
FUNDAMENTA

MATHEMATICAE

222 (2013)

Almost Abelian regular dessins d’enfants
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Ruben A. Hidalgo (Valparáıso)

Abstract. A regular dessin d’enfant, in this paper, will be a pair (S, β), where S

is a closed Riemann surface and β : S → Ĉ is a regular branched cover whose branch
values are contained in the set {∞, 0, 1}. Let Aut(S, β) be the group of automorphisms of
(S, β), that is, the deck group of β. If Aut(S, β) is Abelian, then it is known that (S, β)
can be defined over Q. We prove that, if A is an Abelian group and Aut(S, β) ∼= A o Z2,
then (S, β) is also definable over Q. Moreover, if A ∼= Zn, then we provide explicitly these
dessins over Q.

1. Introduction and statement of results. A dessin d’enfant (or
just a dessin), as defined by Grothendieck [G], corresponds to a pair (X,D),
where X is a closed orientable surface and D ⊂ X is a bipartite graph
(vertices are colored black or white and adjacent vertices have different
colors) such that X − D consists of a finite collection of topological discs
(called the faces of the dessin). The genus of (X,D) is by definition the
genus of X. Two dessins d’enfants, say (X1, D1) and (X2, D2), are said to
be equivalent if there exists an orientation preserving homeomorphism H :
X1 → X2 inducing an isomorphism between D1 and D2 as bipartite graphs
(i.e., an isomorphism of the graphs sending black (resp. white) vertices to
black (resp. white) vertices).

A Bely̆ı pair is a pair (S, β), where S is a closed Riemann surface, called

a Bely̆ı curve, and β : S → Ĉ is a non-constant meromorphic map whose
branch values are contained in the set {∞, 0, 1}, called a Bely̆ı map. The
genus of (S, β) is the genus of S. Two Bely̆ı pairs, say (S1, β1) and (S2, β2),
are said to be equivalent if there is a biholomorphism F : S1 → S2 such that
β2 ◦ F = β1. If S1 = S2 = S and β1 = β2 = β, then the above provides
the definition of an automorphism of (S, β). We denote by Aut(S) the full
group of conformal automorphisms of S and by Aut(S, β) its subgroup of
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automorphisms of (S, β). We say that the Bely̆ı pair (S, β) is regular if β is a
regular branch cover; in that case its deck group is Aut(S, β). The group of
Möbius transformations keeping invariant the set {∞, 0, 1} is the symmetric
group S3 on three letters generated by A(z) = 1/z and B(z) = 1/(1− z). If
we have a (regular) Bely̆ı pair (S, β) and M ∈ S3, then (S,M ◦β) is again a
(regular) Bely̆ı pair and, moreover, Aut(S, β) = Aut(S,M ◦β). In this paper
we are interested in regular dessins d’enfants.

As defined above, dessins d’enfants are combinatorial (2-dimensional)
objects and Bely̆ı pairs are analytic objects. By the uniformization theo-
rem, a dessin d’enfant (X,D) determines a Bely̆ı pair (S, β) (unique up to
equivalence) so that D = β−1([0, 1]) (the black vertices being the preimages
of 0 and the white vertices being the preimages of 1). Conversely, a Bely̆ı
pair (S, β) defines a dessin d’enfant as just described above. This provides
a bijection between equivalence classes of dessins d’enfants and equivalence
classes of Bely̆ı pairs; so we may work indistinctly with dessins d’enfants
and Bely̆ı pairs. In this paper we consider Bely̆ı pairs as the objects under
study.

A field of definition of a Bely̆ı pair (S, β) is a subfield K of C for which
there is an equivalent Bely̆ı pair (C, η), where C is a smooth complex alge-
braic curve and η is a rational map, both defined over K; we also say that
(S, β) is definable over K. Bely̆ı ’s theorem [B] asserts that every Bely̆ı pair
is definable over the field Q of algebraic numbers. The field of moduli of
(S, β) is the intersection of all its fields of definition [K].

If a regular Bely̆ı pair (S, β) has genus zero, then, up to conformal equiv-

alence, S = Ĉ (which is defined over Q) and Aut(S, β) is any of the finite
groups of Möbius transformations (finite cyclic groups, dihedral groups, the
alternating groups A4, A5 and the symmetric group S4). Explicit regular
branched cover maps, for each of these cases, are provided in [Ho]. It can be
checked that all of these are definable over Q.

