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Abstract. In 1968 Erdős and Hajnal introduced shift graphs as graphs whose vertices
are the k-element subsets of [n] = {1, . . . , n} (or of an infinite cardinal κ) and with two
k-sets A = {a1, . . . , ak} and B = {b1, . . . , bk} joined if a1 < a2 = b1 < a3 = b2 < · · · <
ak = bk−1 < bk. They determined the chromatic number of these graphs. In this paper we
extend this definition and study the chromatic number of graphs defined similarly for other
types of mutual position with respect to the underlying ordering. As a consequence of our
result, we show the existence of a graph with interesting disparity of chromatic behavior of
finite and infinite subgraphs. For any cardinal κ and integer l, there exists a graph G with
|V (G)| = χ(G) = κ but such that, for any finite subgraph F ⊂ G, χ(F ) ≤ log(l) |V (F |,
where log(l) is the l-iterated logarithm. This answers a question raised by Erdős, Hajnal
and Shelah.

1. Introduction. In this paper we study the chromatic number of graphs
whose vertices are subsets of [n] = {1, . . . , n} and whose edges are induced
by patterns of mutual positions of subsets.

The chromatic number of such graphs has been investigated in a number
of papers. For example, Erdős and Rado [7] considered graphs whose vertices
are triples such that {x1, x2, x3}, {y1, y2, y3} form an edge if x1 < x2 < y1 <
x3 < y2 < y3. Other well known graphs considered in [4] are shift graphs
whose vertices are pairs of integers, and {x1, x2}, {y1, y2} are adjacent if
x1 < x2 = y1 < y2. Both these graphs provide examples of triangle free
graphs with large chromatic number. Here we study the chromatic number
of graphs defined in a similar way.

Definition 1.1. For a fixed k and `, k < `, we call a sequence τ =
(τi)

`
i=1, τi ∈ {1, 2, 3}, a type of width k and length ` if

|{i : τi ∈ {1, 2}}| = |{i : τi ∈ {1, 3}}| = k .
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Definition 1.2. Let k < n be integers and X,Y ∈
([n]
k

)
be subsets of

size k of [n]. We say that the type of a pair X,Y is τ = (τi)
`
i=1, and write

τ(X,Y ) = τ , if |X∪Y | = ` and, forX∪Y = {z1, . . . , z`}<, we have zi ∈ X\Y
for τi = 1, zi ∈ Y \X for τi = 2, and zi ∈ X ∩ Y when τi = 3.

Definition 1.3. For a type τ of width k and n > k, the type graph
G(n, τ) is the graph with vertex set

([n]
k

)
in which two vertices X,Y are

adjacent if τ(X,Y ) = τ .

In this paper we are interested in the chromatic number of type graphs.
The definition of G(n, τ) can be extended by replacing n with any to-
tally ordered set. In fact, the first results in this direction concerned infi-
nite cardinals. For example, Erdős and Rado [7] proved that for any infi-
nite cardinal κ and the type δ3 = 112122, the chromatic number satisfies
χ(G(κ, δ3)) = κ. Erdős and Hajnal [3] showed that for any infinite cardi-
nal κ and σ2 = 132, we have χ(G(κ, σ)) = min{α : exp(α) ≥ κ}. They also
proved a generalization of this result: for σk = 13 . . . 32, of length l = k + 1,
we have χ(G(κ, σk)) = min{α : exp(k−1)(α) ≥ κ}, where exp(k−1)(α) =
exp . . . exp(α), taken k − 1 times. Their proof extends to finite graphs and
yields χ(G(n, σk)) = (1+o(1)) log(k−1) n, where log(k−1) is the (k−1)-iterated
binary logarithm. It is easy to check that G(n, σk) contains no odd cycles
shorter than 2k + 1. Consequently, the G(n, σk) provide examples of graphs
with arbitrarily large odd girth and chromatic number.

While the chromatic number of graphs defined by σk behaves similarly
in the finite and infinite case (in the sense that the chromatic number is
the k − 1 times iterated logarithm of the size of the graph), the chromatic
behavior of the graphs G(n, δ3) and G(κ, δ3) is quite different. Indeed, while
the result of Erdős and Rado [7] states that the chromatic number and
the cardinality of the graph G(κ, δ3) are the same, i.e. χ(G(κ, δ3)) = κ,
the chromatic number of finite subgraphs of G(κ, δ3) grows much slower,
i.e. χ(G(n, δ3)) ≤ 2 log n (see Lemma 3.8 below). Our result is much more
general. Let δk = 1121 . . . 122 be the type of length 2k consisting of 1 fol-
lowed by k − 1 copies of 12 and ending with the last 2. We show that while
χ(G(κ, δk)) = κ for any infinite cardinal κ, the chromatic number of its
finite subgraphs grows only as an iterated logarithm. This follows from The-
orems 1.5 and 2.1 below.

Theorem 1.4. If τ is a type of width k which contains no threes, then

χ(G(n, τ)) ≥ (1 + o(1)) log(b(k−1)/2c) n.

Theorem 1.5. For the canonical type δk of width k we have

χ(G(n, δk)) ≤ bk(log(b(k−1)/2c) n)(
b(k+1)/2c

2 )

for some bk > 0.
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We prove Theorem 1.5 in the following form, presenting a slight improve-
ment for even k.

Theorem 1.6. Let k ≥ 3.

(i) If k = 2l + 1 is odd, then χ(G(n, δ2l+1)) ≤ b2l+1(log(l) n)(
l+1
2 ) for

some bk > 0.
(ii) If k is even, then χ(G(n, δk)) ≤ χ(G(n, δk−1)).

In the last section of the paper, we extend both results above to a larger
class of types.

Remark 1. It is easy to see that G(n, δk) contains no odd cycle shorter
than 2dk/2e. Thus Theorem 1.4 gives an example of graphs with large odd
girth and large chromatic number.

Remark 2. For an infinite graph G with χ(G) = κ and κ infinite, let
fG(n) be the maximum chromatic number of its n-vertex subgraph. The
function fG is clearly non-decreasing, and a result of de Bruijn and Erdős [1]
implies that limn fG(n) = ∞. Erdős and Hajnal established in [3] that the
graphs Sk = G(κ, σk) for κ ≥ exp(k−1)(λ) are examples of graphs with
χ(Sk) ≥ λ and fSk

(n) ≤ log(k−1) n. In other words, the chromatic number
of infinite graphs as well as of their finite subgraphs is slowly growing with
their size.

As a corollary of Theorems 1.5 and 2.1, we observe in Theorem 2.3 that
the graphsDk = G(κ, δk) provide examples of graphs with chromatic number
largest possible while the chromatic number of their finite subgraphs is very
slowly growing with their size. More precisely: χ(Dk) = |V (Dk)| = κ and
fDk

(n) ≤ bk(log(b(k−1)/2c) n)(
b(k+1)/2c

2 ) for some constant bk.
Komjáth and Shelah proved in [8] the following related result: given an

arbitrarily slowly growing function ϕ : N → N, it is consistent that there
exists a graph Gϕ(κ) with |V (Gϕ(k))| = χ(Gϕ(κ)) = κ, while χ(G′) ≤
ϕ(n) for any subgraph G′ ⊂ G with n vertices. The graphs Dk are ex-
amples of graphs with χ(Dk) = |V (Dk)| and fGϕ(κ)(n) ≤ ϕ(n) for ϕ(n) =

bk(log(b(k−1)/2c) n)(
b(k+1)/2c

2 ). It would be interesting to find explicit examples
of such graphs for even slower growing functions ϕ(n).

2. Infinite graphs. A type consisting only of 1’s and 2’s is called a
disjoint type. In the infinite case, the behavior of the chromatic number of
graphs defined using disjoint types is simple. A similar result was proved in
[3, Theorem 7.4].

Theorem 2.1. If τ is any disjoint type and κ is any infinite cardinal,
then

χ(G(κ, τ)) = κ.
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Note that it is sufficient to prove the theorem for κ regular. Indeed, if κ
is a singular cardinal then

κ = sup{µ+ : µ < κ},
and assuming Theorem 2.1 for regular cardinals we obtain

χ(G(κ, τ)) ≥ sup
µ<κ

χ(G(µ+, τ)) = κ.

For an infinite cardinal κ, a subset S ⊂ κ is said to be cofinal if it is
unbounded in κ. We extend this notion to families of k-tuples the following
way. For k = 1, a family S of singletons of κ is cofinal if

⋃
S is unbounded

in κ. For k > 1, we say that a family of k-tuples of κ is cofinal if it satisfies
the following two conditions:

• the set S1 = {a1 : ∃{a1, . . . , ak} ∈ S} is cofinal in κ;
• for every a1 ∈ S1, the set {{x2, . . . , xk} : {a1, x2, x3, . . . , xk} ∈ S} is a

cofinal family of (k − 1)-tuples.

