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Abstract. The main result of this paper is that a map f : X → X which has
shadowing and for which the space of ω-limits sets is closed in the Hausdorff topology has
the property that a set A ⊆ X is an ω-limit set if and only if it is closed and internally
chain transitive. Moreover, a map which has the property that every closed internally
chain transitive set is an ω-limit set must also have the property that the space of ω-limit
sets is closed. As consequences of this result, we show that interval maps with shadowing
have the property that every internally chain transitive set is an ω-limit set of a point,
and we also show that topologically hyperbolic maps and certain quadratic Julia sets have
a closed space of ω-limit sets.

1. Introduction. Let f : X → X be a continuous map on a compact
metric space. For x ∈ X define ω(x) to be the set of limit points of the
orbit of x. Let ω(f) = {A ⊆ X : there exists x ∈ X such that ω(x) = A}
be the space of ω-limit sets of f with the Hausdorff topology. The structure
of ω(f) has been extensively studied, and a key question is “What types of
dynamical systems (X, f) have the property that ω(f) is closed?”. Blokh
et al. [9] proved that maps of the interval have the property that ω(f) is
closed. It has also been shown that maps of finite graphs have this property
[15]. But there are also many interesting examples with the property that
ω(f) is not closed. Often these are maps on topologically complicated spaces,
such as dendrites (locally connected tree-like spaces with branch points of
infinite order) [14]. The main theorem of the present paper implies that many
seemingly exotic dynamical systems (such as a family of locally connected
quadratic Julia sets) have the property that ω(f) is closed.

A closed set A is internally chain transitive provided for every ε > 0 and
for every x, y ∈ A there is an ε-pseudo-orbit {xi}ni=0 ⊆ A with x0 = x and
xn = y and d(f(xi), xi+1) < ε for 0 ≤ i < n. It is known that every ω-limit
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set is internally chain transitive [12], and in several settings the converse
has been established. Specifically, for several types of dynamical systems it
is known that

(†) A closed set A is internally chain transitive if, and only if, there is
some x with ω(x) = A.

It is known that (†) holds for shifts of finite type, topologically hyperbolic
maps, a family of quadratic Julia sets, and certain interval maps [5, 8, 7, 3].
In fact, in [4], Barwell et al. show that there are certain unimodal maps
of the unit interval for which (†) holds and certain other ones for which it
fails. They conjecture that the key to (†) on the interval is the property of
shadowing (defined in the next section). We prove this conjecture by showing
that if f : X → X is a map of a compact metric space with the shadowing
property and ω(f) is closed then f satisfies (†). Since interval maps have
the property that ω(f) is closed, the conjecture is true since in that setting
shadowing implies (†).

The main result of this paper has two broad implications. On one hand
we use property (†) to establish ω(f) is closed in several new settings, and
on the other we show that in the presence of shadowing, ω(f) being closed
implies (†).

In the next section we give some preliminary definitions and results. In
Section 3 we prove our main theorem, and we end in Section 4 with a list of
corollaries to the main result.

2. Preliminaries. For the purposes of this paper, a dynamical system
consists of a compact metric space X with metric d and a continuous map
f : X → X. For each x ∈ X, the ω-limit set of x under f is the set

ω(x) =
⋂
n∈N
{f i(x) : i ≥ n},

i.e. the set of limit points of the sequence 〈f i(x)〉i∈N. The ω-limit space of f
is the collection of subsets of X which are the ω-limit sets of some points
x ∈ X. We will use the symbol ω(f) to denote this set.

The properties of ω-limit sets have been extensively studied. It is well-
known that ω-limit sets for dynamical systems on compact metric spaces
are compact. The hyperspace of compact subsets of X is equipped with the
Hausdorff metric, which defines the distance between compact subsets A
and B of X as follows:

dH(A,B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

In [9], Blokh et al. demonstrated that for an interval map f : I → I,
the set ω(f) is closed with respect to this metric. It has also been shown
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that dynamical systems on circles [16] and on graphs [15] have the property
that ω(f) is closed. It is not, however, the case that ω(f) is always closed.
Examples of systems for which ω(f) is not closed include certain maps on
dendrites [14] and on the unit square [13].

For a dynamical system f : X → X, a sequence (finite or infinite) 〈xi〉 in
X is a δ-pseudo-orbit provided that for each i, d(f(xi), xi+1) < δ. A point
z ∈ X ε-shadows a δ-pseudo-orbit 〈xi〉 provided that d(f i(z), xi) < ε for
all i.