Let us assume, from now on, that the regular Bely̆ı pair (S, β) has genus
g ≥ 1. In this case, the branch values of β are 0, 1 and ∞, say with branch
orders k1, k2 and k3; we say that S/H has signature (0; k1, k2, k3) and that
the associated dessin d’enfant has type (k1, k2, k3). By the Riemann–Hurwitz
formula, the condition g ≥ 1 is equivalent to k−11 + k−12 + k−13 ≤ 1 (strict
inequality if and only if g ≥ 2). As a consequence of the uniformization
theorem, there is a surjective homomorphism θ : Γ → Aut(S, β), with a
torsion free kernel ker(θ), where Γ = 〈x, y : xk1 = yk2 = (yx)k3 = 1〉
is a triangular Kleinian group uniformizing the orbifold S/Aut(S, β) and
ker(θ) uniformizing S (the converse also holds). In particular, Aut(S, β) is
generated by two elements, say a and b, with a of order k1, b of order k2
and c = (ab)−1 of order k3. This, and the fact that any two generators
of a dihedral group are either both of order two or one of order two with
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product of order two, ensures that Aut(S, β) cannot be isomorphic to a
dihedral group.

In [W] Wolfart proved that (S, β) and S can both be defined over their
corresponding fields of moduli (this fact can also be obtained from Dèbes–
Emsalem’s results in [DE]). In [Hi] it was noticed that if Aut(S, β) is Abelian,
then these two fields are equal to the field Q of rational numbers. We may
wonder for other cases ensuring a regular Bely̆ı pair (S, β) to be definable
over Q. A class of groups which are close to being Abelian groups (in some
rough sense) are the semi-direct products A o B, where A and B are both
Abelian groups. In [SW] Streit–Wolfart studied the family of those regular
Bely̆ı pairs with Aut(S, β) = 〈a, b : ap = bq = 1, bab−1 = am〉 ∼= Zp o Zq
(i.e. A ∼= Zp and B ∼= Zq), where p > 3 and q > 3 are primes and mq ≡
1 mod p, and they exhibit explicit curves and the corresponding fields of
moduli (which result to be different from Q).

In this paper we consider the case Aut(S, β) ∼= A o Z2, where A is an
Abelian group. The case Aut(S, β) ∼= A o Z3 will be considered elsewhere
(see also Remark 2.2). Our first result is the following.

Theorem 1.1. Let (S, β) be a regular Bely̆ı pair of genus g ≥ 1 with
Aut(S, β) ∼= AoZ2. If A is an Abelian group, then (S, β) is definable over Q.

If in Theorem 1.1, A ∼= Zn, that is, Aut(S, β) = 〈a, b : an = b2 =
baba−m = 1〉 ∼= Zn o Z2, where n ∈ {2, 3, . . .}, m ∈ {1, 2, . . . , n − 1},
m2 ≡ 1 mod n and gcd(n,m) = 1, then the next result describes explicit
models over Q. As already noticed above, the case m = n− 1 (the dihedral
case) is not possible.

Theorem 1.2. Let (S, β) be a regular Bely̆ı pair of genus g ≥ 1 with
Aut(S, β) = 〈a, b : an = b2 = baba−m = 1〉, where n ∈ {2, 3, . . .}, m ∈
{1, 2, . . . , n − 2}, m2 ≡ 1 mod n and gcd(n,m) = 1. Then the following
hold:

(1) There exist integers α, ρ, γ ∈ {1, . . . , n−1} and non-negative integers
ϑ1, ϑ2, ϑ3 satisfying

(1.1) gcd(n, α, ρ, γ) = 1;
(1.2) 1 + γ − ρ = m;
(1.3) (α+ ρ+ γ)(2 + γ − ρ) ≡ 0 mod n;
(1.4) α(γ − ρ) = nϑ1;
(1.5) (ρ− 1)(γ − ρ) = nϑ2;
(1.6) (γ + 1)(γ − ρ) = nϑ3; and
(1.7) (−1)(α+ρ+γ)(2+γ−ρ)/n = (−1)ϑ1+ϑ2+ϑ3,

so that (S, β) is equivalent to the regular Bely̆ı pair (C, η), where
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C : yn = xα(x− 1)ρ(x+ 1)γ ,