Lemma 2.2. Let κ be an infinite regular cardinal. For any coloring χ :
[κ]k → γ of the k-tuples of κ using γ < κ colors, there exists a monochromatic
cofinal family of k-tuples.

Proof. We use induction on k. For k = 1, this is clear since γ < κ. We
assume the statement is true for k ≥ 1 and show it for k + 1. For every
α ∈ κ define fα : [κ]k → γ by setting fα(β1, . . . , βk) = f(α, β1, . . . , βk). By
the induction hypothesis, there exists a monochromatic cofinal family Sα of
k-tuples for the coloring fα. Let cα ∈ γ be the color of the elements of Sα.
Since γ < κ, there exists A ⊂ κ, |A| = κ, such that cα is the same for each
α ∈ A. Since |A| = κ, it is cofinal in κ, and the family

{(α, a2, . . . , ak) : α ∈ A and (a2, . . . , ak) ∈ Sα}
is a cofinal family of (k + 1)-tuples.

Theorem 2.1 for a regular cardinal κ is an immediate consequence of the
above lemma. Rather than giving a somewhat tedious and technical proof
of the statement, we illustrate this with an example for δ3. The general
case follows from a similar argument. Let κ be an infinite cardinal and let
χ : [κ]3 → γ be a coloring for some γ < κ. According to Lemma 2.2, there
exists a monochromatic cofinal family S of 3-tuples for the coloring χ. For
every a1 ∈ S1, we define S(a1)

2 = {a2 : ∃x3 with {a1, a2, x3} ∈ S}. For any
a1 ∈ S1 and a2 ∈ S(a1)

2 we define S(a1,a2)
3 = {a3 : {a1, a2, a3} ∈ S}.

Note that because S is cofinal, all three sets S1, S
(a1)
2 and S

(a1,a2)
3 are

unbounded. Choose a1 ∈ S1 and a2 ∈ S(a1)
2 such that a2 > a1. Then select

b2 ∈ S1 such that b2 > a2, and then a3 ∈ S
(a1,a2)
3 satisfying a3 > b2.

Finally, using again the cofinality of the family S, choose b2 ∈ S
(b1)
2 and
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b3 ∈ S(b1,b2)
3 , b3 > b2 > a3. The resulting triples {a1, a2, a3} and {b1, b2, b3}

satisfy a1 < a2 < b1 < a3 < b2 < b3 and since they both belong to S they are
of the same color. Consequently, χ is not a proper coloring and χ(δ3, κ) = κ.

The following theorem is a consequence of Theorems 1.4, 1.5 and 2.1.
It asserts that while the chromatic number of the graph Gδk,κ is the same
as its vertex size κ, a very different behavior is demonstrated by its finite
subgraphs, the chromatic number of which grows only very slowly with their
size.

Theorem 2.3. For any integer k and infinite cardinal κ, the graph Dk =
G(κ, δk) has the following properties:

(i) χ(Dk) = |V (Dk)| = κ.
(ii) For any finite subgraph G ⊂ Dk, there exists a constant ak such that

χ(G) ≤ ak(log(b(k−1)2c) |V (Dk)|)3
k .

Proof. Each element of V (G) is a k-set so that n =
⋃
V (G) ≤ k|V (G)|.

By Theorem 1.5, there exists a constant bk > 0 such that

χ(G) ≤ bk(log(b(k−1)/2c) n)(
b(k+1)/2c

2 ) ≤ bk(log(b(k−1)/2c) k|V (G)|)(
b(k+1)/2c

2 )

≤ ak(logb(k−1)/2c |V (G)|)(
b(k+1)/2c

2 )

for an appropriately chosen ak > bk.

We remark that if S is a totally ordered set with |S| = κ, then the
chromatic number of a naturally defined G(S, τ) does not have to satisfy
χ(G(κ, τ)) = χ(G(S, τ)).

Indeed, for an infinite cardinal α let us consider the set S of functions
f : α → {0, 1} with the lexicographical order. Let us color a triple (f1 <
f2 < f3) by a pair (a, `), where a is the minimum element of α for which
the three values f1(a), f2(a), f3(a) are not all the same (i.e. f1(a) = 0 while
f3(a) = 1), and ` = f2(a). It is easy to see that it is a proper coloring of
G(S, δ3) and so χ(G(S, δ3)) ≤ α while Theorem 2.1 states that

χ(G(|S|, δ3)) = 2α > χ(G(S, δ3)).

On the other hand, assuming GCH, any totally ordered set of size κ+
contains a subset of size κ which is either well ordered or its reverse is well
ordered. Consequently, χ(G(S, τ)) ≥ κ for any disjoint type τ and any totally
ordered set S with |S| = κ+.

3. Proof of Theorem 1.4. We say that the disjoint type τ is simple
if when reading it from left to right it is possible to group it into disjoint
blocks of the form 1 . . . 12 . . . 2 or 2 . . . 21 . . . 1 (each with the same number
of 1’s and 2’s). Here is a precise definition of a simple type.
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Definition 3.1. A disjoint type τ = (τ1, . . . , τl) is simple if there exists
a partition of [1, l] into intervals I1, . . . , Im, each of even length, |Ij | = 2lj ,
j = 1, . . . ,m (with m possibly equal to 1), and so that for each j = 1, . . . ,m,
(τi)i∈Ij is a sequence of lj 1’s followed by lj 2’s or vice versa, i.e. (τi)i∈Ij is
either (1, . . . , 1, 2, . . . , 2) or (2, . . . , 2, 1, . . . , 1).

Example. The type 112221222111 is simple with m = 3 and l1 = 2,
l2 = 1 and l3 = 3, since it can be split into the following three groups:

1122 21 222111.

Proposition 3.2. If τ is a simple type of width k, then χ(G(n, τ)) =
bn/kc.

Proof. Fix a simple type τ of width k and let X,Y ∈ [n]k. First observe
that if τ(X,Y ) = τ(Y, Z) = τ then also τ(X,Z) = τ . Consequently, the
relation ≺ on

([n]
k

)
, defined by X ≺ Y if and only if τ(X,Y ) = τ , is a partial

order. Then G(n, τ) is the comparability graph of the partial order ≺, which
implies that it is perfect (see Dilworth [2]). Thus, in order to determine
χ(G(n, τ)), it is sufficient to find the largest clique.

We will show that the largest clique in G(n, τ) is of size bn/kc. Since the
vertices of a clique in G(n, τ) are disjoint k-tuples, there are no cliques of
size larger than bn/kc. Consequently, we just need to show the existence of
a clique of size bn/kc. Since the size of the largest clique can only decrease
in a subgraph, we can assume that k divides n.

To avoid tedious notation, instead of giving a formal proof of a general
case we outline it for a special case. The argument can be mimicked for all
other simple types. We will work with the simple type τ = 1122 21 222111
of width k = 6. Consider the following partition of n into three parts:

P1 P2 P3

←−−−−−−−−−−→ ←−−−−→ ←−−−−−−−−−−−−−−−→ n
2n
6

n
6

3n
6

The partition classes correspond respectively to the blocks 1122, 21 and
222111 of the simple type τ and are of sizes proportional to the length of
each block. In each block we embed a monotone sequence of numbers as
shown in the following picture:

112233. . . . . . 321 . . . 333222111
←−−−−−−−−−−→ ←−−−−→ ←−−−−−−−−−−−−−−−→ n

2n
6

n
6

3n
6

It is easy to see that the 6-tuples of vertices with the same label form a clique
of size n/6.
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Before giving a proof to Theorem 1.4 we introduce some definitions and
prove a few auxiliary results.

Definition 3.3. Given two types τ = τ1 . . . τl and τ ′ = τ ′1 . . . τ
′
l′ , the

concatenation τ1 . . . τlτ ′1 . . . τ ′l′ will be denoted by ττ ′.

Definition 3.4. A type which cannot be written as a concatenation of
two types is called irreducible.

