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A Z-set unknotting theorem for Nöbeling spaces

by

Michael Levin (Be’er Sheva)

Abstract. We prove a Z-set unknotting theorem for Nöbeling spaces. The theorem
is proved for a certain model of Nöbeling spaces.

1. Introduction. All spaces are assumed to be separable metrizable.
A manifold means a manifold with (possibly empty) boundary, and a tri-
angulated space means a locally finite simplicial complex which we identify
with the underlying space. For a triangulated space we consider only trian-
gulations compatible with the PL-structure of the space. All triangulated
manifolds are assumed to be combinatorial.

A complete n-dimensional metric space X is said to be an n-dimensional
Nöbeling space if the following conditions are satisfied:

(i) X is an absolute extensor in dimension n, that is, every map f : A→
X from a closed subset A of a space Y of dimension ≤ n extends
over Y ;

(ii) every map f : Y → X from a complete metric space Y of dimension
≤ n can be arbitrarily closely approximated by a closed embedding,
that is, for every open cover U of X there is a closed embedding
g : Y → X which is U-close to f (U-close means that for every
y ∈ Y there is an element of U that contains both f(y) and g(y)).

Examples of Nöbeling spaces can be constructed as follows.
Let us say that a point of a triangulated space is rational if it has rational

barycentric coordinates with respect to the triangulation of the space. By a
rational map f : M1 → M2 between triangulated spaces M1 and M2 with
the triangulations T1 and T2 respectively we mean a PL-map that sends the
rational points of M1 to the rational points of M2. Note that if f is a rational
embedding and f(x) is a rational point in M2 then x is rational in M1.
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Indeed, let ∆1 be a simplex of T1 containing x. Since f is a PL-embedding
there are a simplex ∆′1 linearly embedded into ∆1 and a simplex ∆2 ∈ T2
such that x ∈ ∆′1, dim∆′1 = dim∆1 and f linearly sends ∆′1 into ∆2. Then
the rational points of M1 contain a subset which is dense in ∆′1 and therefore
we can choose points x0, . . . , xn ∈ ∆′1, n = dim∆′1, which are rational in
M1 and in general position in ∆′1. Since f is rational and linear on ∆′1,
we see that f(x0), . . . , f(xn) are rational in M2 and in general position in
∆′2 = f(∆′1). Hence, since f(x) is rational in M2, f(x) can be represented
as f(x) = λ0f(x0) + · · ·+ λnf(xn), λ0 + · · ·+ λn = 1, with λ0, . . . , λn (not
necessarily non-negative) rational numbers. Then x = λ0x0 + · · ·+λnxn and
hence x is rational in M1.

Two triangulations of a space are said to be rationally equivalent if the
identity map is a rational map with respect to these triangulations. Let M
be a triangulated space. Every triangulation of M which is rationally equiv-
alent to the given triangulation of M is said to be a rational triangulation,
and the class of all rational triangulations is said to be the rational structure
of M . Denote by M(k) the subspace of M which is the complement of the
union of all the triangulated spaces of dimension ≤ k which are rationally
embedded in M .

The space M(k) admits the following interpretation. Let H be a Hilbert
space. A point in H is said to be rational if it has rational coordinates and
only finitely many of them are non-zero. A k-dimensional plane in H is
said to be rational if it is spanned by k + 1 rational points. Fix a rational
triangulation of M and embed M in H by an embedding which sends the
vertices to rational points and which is linear on every simplex of the trian-
gulation. Denote by K the union of all rational k-dimensional planes in H.
Then M(k) = M \K. Indeed, for every simplex ∆ of M and every rational
k-dimensional plane L, ∆ ∩ L admits a triangulation for which it is ratio-
nally embedded in M and therefore M(k) ⊂ M \K. Now let e : ∆′ → M
be a rational embedding of a simplex ∆′ of dimension ≤ k. Then there is
a (not necessarily rational) triangulation T of ∆′ such that e is linear on
every simplex of T . Since every ∆′′ ∈ T with dim∆′′ = dim∆′ has a dense
subset of points with rational barycentric coordinates with respect to ∆′,
we conclude that e(∆′′) is contained in a k-dimensional rational plane in H.
Thus e(∆′) ⊂ K and hence M(k) = M \K.

Let us state the following important fact, leaving its proof to the reader.

Theorem 1.1. Let M be a triangulated m-dimensional manifold , let
k ≥ 0 be an integer and let n = m − k − 1. If M is (n − 1)-connected and
m ≥ 2n+ 1 then M(k) is an n-dimensional Nöbeling space.

A space M(k) satisfying the assumptions of Theorem 1.1 will be called
a Nöbeling space modeled on a triangulated manifold.
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A subset A of a space X is called a Z-set if A is closed in X and
the identity map of X can be arbitrarily closely approximated by a map
f : X → X with f(X) ∩ A = ∅. Note that if X is an n-dimensional
Nöbeling space modeled on a manifold M and A ⊂ X is a Z-set in X then
X \ A is also an n-dimensional Nöbeling space modeled on the manifold
N = M \ the closure of A in M (the rational structure of N is defined
such that the inclusion is a rational map; see the beginning of Section 3 for
details).

The main result of this paper is the following Z-set unknotting theorem.

Theorem 1.2. Let X1 and X2 be n-dimensional Nöbeling spaces and
let A1 and A2 be Z-sets in X1 and X2 respectively such that X1 \ A1 and
X2 \ A2 are homeomorphic to n-dimensional Nöbeling spaces modeled on
triangulated manifolds. If A1 and A2 are homeomorphic then any homeo-
morphism between A1 and A2 can be extended to a homeomorphism between
X1 and X2.

In fact, we will prove a slightly stronger version of Theorem 1.2 which is
presented in Theorem 3.1. Z-set unknotting theorems similar to Theorem 1.2
were also proved using different approaches by A. Nagórko [9] and for a
restricted class of Z-sets by S. Ageev [1], [2], [3]. The proof of Theorem 1.2
is self-contained and relies only on well-known facts of PL-topology [6], [11],
Nöbeling spaces [5] and elementary properties of partitions presented at the
very beginning of [4]. Some ideas of the proof of Theorem 1.2 came from [7].

The results of this paper along with some additional arguments apply
to validate the characterization theorem for Nöbeling saying that any two
Nöbeling spaces of the same dimension are homeomorphic (see [8]). The
characterization theorem implies that the assumptions on the complements
X1\A1 and X2\A2 in Theorem 1.2 are automatically satisfied and therefore
can be dropped.

The characterization theorem for Nöbeling spaces was also proved by
Nagórko [9] and Ageev [1], [2], [3]. Note that both a Z-set unknotting the-
orem and the characterization theorem were proved by Nagórko in a more
general setting of Nöbeling manifolds.

I would like to thank the referee of this paper for valuable remarks and
a simplification in Section 3.

2. Preliminaries

2.1. General. Let M be a triangulated manifold. The geometric interior
IntM of M is the set of points having a neighborhood PL-homeomorphic
to an Euclidean space of dimension dimM . The set ∂M = M \ IntM is the
geometric boundary of M .
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A triangulated space (manifold) PL-embedded in M is said to be a PL-
subspace (PL-submanifold) of M . An open subset of a triangulated space
is always considered with the induced PL-structure for which the inclusion
is a PL-map. Note that an open subset of a PL-submanifold of M is also a
PL-submanifold of M .

A subset P of M is said to be a PL-subcomplex of M if there is a
triangulation of M for which P is a subcomplex. A subset R of M is said
to be a PL-presented subset of M if there are closed subsets R1 ⊂ · · · ⊂ Rn
of M such that Rn = R, R1 is a PL-subcomplex of M and Ri+1 \ Ri is a
PL-subcomplex of M \Ri, i = 1, . . . , n− 1.

A collection P of subsets of M is said to be a decomposition of M if P is
a locally finite cover of M and the elements of P are PL-subcomplexes of M .
By a finite intersection of a decomposition P we mean an intersection of
finitely many elements of P (the elements of P are also considered as finite
intersections). Note that since P is locally finite, any non-empty intersection
of elements of P must be a finite intersection of P. It is clear that for a PL-
submanifold N of M , the restriction P|N = {P ∩N : P ∈ P} of P to N is
a decomposition of N .

A decomposition P of M is said to be a partition of M if each finite inter-
section of P is a PL-manifold, the geometric interiors of any two non-equal
finite intersections are disjoint and for every non-empty finite intersection
P = P0 ∩ · · · ∩ Pt of distinct elements P0, . . . , Pt ∈ P, dimP = dimM − t.

A decomposition P of M is said to be a partition on a PL-submanifold
N of M if P|N is a partition of N (in this case we also say that P forms a
partition on N or P restricted to N is a partition).

The PL-notions defined above can be translated to the corresponding
rational notions by referring to the rational structure of M instead of the
PL-structure (see Section 1). Thus P ⊂ M is a rational subspace if there
is a triangulation of P for which the inclusion is a rational map, P is a
rational subcomplex if there is a rational triangulation of M for which P
is a subcomplex, P is a rational decomposition of M if the elements of P
are rational subcomplexes etc. Note that an open subset of M is a rational
subset of M and it is always considered with the rational structure for
which the inclusion is a rational map. Thus the rationally presented sets are
well-defined as well.

A subset P of M is q-connected , q ≥ 0, if πi(P ) is trivial for every
0 ≤ i ≤ q. We will say that P is l-co-connected , l ≥ 0, if P is (dimP − l)-
connected (we assume that P is q-connected for every q < 0 and P is l-co-
connected for every l > dimP ). A partition P is said to be l-co-connected
if every finite intersection of P is l-co-connected.

A map f : X → M is said to be in general position with a triangu-
lation of M if, for every simplex ∆ of the triangulation, dim f−1(∆) ≤
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dimX+dim∆−dimM . Every map from X to M can be arbitrarily closely
approximated by a general position map. Moreover, let F be closed in X
and a map f : X →M restricted to F be in general position. Then f can be
arbitrarily closely approximated by a general position map g : X →M such
that g coincides with f on F and g(X \ F ) ⊂ IntM . A map f : X → M is
said to be in general position with a decomposition of M if it is in general
position with a triangulation underlying this decomposition (a triangulation
of M for which the elements of the decomposition are subcomplexes).

An n-dimensional cube Bn is a set of the form Bn = {(x1, . . . , xn) :
−ri ≤ xi ≤ ri, ri > 0, i = 1, . . . , n} in the Euclidean space Rn. Thus we
always assume that the origin O is at the center of Bn. Considering the
product Bn × Bm of two cubes we identify Bn and Bm with Bn × O and
O ×Bm respectively.

Let A and B be collections of subsets of a set X and let C ⊂ X. We
define st(C,A) =

⋃
{A : A ∈ A, A ∩ C 6= ∅}, st(A,B) = {st(A,B) : A ∈ A},

stA = st1A = st(A,A) and by induction sti+1A = st(stiA).

2.2. Elementary properties of partitions. If P is a partition of a trian-
gulated manifold M then P|V is a partition of V for every open V ⊂ M .
Let P be a decomposition of a triangulated manifold M and let V be an
open cover M such that P|V is a partition of V for every V ∈ V. Then P is
a partition of M .

Assume that M is a triangulated space. One can show that M × (0, 1)
or M × [0, 1) is a PL-manifold if and only if M is a PL-manifold. This
implies that for a triangulated manifold N , the product M × N is a PL-
manifold if and only if M is a PL-manifold. Thus if M and N are trian-
gulated manifolds and P is a decomposition of M , then the decomposition
P ×N = {P ×N : P ∈ P} is a partition of M × N if and only if P is a
partition of M .

The following properties are proved in [4] for compact manifolds, but
their proof also applies for the non-compact case.

Let P be a partition of a triangulated manifold M , let P =
⋃
{Pi :

i = 1, 2, . . .} be a splitting of P into disjoint subfamilies Pi and let Qi =⋃
{P : P ∈ Pi}. Then Q = {Q1, Q2, . . .} is a partition of M (see 1.1.5 of [4]).

In particular, any union of elements of a partition is a PL-manifold.
Let P be a partition of a triangulated manifold M . Then for every finite

intersection P of P, P ∩ ∂M ⊂ ∂P (see 1.1.9 of [4]).
Let M be an m-dimensional triangulated manifold, P a partition of

M and Q a decomposition of M such that for every finite intersection P
of P, Q|P is a partition of P . Then Q is a partition of M (see 1.1.11
of [4]). In particular, if M = M1 ∪M2 is a decomposition of M into two
m-dimensional PL-submanifolds M1 and M2 such that N = M1 ∩ M2 is
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an (m− 1)-dimensional PL-submanifold of both ∂M1 and ∂M2, and Q is a
decomposition of M such that Q|M1, Q|M2 and Q|N are partitions, then
Q is a partition of M .

2.3. A matching of partitions. Let P1 and P2 be partitions of trian-
gulated manifolds M1 and M2 respectively. A one-to-one correspondence
µ : P1 → P2 is said to be a matching of P1 and P2 if it induces a one-to-one
correspondence between non-empty intersections. This means that for every
finite intersection P = P0 ∩ · · · ∩ Pt of distinct elements P0, . . . , Pt ∈ P1,
µ(P ) = µ(P0) ∩ · · · ∩ µ(Pt) = ∅ if and only if P = ∅.

Assume that µ : P1 → P2 is a matching of partitions P1 and P2 such
that P2 is l-co-connected. Let F be a closed subset of X such that dimX ≤
mi − l + 1, mi = dimMi, i = 1, 2, and let fi : F → Mi be maps such
that f−1

1 (P ) = f−1
2 (µ(P )) for every finite intersection P of P1. Assume

that a map f ′1 : X → M1 extends f1 so that f ′1 is in general position
with P1. Then there is a map f ′2 : X → M2 such that f ′2 extends f2 and
(f ′1)−1(P ) = (f ′2)−1(µ(P )) for every finite intersection P of P1.

The required extension of f2 can be constructed by induction on the co-
dimension t = m2,m2 − 1,m2 − 2, . . . , 0 of the intersections of P2. Assume
that we have already extended f2 to f ′2 on Xt = the union of the preimages
of all the intersections of P2 of dimension ≤ m2−t such that f ′2 on Xt has the
required properties and let an intersection P of P2 be of dimension m2−t+1.
Then for XP = (f ′1)−1(µ−1(P )), dimXP ≤ dimX + dimµ−1(P ) − m1 =
dimX + dimP − m2. Since P is (dimP − l)-connected and dimP − l ≥
dimP − m2 + dimX − 1 ≥ dimXP − 1, f ′2 restricted to XP ∩ Xt can be
extended over XP so that f ′2(XP \Xt) ⊂ IntP .

Thus we can extend f2 to a map f ′2 with the required properties. This
extension will be called a transfer of the extension f ′1 via the matching µ.