η : C → Ĉ : (x, y) 7→ x2,

and Aut(C, η) = 〈a, b〉 with

a(x, y) = (x, ωy), b(x, y) =

(
−x, δy1+γ−ρ

xϑ1(x− 1)ϑ2(x+ 1)ϑ3

)
,

δ = (−1)(α+ρ+γ)/n, ω = e2πi/n.

(2) If ξ ∈ Z is such that (ξ − 1)n < α + ρ + γ ≤ ξn and we set η =
ξn− α− ρ− γ, then (setting gcd(n, 0) := n)

g = 1 + n− (1/2)(gcd(n, α) + gcd(n, ρ) + gcd(n, γ) + gcd(n, η)).

(3) If α + ρ + γ ≡ 0 mod n, then S/β has signature (0; 2, p, 2q), where
p = n/gcd(n, ρ) = n/gcd(n, γ) and q = n/gcd(n, α).

(4) If α+ ρ+ γ 6≡ 0 mod n, then S/β has signature (0; p, 2q, 2u), where
p and q are as above and u = n/gcd(n, η).

In the particular case m = 1 (the Abelian situation), Theorem 1.2 can
be written as follows.

Corollary 1.3. Let (S, β) be a regular Bely̆ı pair of genus g ≥ 1, with
deck group Aut(S, β) ∼= Zn × Z2. Then there exist integers α, ρ ∈ {1, . . . ,
n − 1}, with gcd(n, α, ρ) = 1 and α + 2ρ ≡ 0 mod n, such that (S, β) is
equivalent to (C, η), where

C : yn = xα(x2 − 1)ρ, η : C → Ĉ : (x, y) 7→ x2.

Moreover, Aut(C, η) = 〈a, b〉 with

a(x, y) = (x, ωy), b(x, y) = (−x, δy), δ = (−1)(α+2ρ)/n, ω = e2πi/n.

Proof. This follows from Theorem 1.2 taking m = 1; so γ − ρ = 0,
ϑ1 = ϑ2 = ϑ3 = 0, gcd(n, α, ρ) = 1 and α+ 2ρ ≡ 0 mod n.

2. Proof of Theorems 1.1 and 1.2. Let us fix a regular Bely̆ı pair
(S, β) of genus g ≥ 1 with Aut(S, β) ∼= A o Z2, where A is an Abelian
group. Let b ∈ Aut(S, β) be the conformal automorphism that generates
the Z2 component.

The quotient orbifold S/A has a signature (h;n1, . . . , nr), that is, its
underlying Riemann surface is a closed Riemann surface, say R, of genus
h and it has exactly r cone points of orders n1,. . . , nr, respectively. Let
P : S → R be a regular branched cover with deck group A.

As A is a normal subgroup of Aut(S, β), there is a conformal automor-
phism b of R, of order two, such that b◦P = P ◦b. The involution b permutes
the cone points of S/A and it respects their orders. Let Q : R → Ĉ be a
regular branched cover with deck group 〈b〉 and such that Q ◦ P = β.
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Since S/Aut(S, β) is the Riemann sphere Ĉ with cone points at ∞, 0

and 1, it follows that R/〈b〉 is Ĉ and that its cone points (that is, the branch
values of Q) are contained in the set {∞, 0, 1}. So, (R,Q) is a regular Bely̆ı
pair with Aut(R,Q) = 〈b〉.

By the Riemann–Hurwitz formula, the number of fixed points of the
involution b is even, say 2s.

Claim 2.1. s = 1, h = 0 and r ∈ {3, 4}.

Proof. We first prove that s = 1. In fact, if s = 0, then necessarily
h ≥ 1 (since on the Riemann sphere every involution has two fixed points).
Now, the Riemann–Hurwitz formula ensures that R/〈b〉 has positive genus,
a contradiction. If s ≥ 2, then Q will have 2s ≥ 4 branch values, again a
contradiction.