In other words, irreducible types starting with 1 are those types τ1 . . . τl
such that for any j < l the number of 1’s exceeds the numbers of 2’s in
{τ1 . . . τj}. For example, 112122 is irreducible while 11212212 is not since it
is the concatenation of 112122 and 12. Note that if in a type τ ′ we switch
the occurrences of 1’s and 2’s we obtain a type τ ′′ with the property that
G(n, τ ′) ' G(n, τ ′′). Since it may be convenient to have a 1-1 relationship
between graphs and types, we will usually assume that each type begins
with 1 (or possibly 3). However we cannot make this assumption in the
above definition since the graphs G(n, ττ ′) and G(n, ττ ′′) do not have to be
isomorphic. For example, setting τ = τ ′ = 12 and hence τ ′′ = 21 yields the
graphs G(n, 1212) and G(n, 1221) which are not isomorphic (the latter has
vertices of higher degree than any vertex in the former).

Definition 3.5. Given a disjoint type τ = τ1 . . . τ2k, let t
(1)
1 < · · · < t

(1)
k

be the indices of the 1’s, i.e.

τ
t
(1)
i

= 1, 1 ≤ i ≤ k.

Similarly let t(2)1 < · · · < t
(2)
k be the indices of the 2’s. We also set T1 =

T1(τ) = {t(1)1 , . . . , t
(1)
k } and T2 = T2(τ) = {t(2)1 , . . . , t

(2)
k }.

Definition 3.6. Let τ be a disjoint type of width k and S ⊆ {1, . . . , k}.
Then τS is the type obtained by deleting τ

t
(1)
i

and τ
t
(2)
i

from τ for every
i /∈ S. Any type of this kind is called a subtype of τ .

In other words, if τ describes the position of the sets A = {a1, . . . , ak}<
and B = {b1, . . . , bk}<, then τS describes the position of the sets A′ =
{ai : i ∈ S} and B′ = {bi : i ∈ S}. For example, if τ = 12211122, then
τ{2,3} = 2112 and τ{1,3,4} = 121122.

Lemma 3.7. If ρ is a subtype of τ , then for every integer n,

χ(G(n, τ)) ≤ χ(G(n, ρ)).

Proof. Fix a type τ of width k and let ρ = τS for some proper
S ⊆ {1, . . . , k}. Assume moreover that we are given a proper coloring
ϕ : V (G(n, ρ)) → [c] of G(n, ρ). For every vertex v = {v1, . . . , vk}< of
G(n, τ), let vS = {vi : i ∈ S}. The mapping f : V (G(n, τ)) → V (G(n, ρ))
defined by f(v) = vS is a homomorphism. Indeed we can easily check that
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if the type τ(v, w) is τ , then ρ = τ(vS , wS). Consequently, the mapping
ϕ◦f : V (G(n, τ))→ [c] defined by ϕ◦f(v) = ϕ(f(v)) is a proper coloring.

Lemma 3.8. For n ≥ 6, χ(G(n, δ3)) ≤ 2 log2 n.

Proof. Since χ(G(6, δ3)) = 2, the statement is true for n = 6. We use
induction for n > 6. Suppose the statement is true for the integer n and
that χ is a proper coloring of G(δ3, n) using 2 log2 n colors. We give a proper
coloring χ̄ of G(2n, δ3) using two additional colors c1 and c2. Setting A =
[1, n] and B = [n+ 1, 2n] we color the triples of the form (a, a, a) using the
coloring χ and similarly the triples of the form (b, b, b). We color all triples of
the form (a, a, b) using the new color c1 and all the triples of the form (a, b, b)
using the new color c2. Observe that the type of any two (a, a, b) triples is
never δ3 and that the same holds for any (a, b, b) triples. Consequently, the
new coloring is a proper coloring as well.

We have just showed that if 2k3 < n ≤ 2k+13, then χ(G(n, δk)) = 2k+2.
Consequently, χ(G(n, δk)) ≤ 2dlog2 n/3e ≤ 2 log2 n.

Combined with Proposition 3.2, the next proposition shows that for a
disjoint type τ , the chromatic number either grows linearly with n, or is
bounded by a logarithm.

Proposition 3.9. A disjoint type τ is either simple, or χ(G(n, τ)) ≤
2 log2 n.

Proof. Let τ be a non-simple type. We can write τ = lτ ′ where l is
a simple type of maximal length (possibly empty, in which case τ = τ ′).
Assuming that τ ′ begins with 1, τ ′ must be of the following form:

1 . . . 12 . . . 21 . . .

where the initial string of 1’s is of length a and the following string of 2’s
is of length b. Since l is simple of maximum length, we have b < a. Let
S = {1, a, a+ 1}. Since a < b, the following represents the type τ ′ where the
1’s and 2’s of indices in S are respectively boxed and circled:

1 . . . 1 2 . . . 2 1 . . . 2 . . . 2 . . .

From the above picture, it is clear that the subtype τ ′S is 112122, and by
Lemma 3.7, χ(G(τ ′, n)) ≤ χ(G(112122, n)) ≤ 2 log2 n, the last equality fol-
lowing from Lemma 3.8.

The next proposition is a strengthening of Theorem 1.4 for irreducible
disjoint types.

Proposition 3.10. For each irreducible disjoint type τ of width k there
exists a positive integer m(τ) = m ≤ (k + 1)/2 such that

χ(G(n, τ)) ≥ log(m−1)
n

(2k)m
.
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Proof. Let us assume that the type τ begins with 1. We define for some
integer m = m(τ) a partition P1 ∪ · · · ∪ Pm+1 = [1, 2k] into sets of con-
secutive integers as follows. Let P1 = [1, p1], where p1 is the size of the
maximal consecutive block of 1’s. In other words, p1 is the largest integer
satisfying τ1 = τ2 = · · · = τp1 = 1. Set P2 to be the largest consecutive
set of indices following P1 and with as many 2’s in as there are 1’s in P1.
In other words, P2 = [p1 + 1, p2], where p2 is the largest integer such that
|{τp1+1, τp1+2, . . . , τp2} ∩ T2| = |P1|. We then define P3 = [p2 + 1, p3] simi-
larly: p3 is the largest integer such that |{τp2+1, τp2+2, . . . , τp3} ∩ T2| = |P2|.
And by induction Pm+1 = [pm + 1, pm+1] with pm+1 the largest integer such
that |{τpm+1, τm + 2, . . . , τpm+1} ∩ T2| = |Pm|. For example, for the type
1121112121212222 the partition looks as follows:

P1 P2 P3 P4

←−→←−−−−→←−−−−→←−→
11 211121 212122 22

Note that by construction |Pi ∩ T1| = |Pi+1 ∩ T2|, 1 ≤ i ≤ m, and that due
to the maximality of pi, each Pi for i ≥ 2 begins with a 2.

Claim 3.11. For every 1 ≤ i ≤ m− 1, |Pi ∩ T1| ≥ 2.

Proof. If not, let 1 ≤ i0 ≤ m − 1 be the smallest integer such that
|Pi0 ∩ T1| = 1. Note that by construction,

|(P1 ∪ P2 ∪ · · · ∪ Pi0) ∩ T1| = |(P2 ∪ P3 ∪ · · · ∪ Pi0+1) ∩ T2|
= |(P2 ∪ P3 ∪ · · · ∪ Pi0) ∩ T2|+ 1.

In other words, the number of 1’s in the first p1 + · · ·+ pi0 entries is exactly
one more than the number of 2’s. As noted earlier, each Pi for i ≥ 2 begins
with a 2, i.e. τ1+p1+···+pi0 = 2. Consequently, the number of 1’s in the first
1 + p1 + p2 + · · ·+ pi0 entries is the same as the number of 2’s, contradicting
the assumption that τ is irreducible.

By the claim above and the fact that |Pi∩T1| = |Pi+1∩T2| for 1 ≤ i ≤ m,
we conclude that |Pi ∩ T2| ≥ 2 for 2 ≤ i ≤ m, and consequently P1 contains
at least two elements, P2 through Pm−1 at least four elements, Pm (which
contains at least one 1) at least three and Pm+1 at least one. In particular,
we have 2 + 4(m− 2) + 3 + 1 ≤ 2k, where k is the length of the type τ , i.e.

(1) m ≤ k + 1

2
.

Remark 3.12. In (1) above, equality can be achieved in the case P1

contains exactly two elements, P2 through Pm−1 exactly four elements, Pm
exactly three and Pm+1 exactly one.

Set r = (2k)m (which, as we will see shortly, is a bit wasteful). We are
going to find an embedding ϕ : G(n, σm) → G(rn, τ) which will establish
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that χ(G(nr, τ)) ≥ χ(G(n, σm)). To this end we divide [rn] into n consecutive
intervals A1, . . . , An, |Ai| = r for all i = 1, . . . , n, and for each m-tuple
Ai1 , . . . , Aim define Bij ⊂ Aij , j = 1, . . . ,m, with |

⋃m
j=1Bij | = k so that

ϕ : {i1, . . . , im} →
⋃m
j=1Bij gives the desired embedding.