Assume that µ : P1 → P2 is a matching of partitions on manifolds M1

and M2 respectively such that Pi is li-co-connected and m1 − l1 = m2 − l2
where mi = dimMi. Let n ≤ m1− l1 and let P1 ⊂ P ′1 be subsets of M1 such
that P1, P

′
1 are unions of elements of P1 and the inclusion P1 ⊂ P ′1 induces

the zero-homomorphism of the homotopy groups in dimensions ≤ n. Then
the inclusion P2 = µ(P1) ⊂ P ′2 = µ(P ′1) also induces the zero-homomorphism
of the homotopy groups in dimensions ≤ n. Indeed, take a map f2 : Sp → P2,
p ≤ n, from a p-dimensional sphere Sp into P2. Since P2 is a manifold we
can homotope f2 inside P2 to a general position map. Thus we assume that
f2 is a general position map and transfer this map via the matching µ to
f1 : Sp → P1. Extend f1 to a general position map f ′1 : Bp+1 → P ′1 of
a (p + 1)-dimensional ball Bp+1 such that Sp = ∂Bp+1 and once again
transfer this extension to an extension f ′2 : Bp+1 → P ′2 of f2. Thus f2 is
null-homotopic in P ′2.
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2.4. Improving connectivity of intersections—a summary. Assume that
m ≥ 2q + 1 and l = m− q + 2, M is a triangulated m-dimensional (q − 1)-
connected (= (l − 1)-co-connected) manifold and F is a PL-subcomplex of
M lying in IntM . Let P be a decomposition of M which forms an l-co-
connected partition on U = M \ F and let 0 ≤ t ≤ m− l + 1. Suppose that
the finite intersections of P|U of dimension > m− t are (l−1)-co-connected.
We will describe in Section 4 a procedure how to improve the connectivity
of the intersections of P|U of dimension m− t.

Namely, we will show how to modify M to an open subset M ′ ⊂ M ,
F to a PL-subcomplex F ′ of M ′ lying in IntM ′ and each P ∈ P to a
PL-subcomplex P ′ of M ′ so that R = M \ M ′ is a PL-presented subset
of M , dimR ≤ q, dimF ′ ≤ max{m − q − 1,dimF}, P ′ = {P ′ : P ∈ P}
is a decomposition of M ′ which forms an l-co-connected partition on U ′ =
M ′ \ F ′, the finite intersections of dimension ≥ m − t of P ′|U ′ are (l − 1)-
co-connected and the correspondence between P and P ′ defined by sending
P ∈ P to its modification P ′ ∈ P ′ induces a matching of partitions when P
and P ′ are restricted to U and U ′ respectively.

Moreover, if W is an open cover of M such that for every P ∈ P there
is W ∈ W such that st(P,P) ⊂ W and the inclusion of st(P,P) into W
induces the zero-homomorphism of the homotopy in dimensions ≤ q − 1,
then P ′ can be constructed so that for each P ∈ P and its modification
P ′ ∈ P ′, P ′ ⊂ st(P, st2W).

A detailed description of the procedure of improving connectivity of in-
tersections is given in Subsections 4.1–4.4.

2.5. Improving the total connectivity of a partition. Let M be a trian-
gulated (q − 1)-connected m-dimensional manifold with m ≥ 2q + 1 and let
l = m−q+2. Assume that F is a PL-subcomplex of M lying in IntM and P
is a decomposition of M such that dimF ≤ m−q and P is an l-co-connected
partition on U = M \ F .

Apply 2.4 to improve the connectivity of the elements of P|U to the
(l − 1)-co-connectivity, again apply 2.4 to the modified decomposition to
improve the connectivity of the intersections of dimension m − 1 (of the
modified decomposition restricted to the complement of the modified F ) to
the (l − 1)-co-connectivity and thus proceed on the dimension of the inter-
sections ≥ l − 1 until we modify M to an open subset M ′ ⊂ M , P to a
decomposition P ′ of M ′ and F to a PL-subcomplex F ′ of M ′ lying in IntM ′

such that M \M ′ is a closed PL-presented subset of M , dim(M \M ′) ≤ q,
dimF ′ ≤ max{m−q−1, dimF} ≤ m−q, P ′ is an (l−1)-co-connected parti-
tion on U ′ = M ′\F ′ and P admits a natural one-to-one correspondence to P ′
which sends each element of P to its modification in P ′ and which becomes a
matching of partitions when P and P ′ are restricted to U and U ′ respectively.
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2.6. Absorbing simplexes—a summary. Let M be a triangulated (q−1)-
connected m-dimensional manifold with m ≥ 2q + 1 and let l = m− q + 1.
Assume that F is a PL-subcomplex of M lying in IntM such that U = M \F
is l-co-connected (= (q−1)-connected) and dimF ≤ m−q, and assume that
P is a decomposition of M such that P is an l-co-connected partition on U .
In Section 4 we will describe a procedure of reducing the dimension of F
by 1 by absorbing the (m− q)-dimensional simplexes of F into U .

Namely, we will show how to modify M to an open subset M ′ of M ,
F to a PL-subcomplex F ′ of M ′ lying in IntM ′ and each P ∈ P to a
PL-subcomplex P ′ of M ′ so that F ′ = the (m − q − 1)-skeleton of F with
respect to some triangulation of F , R = M \M ′ is a PL-subcomplex of M ,
dimR ≤ q, P ′ = {P ′ : P ∈ P} is a decomposition of M ′, P ′ restricted
to U ′ = M ′ \ F ′ is an l-co-connected partition and the natural one-to-one
correspondence from P to P ′ defined by sending P ∈ P to its modification
P ′ ∈ P ′ becomes a matching of partitions when P and P ′ are restricted to
U and U ′ respectively.

Moreover, letW be an open cover of M having the following property: for
every P ∈ P there are W ∈ W and a set H such that st(P,P) ⊂ H ⊂W , H
is a union of elements of P and the inclusion st(P,P) ∩U ⊂ H ∩U induces
the zero-homomorphism of the homotopy groups in dimensions ≤ q − 1.
Then P ′ can be constructed so that for every P ∈ P and its modification
P ′ ∈ P ′, P ′ ⊂ st(P, st2W).

A detailed description of the procedure of absorbing simplexes is given
in Subsection 4.5 (which is based on Subsections 4.1 and 4.3).

2.7. Improving connectivity via a matching. Let Mi be li-co-connected
triangulated manifolds such that mi = dimMi ≥ 2(mi − li) + 3, i = 1, 2,
and m1 − l1 = m2 − l2. Suppose that P1 and P2 are partitions of M1 and
M2 respectively such that there is a matching between P1 and P2, and P1 is
l1-co-connected. We will show how to modify M2 to M ′2 and P2 to P ′2 so that
M ′2 is an open l2-co-connected submanifold of M2, M2\M ′2 is a PL-presented
closed subset of M2, dim(M2 \M ′2) ≤ l2 − 2 and P ′2 is an l2-co-connected
partition of M ′2 which admits a natural matching to P2 defined by sending
each element of P2 to its modification in P ′2.

By 2.5 modify M2 to M0
2 ⊂ M2, P2 to P0

2 and construct a subset F 0

of M0
2 so that M2 \M0

2 is a PL-presented closed subset of M2, dimM2 \M0
2

≤ 1, F 0 is a PL-subcomplex of M0
2 , dimF 0 ≤ m2 − 2, and P0

2 is a decom-
position of M0

2 such that P0
2 restricted to M0

2 \ F 0 is an m2-co-connected
partition that admits a matching to P2 and therefore to P1.

Now assume that for 0 ≤ t < m2 − l2 we have constructed M2t
2 , P2t

2

and F 2t such that that M2 \M2t
2 is a PL-presented closed subset of M2,

dim(M2\M2t
2 ) ≤ t+1, F 2t is a PL-subcomplex of M2t

2 , dimF 2t ≤ m2−t−2,
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and P2t
2 is a decomposition of M2t

2 such that P2t
2 restricted to M2t

2 \F 2t is an
(m2− t)-co-connected partition that admits a matching to P2 and therefore
to P1. Proceed to t+ 1 as follows.

By 2.5 modify M2t
2 to M2t+1

2 ⊂M2t
2 , P2t

2 to P2t+1
2 , F 2t to F 2t+1 so that

M2t
2 \M

2t+1
2 is a PL-presented closed subset ofM2t

2 , dim(M2t
2 \M

2t+1
2 ) ≤ t+2,

F 2t+1 is a PL-subcomplex of M2t+1
2 , dimF 2t+1 ≤ m2 − t − 2, P2t+1

2 is
a decomposition of M2t+1

2 , and P2t+1
2 restricted to M2t+1

2 \ F 2t+1 is an
(m2− t−1)-co-connected partition that admits a matching to P2t

2 restricted
to M2t

2 \ F 2t and therefore to P2 and P1.
Then since P1 is l1-co-connected on the l1-co-connected manifold M1 we

conclude by 2.3 that M2t+1
2 \F 2t+1 is (m2− t− 1)-co-connected. Therefore,

by 2.6, M2t+1
2 , F 2t+1 and P2t+1

2 can be modified to M2t+2
2 , F 2t+2 and P2t+2

2

respectively such that M2t+2
2 ⊂M2t+1

2 , M2t+1
2 \M2t+2

2 is a PL-subcomplex
of M2t+1

2 , dim(M2t+1
2 \M2t+2

2 ) ≤ t+ 2, F 2t+2 is a PL-subcomplex of M2t+2
2 ,

dimF 2t ≤ m2−t−3, P2t+2
2 is a decomposition ofM2t+2

2 , and P2t+2
2 restricted

to M2t+2
2 \ F 2t+2 is an (m2 − t − 1)-co-connected partition that admits a

matching to P2t+1
2 restricted to M2t+1

2 \ F 2t+1 and therefore to P2 and P1.
Then for t = m2 − l2 we have M ′2 = M2t

2 \ F 2t, and P ′2 = P2t
2 restricted

to M ′2 will have the required properties (note that m2 − l2 + 1 ≤ l2 − 2 and
therefore dim(M2 \M ′2) ≤ l2 − 2).

2.8. Moving to a rational position. Let M be a triangulated manifold
with the rational structure determined by a triangulation T (see Section 1).
Assume that T ′ is a (not necessarily rational) triangulation of M . We will
show that the identity map of M can be arbitrarily closely approximated
by a PL-homeomorphism f : M → M such that for very ∆′ ∈ T ′, f(∆′) is
a rational subcomplex of M .

Embed M into a Hilbert space by a map which is linear on every simplex
of T and refer to this Hilbert space when properties of linearity are used. Let
T ′′ be a triangulation of M such that T ′′ is a subdivision of both T and T ′,
and the simplexes of T ′′ are linear. Approximate every vertex v of T ′′ by
a rational point pv (= a point with rational barycentric coordinates with
respect to T ) such that for every simplex ∆ of T , pv ∈ ∆ if and only if
v ∈ ∆. The approximation of the vertices of T ′′ can be extended to the
PL-map f : M → M sending each vertex v of T ′′ to pv so that f is linear
on each simplex of T ′′. If pv is sufficiently close to v for every vertex v ∈ T ′′
then the map f is a PL-homeomorphism that can be chosen to be arbitrarily
close to the identity map. Clearly, f sends every simplex of T ′′ to a rational
simplex and therefore f sends every simplex of T ′ to a rational subcomplex
of M .

Let M be an open subset of a space Y and d a metric on Y . We can
assume that the homeomorphism f : M → M constructed above satisfies
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d(y, f(y)) ≤ d(y, Y \M) for every y ∈ M . Then f extends to the homeo-
morphism g : Y → Y such that g(y) = y if y ∈ Y \M and g(y) = f(y)
if y ∈ M . Now assume that R is a PL-presented subset of M and let
R1 ⊂ R2 ⊂ · · · ⊂ Rn be closed subsets of M such that R = Rn, R1

is a PL-subcomplex of M and Ri+1 \ Ri is a PL-subcomplex of M \ Ri,
i = 1, . . . , n− 1. Let us show that the identity map of Y can be arbitrarily
closely approximated by a homeomorphism g : Y → Y such that g(y) = y
for every y ∈ Y \M , g(R) is a closed rationally presented subset of M , and
g restricted to M \R is a PL-homeomorphism to M \ g(R) sending P to a
rational decomposition of M \ g(R) (note that the rational structure of M
induces the corresponding rational structure on open subsets of M such that
the inclusions are rational maps).

Approximate the identity map of Y by a homeomorphism g1 : Y → Y
such that g1 does not move the points of Y \M , g1 restricted to M is a
PL-homeomorphism and g1(R1) is a rational subcomplex of M . Approxi-
mate g1 by a map g2 : Y → Y such that g2 does not move the points of
(Y \M) ∪ g1(R1), g2 restricted to M \ g1(R1) is a PL-homeomorphism and
g2(g1(R2 \R1)) is a rational subcomplex of M\g1(R1). Proceed by induction
and construct for every i = 1, . . . , n−1 an approximation of the identity map
of Y by a homeomorphism gi+1 : Y → Y such that gi+1 does not move the
points of (Y \M)∪(gi◦· · ·◦g1)(Ri), gi+1 restricted to M \(gi◦· · ·◦g1)(Ri) is
a PL-homeomorphism and (gi+1◦· · ·◦g1)(Ri+1\Ri) is a rational subcomplex
of M \ (gi ◦ · · · ◦ g1)(Ri). Finally, construct gn with the additional property
that g = gn ◦ · · · ◦ g1 sends P to a rational decomposition of M \ g(R). Then
g will have the required properties.

3. Proof of the Z-set unknotting theorem. A map ψ : X → Γ
between two spaces X and Γ is said to be UV n−1 if ψ(X) is dense in Γ
and, for every point p ∈ Γ and every neighborhood U of p, there is a smaller
neighborhood V of p such that the inclusion of ψ−1(V ) into ψ−1(U) induces
the zero-homomorphism of the homotopy groups in dimensions ≤ n− 1. In
this section we will prove the following Z-set unknotting theorem which is
slightly stronger than Theorem 1.2.

Theorem 3.1. Let X1 and X2 be n-dimensional Nöbeling spaces and
let A1 and A2 be homeomorphic Z-sets in X1 and X2 respectively such
that X1 \A1 and X2 \A2 are homeomorphic to Nöbeling spaces modeled on
triangulated manifolds. Then every homeomorphism fA : A1 → A2 extends
to a homeomorphism fX : X1 → X2.

Moreover , for any UV n−1-maps ψ1 : X1 → Γ and ψ2 : X2 → Γ to a
space Γ and every open cover O+ of Γ there is an open cover O− of Γ
such that O− does not depend on A1, A2 and fA and O− has the following
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property : if ψ1 restricted to A1 and ψ2 ◦ fA are O−-close then fX can be
constructed so that ψ1 and ψ2 ◦ fX are O+-close.

The proof of Theorem 3.1 is based on a few propositions; before each
proposition or its proof we present notions, notations and properties used
in that proposition.

