (see Section 2). The most substantial contribution of the present paper
comes in Section 3 where the precise formulation of Theorem 3.4 is devel-
oped.
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That Theorem 3.4 implies the Baire Category Theorem is entirely new;
but even our proof that the Baire Category Theorem implies Theorem 3.4
is different from the one in [9].

2. Preliminaries. A groupoid is a generalisation of a group in which
multiplication is only partially defined. Equivalently, a groupoid G is a small
category in which every morphism is invertible. We identify the set of objects
of G with the set of identity morphisms and denote this set G(0). For γ ∈ G,
we denote the range and source (domain) of γ by r(γ) and s(γ) respectively.
Thus r, s : G→ G(0) ⊆ G. We define

G(2) := {(γ, η) ∈ G×G : r(η) = s(γ)};
G(2) consists of precisely those pairs of morphisms that can be composed
in G. See [8] for more details on groupoids. For any x ∈ G(0), the isotropy
group at x is the group

xGx := {γ ∈ G : r(γ) = s(γ) = x}.
The isotropy subgroupoid of G is

Iso(G) :=
⋃

x∈G(0)

xGx

which is itself a groupoid. If B ⊆ G, then we also write Iso(B) := Iso(G)∩B.
We say G is a group bundle if Iso(G) = G.

A groupoid G is a topological groupoid if G is equipped with a topology
so that composition and inversion are continuous. In this case, r and s are
continuous maps. If G(0) is Hausdorff, then the continuity of r and s implies
that Iso(G) is a closed subset of G.

An open set A ⊆ G is called an open bisection if r(A) and s(A) are open
in G, and r and s restricted to A are homeomorphisms onto their image; in
particular r and s are injective on A.

We say a topological groupoid G is topologically principal if the subset
{x ∈ G(0) : xGx 6= {x}} has empty interior in G(0). A topological groupoid
G is effective if Iso(G)−G(0) has empty interior.

3. When does effective imply topologically principal? In [9, Pro-
position 3.6(ii)] Renault considers effective groupoids whose unit spaces are
‘Baire’. We can interpret Renault’s result as saying that Theorem 1.1 implies
the following:

Theorem 3.1 ([9, Proposition 3.6(ii)]). Suppose G is a topological group-
oid such that:

(1) the unit space is a complete metric space;
(2) G has a countable cover consisting of open bisections.

If G is effective, then G is topologically principal.
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Our original intention was to show that Theorem 3.1 is equivalent to The-
orem 1.1. However, we eventually realised that such a result will only hold if
we weaken the hypotheses of Theorem 3.1. To see why, consider the class of
effective groupoids constructed in Example 3.2 below; each groupoid has the
property that Theorem 1.1 implies it is topologically principal. At the same
time, groupoids in this class may not satisfy the hypotheses of Theorem 3.1.
(We will also use this class later in the proof of our main result.)

Example 3.2. Let X be a complete metric space, {Cn} be a countable
collection of closed subsets of X, each with empty interior, and define

C :=
⋃
n

Cn.

Let G be the group bundle with unit space X and isotropy groups

xGx :=

{Z2 if x ∈ C,

{0} otherwise.

We identify the identity element 0 ∈ xGx with x. For each x ∈ C, we write
γx for the nontrivial element of xGx. Notice that

G(2) = {(x, x) : x ∈ X} ∪ {(γx, γx) : x ∈ C}
∪ {(x, γx) : x ∈ C} ∪ {(γx, x) : x ∈ C}.

To make G into a topological groupoid, first let T be the topology for X.
Define the collection

B := T ∪
{
V ⊆ G : V = (W −{x})∪{γx} for some W ∈ T and x ∈ C∩W

}
.

The collection B forms a basis for a topology on G. To see this, note that B
covers G, and since T is the topology for X, it is easy to see that U,V ∈ B
implies U ∩ V ∈ B. We claim that G endowed with the topology generated
by B is a topological groupoid. Indeed, inversion is given by the identity,
and is thus continuous. Now let m : G(2) → G be the composition map. Fix
V ∈ B. If V ∈ T , then

m−1(V ) = {(x, x) : x ∈ V } ∪ {(γx, γx) : x ∈ V }.
If V = (W − {y}) ∪ {γy} for some W ∈ T and y ∈ C ∩W , then

m−1(V ) = {(x, x) : x ∈W − {y}} ∪ {(γy, y), (y, γy)}
∪ {(γx, γx) : x ∈ (W − {y}) ∩ C}.

In both cases, it is straightforward to show that m−1(V ) is open in G(2),
hence composition is continuous as claimed.