We say that a dynamical system f : X → X has shadowing provided
that for all ε > 0 there exists a δ > 0 such that each δ-pseudo-orbit is
ε-shadowed by some z ∈ X.

This property has also been studied extensively. It is known that there are
interval maps both with and without shadowing, and partial classifications
exist in this context [11]. It has also been demonstrated that shifts of finite
type [5] and Julia sets for certain quadratic maps [7, 8] all exhibit shadowing.

An interesting subject of inquiry is finding characteristics that classify
the ω-limit sets of a dynamical system. Characterizations of ω-limit sets
exist for a variety of classes of maps, including interval maps, circle maps,
shifts of finite type, and many others.

For a dynamical system f : X → X, a closed set A ⊆ X is said to be
internally chain transitive (ICT) if it has the property that for all a, b ∈ A
and all ε > 0, there exists a finite ε-pseudo-orbit 〈xi〉ni=0 in A with x0 = a
and xn = b. We will use ICT(f) to denote the collection of all ICT sets for f .

Hirsch et al. [12] showed that for any dynamical system f : X → X,
the ω-limit sets of f are ICT. It has also been demonstrated that in certain
types of dynamical systems, each ICT set is an ω-limit set. In particular, it
has been demonstrated that ω(f) = ICT(f) in shifts of finite type [5], Julia
sets for certain quadratic maps [7, 8], and certain classes of interval maps [3].

While it is known that there are systems which do not exhibit this ω(f)-
ICT(f) equality [5], in all of these systems, shadowing is either absent or
unknown. This has led to the conjecture that in systems which exhibit shad-
owing, ICT(f) = ω(f) [4].

In the next section, we will prove that shadowing, with the additional
assumption that ω(f) is closed, is sufficient to ensure that ω(f) = ICT(f).
We will also demonstrate that there are systems exhibiting ω(f) = ICT(f)
for which ω(f) is closed but which do not exhibit shadowing.

3. Main results

Theorem 1. Let f : X → X be a dynamical system which exhibits
shadowing and with ω(f) closed in the Hausdorff metric. Then f : X → X
has the property that ω(f) = ICT(f).
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Proof. Let f : X → X be a dynamical system with shadowing such that
ω(f) is closed. As stated earlier, it is always the case that ω(f) ⊆ ICT(f).
Hence, we need only demonstrate that each ICT set is the ω-limit set of
some x ∈ X.

Let A ⊆ X be ICT. Since A is internally chain transitive we can construct
a sequence 〈ai〉∞i=0 in A with the following properties:

(1) For all ε > 0 there exists M ∈ N such that 〈ai〉∞i=M is an ε-pseudo-
orbit.

(2) For all a ∈ A, ε > 0 and M ∈ N there exists n > M such that
d(an, a) < ε.

Such a sequence can be constructed as follows. Fix a ∈ A. Since A is inter-
nally chain transitive, for all ε > 0 we can find a finite ε-pseudo-orbit 〈aεi〉

nε
i=0

in A with a0 = a = anε and with the property that for all b ∈ A there is
an element in the pseudo-orbit within ε of b. Since each such pseudo-orbit
begins and ends at a, we can concatenate a sequence of 1/2i-pseudo-orbits
to construct the desired sequence. For a more detailed and explicit construc-
tion, see [6].

Notice that by construction,

A =
⋂
n∈N
{ai : i ≥ n}.

Now, since f has shadowing, for each ε > 0 let δε > 0 be such that each
δε-pseudo-orbit is ε-shadowed. Without loss of generality, we may assume
that δε < ε. As mentioned, there exists Mε such that 〈ai〉∞i=Mε

is a δε-pseudo-
orbit. Let zε ∈ X be a point that ε-shadows this pseudo-orbit.

We claim that dH(ω(zε), A) < 2ε. Consider x ∈ ω(zε). Then there exists a
sequence 〈nk〉 of natural numbers with x = lim fnk(zε). But for each fnk(zε)
there exists an element amk ∈ A in the sequence 〈ai〉 with d(fnk(z), ak) < ε.
Then

sup
x∈ω(zε)

inf
a∈A

d(x, a) < 2ε.