Now, as b has exactly two fixed points and R/〈b〉 has genus zero, it
follows from the Riemann–Hurwitz formula that h = 0.

The above means that the signature of S/A is of the form (0;n1, . . . , nr).
Since the genus of S is at least one, it again follows from the Riemann–
Hurwitz formula that r ≥ 3. Now, as the cone points of S/A are permuted
by the involution b and S/Aut(S, β) has exactly three cone points, it follows
that r ∈ {3, 4}.

The above claim ensures that R = Ĉ and that b is a Möbius transfor-
mation of order 2. So, up to composition of P on the left with a suitable
Möbius transformation, we may assume that b(x) = −x; so Q(x) = x2.

If r = 3, then one of the cone points is a fixed point of b and the other
two are permuted by b.

If r = 4, then two of the cone points are fixed by b and the other two
are permuted by it.

Up to composition of P on the left with a Möbius transformation of the
form T (x) = dx, for a suitable d ∈ C − {0}, we may also assume that the
cone points of S/A are ±1 (the ones which are permuted by b), 0 (and ∞
for r = 4).

2.1. Proof of Theorem 1.1

2.1.1. If r = 3, then the branch values of P : S → Ĉ are given by the
points ±1 and 0. If M(x) = (1 − x)/(1 + x), then PM = M ◦ P is a Bely̆ı
map with deck group A. By the results in [Hi], we may assume both S and

PM to be defined over Q. The induced involution by b, under PM , is b̂(x) =

M ◦ b ◦M−1(x) = 1/x. The two-fold branch cover Q̂(x) = (1− x)2/(1 + x)2

has deck group 〈̂b〉 and Q = Q̂ ◦M . It follows that β = Q̂ ◦ PM is defined
over Q.
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2.1.2. If r = 4, then we may proceed as follows (see [Hi]). Let µ ≥ 2
be the least common multiple of the orders of the four cone points (∞, 0,
1 and −1) of S/A. Let us consider the generalized Fermat curve [GHL] (a
closed Riemann surface of genus gC = (µ− 1)(µ2 + µ− 1) ≥ 5)

C =

{
xµ1 + xµ2 + xµ3 = 0

−xµ1 + xµ2 + xµ4 = 0

}
⊂ P3

C.

The group K = 〈a1, a2, a3〉 ∼= Z3
µ, where aj is multiplication by e2πi/µ on

the xj-coordinate, is a group of conformal automorphisms of C. If L : C → Ĉ
is defined by L([x1 : x2 : x3 : x4]) = −(x2/x1)

µ, then L is a regular branched
cover with deck group K and branch values ±1, 0 and ∞, each of order µ.

If Γ = 〈y1, y2, y3, y4 : yµ1 = yµ2 = yµ3 = yµ4 = y1y2y3y4 = 1〉 is a Fuch-
sian group acting on the hyperbolic plane H2 so that H2/Γ = C/K, then
H2/Γ ′ = C, where Γ ′ is the derived subgroup of Γ .

It follows that there is a normal subgroup ΓS of Γ (containing Γ ′)
whose uniformized orbifold H2/ΓS has underlying Riemann surface struc-
ture isomorphic to S (and A = Γ/ΓS). In particular, there is a subgroup
K0 = ΓS/Γ

′ of K so that the underlying Riemann surface structure of C/K0

is isomorphic to S.
In [Hi, Section 6] we described (using geometric invariant theory) how to

compute a curve model E for C/K0 (we do not need the explicit form). By
[Hi, Lemma 5.1] such a curve E, and the regular branched cover U : C → E
(with deck group K0), are both defined over Q. As L = P ◦ U we may see
that P is also defined over Q and, in particular, that β = Q ◦ P is defined
over Q.