Since every element of B intersects the unit space, the set Iso(G)−G(0) =
G−G(0) contains no open sets, so G is effective. By construction, G(0) = X
is a complete metric space and

C = {x ∈ G(0) : xGx 6= {x}},
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so Theorem 1.1 implies that G is also topologically principal. Notice that
G need not satisfy item (2) of Renault’s Theorem 3.1. Indeed, if X = [0, 1]
and Cn = C is the Cantor set for all n, then there is no countable cover of
G consisting of open bisections. To see this, suppose {Ui} is any countable
open cover of G. Since the Cantor set is uncountable, there exists an i0
such that Ai0 := {x ∈ C : γx ∈ Ui0} is uncountable. For each x ∈ Ai0 pick a
basis element (Vx−{x})∪{γx} contained in Ui0 . Since the standard basis for
[0, 1] is given by connected intervals, we can assume that Vx is connected. For
each n ∈ Z+ define Dn := {x ∈ Ai0 : diameter of Vx is greater than 2/n}.
Since Ai0 is uncountable, there exists n0 such that Dn0 is uncountable.
Now consider the partition {Pm := [m/(2n0), (m+1)/(2n0)]} of [0, 1] where
0 ≤ m ≤ 2n0 − 1. Since Dn0 is uncountable, there exists an m0 such that
Dn0 ∩ Pm0 is uncountable. By the definition of Dn0 this implies that for
every x ∈ Dn0 ∩ Pm0 both x and γx are in Ui0 , and so Ui0 is not an open
bisection.

While the groupoids considered above need not have a countable cover of
open bisections, they do have a countable cover consisting of ‘well-behaved
sets’. We call these sets neighbourhood bisections. (We denote the interior of
a set D by Int(D).)

Definition 3.3. A set B ⊆ G is called a neighbourhood bisection if the
following hold:

(1) B ⊆ Int(B);
(2) r|B and s|B are injective;
(3) r(B) and s(B) are open in G;
(4) Int(B) is an open bisection;
(5) B − Int(B) ⊆ Iso(B)−G(0).

In the next section we prove that the following theorem is equivalent
to Theorem 1.1. One part of our proof involves showing that the class of
groupoids constructed in Example 3.2 do indeed have a countable cover
consisting of neighbourhood bisections.

Theorem 3.4. Suppose G is a topological groupoid such that:

(1) the unit space is a complete metric space;
(2) G has a countable cover consisting of neighbourhood bisections.

If G is effective, then G is topologically principal.

Remark 3.5. Suppose G is a groupoid satisfying the hypotheses of The-
orem 3.4, then G(0) is open in G. To see this, let {Bn} be a countable cover
of G by neighbourhood bisections. Then G(0) =

⋃
n r(Bn), which is open.

Remark 3.6. An étale groupoid is a topological groupoid that has a
cover consisting of open bisections. When studying C∗-algebras associated
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to groupoids, one often considers second-countable, locally compact, Haus-
dorff groupoids that are étale. These groupoids satisfy the hypotheses of
Theorem 3.4.

Remark 3.7. Suppose G is a topological groupoid. If r is an open
map, then G topologically principal implies that G is effective. See [3, Ex-
amples 6.3 and 6.4] for examples of groupoids (that do not satisfy the hy-
potheses of Theorem 3.4) that are effective but not topologically principal.

4. Main result

Theorem 4.1. Theorem 1.1 is equivalent to Theorem 3.4 in ZF.

Before we prove Theorem 4.1, we establish the following two lemmas.
The first lemma is used to prove the second one, which is a key step in our
proof of Theorem 4.1. The background theory throughout this section is ZF.

Remark 4.2. The proof that Theorem 1.1 implies [9, Proposition 3.6]
given in [9] relies heavily on G being étale. In our situation, we have to work
harder because we do not have a basis of open bisections.

Lemma 4.3. Suppose G is a topological groupoid such that G(0) is open
in G, B ⊆ G is a neighbourhood bisection and D ⊆ B is closed in B where B
is endowed with the subspace topology. Suppose that B − Int(B) ⊆ D. Then
r(D) is closed in r(B) where r(B) is endowed with the subspace topology.

Proof. Let G, B and D be as stated. Then

D = (D ∩ Int(B)) ∪ (B − Int(B)),

which means
r(D) = r(D ∩ Int(B)) ∪ r(B − Int(B)).

Since r|B is a bijection onto its image, r(B − Int(B)) = r(B) − r(Int(B))
which is closed in r(B) as r(Int(B)) is open. Further r(D∩ Int(B)) is closed
in r(Int(B)) because r restricted to Int(B) is a homeomorphism. Thus there
exists a closed set C such that r(Int(B)) ∩ C = r(Int(B) ∩D). Therefore

r(D) = r(Int(B) ∩D) ∪ r(B − Int(B))

= (r(Int(B)) ∩ C) ∪ (r(B − Int(B)) ∩ C) ∪ r(B − Int(B))

= (r(B) ∩ C) ∪ r(B − Int(B))

which is closed in r(B).