Now, let a ∈ A. Then there exists a sequence 〈nk〉 of natural numbers
with nk > Mε for all ε and d(ank , a) < ε/2. Additionally, since nk > Mε,
d(fnk−Mε(zε), ank) < ε. Then d(a, fnk(zε)) < 3ε/2 for all k. Finally, we
can find N ∈ N such that for every i > N there exists z′i ∈ ω(zε) such
that d(f i(zε), z

′
i) < ε/2. Putting all this together, we see that there exists a

natural number j > Mε +N for which

d(a, z′j) ≤ d(a, f i(zε)) + d(f i(zε), z
′
i) < 2ε.

In particular, then
sup
a∈A

inf
x∈ω(zε)

d(x, a) < 2ε,

and hence dH(ω(zε), A) < 2ε.
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This establishes that A is a limit point of ω(f). Since ω(f) is closed by
assumption, it follows that A is the ω-limit set of some z ∈ X.

It is important to note that the map ω : X → ω(f) defined by x 7→ ω(x)
is often not continuous, and so the z for which A = ω(z) in the proof above
is not explicitly related to the zε’s.

The converse of this theorem is not true, as seen in the following example.

Let f : [−1, 1]→ [−1, 1] be given as follows:

f(x) =


x3, −1 ≤ x ≤ 0,

2x, 0 ≤ x ≤ 1/2,

2(1− x), 1/2 ≤ x ≤ 1.

x

y

11/2−1

1

−1

Fig. 1. The graph of a function f : [−1, 1] → [−1, 1] which satisfies ICT(f) = ω(f) but
does not exhibit shadowing

Notice that f is the one-point union of two distinct simple dynamical sys-
tems, g = f |[−1,0] and h = f |[0,1], with well-understood dynamics.

In fact, since f([0, 1]) = [0, 1] and f([−1, 0]) = [−1, 0], it follows that W
is an ω-limit set for f if and only if it is an ω-limit set for g or h. The map
g is the slope 2 tent map, which is known to have shadowing and a closed
ω-limit space. Thus any ICT subset of [0, 1] is an ω-limit set. Furthermore,
it is clear by inspection that the only ICT subsets of [−1, 0] are {−1} and
{0}, both of which are ω-limit sets.

Finally, it is straightforward to check that an ICT subset of [−1, 1] must
be contained in either [0, 1] or [−1, 0], and so it follows that ICT(f) = ω(f).
Furthermore, as f is an interval map, by [9], ω(f) is closed.
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However, f does not exhibit shadowing. Let ε = 1/2. For all δ > 0, we
can construct a δ-pseudo-orbit that is not ε-shadowed as follows. Fix δ > 0.
Let x0 = −3/4, and let N ∈ N be such that fN (−3/4) ∈ (−δ/2, 0). Also,
choose k ∈ N such that 1/2k < δ/2.

For i ≤ N , let xi = f i(x). Then choose xN+1 = 1/2k ∈ (0, δ/2),
and for i > N + 1 define xi = f i−(N+1)(xN+1). By construction, this
is a δ-pseudo-orbit. Furthermore, xN+1+k = 1. However, for any point
z ∈ [−1, 1] with d(z, 3/4) < 1/2, the entire orbit of z lies in [−1, 0], and
thus d(fN+1+k(z), xN+1+k) > 1/2.

Although the converse of Theorem 1 is false, we do have a partial con-
verse.

Lemma 2. Let f : X → X be a dynamical system. Then ICT(f) is
closed.

Proof. Let A be a limit point of ICT(f). Then for all δ > 0 there exists
an ICT set Aδ for which dH(A,Aδ) < δ.

Let a, b ∈ A and fix ε > 0. By uniform continuity, let δ > 0 be such that
if d(p, q) < δ, then d(f(p), f(q)) < ε/3. Without loss of generality, assume
δ < ε/3.

Let a′ ∈ Aδ ∩Bδ(a) and b′ ∈ Aδ ∩Bδ(a). Since Aδ is ICT, let 〈yi〉ni=0 be
an ε/3-pseudo-orbit in Aδ with yi = a′ and yn = b′. Now, let x0 = a, xn = b
and for all 1 < i < n choose xi ∈ A ∩Bδ(yi).

We claim that 〈xi〉ni=0 is an ε-pseudo-orbit in A with a = x0 and b = xn.
By construction, we need only verify that for all i < n, d(f(xi), xi+1) < ε.
Indeed,

d(f(xi), xi+1) ≤ d(f(xi), f(yi)) + d(f(yi), yi+1) + d(yi+1, xi+1)

< ε/3 + ε/3 + ε/3.