Let M be a triangulated space and let P be either a rational subcom-
plex or an open subset of M . We always consider P with the induced ratio-
nal structure for which the inclusion of P into M is a rational map. Then
there are rational triangulations of P and M respectively such that the sim-
plexes of P are linearly and rationally embedded in the simplexes of M .
Now we can derive from the interpretation of M(k) given in Section 1 that
P ∩M(k) = P (k).

Let M be a triangulated manifold. It can also be derived from the inter-
pretation of M(k) given in Section 1 that M \M(k) is a countable union
of simplexes of dimension ≤ k which are PL-embedded in M . Then for an
integer q such that dimM ≥ q + k every map f from a (q − 1)-dimensional
sphere Sq−1 to M can be arbitrarily closely approximated by a map into
M(k) and therefore f can be homotoped into M(k). In particular, this im-
plies that if M(k) is (q − 1)-connected and M ′ is an open subset of M
such that M(k) ⊂ M ′ then, since M ′(k) = M(k), we deduce that M ′ is
(q − 1)-connected as well.

Let A be a closed subset of a space X. A collection C of subsets X \A is
said to properly approach A if for every sequence {Cj} of elements of C such
that there is a sequence of points xj ∈ Cj converging to a point a ∈ A we
have limj→∞Cj = a (that is, limj→∞ yj = a for every sequence {yj} with
yj ∈ Cj). Note that if C properly approaches A then the closure in X of no
C ∈ C intersects A. Also if collections C and C′ of subsets of X \A properly
approach A then st(C, C′) properly approaches A as well.

Let X be a subspace of a space Y . Saying that U is an open cover of X
we mean that U is a cover of X by subsets open in X.

Let X be a dense subset of a space Y and U an open subset of X. By the
extension UY of U to Y we understand the largest open subset UY of Y such
that U = UY ∩X. By the extension to Y of a collection U of open subsets of
X we mean the collection of the extensions to Y of the elements of U . Note
that if A is a closed subset of X such that A is also closed in Y , and U is a
collection of open subsets of X \A such that U properly approaches A, then
for the extension UY of U to Y we deduce that UY properly approaches A
as well.

Let A1 and A2 be homeomorphic subsets of spaces Y1 and Y2 respectively,
let fA : A1 → A2 be a homeomorphism and let µ : C1 → C2 be a one-to-
one correspondence between collections of subsets of Y1 \ A1 and Y2 \ A2
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respectively. We say that µ agrees with fA : A1 → A2 if for every sequence
Cj , j = 1, 2, . . . , of elements of C1, Cj converge to a ∈ A1 in Y1 (as j →∞)
if and only µ(Cj) converge to fA(a) in Y2. It is easy to check that if C1
and C2 properly approach A1 and A2 respectively, µ agrees with fA and a
collection C of subsets of Y1 \ A1 properly approaches A1, then µ(st(C, C1))
properly approaches A2, where µ(st(C, C1)) = {µ(st(C, C1)) : C ∈ C} and
µ(st(C, C1)) =

⋃
{µ(C ′) : C ′ ∈ C1, C ′ ∩ C 6= ∅}.

Let Xi, i = 1, 2, be subsets Xi ⊂ Yi such that Xi is dense in Yi and let
ψi : Xi → Γ be maps to a space Γ and O an open cover of Γ . We say that
µ, ψ1 and ψ2 agree with respect to O if for every C ∈ C1 there is an element
Ω ∈ O such that C is contained in the extension of ψ−1

1 (Ω) to Y1 and µ(C)
is contained in the extension of ψ−1

2 (Ω) to Y2

Let M be a triangulated manifold. Then (∂M)(k) is a Z-set in M(k).
Indeed, take an open cover U of M(k) and let UM be the extension of U
to M and M ′ the union of the elements of UM . The identity map of M ′ can
be arbitrarily closely approximated by a PL-embedding f of M ′ into IntM ′

such that f(M ′) is a PL-subcomplex of M ′. Then, by 2.8, we may assume
that f is rational and UM -close to the identity map of M ′, and hence f
induces a U-close map from M(k) into (IntM)(k).

Suppose that A is a closed subset of X and X \ A is embedded in a
space M . Let us show that there are an open subset V of M containing
X \A and a space Y such that X and V embed into Y so that Y = X ∪ V ,
A = Y \ V and A is closed in Y .

Let H be a Hilbert space. Consider the space H × [0, 1]. Let U be an
open cover of H× (0, 1] such that U properly approaches H×{1}. Take any
embedding e : X → H × [0, 1] such that e(A) ⊂ H × {1} and e(X \ A) ⊂
H × (0, 1]. By Walsh’s lemma e|X \ A can be U-closely approximated by a
map gX\A : X \A→ H × (0, 1] such that gX\A extends over an open subset
X \A ⊂ V of M to a map gV : V → H×(0, 1]. Approximate gV by a U-close
embedding hV : V → H × (0, 1] and define h : Y = A ∪ V → H × [0, 1] by
h(y) = e(y) if y ∈ A and h(y) = hV (y) if y ∈ V . Now we can transfer the
topology of h(Y ) to Y and it is easy to see that then Y has the required
properties.

Assume that Xi and Ai, i = 1, 2, satisfy the assumptions of Theorem 3.1,
let fA : A1 → A2 be a homeomorphism and let Xi \ Ai be homeomorphic
to Mi(ki), where Mi is an li-co-connected triangulated manifold such that
n = mi− li+1, ki = li−2 and mi ≥ 2(mi− li)+3 for n = dimX1 = dimX2

and mi = dimMi (note that by Theorem 1.1, Mi(ki) is an n-dimensional
Nöbeling space). Identify Xi \ Ai with Mi(ki) and, by the property proved
above, replace Mi by an open subset of Mi containing Mi(ki) and assume
that Xi and Mi are subspaces of a space Yi such that Yi = Xi ∪Mi, Ai =
Yi \Mi and Ai is closed in Yi.
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Proposition 3.2. Let Xi, Ai, fA, Yi,Mi, ki, li,mi, n be as above. Then
for every l1-co-connected rational partition P1 of an open subset M ′1 of M1

such that M1(k1) ⊂ M ′1, P1 properly approaches A1 and P1 contains no
finite intersections of dimension ≤ l1−2, there are an open subset M ′2 of M2

and an l2-co-connected rational partition P2 of M ′2 such that M2(k2) ⊂M ′2,
P2 properly approaches A2, P2 contains no finite intersections of dimension
≤ l2−2 and P1 and P2 admit a matching µ : P1 → P2 which agrees with fA.

Moreover , for any UV n−1-maps ψ1 : X1 → Γ and ψ2 : X2 → Γ to a
space Γ and every open cover O+ of Γ there is an open cover O− of Γ
which refines O+ such that O− does not depend on A1, A2 and fA and O−
has the following property : if ψ1|A1 and ψ2◦fA are O−-close and P1 refines
the extension of ψ−1

1 (O−) to Y1 then M ′2, P2 and µ can be constructed so
that µ, ψ1 and ψ2 agree with respect to O+.

Let us show how Theorem 3.1 can be derived from Proposition 3.2.

Proof of Theorem 3.1. Assume that the conclusion holds in dimensions
≤ n − 1 and let us prove it in dimensions n. Fix complete metrics on X1

and X2 and let ε > 0. Take an open cover U of X1 \A1 of meshU < ε such
that U properly approaches A1. Denote by UM the extension to M1 of U and
let M ′1 be the union of the elements of UM . Take a rational triangulation of
M ′1 such that for the partition P1 of M ′1 formed by the stars of the vertices
with respect to the first barycentric subdivision of the triangulation, P1

refines UM . Then P1 is a rational partition, P1 properly approaches A1

and for every P ∈ P1, diamP ∩ X1 < ε. Since the intersections of P1 of
dimension ≤ l1−2 do not intersect M1(k1) we can remove them from M ′1 and
the elements of P1, and assume that P1 has no non-empty intersections of
dimension ≤ l1−2. Note that all the intersections of P1 remain contractible
and hence P1 is l1-co-connected.

By Proposition 3.2 there are an open submanifold M ′2 of M2 and an l2-
co-connected rational partition of M ′2 such that M2(k2) ⊂M ′2, P2 properly
approaches A2 and P2 admits a matching µ : P1 → P2 which agrees with
fA : A1 → A2.

We are going to construct homeomorphisms fP : P (k1) → µ(P )(k2)
for all finite intersections P of P1 of dimension ≤ m1 − 1 which will agree
on the common intersections. Let t ≤ m1 − 1 and assume that for every
finite intersection P of dimension ≤ t − 1 we already constructed fP . Take
an intersection P of P1 such that dimP = t. By Theorem 1.1, P (k1) is a
Nöbeling space of dimension ≤ n − 1. Note that for the union P ′ of the
intersections of P1 of dimension < t that are contained in P , P ′ lies in
∂P and hence P ′(k1) is a Z-set in P (k1). Define the homeomorphism fP ′ :
P ′(k1)→ µ(P ′)(k2) by the homeomorphisms of the intersections forming P ′.
According to our assumption Theorem 3.1 holds in dimensions ≤ n − 1.
Therefore fP ′ can be extended to a homeomorphism fP : P (k1)→ µ(P )(k2).
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Recall that P1 and P2 properly approach A1 and A2 respectively and
the matching µ agrees with fA. Then a homeomorphism extending fX be-
tween X1 and X2 can be obtain by pasting homeomorphisms from P (k1) to
µ(P )(k2) for P ∈ P1 which extend the already defined homeomorphisms on
intersections of P1 of dimension ≤ m1 − 1.

Fix P ∈ P1 and let P ′ be the union of the intersections of P1 of dimen-
sion ≤ m1− 1 that are contained in P . The homeomorphism fP ′ : P ′(k1)→
µ(P ′)(k2) is a homeomorphism of Z-subsets of P (k1) and µ(P )(k2) respec-
tively. Therefore we can repeat for P and µ(P ) the same procedure that we
did for M1 and M2 but this time in the opposite direction from µ(P ) to P ,
first “splitting” µ(P ) into small pieces and then defining the corresponding
splitting of P .

Thus going back and forth we are able after each iteration to extend fA
to a partial homeomorphism of larger and larger parts of X1 and X2 and
simultaneously to restrict for each point of X1 and X2 the set to which this
point can be sent under a possible extension of f . Finally, passing to the limit
and using the completeness of X1 and X2 we get the desired homeomorphism
fX : X1 → X2. It is clear from the construction that fX(P∩X1) = µ(P )∩X2

for every P ∈ P1.
Now let ψi : Xi → Γ , i = 1, 2, be UV n−1-maps to a space Γ and

O+ an open cover of Γ . Assume that an open cover O− of Γ satisfies
the conclusions of Proposition 3.2 and assume that ψ1|A and ψ2 ◦ fA are
O−-close. Then we can take the cover U of X1 \ A1 such that U refines
ψ−1

1 (O−) and will find that P1 refines the extension of ψ−1
1 (O−) to Y1.

Now, by Proposition 3.2, we can construct M ′2, P2 and µ so that µ, ψ1

and ψ2 agree with respect to O+. Then for every P ∈ P1 there is an el-
ement of O+ containing both ψ1(P ∩ X1) and ψ2(µ(P ) ∩ X2) and, since
fX(P ∩ X1) = µ(P ) ∩ X2 for every P ∈ P1, we see that the maps ψ1 and
ψ2 ◦ fX are O+-close.

In the proof of Proposition 3.2 we will use the following propositions and
facts.

A map φ : Y → X is said to be a Z-embedding if φ is a closed embedding
of Y into X and φ(Y ) is a Z-set in X. Let X be a Nöbeling space. It is
well-known that if Y is a complete space of dimension ≤ n, A is a closed
subset of Y and f : A → X is a Z-embedding, then every extension of f
over Y can be arbitrarily closely approximated by an extension which is a
Z-embedding. It is also well-known (and can be derived from the previous
fact) that for every Z-set A ⊂ X the identity map on X can be arbitrarily
closely approximated by a Z-embedding whose image misses A. Another
simple property of Z-sets says that if a closed subset A of X is a countable
union of Z-sets then A is a Z-set as well.
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We say that for two collections V and U of subsets of a space X, V is
an (n − 1)-refinement of U , written V ≺n−1 U , if for every V ∈ V there
is U ∈ U such that V ⊂ U and the inclusion of V into U induces the
zero-homomorphism of the homotopy groups in dimensions ≤ n− 1.

Proposition 3.3. Let X be an n-dimensional Nöbeling space and let
ψ : X → Γ be a UV n−1-map. Then for every open cover U+ of Γ there is
an open cover U− of Γ having the following property : for every complete
space Y of dimension ≤ n, a closed subset A of Y , a map f : Y → Γ and
a Z-embedding φA : A → X such that f restricted to A and ψ ◦ φA are
U−-close, we can extend φA to a Z-embedding φ : Y → X such that f and
ψ ◦ φ are U+-close.

Proof. Let open covers U0,U1, . . . ,Un+2 of Γ be such that stU i refines
U i+1, stψ−1(U i) ≺n−1 ψ

−1(U i+1), 0 ≤ i < n+2, and Un+2 = U+. Note that
since ψ(X) is dense in Γ we have stψ−1(U i) = ψ−1(stU i). Set U− = U0 and
assume that f |A and ψ◦φA are U0-close. Since dimY ≤ n there is a surjective
map p : Y → Y ′ such that p−1(p(A)) = A, p|A is a homeomorphism between
A and p(A), K = Y ′ \ p(A) is a simplicial complex of dimension ≤ n, the
collection T of the simplexes of K properly approaches A and p−1(T ) refines
f−1(U0). Identify A with p(A) and consider A as a subset of Y ′.

We will construct a continuous extension φ′ of φA over Y ′. Fix a metric
d on Y ′. For every 0-dimensional simplex (= vertex) ∆ of K choose a point
a∆ ∈ A such that d(a∆, ∆) ≤ 2d(A,∆). If there is U ∈ U0 such that
p−1(∆) ⊂ f−1(U) and φA(a∆) ∈ ψ−1(U) then define φ′(∆) = φA(a∆),
otherwise choose U ∈ U0 such that p−1(∆) ⊂ f−1(U) and define φ′(∆)
as any point in ψ−1(U). It is easy to see that, since f |A and ψ ◦ φA are
U0-close, φ′ is continuous on A∪K0, where Ki is the i-skeleton of K (= the
union of the simplexes of dimension ≤ i). Assume that φ′ is already defined
on A ∪ Ki, i ≤ n − 1, and such that the images of the simplexes of K of
dimension ≤ i refine ψ−1(U i).