Although the idea behind defining the Bij ’s is simple, the formal descrip-
tion will require some more definitions. We will find it convenient to imagine
a linear order on each of the intervals Ai, i = 1, . . . , n, as a lexicographic
order of m-tuples over the alphabet {0, 1, . . . , 2k − 1}. (Recall r = (2k)m.)
To this end we introduce Q(2k,m) to be the set of lexicographically ordered
m-tuples over {0, 1, . . . , 2k − 1} and let Qj(2k,m) ⊂ Q(2k,m) be the set of
those m-tuples that have zeroes on entries j + 1, j + 2, . . . ,m.

We define m subsets Q1, . . . , Qm of Q(2k,m) that will be used in the
definition of the Bij ’s, j = 1, . . . ,m. Recalling the partition P1 ∪ · · · ∪ Pm+1

= [2k] considered above let

Q1 = {(1, 0, . . . , 0), (2, 0, . . . , 0), . . . , (|P1|, 0, . . . , 0)} ⊂ Q1(2k,m).

Suppose that Qj ⊂ Qj(2k,m) was already defined and that |Qj | = |Pj ∩T1|.
In order to define Qj+1 we first identify the 2’s in Pj+1∩T2 with the elements
of Qj (observe that this is possible in view of the fact that |Qj | = |Pj ∩T1| =
|Pj+1 ∩ T2|). Let Qj+1 ⊂ Qj+1(2k,m + 1) be a set of vectors whose order
type with respect to Qj (by identifying Qj+1 with the 1’s and Qj with the
2’s) will be identical to the order type of the 2’s and 1’s in Pj+1. Observe
that this set exists due to the fact that between any two elements of Qj there
are enough (precisely 2k) elements of Qj+1(2k,m+ 1).

Having defined the sets Q1, . . . , Qm we can now establish the promised
embedding {i1, . . . , im} →

⋃m
j=1Bij . Recall that each of the intervals Ai1 ,

. . . , Aim has length r = (2k)m, therefore its elements can be identified with
the elements of Q(2k,m) respecting the order of each of the intervals and
lexicographic order of Q(2k,m). For j = 1, . . . ,m, let Bij ⊂ Aij be the sets
of precisely those elements which correspond to Qj . With this definition, one
can verify that {i1, . . . , im} →

⋃m
j=1Bij is an embedding as required.

Proof of Theorem 1.4. In the proof above, for an irreducible type τ we
construct an embedding of G(n(2k)−m, σm(τ)) into G(n, τ), thus showing
a lower bound on the chromatic number of G(n, τ). Next we consider the
simplest reducible disjoint case, i.e. τ = τ1τ2 is a type of width k with τ1
and τ2 irreducible. Let k1 and k2 (k1 + k2 = k) be the width of τ1 and τ2
respectively. Set c1 = (2k1)

−m1 , c2 = (2k2)
−m2 and n1 = c1n, n2 = c2n.

Consider the graphs G(n, τ1), G(n, τ2) and let G(n, τ1)×G(n, τ2) be a graph
formed by k-tuples K of [1, 2n] with K ∩ [n] = k1 and such that K,K ′ form
an edge in the product graph if and only if both (K∩ [n],K ′∩ [n]) ∈ G(n, τ1)
and (K − n ∩ [n],K ′ − n ∩ [n]) ∈ G(n, τ2) (here K − n = {x, x + n ∈ K}).
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Clearly there is an embedding G(n, τ1) × G(n, τ2) → G(2n, τ). Since τ1, τ2
are irreducible it follows that there is an embedding

(2) G(n1, σm1)×G(n2, σm2)→ G(n, τ1)×G(n, τ2).

Without loss of generality, we assume now that m1 ≥ m2. We will show
that there is an embedding

(3) G(n1, σm1)→ G(n1, σm1)×G(n2, σm2).

In order to observe (3), to eachm1-tuple i1, . . . , im1 assign them1+m2-tuple

i1, i2, . . . , im1 , i1 + n, i2 + n, . . . , im2 + n.

Indeed, if {i1, . . . , im1} and {j1, . . . , jm1} are joined in G(n1, σm1), then
i2 = j1, . . . , im1 = jm1−1 and hence i1, . . . , im2 and j1, . . . , jm2 are joined
in G(n2, σm2), establishing the required embedding.

By (2) and (3),

χ(G(2n, τ)) ≥ χ(G(n1, σm1)).

Since m1 − 1 ≤ (k1 − 1)/2 ≤ (k − 1)/2, Proposition 3.10 implies that

χ(G(2n, τ)) ≥ log(b(k−1)/2c) n1.

Thus, since k ≥ 3 and n1 = c1n for large n we have

χ(G(2n, τ)) ≥ (1 + o(1)) log(b(k−1)/2c) n = (1 + o(1)) log(b(k−1)/2c) 2n.

Following this, a similar reasoning to the case t = 2 shows that

(4) χ(G(n, τ)) ≥ (1 + o(1)) log(m−1)
n

(2k)m
.

Finally, note that by Remark 3.12, if τ is any irreducible type of length
k then m(τ) ≤ m(δk). Similarly, in order to achieve the lowest lower bound
in (4), m = max{m(τi) : 1 ≤ i ≤ t} has to be largest. Since m(τi) is at most
m(δki), it is easily seen that m is largest when t = 1 and τ = δk, proving

χ(G(n, τ)) ≥ (1 + o(1)) log(b(k−1)/2c) n.

4. Proof of Theorem 1.5. This proof is the most involved part of the
paper. We begin by defining two modifications of a type τ which will play
an important role in this section: overlapping and reduction.

Definition 4.1. A 12 [21] overlap of a type τ is a type τ ′ which is
obtained from τ by replacing a pair of consecutive 1 and 2 [2 and 1] by a
single 3. We say that a type τ ′ is an overlap of τ if it is obtained from τ by
a sequence (possibly empty) of 12 and 21 overlaps.

For example, the overlaps of the type 112122 are: 112122, 13122, 11322,
11232 and 1332. Observe that if τ is a type of width k, then any of its
overlaps τ ′ has width k as well.
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Definition 4.2. Let 1 ≤ i1 < · · · < im ≤ k−1 be natural numbers such
that ir ≤ ir+1 − 2 for r = 1, . . . ,m and let τ be a type obtained from δk by
‘merging’ the irth and (ir +1)th ones and the irth and (ir +1)th twos. More
precisely, we replace any sequences 11 and 22 of merged ones and twos by 1
and 2 respectively. Furthermore, a sequence 121 where the ones are merged
(but the two is not) is replaced by 3. Similarly a sequence 212 where the twos
are merged (but the one is not) is replaced by 3. Finally, sequences of the
form 1212 or 2121 for which both pairs of ones and twos are merged are each
replaced by a 3. We call each type τ obtained in this way a (k,m)-reduct of
index (i1, . . . , im).

Thus, for instance, if k = 10 and i1 = 2, i2 = 4, and i3 = 9, then
τ = 1333121232. Note that a (k,m)-reduct has width k −m, and a (k, 0)-
reduct is δk. Our first result states that the chromatic number of a type
obtained after performing an overlap, or a reduction, on a type τ is not
significantly larger than the chromatic number of τ itself.

Lemma 4.3.

(a) If τ is an irreducible type of width k, and τ̃ is obtained from τ by a
single overlap, then

G(n, τ̃) ⊆ G(2n, τ).

(b) If τ̃ is a (k,m)-reduct, then

G(n, τ̃) ⊆ G(4n, δk).

Before giving the proof of the lemma above, we extend Definition 3.5 to
non-disjoint types in the following way.

Definition 4.4. Given a type τ = τ1 . . . τl of width k, let t
(1)
1 < · · · < t

(1)
k

be the indices of the 1’s and 3’s, i.e.

τ
t
(1)
i

= 1 or 3, 1 ≤ i ≤ k.

Similarly let t(2)1 < · · · < t
(2)
k be the indices of the 2’s and 3’s. We set

T1 = T1(τ) = {t(1)1 , . . . , t
(1)
k } and T2 = T2(τ) = {t(2)1 , . . . , t

(2)
k }.