Since such a pseudo-orbit exists for all a, b ∈ A and each ε > 0, we see that
A is ICT.

Since in all dynamical systems ICT(f) is closed and contains ω(f), it is
reasonable to ask if ICT(f) is the closure of ω(f). This turns out not to be
the case, as exhibited by the map on [−1, 1] obtained by the union of the
slope 2 tent map and its reflection across the origin as pictured in Figure 2.
As with the previous example, any ω-limit set of this map is contained in
either [−1, 0] or [0, 1]. However, the set {0} ∪ {±1/2i : i ∈ N} belongs to
ICT(f), and is clearly not a limit point of ω(f).

As an immediate consequence of Lemma 2, we have the following.

Lemma 3. Let f : X → X be a dynamical system for which ICT(f) =
ω(f). Then ω(f) is closed.

Combining this result with Theorem 1 yields the following corollary.
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x

y

11/2−1/2−1

1

−1

Fig. 2. The graph of a function g : [−1, 1] → [−1, 1] for which ICT(g) is not the closure
of ω(g)

Corollary 4. Let f : X → X be a dynamical system with shadowing.
Then ω(f) is closed if and only if ω(f) = ICT(f).

4. Implications. Since the properties of shadowing and ω(f) being
closed have been studied in a variety of contexts, the results of Corollary 4
can be applied to achieve a number of new results. These results fall into
one of two categories: systems for which it is known that ω(f) is closed, and
systems which are known to satisfy ICT(f) = ω(f).

As mentioned in Section 2, it has been shown that for continuous maps
on graphs, ω(f) is closed.

Corollary 5. Let f : G → G be a dynamical system on the graph G
which exhibits shadowing. Then ω(f) = ICT(f).

In particular, this applies to interval maps, so that Conjecture 1.2 of [4]
can be answered in the affirmative.

Corollary 6. Let f : I → I be a continuous map of the interval which
exhibits shadowing. Then ω(f) = ICT(f).

In that same paper, the authors conjecture that if f : X → X is a dynam-
ical system on a compact metric space with shadowing, then ω(f) = ICT(f).
This conjecture remains open, but as an application of Corollary 4, it has
the following equivalent formulation: if f : X → X is a dynamical system on
a compact metric space with shadowing, then ω(f) is closed. Additionally,
there are known sufficient conditions for shadowing in interval maps (see
[11]), so that this corollary can be applied directly to maps satisfying these
conditions.
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For maps on spaces more topologically complex than interval maps, it is
not true in general that ω(f) is closed. However, several authors have shown
that certain categories of systems satisfy ICT(f) = ω(f). In these systems,
we can apply Corollary 4 as well.

For example, it has been shown in [5] that shifts of finite type satisfy
ICT(σ) = ω(σ).

Corollary 7. In shifts of finite type, ω(σ) is closed.

Based on the work of Baldwin [1, 2], Barwell et al. [7, 8] demonstrated
that for certain parameters c ∈ C, the the map fc : C → C defined by
f(z) = z2 + c restricted to its Julia set Jc has ICT(fc) = ω(fc).

Corollary 8. Let c ∈ C be such that fc : C → C is a quadratic map
for which Jc is a dendrite. Then fc|Jc : Jc → Jc has ω(fc) closed.

Corollary 9. Let c ∈ C be such that fc has an attracting or parabolic
periodic point, and kneading sequence τ which is not an n-tupling. Then
fc|Jc : Jc → Jc has ω(fc) closed.

In both of these cases, Jc is hereditarily locally connected. While it is
not true that every dynamical system on a hereditarily locally connected
space satisfies ICT(f) = ω(f), it seems likely that these results will extend
to Julia sets of higher degree maps with similar structure.

Another application of Corollary 4 is to topologically hyperbolic maps.
A map f : X → X is topologically hyperbolic if it has shadowing and there
exists a constant c such that if 〈xi〉i∈Z and 〈yi〉i∈Z are full orbits through
x and y satisfying d(xi, yi) < c for all i ∈ Z, then x = y. In [6], the au-
thors prove that topologically hyperbolic systems satisfy ICT(f) = ω(f).
Applying Corollary 4 gives us the following:

Corollary 10. Let f : X → X by topologically hyperbolic. Then ω(f)
is closed.

The class of topologically hyperbolic maps includes Axiom A diffeomor-
phisms restricted to their non-wandering sets, shifts of finite type and topo-
logically Anosov maps [10], [17].
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