Let ∆ be an (i + 1)-dimensional simplex of K. Fix a metric on X
and define d∆ = inf{diamC : φ′(∂∆) ⊂ C, φ′|∂∆ is null-homotopic in C
and there is U ∈ U i+1 such that C ⊂ ψ−1(U)}. Since stψ−1(U i) ≺n−1

ψ−1(U i+1) we conclude that d∆ is well-defined. Extend φ′ from ∂∆ to ∆
so that diamφ′(∆) ≤ d∆ + d(A,∆) and φ′(∆) is contained in an element
of ψ−1(U i+1). Thus we extend φ′ over A ∪Ki+1 and this extension is con-
tinuous. Indeed, if a sequence ∆j of (i + 1)-dimensional simplexes of K
converges to a point a ∈ A then φ′(∂∆j) converges to φ′(a) and hence d∆j

converges to 0 because X is locally (n−1)-connected. Then φ′(∆j) converges
to φ′(a) and hence φ′ is continuous on A ∪Ki+1. Clearly, the images of the
(i+1)-dimensional simplexes of K refine ψ−1(U i+1). Thus, by induction, we
can extend φA to φ′ : Y ′ = A ∪K → X such that φ′(T ) refines ψ−1(Un).
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Since f(p−1(∆)) and ψ(φ′(∆)) are U0-close for every 0-dimensional sim-
plex ∆ of K, and since p−1(T ) refines f−1(U0) and φ′(T ) refines ψ−1(Un),
we deduce that f and ψ ◦ φ′ ◦ p are st(U0,Un)-close, and hence f and
ψ ◦ φ′ ◦ p are Un+1-close. Now we can approximate φ′ ◦ p by a Z-embedding
φ : Y → X which coincides with φA on A such that f and ψ◦φ are Un+2-close
(= U+-close) and we are done.

Let X be an n-dimensional Nöbeling space and U an open cover of X. It
is well-known (and can be easily shown) that if two maps from a space Y of
dimension ≤ n − 1 into X are sufficiently close then they are U-homotopic
(= there is a homotopy H : Y × [0, 1] → X which connects the maps such
that for every y ∈ Y , H(y × [0, 1]) is contained in an element of U).

Proposition 3.4. Let X be an n-dimensional Nöbeling space, let A be
a Z-set in X and let C be a cover of X \ A that properly approaches A.
Then there is an open cover V of X \A such that V properly approaches A
and C ≺n−1 V. Moreover , if W is an open cover of X such that C ≺n−1 W
then V can be constructed so that V refines st3W.

Proof. Fix a metric d on X such that d(x, y) ≤ 1 for every x, y ∈ X.
If C ∈ C is not a singleton, write dC for the infimum of diam(G) for open
subsets G of X such that C ⊂ G, G is contained in an element ofW and the
inclusion C ⊂ G induces the zero-homomorphism of the homotopy groups in
dimensions ≤ n− 1. If C ∈ C is a singleton, define dC = d(C,A). For every
C ∈ C fix an open set GC such that diam(GC) ≤ 2dC , G is contained in an
element ofW and the inclusion C ⊂ GC induces the zero-homomorphism of
the homotopy groups in dimensions ≤ n− 1.

Define Ci = {C ∈ C : 1/i + 1 < dC ≤ 1/i}. Note that the closure of the
union of the elements of Ci does not intersect A since otherwise there is a
point of A to which a sequence of elements of Ci converges and therefore
Ci would contain elements C with arbitrarily small dC because X is locally
(n− 1)-connected.

Let U be an open cover of X \A such that U properly approaches A and
U refinesW. Then for every i we can approximate the identity map of X by
a closed embedding ei : X → X such that ei(X) ⊂ X \ A, ei is W-close to
the identity map of X and, for every C ∈ Ci, diam(ei(GC)) ≤ diam(GC) +
1/i, ei(C) ⊂ st(C,U) and every map f : Sp → C from a p-dimensional
sphere Sp, p ≤ n − 1, can be homotoped into ei(C) inside st(C,U). Write
YC = st(C,U) ∪ ei(GC) for C ∈ Ci. Clearly, the inclusion C ⊂ YC induces
the zero-homomorphism of the homotopy groups in dimensions ≤ n− 1.

Define Gi = {ei(GC) : C ∈ Ci} and G =
⋃
{Gi : i = 1, 2, . . .}. Recall that

diam(ei(GC)) ≤ diam(GC) + 1/i ≤ 3/i for C ∈ Ci. Then, since the elements
of Gi are contained in the closed subset ei(X) which does not meet A, we
can conclude that the collection G properly approaches A. Since each ei is
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W-close to the identity map of X and each GC is contained in an element
of W, we deduce that G refines stW.

Clearly, the cover Y = {YC : C ∈ C} of X \A refines st(st(C,U),G). Then
Y refines st2W and, since C, U and G properly approach A, we see that Y
properly approaches A as well. Set VC = st(YC ,U). Then V = {VC : C ∈ C}
properly approaches A, V refines st3W and therefore V has all the required
properties.

In the proof of Proposition 3.2 we will use the following notion of maps
witnessing intersections. Let P be a partition of an m-dimensional mani-
fold M . Let P0, . . . , Pt be distinct elements of P and let P = P0 ∩ · · · ∩ Pt
be the intersection of P. Denote by ∆P a t-dimensional simplex with ver-
tices v0, . . . , vt. A map eP : ∆P → M ′1 is called a map witnessing the in-
tersection P if eP (∆P ) ⊂ Int(P0 ∪ · · · ∪ Pt), eP (vi) ∈ IntPi and Pi does
not intersect eP (∆i

P ), where ∆i
P is the face of ∆P spanned by the ver-

tices {v0, . . . , vt} \ {vi}, i = 0, . . . , t. It is clear that any sufficiently close
approximation of a map witnessing the intersection P also witnesses the
intersection P .

Note that if there is a map eP witnessing the intersection P then P 6= ∅.
Indeed, aiming at a contradiction assume that P = ∅. Enlarge each e−1

P (Pi)
to an open subset e−1

P (Pi) ⊂ Gi of ∆P such that Gi does not meet ∆i
P and

G0 ∩ · · · ∩ Gt = ∅. Let f0, f1, . . . , ft be a partition of unity subordinated
to the cover G = {G0, . . . , Gt} of ∆P . Define f : ∆P → ∆P by f(x) =
f0(x)v0 + · · · + ft(x)vt, x ∈ ∆P . Then f(∆P ) ⊂ ∂∆P and, for every i and
x ∈ ∆i

P , f(x) ∈ ∆i
P . Hence f restricted to ∂∆P is homotopic to the identity

map of ∂∆P and this contradicts the fact that ∂∆P is not a retract of ∆P .
Assume that P 6= ∅ and let us show how to construct a map eP :∆P →M

which witnesses the intersection P . Fix a point xP ∈ IntP and a neighbor-
hood W of xP in M such that W ⊂ Int(P0 ∪ · · · ∪ Pt). Replacing W by a
smaller neighborhood of xP we may assume that for every intersection P ′

of P containing xP , P ′ ∩W is contractible.
Let Fi = the star of vi with respect to the first barycentric subdivision

of ∆P . Clearly, F = {F0, . . . , Ft} is a partition of ∆P . Let us say that
a map eP : ∆P → W preserves the intersection F ′ = Fi0 ∩ · · · ∩ Fij if
F ′ = e−1

P (Pi0 ∩ · · · ∩ Pij ). It is easy to see that a map preserving all the
intersections of F witnesses the intersection P .

A map eP preserving all the intersections of F can be constructed as
follows. First send the barycenter of ∆P to xP . Assume that we already
constructed eP on the union Cj of the finite intersections of F of dimension
≤ j such that eP preserves the intersections of F of dimension ≤ j. Take
a (j + 1)-dimensional intersection F ′ = Fi0 ∩ · · · ∩ Fij+1 of F and let P ′ =
Pi0 ∩ · · · ∩Pij+1 be the corresponding intersection of P. Then eP (Cj ∩F ′) ⊂
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∂(P ′∩W ) and, since P ′∩W is contractible, we can extend eP over F ′ so that
eP (F ′ \Cj) ⊂ IntP ′∩W . Thus we construct the desired map eP : ∆P →W .

Proof of Proposition 3.2. We only need to prove the second part of the
proposition because the first part follows from the second one if we assume
that Γ is a singleton. Let ψi : Xi → Γ be UV n−1-maps, O+ an open cover of
Γ and ω a positive integer which depends only on n and will be determined
later. Then there is a sequence O0,O1, . . . ,Oω = O+ of open covers of Γ
such that for the open covers Oji = ψ−1

i (Oj) of Xi we have stOji ≺n−1 Oj+1
i

for i = 1, 2 and j = 0, 1, . . . , ω − 1.
Apply Proposition 3.3 for X, ψ and U+ replaced by X2, ψ2 and O0

respectively in order to get an open cover O−1 of Γ which corresponds
to U−. Once again apply Proposition 3.3 for X, ψ and U+ replaced by X1,
ψ1 and O−1 respectively in order to get an open cover O−2 of Γ which
corresponds to U−. Clearly, we can assume that O−2 refines O−1 and that
O−1 refines O0.

Set O− = O−2, Oji = ψ−1
i (Oj) for i = 1, 2 and j = −1,−2 and assume

that ψ1|A and ψ2 ◦ fA are O−-close. The proof of the proposition splits into
two independent parts.

Constructing an initial partition P2. Let an open subset M ′1 of M1 and
a rational partition P1 of M ′1 satisfy the assumptions of the proposition.
In each non-empty finite intersection P of P fix a point xP ∈ IntP such
that xP ∈ P (k1) and take eP : ∆P → M ′1 witnessing the intersection P
with eP (∆P ) so close to xP that the collection of the images of eP (∆P ) for
all non-empty finite intersections of P1 will form a discrete family in M ′1.
Replace each eP by a sufficiently close Z-embedding into M1(k1) = X1 \A1

preserving the other properties of eP . Denote by Z1 the union of A1 with
the union of the images of all the maps eP . Then Z1 is a Z-set in X1.

Assume that ψ1|A1 and ψ2 ◦ fA are O−-close and P1 refines the ex-
tension of ψ−1

1 (O−) to Y1. By Proposition 3.3 extend fA : A1 → A2 to a
Z-embedding g1 : X1 → X2 such that ψ1 and ψ2 ◦ g1 are O−1-close. Once
again by Proposition 3.3 extend the map g−1

1 |... : Z2 = g1(Z1) → Z1 to a
Z-embedding g2 : X2 → X1 such that ψ2 and ψ1 ◦ g2 are O0-close.

Take an open cover U1 of X1 \A1 having the following properties:

(1) U1 properly approaches A1 and refines O0
1;

(2) for every non-empty intersection P = P0∩· · ·∩Pt of distinct elements
P0, . . . , Pt of P1 and the map eP : ∆P = [v0, . . . , vt]→M1(k1) ⊂M ′2
we have st(eP (∆P ),U1) ⊂ Int(P0∪· · ·∪Pt), and for every Pi we have
st(Pi,U1) ∩ st(eP (∆i

P ),U1) = ∅ and st(eP (vi),U1) ⊂ IntPi;
(3) for any finite intersections P and P ′ of P1 such that P ∩ P ′ = ∅ we

have st(P,U1) ∩ st(P ′,U1) = ∅.
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Define U2 = g−1
2 (U1). Since g2 is a closed embedding extending f−1

A and U1

properly approaches A1, we find that U2 properly approaches A2. Since ψ2

and ψ1◦g2 are O0-close and U1 refines O0
1, we see that U2 refines O1

2. Let UM2
be the extension of U2 to M2 and let M ′2 be the union of the elements of UM2 .
Note that M ′2 is (n− 1)-connected (= li-co-connected) since M2(k2) ⊂M ′2.
Take a rational triangulation of M ′2 such that, for the partition B of M ′2
formed by the stars of the vertices with respect to the first barycentric
subdivision of the triangulation, B refines UM2 .

Consider g2 as a map into Y1. Arrange the elements of P1 = {P 1, P 2, . . .}
into a sequence and define µ(P 1) = the union of the elements of B that
intersect g−1

2 (P 1), µ(P 2) = the union of the elements of B that intersect
g−1
2 (P 2) but do not intersect g−1

2 (P 1), µ(P 3) = the union of the elements
of B that intersect g−1

2 (P 3) but do not intersect g−1
2 (P 1) ∪ g−1

2 (P 2) and
so on. Let P2 = {µ(P 1), µ(P 2), . . .}. Since each element of B intersects
M2(k2) we see that P2 covers M ′2. The property (2) guarantees that for
every P ∈ P1, g1(eP (∆P )) ⊂ µ(P ) and therefore µ(P ) 6= ∅. Then, by 2.2, P2

is a partition of M ′2. The property (2) also guarantees that for every non-
empty intersection P = P0 ∩ · · · ∩ Pt of distinct elements P0, . . . , Pt ∈ P1,
the map g1 ◦ eP witnesses the intersection of µ(P0), . . . , µ(Pt) and therefore
µ(P0) ∩ · · · ∩ µ(Pt) 6= ∅. The property (3) implies that we do not create
additional intersections in P2 and hence µ : P1 → P2 is a matching of
partitions. It follows from the construction that

(4) µ(P ) ⊂ st(g−1
2 (P ),B) ⊂ st(g−1

2 (P ),UM2 ) for every P ∈ P1.

Since P1 restricted to X1 \ A1 refines O0
1 and the maps ψ2 and ψ1 ◦ g2 are

O0-close, we find that g−1
2 (P1) refines O1

2. Then, since B refines UM2 and U2

refines O1
2, we deduce by (4) that P2 refines the extension of O2

2 to Y2 and
µ, ψ1 and ψ2 agree with respect to O2.

Since g2 is a closed embedding which coincides with f−1
A on A2 and

g2(X2) intersects all the elements of P1, we conclude that g−1
2 (P1) properly

approaches A2 and the correspondence between P1 and g−1
2 (P1) defined by

P 7→ g−1
2 (P ), P ∈ P1, agrees with fA. Since U2 properly approaches A2, we

see that UM2 properly approaches A2 as well. Then it is easy to derive from
(4) that P2 properly approaches A2 and µ agrees with fA. Recall that P2

refines the extension of O2
2 to Y2 and µ, ψ1 and ψ2 agree with respect to O2.