Remark 2.2. If Aut(S, β) ∼= A o Z3, then one may try to follow the
same ideas as in the above proof. We will have the conformal automor-
phism b, of order 3, of the quotient orbifold S/A induced by the Z3 compo-
nent of Aut(S, β). As b permutes the cone points of S/A and (S/A)/〈b〉 =
S/Aut(S, β), we necessarily have that S/A is either of genus zero or of genus
one. If S/A has genus zero, then we may assume that b(z) = e2πi/3z and
that the cone points are inside the set {∞, 0, 1, e2πi/3, e4πi/3}. In this case,
it is not clear how to ensure that S can be defined over Q. If the quo-
tient S/A has genus one, then b must have exactly three fixed points; in
other words, the Riemann surface structure of S/A is given by the curve
C : y3 = x(x − 1) and cone points being (0, 0), (1, 0) and ∞. Let us

consider Q : C → Ĉ defined by Q(x, y) = x (a regular branched cover
with deck group 〈b〉) and a regular branched cover map P : S → C, with

deck group A; then β = Q ◦ P : S → Ĉ, up to post-composition with a
Möbius transformation in S3. In order to see if the result in Theorem 1.1
holds or not for this case, we need to check if it is possible to find an al-
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gebraic curve for S and a regular branched cover P : S → C, both defined
over Q.

2.2. Proof of Theorem 1.2. Let a ∈ Aut(S, β) be a conformal auto-
morphism that generates the cyclic groupA = Zn, that is, Aut(S, β) = 〈a, b〉.

If r = 3, then (as the involution b permutes two of the cone points
and preserves the orders) the signature of S/〈a〉 must of the form (0; p, p, q)
(where p and q are divisors of n) and the signature of S/Aut(S, β) is
(0; 2, p, 2q). The two cone points ±1 of S/A have order p and the other
cone point 0 has order q.

If r = 4, then the signature of S/〈a〉 must be of the form (0; p, p, q, u)
(where p, q and u are divisors of n) and the signature of S/Aut(S, β) is
(0; p, 2q, 2u). The cone points ±1 have order p, the cone point 0 has order q
and the cone point ∞ has order u.

It follows from [BW] that S can be described by a cyclic n-gonal curve
of the form

C : yn = xα(x− 1)ρ(x+ 1)γ ,

where α, ρ, γ ∈ {1, . . . , n− 1} and gcd(n, α, ρ, γ) = 1.

We should note that r = 3 if and only if α + ρ+ γ ≡ 0 mod n and that
r = 4 otherwise. Moreover, also from [BW], p = n/gcd(n, ρ) = n/gcd(n, γ)
and q = n/gcd(n, α) and, if r = 4, then u = n/gcd(n, η), where η =
ξn − α − ρ − γ and ξ ∈ Z is so that (ξ − 1)n < α + ρ + γ ≤ ξn (set-
ting gcd(n, 0) := n).

In this model, we have P (x, y) = x, a(x, y) = (x, ωy), where ω = e2πi/n,
and (as Q(x) = x2) β(x, y) = x2.

As b(x) = −x and P ◦ b = b ◦ P , it follows that the involution b must be
of the form

b(x, y) =

(
−x, δy

(
x− 1

x+ 1

)(γ−ρ)/n)
, δn = (−1)α+ρ+γ .

We will distinguish the cases (i) ρ = γ and (ii) ρ 6= γ.

2.3. If γ = ρ, then ϑ1 = ϑ2 = ϑ3 = 0,

C : yn = xα(x− 1)ρ(x+ 1)ρ,

and b(x, y) = (−x, δy). As b2 is the identity, it follows that δ2 = 1, that is,
(−1)2(α+2ρ)/n = 1, from which we see that n necessarily divides α + 2ρ. In
this case m = 1 and Aut(S, β) ∼= Zn × Z2.

2.4. If γ 6= ρ, then we may assume without loss of generality that ρ ≤ γ.
As
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x− 1 =
yn

xα(x− 1)ρ−1(x+ 1)γ

we have

b(x, y) =

(
−x, δy1+γ−ρ

xα(γ−ρ)/n(x− 1)(ρ−1)(γ−ρ)/n(x+ 1)(γ+1)(γ−ρ)/n

)
.

It follows from the above that there exist non-negative integers ϑ1, ϑ2, ϑ3
such that

α(γ − ρ) = nϑ1, (ρ− 1)(γ − ρ) = nϑ2, (γ + 1)(γ − ρ) = nϑ3.

In this way

b(x, y) =

(
−x, δy1+γ−ρ

xϑ1(x− 1)ϑ2(x+ 1)ϑ3

)
.