Lemma 4.4. Suppose G is an effective groupoid such that G(0) is open
in G, and B is a neighbourhood bisection. Then

(1) r(Iso(B)−G(0)) has empty interior, and

(2) r(Iso(B)−G(0)) has empty interior.
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Proof. For (1), by way of contradiction, suppose there exists a nonempty
open set W ⊆ r(Iso(B)−G(0)). Thus W ∩ r(B) 6= ∅, and since B ⊆ Int(B),

we have W ∩ r
(
Int(B)

)
6= ∅. Therefore

W ∩ r(Int(B)) 6= ∅ because r
(
Int(B)

)
⊆ r(Int(B)).

Hence W ∩ r(Int(B)) is a nonempty open set contained in G(0). Since

φ := r|Int(B)

is a homeomorphism,

φ−1(W ∩ r(Int(B)))

is a nonempty open subset of Int(B) and thus is open in G. Since r is
injective on B and W ⊆ r(Iso(B)−G(0)),

φ−1(W ∩ r(Int(B))) ⊆ Iso(B)−G(0) ⊆ Iso(G)−G(0).

This is a contradiction because G is effective.

For (2), by way of contradiction, assume there exists a nonempty open
subset

V ⊆ r(Iso(B)−G(0)).

Notice that V ∩ r(B) is a nonempty open subset of G(0). Further,

V ∩ r(B) ⊆ r(Iso(B)−G(0)) ∩ r(B).

We show that r(Iso(B)−G(0)) ∩ r(B) = r(Iso(B)−G(0)). Since Iso(B)
is closed in B and G(0) is open, Iso(B) − G(0) is also closed in B. Also,
B − Int(B) ⊆ Iso(B)−G(0) by assumption. Therefore we apply Lemma 4.3
to see that r(Iso(B)−G(0)) is closed in r(B). Thus

r(Iso(B)−G(0)) = r(Iso(B)−G(0)) ∩ r(B),

and so

V ∩ r(B) ⊆ r(Iso(B)−G(0)),

which contradicts item (1).

Proof of Theorem 4.1. Suppose Theorem 1.1 holds. Let G be a topologi-
cal groupoid with a countable cover of neighbourhood bisections {Bn} such
that G(0) is a complete metric space. Suppose also that G is effective.

By Lemma 4.4(2), the set r(Iso(Bn)−G(0)) has empty interior for every n.

Define Cn := r(Iso(Bn)−G(0)) ∩ G(0) for each n. Notice that each Cn is a
closed subset of G(0). Because G(0) is open in G, each Cn also has empty
interior in G(0). Applying Theorem 1.1 (Baire Category Theorem) to the
collection {Cn} we see that

C :=
⋃
n

Cn



Baire Category Theorem 129

has empty interior. By construction, C contains the units with nontrivial
isotropy. Therefore, G is topologically principal.

Conversely, suppose that Theorem 3.4 holds. Let X be a complete metric
space with topology T and {Cn} be a countable collection of closed subsets
of X, each with empty interior. Without loss of generality we can assume
C0 = ∅. Let C =

⋃
nCn. Define G as in Example 3.2. Since G(0) = X as a

topological space, G satisfies (1) of Theorem 3.4.
For each n, define

Bn := (X − Cn) ∪ {γx : x ∈ Cn}.
We claim that each Bn is a neighbourhood bisection. To prove this, we must
check each of the items in Definition 3.3. To see (1), first note that X −Cn

is open in G and contained in Bn. Thus X − Cn ⊆ Int(Bn). We show that
Bn ⊆ X − Cn ⊆ Int(Bn). Consider γx for some x ∈ Cn. For every V ∈ B
with γx ∈ V we have V = (W −{x})∪{γx}, where W ∈ T and x ∈W . Now
V ∩ (X −Cn) = W ∩ (X −Cn) is nonempty because Cn has empty interior.
Therefore γx ∈ X − Cn. Since Bn = X − Cn ∪ {γx : x ∈ Cn}, we have
Bn ⊆ X − Cn. That Bn satisfies item (2) is clear, thus r(Bn) = X = s(Bn)
is open in G, giving us item (3). Since r(V ) is in T for every V ∈ B, r = s
is an open map, and hence r|Int(Bn) = s|Int(Bn) is a homeomorphism with

open image, giving item (4). Lastly, since Bn ∩ G(0) = X − Cn ⊆ Int(Bn)
and G = Iso(G), we get item (5). Thus {Bn}n is a countable cover of G by
neighbourhood bisections and G satisfies (2) of Theorem 3.4.

We showed in Example 3.2 that G is effective. Therefore G is topologi-
cally principal by Theorem 3.4. Thus

C = {x ∈ G(0) : xGx 6= {x}}
has empty interior, proving Theorem 1.1.
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