Improving connectivity of P2. Without loss of generality we may replace
M1 and M2 by M ′1 and M ′2 respectively and assume that M1 = M ′1 and
M2 = M ′2 for the partition P1 and the initial partition P2. Let us show
that using 2.7 we can modify P2 into the required l2-co-connected rational
partition. The construction of 2.7 is a combination of 2.5 and 2.6, and 2.5
consists of 2.4 applied finitely many times. Abusing the notation we always
denote by M2, F and P2 the manifold, the PL-subcomplex of M2 and the
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decomposition of M2 which are the input of 2.4 and 2.6 (= the output of
the previous applications of 2.4 and 2.6), and by M ′2, F ′ and P ′2 the output
of 2.4 and 2.6 (= the modifications of M2, F and P2 that are obtained
after applying 2.4 and 2.6), and we denote again by µ the correspondence
µ : P1 → P ′2 which is the composition of µ : P1 → P2 with the natural
one-to-one correspondence between P2 and its modification P ′2 (defined by
sending each element of P2 to its modification). Thus we start with the
initial partition P2 that during 2.7 turns into a decomposition forming a
partition on U = M2 \ F and, gradually reducing the dimension of F , P2

returns to be a partition at the end of 2.7. Recall that after applying 2.4
and 2.6 we always obtain an open subset M ′2 of M2 such that R = M2 \M ′2
is a PL-presented subset of M2 with dimR ≤ n = m2 − l2 + 1 ≤ k2. By 2.8
we can choose a homeomorphism of h : A2 ∪M2 → A2 ∪M2 such that h is
arbitrarily close to the identity map, h(a) = a for a ∈ A2, h(R) is a rationally
presented closed subset of M2, h(F ′) is a rational subcomplex of h(M ′2),
h(P ′2) is a rational decomposition of h(M ′2) and h restricted to M2 \ R is a
PL-homeomorphism to M2 \h(R). Then replacing M ′2, F ′ and P ′2 by h(M ′2),
h(F ′) and h(P ′2) respectively we can always assume that M2(k2) ⊂M ′2, F ′ is
a rational subcomplex of M ′2 and P ′2 is a rational decomposition. Thus at
the end of 2.7 we deduce that dimF ′ ≤ n = m2 − l2 + 1 ≤ k2 and hence
M2(k2) ⊂M ′2 \ F ′. Now we can replace the final modification M ′2 of M2 by
M ′2 \ F and get the final partition on M ′2.

We will apply 2.4 and 2.6 so that there will exist an open cover W of
M2 such that W properly approaches A2 and for every P ∈ P2 and its
modification P ′ ∈ P2 we have P ′ ⊂ st(P, st2W). This property implies
that P ′2 will properly approach A2 and µ : P1 → P ′2 will agree with fA.
In addition, we will apply 2.4 and 2.6 so that there exists j such that the
modification P ′2 of P2 will refine the extension of Oj2 to Y2 and µ : P1 → P ′2,
ψ1 and ψ2 will agree with respect to Oj . Clearly, applying 2.8 as described
above, we preserve the properties that P ′2 properly approaches A2 and µ
agrees with fA, and choosing the homeomorphism h sufficiently close to the
identity map of M ′2 we can increase j by 1 and assume that P ′2 refines the
extension of Oj2 to Y2 and µ, ψ1 and ψ2 agree with respect to Oj .

Let us first analyze 2.4. Assume that P2 properly approaches A2, P2 re-
fines the extension of Oj2 to Y2 and µ, ψ1 and ψ2 agree with respect to Oj .
Take any open cover U of M2 such that U refines the extension of Oj2 to Y2

and U properly approaches A2.
Set CM = st(stP2,U). Then CM is an open cover of M2 such that CM

properly approaches A2, stP2 refines CM and CM refines the extension of
Oj+2

2 to Y2. Let C = CM |M2(k2). Recall that Oj+2
2 ≺n−1 Oj+3

2 . Then by
Proposition 3.4 there is an open cover V of M2(k2) such that V properly
approaches A2, C ≺n−1 V, V refines st3Oj+3

2 and hence V refines Oj+6
2 . Let
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W = st(V,U). Note that W is an open cover of M2, W properly approaches
A2 and refines the extension of Oj+7

2 to Y2. Since every map from a sphere of
dimension ≤ n−1 to an open subset G of M2 can be homotoped inside G to
a map into G∩M2(k2), we conclude that C ≺n−1 V implies CM ≺n−1 W and
therefore stP2 ≺n−1 W. Then 2.4 can be carried out so that for every P ∈ P2

and its modification P ′ ∈ P ′2 we have P ′ ⊂ st(P, st2W). The last property
also implies that P ′2 refines the extension of Oj+10

2 to Y2 and µ : P1 → P ′2,
ψ1 and ψ2 agree with respect to Oj+10.

Now we will analyze 2.6. Once again we assume that P2 properly ap-
proaches A2, P2 refines the extension of Oj2 to Y2 and µ, ψ1 and ψ2 agree
with respect to Oj . Then the collection stP2 properly approaches A2. Since
for P ∈ P2, st(P,P2) is a union of elements of P2, we can naturally define the
set µ−1(st(P,P2)) as the union of the corresponding elements of P1. Then
the collection µ−1(stP2) properly approaches A1 since µ agrees with fA,
and µ−1(stP2) refines the extension of Oj+2

1 to Y1 since µ, ψ1 and ψ2 agree
with respect to Oj . Let U be an open cover of M1 such that U refines the
extension of Oj+2

1 to Y1 and U properly approaches A1.
Set CM = st(µ−1(stP2),U). Then CM is an open cover of M1 such that

CM properly approaches A1, µ−1(stP2) refines CM and CM refines the exten-
sion of Oj+3

1 to Y1. Set C = CM |M1(k1). Recall that Oj+3
1 ≺n−1 Oj+4

1 . Then,
by Proposition 3.4, there is an open cover V of M1(k1) such that V properly
approaches A1, µ−1(stP2) restricted to M1(k1) is an (n−1)-refinement of V,
V refines st3Oj+4

1 and hence V refines Oj+7
1 .

Define H = st(V, µ−1(stP2)). It is clear that µ−1(stP2) refines H,
µ−1(stP2) restricted to M1(k1) is an (n − 1)-refinement of H, H properly
approaches A1 and H refines Oj+8

1 . Since µ−1(st(P,P2)) is a rational sub-
manifold of M1 of dimension m1, every map from a space of dimension
≤ n − 1 into µ−1(st(P,P2)) can be homotoped inside µ−1(st(P,P2)) into
µ−1(st(P,P2)) ∩M1(k1) and therefore µ−1(stP2) is an (n − 1)-refinement
of H. Note that µ(H) is well-defined because each element of H is a union
of elements of P1. Also, since µ, ψ1 and ψ2 agree with respect to Oj , we
deduce that µ(H) refines the extension of Oj+9

2 to Y2.
Assume that F is a PL-subcomplex of M2 such that for U = M2 \ F

the decomposition P2 forms on U an l-co-connected partition, l ≥ l2, for
which µ : P1 → P2 becomes a matching when P2 is restricted to U . Recall
that µ−1(stP2) is an (n− 1)-refinement of H. Then, by 2.3, st(P2)|U is an
(m2 − l)-refinement of µ(H)|U .

Take any open cover G of M2 such that G properly approaches A2 and
G refines the extension of Oj2 to Y2. Define W = st(µ(H),G) and note that
W refines the extension of Oj+10

2 to Y2. Then for every P ∈ P2 there are
H ∈ µ(H) and W ∈ W with st(P,P2) ⊂ H ⊂W and such that the inclusion
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st(P,P2) ∩ U ⊂ H ∩ U induces the zero-homomorphism of the homotopy
groups in dimensions ≤ m2 − l. Hence 2.6 can be carried out so that for
every P ∈ P2 and its modification P ′ ∈ P ′2 we get P ′ ⊂ st(P, st2W). The
last property also implies that P ′2 refines the extension of Oj+13

2 to Y2 and
µ : P1 → P ′2, ψ1 and ψ2 agree with respect to Oj+13.

Now we need to determine the maximal possible value of j which we
assign to ω at the beginning of the proof. From the proof it is clear that this
value depends only on the number of times we apply the constructions 2.4,
2.6, 2.8 and it is easy to see from 2.7 and 2.5 that this number depends only
on n.

4. Constructions of improving connectivity and absorbing
simplexes

4.1. A black hole modification. Let Bq, Bm−q, Bm−q
∗ and Bm = Bq ×

Bm−q be cubes with the dimensions indicated by the superscripts such that
Bm−q
∗ is contained in IntBm−q and the centers of Bm−q

∗ and Bm−q coincide
(recall that we assume that the centers of the cubes are located at O and
we identify Bq and Bm−q with the subsets Bq × O and O × Bm−q of Bm

respectively; see 2.1). Define T = Bq × (Bm−q \ IntBm−q
∗ ) and S = ∂Bm−q.

Note that S is an (m − q − 1)-dimensional sphere in ∂T and T is a subset
of Bm which is PL-homeomorphic to the product Bq+1 × S, where S is
identified with a× S for a point a ∈ ∂Bq+1.

Assume that Bm is PL-embedded in IntM of a triangulated m-dimen-
sional manifold M . Set L = M \ IntT and assume that FL is a PL-sub-
complex of L and PL is a decomposition of L such that S ⊂ FL and PL
restricted to L \ FL and to ∂T \ FL are partitions.

Fix a triangulation T of M that underlies S, FL, L and the elements
of PL, and denote by A the collection of subcomplexes of L with respect to
this triangulation. We are going to extend each A ∈ A to a PL-subcomplex
A ⊂ Aπ of M such that the following conditions are satisfied:

• P πL = PL for PL ∈ PL such that PL ∩ ∂T = ∅;
• PπL = {P πL : PL ∈ PL} is a decomposition of M which forms a partition

on M \ F πL ;
• F πL ∩L = FL and PπL restricted to L \F πL coincides with PL restricted

to L \ FL;
• the correspondence between PL and PπL defined by PL 7→ P πL induces

a matching of partitions when PL and PπL are restricted to L \FL and
M \ F πL respectively;
• for every intersection PL = P 0

L ∩ · · · ∩ P
j
L of elements P 0

L, . . . , P
j
L of

PL, P πL \ F πL = ((P 0
L)π ∩ · · · ∩ (P jL)π) \ F πL and PL \ FL is a (strong)

deformation retract of P πL \ F πL ;
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• dim (F πL ∩ T ) \ S ≤ dim (FL ∩ ∂T ) \ S + 1;
• F πL = FL if FL ∩ ∂T = S.

Recall that T is homeomorphic to the product Bq+1×S, where S is iden-
tified with a×S for a point a ∈ ∂Bq+1. Note that Bq+1 \a is homeomorphic
to (∂Bq+1 \ a) × [0, 1) and hence T \ S can be represented as the product
(∂T \S)× [0, 1), where ∂T \S corresponds to (∂T \S)×0. One of the ways to
construct Aπ is to find a retraction π : T \S → ∂T \S which is topologically
equivalent to the projection of (∂T \ S) × [0, 1) to (∂T \ S) × 0 such that,
for Aπ defined by Aπ = A if A ∩ ∂T = ∅ and Aπ = A ∪ S ∪ π−1(A ∩ ∂T )
otherwise, Aπ is a PL-subcomplex of M for every A ∈ A. Such a retraction
π can be constructed, but the author could not find an elementary and di-
rect argument for this. Therefore, for the sake of elementariness (and at the
expense of a geometric transparency), we adopt a slightly different approach
for constructing Aπ which is presented in 5.1. Note that all the properties
of PπL and F πL that will be used subsequently are described above. Thus for
understanding the rest of the paper the reader may assume that the con-
struction is carried out on the base of an appropriate retraction π. Also note
that S is added to Aπ for A intersecting ∂T in order to make Aπ a closed
subset of M and PπL a cover of M .

We will call the decomposition PπL a black hole modification of PL with
the sphere S as the black hole of the modification.

4.2. Improving connectivity of an intersection. Assume that m ≥ 2q+1
and l = m − q + 2, M is a triangulated m-dimensional (q − 1)-connected
(= (l − 1)-co-connected) manifold and F is a PL-subcomplex of M lying
in IntM . Let P be a decomposition of M which forms an l-co-connected
partition on U = M \F and let P = P0 ∩P1 ∩ · · · ∩Pt, 0 ≤ t ≤ m− l+ 1, be
an intersection of distinct elements P0, . . . , Pt of P such that P∩U 6= ∅. Then
P ∩U is an (m−t)-dimensional and (q−t−2)-connected (= l-co-connected)
manifold.

Assume that the intersections of P|U of dimension > m−t are (l−1)-co-
connected. Let us show how to improve the connectivity of P ∩U preserving
the level of connectivity of the rest of the intersections.

Let f : SP → Int(P ∩U) be a PL-embedding of a triangulated (q−t−1)-
dimensional sphere SP such that f is not null-homotopic in P ∩ U .

Consider a t-dimensional simplex ∆ with vertices V (∆) = {v0, . . . , vt}.
Let ∆′ be a (sub)simplex of ∆ lying in ∂∆ and let V (∆′) ⊂ V (∆) be the
set of vertices of ∆′. Define P (∆′) =

⋂
{Pi : vi ∈ V (∆) \ V (∆′)}. Note that

P (∅) = P and P (∆′) ⊂ P (∆′′) if ∆′ ⊂ ∆′′.
For every simplex ∆′ of ∂∆ we will define by induction on dim∆′ a

PL-embedding f∆′ : SP ∗ ∆′ → P (∆′) ∩ U such that f∆′′ extends f∆′ if
∆′ ⊂ ∆′′. Setting f∅ = f we are done for t = 0. Let t > 0. Take a simplex
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∆′ of dimension i + 1 ≤ t − 1 and assume that f∆′ is defined for all ∆′ of
dimension ≤ i. Then the maps f∆′′ for ∆′′ ⊂ ∂∆′ define the corresponding
PL-embedding f∂∆′ : SP ∗ ∂∆′ → ∂(P (∆′) ∩ U). Note that SP ∗ ∂∆′ is a
(q− t+ i)-dimensional sphere and P (∆′)∩U is (m− t+ i+ 2)-dimensional
and (q− t+ i+1)-connected (= (l−1)-co-connected) and dim(P (∆′)∩U) =
m−t+i+2 ≥ 2q+1−t+i+2 ≥ 2(q−t+i+1)+1+(t−i−2) ≥ 2(q−t+i+1)+1
since m ≥ 2q + 1 and t − i − 2 ≥ 0. Then f∂∆′ can be extended to a PL-
embedding f∆′ : SP ∗∆′ → P (∆′) ∩ U such that f∆′ sends Int(SP ∗∆′) to
Int(P (∆′) ∩ U).

The maps f∆′ define the PL-embedding f∂∆ of SP ∗∂∆ to Int((P0∪· · ·∪Pt)
∩ U). Identify the (q − 1)-dimensional sphere Sq−1 = SP ∗ ∂∆ with its
image under f∂∆ and, by 5.2 below, extend the embedding of Sq−1 to a
PL-embedding of a q-dimensional cube Bq such that Sq−1 = ∂Bq and the
embedding of Bq extends to a PL-embedding of an m-dimensional cube
Bm = Bq × Bm−q ⊂ IntM having the following properties: P ′ ∩ Bm =
(Bq∩P ′)×Bm−q for every P ′ ∈ P; F ∩Bm = (Bq∩F )×Bm−q; P restricted
to N ∩ U and to ∂Bm ∩ U are partitions, where N = M \ IntBm and for
every finite intersection P ′ of P such that P ′∩U 6= ∅ we have P ′∩N ∩U 6= ∅
and P ′ ∩N ∩ U is a deformation retract of (P ′ ∩ U) \ IntBq. Note that for
every finite intersection P ′ of P that intersects U , (dim(P ′∩U)− (l−1)+1)
+q+1 = dim(P ′∩U)−m+2q+1 ≤ dim(P ′∩U) and therefore the inclusion
(P ′ ∩U) \ IntBq ⊂ P ′ ∩U induces an isomorphism of the homotopy groups
in dimensions ≤ dim(P ′ ∩ U) − (l − 1) (= in co-dimensions ≥ l − 1). Also
note that since F ∩∂Bq = ∅, we have F ∩∂Bm = (F ∩ IntBq)×∂Bm−q and
therefore dimF ∩ ∂Bm ≤ dimF − 1.