Proof of Lemma 4.3. We begin with the proof of (a). For a type τ con-
sider two sequences τ13 and τ23 obtained by deleting the 2’s and 1’s from τ
respectively. Clearly each of these sequences has length k. Let ξ1, . . . , ξr and
η1, . . . , ηr be the positions of the 3’s in τ13 and τ23 respectively. Due to the
irreducibility of τ , we have ηs < ξs for all s = 1, . . . , r. Note that a 21 overlap
of a type τ = τ1τ2 . . . τl is a 12 overlap of τ̄ = τl . . . τ2τ1, and if τ is irre-
ducible, so is τ̄ . Since χ(n, τ) = χ(n, τ̄), it is sufficient to prove the statement
for a 12 overlap. Assume now that τ̃ arises from τ by merging 12 to 3 which
in τ̃ appears on the position s0 of τ̃13. Consequently, τ̃

t̃
(1)
s0

= 3. Consider the
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ground set of G(2n, τ) broken into n consecutive intervals I1 < · · · < In,
each of size 2. Set Ii = {li, ri} for its “left” and “right” point. We describe
an embedding G(n, τ̃) → G(2n, τ) as follows: for each k-tuple Ia1 , . . . , Iak ,
select αj ∈ Iaj , 1 ≤ j ≤ k, in such a way that

(5) αj = raj for j < s0 and αj = laj for j = s0.

For j > s0 and if j = ξs we define the embedding inductively using the
fact that ηs < ξs for all s. We set

(6) αj = lj if αηs = lηs and αj = rj if αηs = rηs .

On the other hand, if j > s0 and j 6= ξs we choose αj arbitrarily to be lj
or rj .

This way we have established a 1-1 mapping
(
n
k

)
→
(
2n
k

)
, (a1, . . . , ak) 7→

(α1, . . . , αk). It remains to show that (a1, . . . , ak) 7→ (α1, . . . , αk) is an em-
bedding G(n, τ̃) → G(2n, τ). We omit the somewhat tedious verification of
the general case and instead demonstrate the embedding by an example be-
low. We will consider in our example the type τ = 1112313222, which after
a 12 overlap on the only occurrence of 12 yields τ̃ = 113313222. Here s0 = 3.
In the successive pictures, we represent the different stages described in (5)
and (6) on two elements I and I ′ of

(
2n
k

)
of type τ̃ .

I
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−−→

Left −−
−→

Right
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

I′

We first choose the right element of each set Ij for j < s0:
1 1

2 2

Then we choose the left element of Ij for j = s0:
1 1 1

2 2 2

For j > s0 and if j = ξs we choose the element according to (6):
1 1 1 1

2 2 2 2
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Then, for j > s0 and j 6= ξs we choose αj arbitrarily to be lj or rj :
1 1 1 1 1

2 2 2 2 2

Finally, for j > s0 and if j = ξs we choose the element according to (6):
1 1 1 1 1 1

2 2 2 2 2 2

As we can see from the example above, the procedure describing the
embedding leaves the 1’s and 2’s unchanged as well as the 3’s present in the
original type τ . The unique 3 arising from the 12 overlap is replaced by a 12,
thus “undoing” the overlap and concluding the proof of part (a). Note that
for this procedure to be guaranteed to work, it is important that the type τ
(and thus τ̃) is irreducible.

The proof of part (b) is similar though simpler. In order to avoid com-
plicated notation, we will illustrate the idea of the proof by an example.
Consider δ6 = 112121212122 and its (6, 2)-reduct of index (2, 4), namely
ρ = 13332. We break the ground set of G(4n, τ) into n consecutive inter-
vals I1 < · · · < In, each of size 4. Set Ii = {ai, bi, ci, di}. We describe an
embedding G(n, ρ)→ G(4n, δ6) as follows: For each 4-tuple Ix1 , Ix2 , Ix3 , Ix4 ,
set αx1 = {b1}, αx2 = {a2, c2}, αx3 = {b3, d3} and αx4 = {c4}. The pro-
cess is illustrated in the following two drawings. The first picture represents
two 4-tuples forming a type ρ, and the second represents the corresponding
choices of ai, bi, ci, di’s:

Ix1 Ix2 Ix3 Ix4

Ix′
1

Ix′
2

Ix′
3

Ix′
4

b1 a2 c2 b3 d3 c4

b′1 a′2 c′2 b′3 d′3 c′4

As we can see in the picture above, the process described earlier is an
embedding G(n, ρ)→ G(4n, δ6). This method straightforward generalizes to
δk for any k and to any reduct of δk.

The following result is a direct consequence of Lemma 4.3(a).
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Corollary 4.5. If τ is an irreducible type and τ̃ is obtained after m
successive overlaps of τ , then

χ(G(n, τ̃)) ≤ χ(G(2mn, τ)).

Proof. Apply Lemma 4.3 m times to obtain G(n, τ̃) ⊆ G(2mn, τ).

In the proof of Theorem 1.5, we have to properly color simultaneously all
possible overlaps of each reduct of δk. Unfortunately, the argument we have
leads to an additional power in the estimates of the chromatic number.

Proposition 4.6. Let τ be a fixed (k,m)-reduct. There exists a coloring
of [n]k which is proper for simultaneously all overlaps of τ and using at most
χ(G(2k−1n, τ))3

k−1 colors.

Proof. By Corollary 4.5, each individual type ρ obtained after m succes-
sive overlaps of τ can be properly colored using no more than χ(G(2mn, τ))
colors. Since one can perform at most k − 1 overlaps on δk and thus on τ ,
each overlap can be colored using no more than χ(G(2k−1n, τ)) colors. We
will color all overlaps simultaneously using a product coloring. We first find
an estimate of the number of possible overlaps.

Let Mk be the set of all types which can arise after successive overlaps
of the type τ , and let µk = |Mk|. All but the first 1 of τ can be overlapped
with adjacent 2. So for each of these 1’s, there are at most three possibil-
ities: merging with the left, merging with the right or not merging. Thus,
µk ≤ 3k−1.

We now define more in detail the product coloring. Consider the coloring
ϕ of [n]k defined as follows. As mentioned earlier, each overlap ρ of τ arises
after at most k − 1 overlaps of 12’s and 21’s and Corollary 4.5 implies that
G(n, ρ) ⊆ G(2k−1n, τ). Consequently there exists a proper coloring ϕρ of
G(n, ρ) using at most χ(G(2k−1n, τ)) colors. Define ϕ to be the product of
all the colorings ϕρ when ρ ranges over all possible overlaps of τ , i.e. for each
k-tuple K ∈ [n]k,

ϕ(K) =
∏
ρ

ϕρ(K).

Clearly, ϕ is a proper vertex coloring of simultaneously all the overlaps of τ
using at most

χ(G(2k−1n, τ))mk ≤ χ(G(2k−1n, τ))3
k−1

colors.

In our argument we use the notion of planted rooted trees. Let T denote
a complete binary tree in which all leaves have the same height and are
“naturally” ordered from left to right. We shall measure the height of a tree
from its leaves up, i.e. in T all leaves have height zero, and the root of T has
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the largest height. In this paper by a planted rooted tree, or briefly a tree,
we mean a subtree T of T all of whose leaves have height zero. Note that
the leaves of T are ordered by the order inherited from the order of leaves
of T. The root of T is its vertex of the largest height. A left branch of a
rooted tree T , denoted by PL(T ), is the path joining the root v of T with
the smallest leaf. After removing the edges of PL(T ) the tree T naturally
decomposes into a forest which, counting from the right, consists of trees
TL,1, . . . , TL,s, where the last tree TL,s consists of one vertex only. We denote
the roots of those trees by vL,1, . . . , vL,s respectively, and let hL,i denote
the height of vL,i for i = 1, . . . , s. In an analogous way we define the right
branch PR(T ) of T , trees TR,i, vertices vR,i and heights hR,i for i = 1, . . . , t.
Thus, the root of T can be denoted as either vL,1 or vR,1 and clearly we
have

hL,1 > hL,2 > · · · > hL,s,(7)
hR,1 > hR,2 > · · · > hR,t.(8)

An important role in this part of the paper is played by the notions of a
comb and the shape of a tree.

Definition 4.7 (Left and right k-combs). We say that a planted tree T
is a left k-comb if each of the trees TL,1, . . . , TL,s has at most k leaves. A tree
T is a right k-comb if each of the trees TR,1, . . . , TR,t has at most k leaves.
If we do not specify whether a k-comb is left or right, we refer to it as a
k-comb.

Definition 4.8 (Shape of a tree). The shape sh(T ) of a planted rooted
tree T is a planted rooted tree whose vertex set consists of the root of T and
of all vertices of degree at least three of T , and all leaves of T are ordered
with the order inherited from T . Two vertices of sh(T ) are adjacent if they
are joined by a path in T . (See Figure 1.)