As b2 is the identity, the equality

(x, y) = b2(x, y) =

(
x,

δ2+γ−ρ(−1)ϑ1+ϑ2+ϑ3yy(1+γ−ρ)
2−1

xϑ1(2+γ−ρ)(x− 1)ϑ3+ϑ2(2+γ−ρ)(x+ 1)ϑ3+ϑ2(2+γ−ρ)

)
ensures that

y(1+γ−ρ)
2−1 = xϑ1(2+γ−ρ)(x− 1)ϑ3+ϑ2(2+γ−ρ)(x+ 1)ϑ3+ϑ2(2+γ−ρ)

and
δ2+γ−ρ = (−1)ϑ1+ϑ2+ϑ3 .

In particular, n necessarily divides (α+ ρ+ γ)(2 + γ− ρ) and bab = a1+γ−ρ,
that is, m = 1 + γ − ρ.

The formula for g is just a consequence of the Riemann–Hurwitz formula
(see also [BW]).

Remark 2.3. As already noted in the Introduction, there is no regular
Bely̆ı pair (S, β) of genus at least one with Aut(S, β) isomorphic to a dihedral
group. This also follows directly from the first part of the proof of Theorem
1.2. In fact, assume there is a regular Bely̆ı pair (S, β) with Aut(S, β) =
〈a, b : an = b2 = 1, bab = a−1〉. The involution b has as one of its fixed
points a cone point of S/〈a〉. This means that there is some ak (where
k ∈ {1, . . . , n − 1}) and some alb (where l ∈ {0, 1, . . . , n − 1}) which have
a common fixed point. This implies that 〈ak, alb〉 should be a cyclic group
(the stabilizer of any point of S in Aut(S) is known to be a cyclic group), a
contradiction.

3. An example in genus two. Let us describe those regular Bely̆ı
pairs (S, β) with

Aut(S, β) = 〈a, b : a8 = b2 = 1, bab = a3〉 ∼= Z8 o Z2.

By Theorem 1.2, taking n = 8 and m = 3, we know that there are
α, ρ, γ ∈ {1, . . . , 7} and non-negative integers ϑ1, ϑ2, ϑ3 such that
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gcd(8, α, ρ, γ) = 1, ρ ≤ γ, γ − ρ = m − 1 = 2, α + ρ + γ is even, α = 4ϑ1,
ρ − 1 = 4ϑ2 and γ + 1 = 4ϑ3, and (S, β) is equivalent to (C, η), where
η(x, y) = x2 and

C : y8 = xα(x− 1)ρ(x+ 1)γ .

By checking all possibilities, we only obtain the following two cases:

(α, ρ, γ) ∈ {(4, 1, 3), (4, 5, 7)},
that is, C must be one of the following two curves of genus 2:

C1 : y8 = x4(x− 1)(x+ 1)3, (α, ρ, γ) = (4, 1, 3),

C2 : y8 = x4(x− 1)5(x+ 1)7, (α, ρ, γ) = (4, 5, 7).

The group Aut(Cj , η) is generated by

a(x, y) = (x, ωy) (ω = eπi/4)

and

b(x, y) =


(
−x, −y3

x(x+ 1)

)
for C1,(

−x, y3

x(x− 1)(x+ 1)2

)
for C2.

In both cases, r = 3, p = 8, q = 2, Cj/〈a〉 has signature (0; 2, 8, 8)
and the regular Bely̆ı pair (S, β) has type (0; 2, 4, 8). There is only one,
up to isomorphism, Riemann surface of genus 2 whose reduced group of
automorphisms contains a group of order 8 (the quotient of Aut(S, β) by
the cyclic group generated by the hyperelliptic involution, [Ig]; in particular,
C1 and C2 are isomorphic). That surface has as full reduced group the
symmetric group S4 and it is described by the hyperelliptic curve

E : w2 = u(u4 − 1).

The Bely̆ı pair (S, β) is equivalent to (E, θ), where

θ(u,w) = (u8 − 2u4 + 1)/(−4u4),

and Aut(E, θ) is generated by the element

A(u,w) = (iu,
√
i w)

of order 8 and the involution

B(u,w) = (i/u, i
√
i w/u3).
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Universidad Técnica Federico Santa Maŕıa
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