Let Bm−q
∗ be a cube lying in the geometric interior of Bm−q such that the

centers ofBm−q
∗ andBm−q coincide and ∂Bq×Bm−q

∗ ⊂ Int((P0∪· · ·∪Pt)∩U).
Use the notations of 4.1. Define FL = (N ∩ F ) ∪ S, where S = ∂Bm−q.

Consider Bq as the join O ∗ ∂Bq, where O is the center of Bq, and define
a decomposition PL of L as the collection of the sets PL = {P ′L : P ′ ∈ P},
where P ′L = P ′ ∩ N if P ′ ∈ P and P ′ 6= P0, . . . , Pt and P ′L = (P ′ ∩ N) ∪
((O ∗ (P ′∩∂Bq))×Bm−q

∗ ) for P ′ = Pi, 0 ≤ i ≤ t. Note that PL restricted to
N coincides with P restricted to N . It is easy to see that PL restricted to
Bq×Bm−q

∗ , to ∂Bq×(Bm−q \IntBm−q
∗ ), to ∂Bq×Bm−q

∗ , to Bq×∂Bm−q
∗ and

to ∂Bq×∂Bm−q
∗ are partitions. Then, by 2.2, PL is a partition on L\(N∩F )

and ∂T \ (N ∩F ) and hence PL is a partition on L \FL and ∂T \FL. For a
finite intersection P ′ = P ′0 ∩ · · · ∩P ′j of P ′0, . . . , P

′
j ∈ P such that P ′ ∩U 6= ∅

define P ′L = (P ′0)L ∩ · · · ∩ (P ′j)L.
Now apply the black hole modification to PL and FL with S as the black

hole of the modification. Note that since S lies in ∂N , by 2.2, for every
finite intersection P ′ of P, P ′ ∩ U ∩N ∩ S ⊂ ∂(P ′ ∩ U ∩N) and hence the
inclusion (P ′ ∩ U ∩ N) \ S ⊂ P ′ ∩ U ∩ N induces an isomorphism of the
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homotopy groups in all dimensions. Recall that f(SP ) ⊂ P ∩ U ∩ N . By
4.1 and the construction of PL one can easily verify that for every finite
intersection P ′ of P such that P ′ ∩U 6= ∅ and P 6= P ′, (P ′ ∩U ∩N) \S is a
deformation retract of (P ′L)π \ F πL and, for the intersection P , the inclusion
of (P ∩ U ∩N) \ S into P πL \ F πL induces an isomorphism of the homotopy
groups in dimensions < q− t− 1 and an epimorphism in dimension q− t− 1
such that the element of the homotopy group represented by the map f is
in the kernel of this epimorphism.

Thus for every intersection P ′ of P such that P ′∩U 6= ∅ the connectivity
of (P ′L)π \ F πL fits the connectivity of P ′ \ F for P ′ 6= P and we contributed
toward improving the connectivity of P \ F in its modification P πL \ F πL .

Define F π = F πL , (P ′)π = (P ′L)π for a finite intersection P ′ of P and
let Pπ = {(P ′)π : P ′ ∈ P} = PπL. It is easy to see that the one-to-one
correspondence between P and PL defined by P ′ 7→ (P ′)L, P ′ ∈ P, becomes
a matching of partitions when P and PL are restricted to M \F and L \FL
respectively. Then by 4.1 the one-to-one correspondence between P and Pπ
defined by P ′ → (P ′)π, P ′ ∈ P, becomes a matching of partitions when
P and Pπ are restricted to M \ F and M \ F π respectively. Note that
F π ⊂ IntM and because dimF ∩ ∂Bm ≤ dimF − 1 we have dimF π ≤
max{dimS, dimF} = max{m− q − 1,dimF}.

Finally, note that even if F = ∅ then F π = S and we improve the
connectivity of P at the expense of an “irregular” behavior of Pπ on the
black hole S, in particular, we create additional intersections of Pπ on S
and the elements of Pπ are no longer manifolds in M .

4.3. A discretization of images of maps. Assume that M is a triangu-
lated manifold such that dimM ≥ 2r + 1 and U is an open cover of M .

Let F be countable collection of maps f : Sr → M from a triangu-
lated r-dimensional sphere Sr. Then there is a PL-subcomplex R of M of
dimension ≤ r lying in IntM such that every map f in F admits a U-close
approximation f ′ : Sr → IntM \R such that f ′ is a PL-embedding and the
images of the maps in F ′ = {f ′ : f ∈ F} form a discrete family in M \ R.
Moreover, given a decomposition P of M , the set R can be chosen so that R
is nowhere dense on the finite intersections of P, that is, the intersection of
R with every finite intersection of P is nowhere dense in that intersection.

Indeed, arrange F into a sequence F = {f1, f2, . . .} and take a sufficiently
small triangulation T of M such that T underlies P. Approximate each
fi : Sr → M by a map f ′′i : Sr → M such that f ′′i (Sr) is contained in R′ =
the r-skeleton of T . Fix a metric d on M and approximate each f ′′i by a
PL-embedding f ′′′i : Sr →M such that f ′′′i (Sr)∩R′ = ∅, d(f ′′′i (x), R′) ≤ 1/i
for every x ∈ Sr and f ′′′i (Sr) ∩ f ′′′j (Sr) = ∅ for i 6= j. Then the sets f ′′′i (Sr),
i = 1, 2, . . . , form a discrete family in M \ R′. Now take a PL-embedding
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g : M → M such that g(M) is a PL-subcomplex of M , g(M) ⊂ IntM , the
restriction of g to R′ is in general position with T , and g is close to the
identity map of M . It is clear that the construction can be carried out so
that f ′i = g ◦ f ′′′i is U-close to fi. Then the maps f ′i and the set R = g(R′)
will have the required properties.

In a similar way one can show that if F is a countable collection of
maps f : Br → M from a triangulated r-dimensional ball Br such that,
for every f in F , f restricted to ∂Br is a PL-embedding and the images of
the maps in {f |∂Br : f ∈ F} form a discrete family in M , then there is a
PL-subcomplex R of M of dimension ≤ r lying in IntM such that every
map f in F admits a U-close approximation f ′ : Br →M \R such that f ′ is
a PL-embedding, f ′|∂Br = f |∂Br , f ′(IntBr) ⊂ IntM and the images of the
maps in F ′ = {f ′ : f ∈ F} form a discrete family in M \R. Moreover, for a
given decomposition P of M , the set R can be chosen so that R is nowhere
dense on the finite intersections of P.

Note that if M is (r − 1)-connected and R is a closed PL-presented
subset of M of dimension ≤ r, then M ′ = M \ R is (r − 1)-connected. In
addition, if P is a decomposition of M which is an l-co-connected partition
on an open subset U of M with l ≥ r + 2 and R is nowhere dense on the
finite intersections of P, then P ′ = {P \ R : P ∈ P} is a decomposition of
M ′ which is an l-co-connected partition on U ′ = U \ R and the one-to-one
correspondence between P and P ′ defined by P 7→ P \R, P ∈ P, induces a
matching of partitions when P and P ′ are restricted to U and U ′ respectively
(the property that R is nowhere dense on the finite intersections of P is
needed to guarantee that for every finite intersection P of P, (P ∩U)\R 6= ∅
provided P ∩ U 6= ∅).

4.4. Improving connectivity of intersections simultaneously. Adopt the
notations and the assumptions of 4.2. We are going to show how to improve
simultaneously the connectivity of all the intersections of P|U of dimension
m− t to (l − 1)-co-connectivity.

For an intersection P of P with dimP ∩ U = m − t choose a countable
collection FP of PL-embeddings f : SP → Int(P ∩ U) from a (q − t − 1)-
dimensional sphere SP that generate the (q − t− 1)-dimensional homotopy
group of P ∩ U . Since F is a PL-subcomplex of M we may assume that
the images of the maps in FP lie outside a neighborhood of F . Then by 4.3
one can find a PL-subcomplex RP of M such that RP ⊂ Int(P ∩ U) and
dimRP ≤ q − t − 1 and assume that the images of the embeddings in FP
are contained in Int((P ∩ U) \RP ) and form a discrete family in M \RP .

Recall that in 4.2 the elements of P that form the intersection P are enu-
merated according to the vertices of a sample simplex ∆ = {v0, . . . , vt} (we
fix such an enumeration arbitrarily and independently for every intersection
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P of P with dimP∩U = m−t). Following 4.2 and using 4.3 we can define for
every ∆′ ⊂ ∆ a set R∆

′
P and collections of maps F∆′

P = {f∆′ : f ∈ FP } and
F∂∆′
P = {f∂∆′ : f ∈ FP } such that R∆

′′
P ⊂ R∆

′
P if ∆′′ ⊂ ∆′, R∆

′
P is a closed

subset of M lying in P (∆′)∩U , the images of the maps of F∆′
P are contained

in G∆
′

P = (P (∆′) ∩ U) \ R∆′
P and form a discrete family in M \ R∆′

P , and
R∆

′
P \R∂∆

′
P is a PL-subcomplex of M \R∂∆′

P lying in (P (∆′)∩U)\R∂∆′
P such

that dimR∆
′

P \ R∂∆
′

P ≤ q − t + dim∆′ where R∂∆
′

P =
⋃
{R∆′′

P : ∆′′ ⊂ ∂∆′}.
Here we assume that ∆′ = ∅ is a simplex of ∆ and F∅P = FP and R∅P = RP ,
and we also assume that P (∆) = M .

Denote by F∂∆ and R∂∆ the union of F∂∆P and R∂∆P respectively over
all the intersections P of P with dimP ∩ U = m− t. In order to carry out
the construction described above so that R∂∆ will be a closed PL-presented
subset of M and the images of the maps in F∂∆ will form a discrete family
in M \ R∂∆, we need to take into account that the same intersection P ′

of P with dimP ′ ∩ U > m − t can be involved in many (even countably
many) intersections of dimension m− t. This can be done as follows. For a
finite intersection P ′ of P with dimP ′ ∩ U > m − t denote by R∂P ′ , RP ′ ,
F∂P ′ and FP ′ the union of R∂∆

′
P , R∆

′
P , F∂∆′

P and F∆′
P respectively over all

finite intersections P of P such that dimP ∩ U = m − t and all ∆′ ⊂ ∂∆
such that P (∆′) = P ′, and let GP ′ = (P ′ ∩ U) \ RP ′ . It is obvious that if
dimP ′ ∩ U = m − t + 1 then R∂P ′ is closed in M , the images of the maps
in F∂P ′ are contained in ∂(P ′ ∩ U) \ R∂P ′ and form a discrete family in
M \R∂P ′ . Now assume that the last properties hold for a finite intersection
P ′ of P with dimP ′ ∩U > m− t. Then applying 4.3 to all the maps of F∂P ′

we can enlarge R∂P ′ to a closed subset RP ′ of M contained in P ′∩U and find
extensions FP ′ of the maps in F∂P ′ such that dimRP ′ ≤ dim(P ′∩U)−l+1 =
dim(P ′ ∩ U) + q −m− 1, RP ′ \R∂P ′ is a PL-subcomplex of M \R∂P ′ , the
images of the extensions FP ′ of the maps in F∂P ′ are contained in GP ′ and
form a discrete family in M \RP ′ . Thus we can define R∆

′
P = RP ′ for every

finite intersection P of P with dimP ∩ U = m − t and ∆′ ⊂ ∂∆ such that
P (∆′) = P ′. Then proceeding by induction on dimP ′ ∩ U we construct for
every intersection P of P with dimP ∩U = m−t and ∆′ ⊂ ∂∆ the collection
of maps F∆′

P and the set R∆
′

P such that R∂∆ is a closed PL-presented subset
of M contained in U such that dimR∂∆ ≤ q − 1 and the images of the
maps in F∂∆ are contained in (M ∩U) \R∂∆ and form a discrete family in
M \ R∂∆. From the construction it is clear that R∂∆ is nowhere dense on
the finite intersections of P.

By 4.3 the set R∂∆ can be enlarged to a closed PL-presented subset R of
M and each map f∂∆ : Sq−1 →M \R∂∆ in F∂∆ can be extended to a map
f ′∆ : Bq → M \ R such that dimR ≤ q, R is nowhere dense on the finite
intersections of P and the images of the maps f ′∆ form a discrete family
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in M \ R. Hence for every f∂∆ ∈ F∂∆ there is an open subset Q(f∂∆) of
M \ R containing the image of f∂∆ such that Q = {Q(f∂∆) : f∂∆ ∈ F∂∆}
is a discrete family in M \ R and f∂∆ is null-homotopic in Q(f∂∆). Then,
by 5.2 below, the black hole modification used in 4.2 and involving f∂∆ can
be carried out inside Q(f∂∆).

Note that since R is a PL-presented set of dimension ≤ q and m ≥ 2q+1,
for every finite intersection P of P that intersects U we find that the inclusion
(P ∩ U) \ R ⊂ P ∩ U induces an isomorphism of the homotopy groups in
dimensions ≤ dimP ∩ U − (l − 1) (= co-dimensions ≥ l − 1).

Thus, after removing R from M , F and the elements of P, the black hole
modification 4.1 used in 4.2 can be applied independently for every map
in F∂∆ in order to modify P to a decomposition P ′ of M ′ = M \R and F to
a set F ′ such that P ′= the result of all the modifications Pπ and F ′= the
result of all the modifications F π. Then it is easy to derive from 4.2 that F ′

is a PL-subcomplex of M ′ of dimension ≤ max{m − q − 1, dimF} lying in
IntM ′, P ′ is a partition on M ′ \ F ′ and for every intersection P of P with
P ∩U 6= ∅, P is modified to P ′ (= the result of all the modifications P π) such
that P ′∩(M ′\F ′) is l-co-connected and P ′∩(M ′\F ′) is (l−1)-co-connected
if dimP ∩ U ≥ m− t.

Note that the natural one-to-one correspondence between P and P ′ de-
fined by sending P ∈ P to its modification P ′ ∈ P ′ turns into a matching of
partitions when P and P ′ are restricted to M \ F and M ′ \ F ′.

It is clear that the images of the maps in F∂∆ are contained in the
elements of stP. Assume that W is an open cover of M such that for every
P ∈ P there is W ∈ W such that st(P,P) ⊂ W and the inclusion of
st(P,P) into W induces the zero-homomorphism of the homotopy groups in
dimensions ≤ q− 1. By 4.3 the collection Q can be chosen so that for every
f∂∆ ∈ F∂∆, Q(f∂∆) ⊂ st(f∂∆(Sq−1), stW).