T Sh(T)
T sh(T )

Fig. 1
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Thus, roughly speaking, sh(T ) is obtained from T by ignoring all vertices
of degree two (except, possibly, the root).

Now we sketch the idea of our argument. In order to prove Theorem 1.5,
we will view the elements of [n] as sequences of zeros and ones of length
dlog2 ne. These sequences are naturally ordered and correspond to leaves of
a binary tree T of height dlog2 ne. Let us recall that our goal is to color all the
elements of [n]k in such a way that if two of them are in the relative position
described by the canonical type δk, then they are colored differently. To this
end we will color each k-tuple (x1, . . . , xk) by considering the corresponding,
uniquely determined tree T (x1, . . . , xk) with set of leaves {x1, . . . , xk}. Each
shape of tree will be colored using a set of colors disjoint from the other tree
shapes. Note that the number of different tree shapes depends only on k, not
on n, and thus does not contribute much to the estimate of the chromatic
number of G(n, δk).

Hence, we will only have to ensure that every pair of trees T (x1, . . . , xk)
and T (y1, . . . , yk) of the same shape and with their set of leaves forming the
canonical type are colored differently. As we will show in Lemma 4.10, the
only shapes for which this can happen are 2-combs. For a given shape of a
2-comb T , say, a left 2-comb, we color each tree of that shape by looking
at the heights hL,1, . . . , hL,s′ for some appropriately chosen s′ (see Defini-
tion 4.11 below for the precise statement). We shall call such a sequence
{h1, . . . , hr} a certificate of a tree. This will be done in such a way that if the
leaves of two trees of the same shape form a canonical type δk, then their
certificates form some (k − 2,m)-reduct (more precisely, an overlap of some
(k− 2,m)-reduct). Since all heights hi which form the certificate for a shape
are smaller than dlog2 ne, we can use our induction assumption along with
Lemma 4.3 to deduce the assertion.

Before we state our main result concerning certificates of pairs of trees of
the same shape whose leaves are in the canonical position (see Lemma 4.10),
let us introduce some notation and make some simple observations. In what
follows we consider two trees T 1 and T 2 of the same shape whose leaves are
in the canonical position δk for some k ≥ 3. Moreover we assume that the
smallest among the leaves belongs to T 1, and consequently the largest leaf
is in T 2. It is easy to see that then the following holds.

Claim 4.9. Let T 1, T 2 be two subtrees of T of the same shape such that
their sets of leaves form a canonical type of width k ≥ 3. Then the roots of
these trees are different and the root of one tree must lie on the left or right
branch of the other one. More specifically, if the smallest leaf belongs to T 1,
then either v1L,1 lies on PL(T 2), or v2R,1 belongs to PR(T 1).

Proof. We first argue that the roots of T 1 and T 2 are not the same.
Indeed, suppose that both trees have the same root v. Then, after removing v,
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T 1 would be partitioned into two rooted trees T 1
1 and T 1

2 , and T 2 would split
into T 2

1 and T 2
2 , where

(i) sh(T 1
1 ) = sh(T 2

1 ) and sh(T 1
2 ) = sh(T 2

2 );
(ii) all leaves of T 1

1 are smaller than all leaves of T 1
2 and T 2

2 (since T
contains no cycles);

(iii) all leaves of T 2
1 are smaller than all leaves of T 1

2 and T 2
2 (since the

opposite would lead to a cycle in T).

But this would mean that the canonical type is reducible, which is clearly
not the case. Hence, the roots of T 1 and T 2 are different. Now, take a vertex
v which dominates the roots of both T 1 and T 2, and connect it to these roots
by paths P 1 and P 2. Consider paths PL(T 1) < PL(T 2) < PR(T 1) < PR(T 2);
we ordered them by the order of their leaves. It is easy to see that the only
case where the union of the paths P 1, P 2, PL(T 1), PL(T 2), PR(T 1), PR(T 2)
does not contain a cycle is when either the root of T 1 belongs to PL(T 2), or
the root of T 2 belongs to PR(T 1).

The following lemma characterizes quite precisely those pairs of trees of
the same size whose leaves form δk.

Lemma 4.10. Let T 1, T 2 be two subtrees of T of the same shape such
that their sets of leaves form the canonical type of width k ≥ 3 starting with
a leaf of T 1. Moreover, assume that the root of T 2 lies on the right branch
PR(T 1) of T 1 and, after removing the right branch, T 2 (and so also T 1) splits
into t trees. Then:

(i) The roots of the trees T 2
R,1, . . . , T

2
R,t−2 lie on the branch PR(T 1). If

T 2
R,t−1 has at least two leaves, then its root belongs to PR(T 1) as

well.
(ii) h1R,i+2 ≤ h2R,i ≤ h1R,i+1 for each i = 1, . . . , t − 3. If T 2

R,t−1 has at
least two leaves, then the above bound holds for i = t− 2 as well.

(iii) If T 2
R,i has at least two leaves for some i = 2, . . . , t− 3, then h2R,i =

h1R,i+1 and h1R,i = h2R,i−1. If T
2
R,1 has at least two leaves, then also

h2R,1 = h2R,2. If T
2
R,s−1 has at least two leaves, then h1R,s−1 = h2R,t−1.

(iv) Both T1 and T2 are left 2-combs.

Furthermore, if the root of T 1 lies on the left branch PL(T 2) of T 2, then
(i)–(iv) holds with ‘right’ replaced by ’left’ (and subsequently, ‘R’ by ‘L’),
and with T 2 and T 1 interchanged.

Proof. Note that if the root of T 2
R,i does not belong to the branch PR(T 1),

then it must lie to the right of it and so, since we are dealing with subtrees
ofT, all its leaves must be larger than all the leaves of T 1. Since the canonical
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type ends with just two 2’s, the roots of at most two trees from the family
T 2
R,1, T

2
R,2, . . . , T

2
R,t do not belong to PR(T 1). If T 2

R,t−1 has two leaves, the
only tree from among T 2

R,1, T
2
R,2, . . . , T

2
R,t which does not start at PR(T 1)

is T 2
R,t. This proves (i).
In order to show (ii) let us assume that h2R,i > h1R,i+1. Since from (i)

the roots of both trees T 2
R,i and T 1

R,i+1 lie on the right branch PR(T 1), it
means that the canonical type formed by the leaves of T 2 and T 1 starts with
the leaves of the trees T 2

R,1, . . . , T
2
R,i immediately followed by the leaves of

T 1
R,1, . . . , T

1
R,i, i.e. at some point the number of 1’s matches the number of

2’s in the pattern created by leaves of T 1 and T 2. However, this is clearly not
the case for δk, which is irreducible. Similarly, suppose that h2R,i < h1R,i+2.
Then to the left of T 2

R,i lie all trees T 1
R,1, . . . , T

1
R,i+2, as well as all trees

T 2
R,1, . . . , T

2
R,i−1. Thus, the type created by leaves of T 2 and T 1 starts with a

sequence in which the number of 1’s is at least three larger than the number
of 2’s. This is impossible for the canonical type, showing (ii).

We start the proof of (iii) with a simple observation that between the
leaves of T 2

R,i must lie a leaf of some tree T 1
R,j , so, because of (i) and (ii),

we must have either j = i + 1 or j = i + 2. The latter case is impossible,
since then the leaf pattern starts with the leaves of the trees T 2

R,1, . . . , T
2
R,i−1

and T 1
R,1, . . . , T

1
R,i+1. Since the tree T 1

R,i has at least two leaves, the number
of leaves in the second group is at least three larger than in the first group,
a contradiction.

A similar argument proves (iv). Consider a tree T 1
R,i with at least two

leaves for some i = 1, . . . , s−1. Then, by (i)–(iii), the leaf pattern starts with
the leaves of the trees T 2

R,1, . . . , T
2
R,i−1 and T 1

R,1, . . . , T
1
R,i. Since the number

of 1’s in the starting subsequence of the canonical type cannot differ by more
than two from the number of 2’s, T 1

R,i has precisely two leaves.
The second part of the statement can be proved by a symmetric argu-

ment.

Now we can give a precise definition of the certificate c(T ) of a 2-comb T .

Definition 4.11. Let T be a 2-comb. Then the certificate of T , denoted
as c(T ) = {h1, . . . , hr}, is defined as follows.

(i) If T has fewer than five leaves, then we put c(T ) = {hL,1} = {hR,1}.
(ii) Let T be a left 2-comb such that removing the left branch re-

sults in the forest consisting of the trees TL,1, . . . , TL,s. Then
c(T ) = {hL,1, . . . , hL,s−2} if TL,s−1 has only one leaf, and c(T ) =
{hL,1, . . . , hL,s−1} if TL,s−1 has two leaves.