Then it is easy to see for every P ′ ∈ P ′ that P ′ ⊂ st(P, st2W), where P ′

is the modification of P ∈ P.

4.5. Absorbing simplexes. Let M be a triangulated (q − 1)-connected
m-dimensional manifold with m ≥ 2q + 1 and let l = m − q + 1. Assume
that F is a PL-subcomplex of M lying in IntM such that U = M \ F is
l-co-connected and dimF ≤ m − q, and assume that P is a decomposition
of M such that P is an l-co-connected partition on U . Fix a triangulation
T of M for which F is a subcomplex and let F ′ be the (m− q− 1)-skeleton
of F . We will show how to modify M to an open subset M ′ ⊂ M and
P to a decomposition P ′ of M ′ such that M \M ′ is a PL-subcomplex of
M of dimension ≤ q, P ′ restricted to U ′ = M ′ \ F ′ is an l-co-connected
partition and P admits a natural one-to-one correspondence to P ′ which
becomes a matching of partitions when P and P ′ are restricted to U and U ′

respectively.
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Assume that the triangulation T that we fixed in M is the second
barycentric subdivision of a triangulation for which F and the elements
of P are subcomplexes. Let TF be the collection of all (m− q)-dimensional
simplexes lying in F and for ∆ ∈ TF let S∆ and ∆ ∗ S∆ be the link of ∆
and the join of ∆ with S∆ respectively which are defined as follows:

S∆ =
⋃
{∆′ ∈ T : ∆′ ∩∆ = ∅ and there is ∆′′ ∈ T with ∆,∆′ ⊂ ∆′′},

∆ ∗ S∆ =
⋃
{∆′ ∈ T : ∆ ⊂ ∆′}.

Let Q be the union of Int(∆∗S∆) for all ∆ in TF , and N = M \(Q∪F ). Note
that for every ∆ ∈ TF the link S∆ of ∆ is a (q−1)-dimensional sphere lying
in IntM , and for different simplexes ∆1 and ∆2 in TF the joins ∆1 ∗ S∆1

and ∆2 ∗ S∆2 do not intersect on U . Also note that for every subset H
which is a union of a finite intersection of P such that H ∩ U 6= ∅ and for
every ∆ ∈ TF we find that (H ∩U) \ Int(∆ ∗S∆) is a deformation retract of
H ∩ U and hence H ∩ N is a deformation retract of H ∩ U . Then N is an
l-co-connected manifold (since N is a deformation retract of U) and P|N is
an l-co-connected partition (since P|U is l-co-connected).

Fix∆ ∈ TF and let an open subset V∆ ofN be such that Sq−1 = S∆ ⊂ V∆
and the inclusion of Sq−1 into V∆ is null-homotopic in V∆. Then by 5.3 there
are an element P∆ ∈ P and a PL-embedding of a cube Bm = Bq × Bm−q

into IntM such that Bm ⊂ (∆ ∗ S∆) ∪ V∆, ∆ = O × Bm−q = F ∩ Bm,
P ∩ U ∩ Bm = (P ∩ U ∩ Bq) × Bm−q for every P ∈ P, ∂Bq × Bm−q ⊂
Int(P∆∩U), P restricted to (M \ IntBm)∩U and to ∂Bm∩U are partitions
and (P \ IntBm) ∩ U is a deformation retract of (P \ IntBq) ∩ U for every
finite intersection P of P.

Let us briefly describe the general idea of the construction in 5.3. The
inclusion of Sq−1 can be extended to a PL-embedding of a q-dimensional
cube Bq

# into V∆ such that Sq−1 = ∂Bq
# and the embedding of Bq

# extends
to a PL-embedding of an m-dimensional cube Bm

# = Bq
# × B

m−q
# into V∆

such that ∂Bq
#×B

m−q
# ⊂ Bm

# ∩ ∂(∆ ∗S∆) and P ∩Bm
# = (P ∩Bq

#)×Bm−q
#

for every P ∈ P. Let P∆ ∈ P be such that Int(P∆ ∩ Bq
#) 6= ∅ and let a

q-dimensional cube σ# be PL-embedded in Int(P∆ ∩ Bq
#). Then the cube

Bm = (∆ ∗S∆)∪ ((Bq
# \ Intσ#)×Bm−q

# ) can be represented as the product
Bm = Bq ×Bm−q with the required properties. See 5.3 for details.

Let Bm−q
∗ be a cube lying in the geometric interior of Bm−q. Use the

notations of 4.1. Define FL = F \ IntBm, PL = P \ IntBm if P 6= P∆ and
P ∈ P, (P∆)L = (P∆\IntBm)∪(Bq×Bm−q

∗ ) and define PL = {PL : P ∈ P}.
Then S = ∂Bm−q = ∂∆ ⊂ FL and it is easy to see that PL is an l-co-
connected partition on L \ FL and PL is a partition on ∂T \ FL. Now apply
the black hole modification with the black hole S = ∂∆ and write F π = F πL ,



30 M. Levin

P π = P πL for P ∈ P and Pπ = {P π : P ∈ P} = PπL. Note that F πL = FL
since F ∩ ∂Bm = ∂∆. Then Pπ is a decomposition of M which is an l-co-
connected partition on the manifold M \F π = (M \F )∪ Int∆ in which we
have absorbed the geometric interior of ∆ in the modification of P∆. Note
that the one-to-one correspondence between P and PL defined by P 7→ PL,
P ∈ P, becomes a matching of partitions when P and PL are restricted to
M \ F and L \ FL respectively. Then by 4.1 the one-to-one correspondence
between P and Pπ defined by P → P π, P ∈ P, becomes a matching of
partitions when P and Pπ are restricted to M \F and M \F π respectively.

Note that each S∆ can be contracted to a point in N outside some
neighborhood of F in M . Then by 4.3 there is a PL-subcomplex R of M
contained in IntN and nowhere dense on the finite intersections of P with
dimR ≤ q such that the collection V of the sets V∆, ∆ ∈ TF , can be chosen
to be discrete in N \ R. Then replacing M by M ′ = M \ R and removing
R from the elements of P we can perform all the black hole modifications
independently for all ∆ ∈ TF and get from all the modifications Pπ the
corresponding decomposition P ′ of M ′ with the required properties. It is
clear that the natural one-to-one correspondence between P and P ′ defined
by sending each element of P to its modification becomes a matching of
partitions when the decompositions are restricted to M \ F and M ′ \ F ′.

It is clear that the spheres S∆, ∆ ∈ TF , are contained in the elements
of stP. Let W be an open cover of M having the following property: for
every P ∈ P there are W ∈ W and a set H such that st(P,P) ⊂ H ⊂W , H
is a union of elements of P and the inclusion st(P,P)∩U ⊂ H∩U induces the
zero-homomorphism of the homotopy groups in dimensions ≤ q − 1. Then
the inclusion st(P,P)∩N ⊂ H ∩N also induces the zero-homomorphism of
the homotopy groups in dimensions ≤ q−1 because H ∩N is a deformation
retract of H∩U . Thus S∆ can be contracted to a point in st(∆,W)∩N . Then
the collection V can be chosen so that for every V∆ ∈ V, V∆ ⊂ st(∆, stW),
and this implies that for every P ′ ∈ P ′, P ′ ⊂ st(P, st2W), where P ′ is the
modification of P ∈ P.

5. Appendix

5.1. Extending partitions in the black hole modification. This is a direct
continuation of 4.1 and we adopt the notations and the assumptions of 4.1.
This subsection is devoted to constructing the extensions Aπ, A ∈ A, the
step that was omitted in 4.1.

Recall that T can be represented as the product T = Bq+1 × S, where
S is identified with a× S for a point a in ∂Bq+1. We consider Bq+1 and S
as PL-embedded in Euclidean spaces. This induces the corresponding PL-
embedding of T in the product of Euclidean spaces and we refer to these
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Euclidean spaces when properties of linearity are used; thus we say that a
simplex is linear if it is a simplex (linearly spanned by its vertices) in the
corresponding Euclidean space, and a map of a linear simplex is linear if it
is the linear extension of its values on the vertices.

Denote by pS : T → S and pB : T → Bq+1 the projections. Let TT be
a triangulation of T such that the simplexes of TT are linear, pS and pB
restricted to every simplex of TT are linear and TT underlies S and the
simplexes of T contained in T . Let T ′T be a subdivision of TT such that
the simplexes of T ′T are linear and, for every simplex ∆ of TT , pS(∆) is a
subcomplex of S with respect to T ′T .

Denote by T ′′T the (first) barycentric subdivision of T ′T and let BT be
the partition of T formed by the stars of the vertices of T ′T with respect to
T ′′T . Then BS = BT |S is a partition of S. For a non-empty finite intersection
B of BS which is the intersection of distinct elements B0, . . . , Bt of BS let
the vertex vB of T ′′T be the barycenter of the simplex of T ′T spanned by the
vertices contained in B0 ∪ · · · ∪Bt.

For a finite intersection B of BS define KB = p−1
S (B), NB = p−1

S (∂B)
and MB = KB ∩ ∂T . Note that KB = Bq+1 × B, NB = Bq+1 × ∂B,
MB = ∂Bq+1 ×B, ∂KB = NB ∪MB and NB ∩MB = ∂Bq+1 ∩ ∂B.

Let us show that PL restricted to MB \F and PL restricted to ∂MB \F
are partitions. Assume that B ∈ BS (that is, dimB = dimS). Note that PL
restricted to IntMB \FL is a partition. Take a point x ∈ ∂MB and let ∆x be
the smallest simplex of TT containing x. Then vB ∈ pS(∆x) and let y ∈ ∆x

be such that pS(y) = vB. Let G be a neighborhood of x in ∂MB such that G
is contained in the star of y with respect to TT . Then (z, t) 7→ z(1− t) + ty,
z ∈ G, 0 ≤ t < 1, defines a PL-embedding of G × [0, 1) into MB such that
G × [0, 1) is a neighborhood of x in MB and for every simplex ∆ ∈ TT we
have ∆∩ (G× [0, 1)) = (G∩∆)× [0, 1). Recall that TT underlies PL|∂T and
FL ∩ ∂T , and note that G × (0, 1) is an open subset of ∂T . Therefore PL
restricted to (G × (0, 1)) \ FL is a partition. All these facts together imply
by 2.2 that PL restricted (G × [0, 1)) \ FL and PL restricted to G \ FL are
partitions and hence PL restricted to MB\FL and PL restricted to ∂MB\FL
are partitions.

Now assume that for a finite intersection B′ ∈ BS we already showed
that PL restricted to MB′ \ FL and PL restricted to ∂MB′ \ FL are par-
titions, and let B be a finite intersection of BS such that B ⊂ ∂B′ and
dimB+ 1 = dimB′. Then replacing S by ∂B′ and T by Bq+1× ∂B′ we can
repeat the above reasoning to show that PL restricted to MB \ FL and PL
restricted to ∂MB \ FL are partitions. Thus we have shown that for every
finite intersection of BS , PL restricted to MB \ FL and to ∂MB \ FL are
partitions.
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Let B be a non-empty finite intersection of BS . Denote by V the set of
vertices v of T ′′T such that v 6= vB, v ∈ ∂T and [v, vB] is a simplex of T ′′T . For
each v ∈ V choose a point v′ lying on the interval [v, vB] connecting v and vB
as follows. If v ∈ S then set v′ = v and note that in this case v′ ∈ ∂B. If v /∈ S
then choose v′ such that v′ 6= vB, v

′ 6= v and pS([v′, v]) ⊂ IntB. For a simplex
∆ of T ′′T spanned by vertices vB, v1, . . . , vk, with v1, . . . , vk ∈ V denote by
∆′ the simplex spanned by the vertices vB, v′1, . . . , v

′
k and denote by WB

the union of all such simplexes ∆′. Then WB is a PL-ball which is a closed
neighborhood of vB in MB such that WB ∩ S = MB ∩ S = B and for every
x ∈ ∂WB the interval [vB, x] is contained in WB and [vB, x]∩∂WB = x. Let
πWB : WB \vB → ∂WB be the radial projection. Using a PL-homeomorphism
represent KB as WB× [0, 1] so that WB is identified with WB×0 and extend
πWB to the radial projection

πB : KB\vB = (WB×[0, 1])\vB → ∂KB\IntWB = (∂WB×[0, 1])∪(WB×1)

(πB is defined with respect to the linear structure of WB × [0, 1] induced by
the linear structures of WB and [0, 1]).

Let us show that PL restricted MB \ (FL ∪ IntWB) is a partition. Take
x ∈ ∂WB \ S. Then there are an open neighborhood G of x in ∂WB \ S
and ε > 0 such that G × [0, ε) is embedded into MB \ (S ∪ IntWB) by the
map (z, t) 7→ z(1 + t) − tvB, z ∈ G, so that for every simplex ∆ of T ′′T ,
∆∩ (G× [0, ε)) = (∆∩G)× [0, ε). Recall that T ′′T underlies PL, and FL re-
stricted to ∂T and PL restricted to MB \FL and to ∂MB \FL are partitions.
Since G× (0, ε) is an open subset of MB, PL restricted to (G× (0, ε)) \ FL
is a partition and therefore, by 2.2, PL restricted to G \ FL is a partition.
Then, again by 2.2, PL restricted to (G× [0, ε))\FL is a partition and hence
PL restricted MB \ (FL ∪ IntWB) is a partition (recall that S ⊂ FL).

For every A ∈ A and every finite intersection B of BS define sets AB

and A∂B as follows. For B = ∅ set A∅ = A if A ∩ T = ∅ and A∅ = A ∪ S
if A ∩ T 6= ∅, and for dimB = 0 set A∂B = A∅. Now by induction on
dimB define AB and A∂B so that AB = A∂B ∪ π−1

B (A∂B ∩ (∂KB \ IntWB))
for dimB ≥ 0 and A∂B =

⋃
{AB′

: B′ ⊂ ∂B} for dimB ≥ 1. Clearly,
AB and A∂B are PL-subcomplexes of M . Note that if A ∩ T = ∅ then
AB = A∂B = A for every B.

From the construction ofWB and πB it follows that for every simplex∆ ∈
T ′T intersecting WB we have π−1

B (∆∩∂WB)\S = (∆∩WB)\S. Then it is easy
to see that S∂B = SB = S, (A∂B ∩MB)\S = (AB ∩MB)\S = (A∩MB)\S
and hence (AB1 ∩AB2) \ S = AB1∩B2 \ S, (AB1 ∩AB2 ) \ S = (A1 ∩A2)B \ S
for any A,A1, A2 ∈ A and finite intersections B,B1, B2 of BS .