(iii) Let T be a right 2-comb such that removing the left branch
results in the forest consisting of the trees TR,1, . . . , TR,t. Then
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c(T ) = {hR,1, . . . , hR,t−2} if TR,t−1 has only one leaf, and c(T ) =
{hR,1, . . . , hR,t−1} if TR,t−1 has two leaves.

The main ingredient of the proof of Theorem 1.5 is the following lemma.

Lemma 4.12. Let T 1 and T 2 be two different 2-combs of T of the same
shape and of certificates {h11, . . . , h1r} and {h21, . . . , h2r} respectively, whose
sets of leaves form a canonical type δk of width k ≥ 5. Then there exists a
(k− 2, k− 2− r)-reduct ρ of δk, which depends only on the shape of the trees
T 1 and T 2, such that

τ({h11, . . . , h1r}, {h21, . . . , h2r})
is an overlap of ρ.

Proof. The result follows from Lemma 4.10. Instead of giving its formal
proof which would involve a lot of technical notation, we describe its idea,
so the argument will become clear.

Let us assume first that both trees T 1 and T 2 are right 1-combs with k
leaves. Since after removing the left branch the trees decompose into paths,
their certificates {h1R,1, . . . , h1R,k−1}, {h2R,1, . . . , h2R,k−1} have k − 1 elements
each. This means in particular that r = k− 2 in the statement of the claim.

From Lemma 4.10 it follows that

h1R,1 > h1R,2 ≥ h2R,1 ≥ h1R,3 ≥ h2R,2 ≥ · · ·(9)

≥ h2R,k−4 ≥ h1R,k−2 ≥ h2R,k−3 > h1R,k−2,

where (recall (8)) we also have

(10) h1R,1 > h1R,2 > · · · > h1R,k−2 and h2R,1 > h2R,2 > · · · > h2R,k−2.

Thus, if the trees T 1 and T 2 are in ‘generic position’, i.e. in (9) all the inequal-
ities are strict, then the certificates {h1R,1, . . . , h1R,k−2} and {h2R,1, . . . , h2R,k−2}
form a canonical type δk−2, i.e., using the terminology from the statement
of the lemma, in this case ρ is a (k− 2, 0)-reduct of δk−2, i.e. ρ = δk−2. Note
also that in this case τ({h1R,1, . . . , h1R,k−2}, {h2R,1, . . . , h2R,k−2}) = δk−2, i.e.
there are no overlaps. Figure 2 illustrates this case with k = 5.

However, some ‘spontaneous’ equalities in (9) can happen, e.g. some T 1
R,i

may share some vertices (and thus the root) with T 2
R,i−1. However, in this

case the type τ({h1R,1, . . . , h1R,k−2}, {h2R,1, . . . , h2R,k−2}) is clearly an overlap
of the canonical type δk−2, i.e. ρ is still δk−2 but this time τ({h1, . . . , hk−2},
{h′1, . . . , h′k−2}) is an overlap of δk−2. Figure 3 corresponds to k = 5 and
h3 = h′2.

Thus, the 1-combs result in the certificates being overlaps of δk. In this
case r = k − 2 and the reducts do not play any role. In order to show the
assertion when T 1 and T 2 are 2-combs (say, right 2-combs) of the same shape
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h1

h2

h′1

h3

h′2

h′3

Fig. 2. 1-combs with k = 5 and strict
inequalities in (9)

h1

h2

h′1

h3 = h′2

h′3

Fig. 3. 1-combs with k = 5 and h3 = h′2

we need basically to repeat the above argument in a slightly more general
setting.

For a right comb T let us define the extended certificate as the sequence
(ĥR,1, . . . , ĥR,k−2), where ĥR,i is the height of a tree TR,i which contains
the ith leaf of T counting from the right. Clearly, the extended certificate
can be obtained from the usual certificate of T by repeating some terms
according to the structure of the tree (say, if TR,2 has two leaves, then ĥR,2 =

ĥR,3 = hR,2). Furthermore, since we define the certificate for a tree of a given
shape, both the certificate and the extended certificate basically carry the
same information.

Note that since the leaves of T1 and T2 form the canonical type δk, for
their extended certificates we have

ĥ1R,1 ≥ ĥ1R,2 ≥ ĥ2R,1 ≥ ĥ1R,3 ≥ ĥ2R,2 ≥ · · ·(11)

≥ ĥ2R,k−4 ≥ ĥ1R,k−2 ≥ ĥ2R,k−3 ≥ ĥ1R,k−2,

However, equality between ĥtR,i and ĥ
t
R,i+1 happens if the ith and the (i+1)th

leaves belong to the same tree. Consequently, we need to apply the reduction
operation on the above sequence to reduce it to a (k−2,m)-reduct, where m
is the number of trees among T 1

R,1, . . . , T
1
R,s−1 which have two leaves. In the

generic position, i.e. when all equalities are forced by the condition described
in Lemma 4.10(iii), and the other inequalities in Lemma 4.10(ii) are strict,
the type τ({h1R,1, . . . , h1R,k−2}, {h2R,1, . . . , h2R,k−2}) is just a (k− 2,m)-reduct
(see Figure 4).

In the general case, however, some spontaneous equalities may occur
and some trees T 1

R,i may share a root with either T 2
R,i−1 or T 2

R,i−2 pro-
vided each of the glued trees has only one leaf. Hence, τ({h1R,1, . . . , h1R,k−2},
{h2R,1, . . . , h2R,k−2}) is just an overlap of some (k − 2,m)-reduct ρ (see Fig-
ure 5).
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h1

h2

h′1

h′2 = h3

h′3 = h4

h′4

Fig. 4. (5, 1)-reduct

h1

h′1 = h2

h′2 = h3

h′3 = h4

h′4

Fig. 5. Overlap of a (5, 1)-reduct

Proof of Theorem 1.6. Recall that Lemma 3.7 asserts that if ρ is a sub-
type of τ , then χ(G(n, τ)) ≤ χ(G(n, ρ)). Since for any k ≥ 3 the canonical
type δk is a subtype of δk+1, we obtain χ(n, δk+1) ≤ χ(n, δk), which is part
(ii) of Theorem 1.6.

Now let k = 2l + 1 be odd. We shall show by induction on l that

(12) χ(G(n, δ2l+1)) ≤ c2l+1(log(l) n)al

for some constant c2l+1 and al =
(
l+1
2

)
.

Lemma 3.8 states χ(G(n, δ3)) ≤ 2 log n, which implies (12) for l = 1.
We now assume that the assertion holds up to l − 1 and prove it for l ≥ 2.
Consider the set of (2l+1)-tuples which correspond to a tree T (S) of a certain
fixed shape S. Let GS(n, δ2l+1) be the subgraph of G(n, δ2l+1) induced by
these (2l + 1)-tuples. We will show that

χ(GS(n, δ2l+1)) ≤ c′2l+1(log(l) n)al

for some constant c′2l+1.
If T (S) is not a 2-comb then, by Lemma 4.10, no two (2l + 1)-tuples of

the same shape S can be of type δ2l+1. Thus, the graph GS(n, δ2l+1) contains
no edges and χ(GS(n, δ2l+1)) = 1.

Now let us look at the more interesting case, when T (S) is a 2-comb.
We color each (2l + 1)-tuple {x1, . . . , x2l+1} of tree shape S by consider-
ing the certificate {h1, . . . , hr} of the tree with leaves at {x1, . . . , x2l+1}.
Since k0 = 2l + 1 ≥ 5, it follows from Lemma 4.12 that if two (2l + 1)-
tuples {x11, . . . , x12l+1} and {x21, . . . , x22l+1} have the same shape S and form
a δ2l+1 type, the type of their certificates {h11, . . . , h1r} and {h21, . . . , h2r}
is an overlap ρ of some (2l + 1 − 2, 2l + 1 − 2 − r)-reduct τ̃ . Assigning
to each {x1, . . . , x2l+1} its certificate {h1, . . . , hr} defines a homomorphism
ϕ : GS(n, δ2l+1)→

⋃
ρG(log n, ρ) where the union is taken over all possible

overlaps of τ̃ . By Proposition 4.6, all overlaps ρ of τ̃ can be colored by at
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most (
χ(G(22l log n, τ̃))

)32l
colors. Thus,

(13) χ(GS(n, δ2l+1)) ≤
(
χ(G(22l log n, τ̃))

)32l
.

On the other hand, by Lemma 4.3,

(14) χ(G(22l log n, τ̃)) ≤ χ(4 · 2l log n, δ2l−1)

and by the induction hypothesis,

χ(4 · 2l log n, δ2l−1) ≤ c2l−1
(
log(l−1)(4 · 22l log n)

)al−1(15)

≤ c′2l−1(log(l) n)al−1

for an appropriate constant c′2l−1. Combining (13)–(15) with an appropriate
constant c′′2l−1 we obtain

(16) χ(GS(n, δ2l+1)) ≤
(
c′2l−1(log(l) n)al−1

)32l ≤ (c′′2l−1(log(l) n)
)32lal−1 .

Note that al−1 · 32l = 9((l−1)+1
2 ) · 9l = 9(l+1

2 ) = al. Replacing c′′2l−1 by an
appropriate constant c′′′2l+1, we can rewrite the last expression as

c′′′2l+1 · (log(l−1) n)al

Consequently, χ(G(n, δ2l+1)) ⊆
∑

S χ(GS(n, δ2l+1)) ≤ c2l+1(log(l−1) n)al for
some constant c2l+1.

5. Extension to other types. In this section we discuss the chromatic
number of G(n, τ) for some types τ other than δk. We begin by considering
types of the form 1 . . . 13 . . . 32 . . . 2. It is a natural generalization of the type
σk = 133 . . . 32 mentioned in the introduction which has been used to define
so-called shift graphs.

Definition 5.1. For a, b ≥ 1, we define σa,b as the type consisting of a
1’s, followed by b 3’s, followed by a 2’s.

For instance, σ4,3 = 11113332222 and σk = σk−1,1. Note that σa,b is a
type of length 2a+ b.

Theorem 5.2. For any a ≥ 1, b ≥ 1 and n ∈ N we have

log(db/ae)
n

a
≤ χ(G(σa,b, n)) ≤ log(db/ae) n.

Proof. Let a, b ≥ 1 and consider σa,b = τ1 . . . τ2a+b. We begin by showing
the upper bound. We construct a new type σ̃a,b by deleting τi from σa,b
whenever i ≡ 3, 4, . . . , a (mod a). For example, σ̃3,4 = 1��113��333��322�2 = 1332.
Since we are deleting all but one of the initial 1’s and all but one of the
terminal 2’s, it is clear that in this way we obtain a type σc for some c.
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Furthermore, one can observe that exactly db/ae of the original 3’s remain,
consequently

σ̃a,b = σdb/ae+1.

Finally, note that the deletion is consistent in the sense that whenever τ (1)i is
deleted, so is τ (2)i and vice versa. In other words, σ̃a,b = σdb/ae+1 is a subtype
of σa,b and Lemma 3.7 yields

χ(G(n, σa,b)) ≤ χ(G(n, σdb/ae+1)) ≤ log(db/ae) n.

We now turn to the lower bound. Set r = db/ae + 1. In order to es-
timate χ(G(n, σa,b)) from below we will find an embedding ϕ : G(n, σr) →
G(an, σa,b). To this end we divide [an] into n consecutive intervalsA1, . . . , An,
where |Ai| = a for all i = 1, . . . , n. For each r-tuple Ai1 , . . . , Air we define
Bij ⊂ Aij , j = 1, . . . , r, with |

⋃r
j=1Bij | = a + b so that ϕ : {i1, . . . , ir} →⋃r

j=1Bij will be the desired embedding. Given an r-tuple Ai1 , . . . , Air set
Bij = Aij for every j ≤ r− 1 = db/ae, and Bir to be the first a+ b− adb/ae
elements of Air . We then have |

⋃r
j=1Bij | = (r − 1)a + a + b − adb/ae =

a+ b and one can check that whenever τ({i1, . . . , ir}, {i′1, . . . , i′r}) = σr then
τ(
⋃r
j=1Bij ,

⋃r
j=1Bi′j ) = σa,b. Consequently,

χ(G(σa,b, n)) ≤ χ(G(σr, n)) = log(r−1) n = logdb/ae n.

One can mimic the above argument to extend Erdős and Hajnal’s [3]
result for χ(G(κ, σk)) to the types σa,b.

Theorem 5.3. For any a, b ≥ 1 and infinite κ we have

χ(G(κ, σa,b)) = min{α : exp(db/ae)(α) ≥ κ}.
Using a similar reasoning to the proof of Theorem 5.3, we extend Theo-

rems 1.4 and 1.5 to the following larger class of irreducible disjoint types.

Definition 5.4. For a ≥ 2 and b ≥ 1, the type δa,b consists of a 1’s,
followed by b copies of 21 and followed by a copies of 2.

For example, δ3,2 = 1112121222 and δ2,k−2 = δk, the canonical type of
width k.

Theorem 5.5. For any a ≥ 2 and b ≥ 1, we have

log(db/ae)
n

2b
≤ χ(G(δa,b, n)) ≤ C(log(db/ae) n)(

db/ae+1
2 )

for some constant C depending on a and b.

Proof. Fix a ≥ 2 and b ≥ 1 and let δa,b = τ1 . . . τ2a+2b ∈ {1, 2}2a+2b.
For k = a + b, j = 1, 2, and 1 ≤ α ≤ a + b, let t(j)α and Tj(τ) be as in
Definition 3.5. We construct a new type δ̃a,b by deleting those τi from δa,b

which correspond to t(j)α with α = 3, 4, . . . , a (mod a), i.e. we leave only those
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1’s (and 2’s) which among all 1’s (or 2’s) appear on places ar+ 1 and ar+ 2
for some r ≥ 0.

For example, for δ4,3 = 11112121212222, a = 4 and consequently δ̃4,3 =
11��112121��21222�2 = δ4. The deletion is consistent in the sense that whenever
t
(1)
α is deleted, so is t(2)α and vice versa, and consequently the type δ̃a,b is a
subtype of δa,b.

Since the deletion process eliminates all but the first two 1’s among the
initial string of 1’s, and then eliminates consecutive 21’s and all but two
2’s, it is clear that the resulting type is a canonical type. Furthermore the
proportion of deleted 21’s is (a− 2)/a so that we are left with d(2/a)be 21’s.
Consequently, δ̃a,b = δd2b/ae+2 is a subtype of δa,b, and by Lemma 3.7,

χ(G(n, δa,b)) ≤ χ(G(n, δd2b/ae+2)).

Recall that by Theorem 1.5, for the canonical type δk of width k we have

χ(G(n, δk)) ≤ C(log(b(k−1)/2c) n)(
b(k+1)/2c

2 )

for some C > 0. Since b(d2b/ae+ 2− 1)/2c = db/ae, we obtain

χ(G(δa,b, n)) ≤ χ(G(n, δd2b/ae+2)) ≤ C(log(db/ae) n)(
db/ae+1

2 )

for some constant C.
We now turn to the lower bound. For each pair 12 in the type δa,b, we

perform a 12 overlap so that after b overlaps we obtain the type σa,b. For
example, the type δ4,2 = 111121212222 becomes σ4,2 = 1111332222. Using
Lemma 4.3 we obtain χ(G(n, σb)) ⊂ χ(G(2bn, σa,b)), which by Theorem 5.3
implies

log(db/ae) n ≤ χ(G(2bn, σa,b)),

or equivalently
log(db/ae) n/2

b ≤ χ(G(n, σa,b)).

6. Final remarks and comments. The first natural question which
emerges on χ(G(n, δk)) is about its order. We conjecture that the lower
bound given by Theorem 1.4 is the correct one up to a constant factor, and
the power of iterated logarithm in Theorem 1.5 is caused by the method
we used in our argument (a consequence of Proposition 4.6). In fact, it is
possible that the following stronger conjecture holds.

Conjecture 1. For every irreducible type τ there exists an integer f(τ)
such that

χ(G(n, τ)) = Θτ (log(f(τ)) n),

where the hidden constants may depend on τ .
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The following stronger (perhaps too strong) conjecture anticipates the
correct value of f(τ).

Conjecture 2. For every irreducible type τ we have

χ(G(n, τ)) = Θτ
(
minχ(G(n, δk,r))

)
,

where the minimum is taken over all k and r such that τ can be obtained
from some δk,r by the process of overlapping and reduction similar to that
described in Definitions 4.1 and 4.2.

A conjecture similar to Conjecture 1 can also be made for an infinite
case.

Conjecture 3. For every type τ there exists an integer g(τ) such that
for every infinite cardinal κ,

χ(G(κ, τ)) = min{α : expg(τ)(α) ≥ κ}.

Note however that, due to Theorem 2.1, disjoint types such as δk,r do
not play any role in finding g(τ) for a non-disjoint type τ .
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