Define PB = {PB : P ∈ PL} and P∂B = {P ∂B : P ∈ PL}. Recall that
S ⊂ FL. Let us show by induction on dimB that PB restricted to KB \FBL
and P∂B restricted to NB \ F ∂BL are partitions.
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For dimB = 0 we have NB = ∅ and therefore P∂B restricted to NB \F ∂BL
is vacuously a partition. Let B be a finite intersection of BS such that P∂B
restricted to NB \F ∂BL is a partition. Define RB = ∂KB \ IntWB. From the
construction of πB it follows that KB \vB is PL-homeomorphic to RB×[0, 1)
so that RB corresponds to RB × 0, PB restricted to KB \ vB corresponds
to the decomposition (P∂B|RB)× [0, 1) of RB × [0, 1) and (FBL ∩KB) \ vB
corresponds to (F ∂BL ∩ RB) × [0, 1). Note that F ∂BL ∩MB = FL ∩MB and
P∂B restricted to MB \ S coincides with PL restricted MB \ S, and recall
that PL restricted to ∂MB \ FL and to MB \ (FL ∪ IntWB) are partitions.
Then, by 2.2, P∂B restricted to RB \ F ∂BL is a partition and therefore PB
restricted to KB \ FBL is also a partition.

Now assume B is a finite intersection of BS such that dimB > 0 and
for every finite intersection B′ of BS such that B′ ⊂ ∂B we knew that PB′

restricted to KB′ \ FB′
L is a partition. Then, by 2.2, P∂B is a partition of

NB \ F ∂BL since {KB′ : B′ is a finite intersection of BS such that B′ ⊂ ∂B}
is a partition of NB. The induction is complete.

Thus we have shown that PB restricted to KB \ FBL is a partition for
every finite intersection B of BS . For A ∈ A write Aπ =

⋃
{AB : B ∈ BS}

and define PπL = {P π : P ∈ PL}. Note that FBL = KB ∩ F πL and PπL
restricted to KB coincides with PB. Then, by 2.2, PπL is a partition on
T \ F πL since {KB : B is a finite intersection of BS} is a partition of T .
It is obvious that PπL restricted to L \ S coincides with PL restricted to
L \ S and therefore PπL is a decomposition of M which is a partition on
M \ F πL .

Now let us show that for A1, A2 ∈ A, (A1\A2)\S is a strong deformation
retract of (Aπ1 \ Aπ2 ) \ S. To this end it is enough to show that for every
finite intersection B of BS , (C ′1 \ C ′2) \ S is a strong deformation retract
of (C1 \ C2) \ S where C ′i = A∂Bi ∩ ∂KB and Ci = ABi ∩ KB. From the
construction it follows that (C1 \ C2) \ S can be topologically represented
as C ′ × [0, 1) with C ′ = (C ′1 \ C ′2) \ (S ∪ IntWB) so that (C ′1 \ C ′2) \ S is
identified with (C ′ × 0) ∪ ((C ′ ∩ ∂WB) × [0, 1)). Note that C ′ is a space
admitting a triangulation for which C ′ ∩ ∂WB is a subcomplex of C ′ and
therefore (C ′ × 0) ∪ ((C ′ ∩ ∂WB)× [0, 1)) is a strong deformation retract of
C ′ × [0, 1).

Let ∆ ∈ TT be contained in ∂T . Since pS is linear on ∆ and pS(∆) is a
subcomplex of T ′T we can conclude that dim∆∩MB ≤ dim∆+dimB−dimS
for every finite intersection B of BS . Then, as dim∆B \S ≤ dim(∆∩MB) \
S + 1 for dimB = 0 and dim∆B \ S ≤ dim∆∂B \ S + 1 for dimB > 0, we
get dim∆π \S ≤ dim∆\S+1. Thus dim (Aπ∩T )\S ≤ dim (A∩∂T )\S+1
for every A ∈ A.

The remaining properties required in 4.1 are easy to verify.
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5.2. Digging holes for improving connectivity of an intersection

Summary. Here we present a construction used in 4.2. Let M be a
triangulated m-dimensional manifold, F a PL-subcomplex of M and P a
decomposition of M which is a partition on M \ F . Assume that M is
(q− 1)-connected, m ≥ 2q+ 1 and let Sq−1 ⊂ IntM \F be a PL-embedded
q-dimensional sphere so that P restricted to Sq−1 is a partition and for ev-
ery finite intersection P ′ of P with P ′ ∩ Sq−1 6= ∅, Sq−1 ∩ P ′ is properly
embedded in P ′ \ F (that is, Sq−1 ∩ ∂(P ′ \ F ) = ∂(Sq−1 ∩ P ′)).

We will show that there is an m-dimensional cube Bm = Bq × Bm−q ⊂
IntM such that Bm is PL-embedded in M , and Bq = Bq × O and Bm

have the following properties: Sq−1 = ∂Bq, P restricted to ∂Bm \ F and to
M \ (IntBm ∪ F ) are partitions, F ∩ Bm = (F ∩ Bq) × Bm−q, P ′ ∩ Bm =
(P ′ ∩Bq)×Bm−q for every P ′ ∈ P and P ′ \ (F ∪ IntBm) is a deformation
retract of P ′ \ (F ∪ IntBq) for every finite intersection P ′ of P.

Moreover, if Φ : Bq
Φ → M is a map from a q-dimensional cube Bq

Φ
into M such that Φ restricted to ∂Bq

Φ is a PL-homeomorphism between
∂Bq

Φ and Sq−1, then Bq can be chosen to be arbitrarily close to Φ(Bq
Φ) in

the sense that Bq can be chosen to be the image of an arbitrarily close
approximation of Φ by a PL-embedding which coincides with Φ on ∂Bq

Φ.
Clearly, replacing Bm−q by a smaller cube we ensure that Bm will be

arbitrarily close to Bq. Hence, if Sq−1 can be contracted to a point in an
open subset Sq−1 ⊂W of M , then we can assume that Bm ⊂W .

Construction. The case q = 1 and m = 3 can be visualized directly and
is left to the reader. Assume that m ≥ 4 (in fact, we can always assume
that m ≥ 4 restricting ourselves to Nöbeling spaces modeled on manifolds
of dimension ≥ 4). Let Bq be a q-dimensional ball PL-embedded in IntM
such that Sq−1 = ∂Bq. Using an unknotting theorem for manifolds (see
Theorem 10.3 of [6]) find a PL-embedded Euclidean space Rm = Rq ×
Rm−q ⊂ IntM such that Bq ⊂ Rq, where Rq and Rm−q are identified with
the subsets Rq ×O ⊂ Rm and O × Rm−q ⊂ Rm respectively.

Let Φ be as above. It is easy to see that Φ can be arbitrarily closely
approximated by a PL-embedding into IntM . Then replacing Φ by such
an approximation and setting Bq = Φ(Bq

Φ) we can assume without loss of
generality that Φ(Bq

Φ) ⊂ Rm.
For a block bundle ξ over a cell complex X, written ξ/X, denote by σξ

the cells of X, by βξ the blocks of the total space E(ξ) and by (σξ, βξ) the
pairs such that βξ is the block over σξ (see [10]). We say that ξ underlies
Y ⊂ E(ξ) if Y is a union of blocks of ξ, and ξ underlies a collection Y of
subsets of E(ξ) if ξ underlies each Y ∈ Y.

Let us say that a block bundle ξ over Sq−1 is subordinated to P if E(ξ) is
a regular neighborhood of Sq−1 in Rm, E(ξ) does not intersect F and E(ξ)
underlies P restricted to E(ξ).
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A block bundle ξ subordinated to P can be constructed as follows. Fix
a triangulation T of M which is the second barycentric subdivision of a
triangulation that underlies Sq−1, F and P. By a simplicial neighborhood
of A ⊂ M in a subcomplex X of M we mean the union of the simplexes of
T intersecting A and contained in X. We may assume that T is chosen so
that the simplicial neighborhood G of Sq−1 in M is contained in Rm and
G ∩ F = ∅. For every finite intersection P ′ of P that meets Sq−1 denote by
GP ′ the simplicial neighborhood of P ′∩Sq−1 in P ′. Note that GP ′ = G∩P ′,
GP ′′ = GP ′ ∩ P ′′ if P ′′ ⊂ P ′, GP ′ is a regular neighborhood of P ′ ∩ Sq−1 in
P ′\F and P ′∩Sq−1 is locally flat in P ′\F because dimP ′−dimP ′∩Sq−1 =
m− (q − 1) ≥ q + 2.

For every finite intersection P ′ of P that meets Sq−1 we are going to
construct by induction on dimP ′ ∩ Sq−1 a block bundle ξP ′ over P ′ ∩ Sq−1

such that E(ξP ′) = GP ′ and ξP ′ |P ′′ ∩ Sq−1 = ξP ′′ if P ′′ ⊂ P ′. Obviously,
such a block bundle exists if dimP ′ ∩ Sq−1 = 0. Assume that for a finite
intersection P ′ of P a block bundle ξP ′′ is already constructed for every finite
intersection P ′′ of P such that P ′′ ⊂ P ′ and P ′′ 6= P ′. Then ξP ′′ defines the
corresponding block bundle ξ∂P ′ over ∂(P ′ ∩ Sq−1) and by Theorem 4.3
of [10] this block bundle extends to a block bundle ξP ′ over P ′ such that
E(ξP ′) = GP ′ .

Thus we have constructed block bundles ξP ′ for every finite intersection
P ′ of P that meets Sq−1, and these block bundles define the corresponding
block bundle ξ over Sq−1. Clearly, ξ is subordinated to P and E(ξ) = G.

Let Bm−q
1 be a cube in Rm−q. Fix ε = 1/2 and for each cell σξ of Sq−1

define the pair (ση, βη) with ση = σξ and βη = γξ × Bm−q
1 where γξ =

{x : x = ts, 1− ε ≤ t ≤ 1 + ε, s ∈ σξ} ⊂ Rq. Then the pairs (ση, βη) form a
block bundle η over Sq−1 such that E(η) underlies a regular neighborhood
of Sq−1 in Rm. Hence by Theorem 4.4 of [10] there is a PL-homeomorphism
of Rm realizing an isomorphism from η to ξ.

Let e : Rm →M be the composition of such a PL-homeomorphism with
the original embedding of Rm in M . Then replacing the original embedding
of Rm into M by the embedding e we may assume that ξ coincides with η
(the meaning of such a replacement is that we leave Rm as the same subset
of M but change the representation of Rm as the product of Rq and Rm−q).
Thus we deduce that η is subordinated to P and this is the only property
of η with respect to P that will be used in what follows.

Replace the map Φ by a close PL-embedding which coincides with Φ on
∂Bq

Φ and sends a small neighborhood of ∂Bq
Φ in Bq

Φ onto a neighborhood
of ∂Bq in Bq. Then there is a neighborhood Ω of Sq−1 in Rm such that
Φ(Bq

Φ)∩Ω = Bq ∩Ω. It is easy to see from the definition of η that there is a
PL-homeomorphism φ1 : Rm → Rm such that φ1 does not move the points
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of Sq−1, φ1(Bq) = Bq, φ1(E(η)) ⊂ E(η)∩Ω and for every block βη we have
φ1(βη) ⊂ βη. Then the block bundle φ1(η) is also subordinated to P and
we can replace the embedding e by e ◦ φ1 and assume that E(η) ⊂ Ω and
Φ(Bq

Φ) ∩ E(η) = Bq ∩ E(η).
By an unknotting theorem for manifolds (see Theorem 10.1 of [6]) there

is a PL-homeomorphism φ2 : Rm → Rm such that φ2 does not move the
points of E(η) and Φ(Bq

Φ) = φ2(Bq). Then replacing the embedding e by
e ◦ φ2 we may assume that Φ(Bq

Φ) = Bq.
Fix a triangulation TR of Rm such that the simplexes of TR are linear

in Rm and TR underlies P|Rm, F ∩Rm and Bq
1×B

m−q
1 where Bq

1 = (1+ε)Bq.
Let p : Rm = Rq×Rm−q → Rm−q be the projection and let a ∈ IntBm−q

1 be
such that a /∈ p(∆) for every ∆ ∈ TR with dim p(∆) < m− q and a /∈ ∂p(∆)
for every ∆ ∈ TR with dim p(∆) = m − q. Take a cube Bm−q

2 such that
a + Bm−q

2 ⊂ IntBm−q
1 and a + Bm−q

2 ⊂ Int p(∆) for every ∆ ∈ TR such
that ∆ ∩ (Bq

1 × a) 6= ∅. Then the pairs (στ , βτ ) with στ = (Bq
1 × a) ∩∆ and

βτ = (Bq
1 × (a + Bm−q

2 )) ∩∆, ∆ ∈ TR, form a block bundle τ over Bq
1 × a,

and we assume that Bm−q
2 is so small that E(τ) = Bq

1 × (a + Bm−q
2 ) and

E(τ |∂Bq
1) = ∂Bq

1 × (a+Bm−q
2 ).

By Theorem 1.1 of [10] every block bundle over a cube is trivial. Hence
τ is isomorphic to a trivial block bundle δ over Bq

1, that is, there is a
PL-homeomorphism h : E(δ) → E(τ) where E(δ) is the product E(δ) =
Bq

1 ×B
m−q
3 ⊂ Rm of Bq

1 with a cube Bm−q
3 in Rm−q such that h(x) = (x, a)

for every x ∈ Bq
1, (σδ, βδ) is a pair of δ if and only if (h(σδ), h(βδ)) is a pair

of τ and, for every pair (σδ, βδ) of δ, βδ = σδ ×Bm−q
3 .

Identify Bq
1 × B

m−q
3 with h(Bq

1 × B
m−q
3 ) (that is, re-embed Bq

1 × B
m−q
3

according to h) and let Bm−q be a cube lying in IntBm−q
3 . Then from the

construction it follows that

(∗) P ′ ∩ (Bq
1 × IntBm−q

3 ) = (P ′ ∩Bq
1)× IntBm−q

3 for every P ′ ∈ P and
F ∩ (Bq

1 × IntBm−q
3 ) = (F ∩Bq

1)× IntBm−q
3 .

From the construction it also follows that P restricted to IntBq
1 \ IntBq,

to ∂Bq and to Bq \ F are partitions. Hence by (∗) and 2.2, P restricted
to (IntBq

1 \ IntBq) × IntBm−q
3 , to (Bq \ F ) × (IntBm−q

3 \ IntBm−q), to
∂Bq × (IntBm−q

3 \ IntBm−q), to ∂Bq × ∂Bm−q, ∂Bq × Bm−q and to
(Bq \ F ) × ∂Bm−q are partitions. Then, once again by 2.2, P restricted
to Int(Bq

1 ×B
m−q
3 ) \ (F ∪ (Int(Bq ×Bm−q))) and to ∂(Bq ×Bm−q) \ F are

partitions.
Define Bm = Bq ×Bm−q. Thus we see that

(∗∗) P restricted to M \ (F ∪ IntBm) and to ∂Bm \ F are partitions.

Let P ′ be a finite intersection of P. Let us show that
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(∗∗∗) P ′ \ (F ∪ IntBm) is a deformation retract of P ′ \ (F ∪ IntBq).

Note the following general fact: for a triangulated space A1, a subcomplex
A2 of A1 and a cube B, the space (A2×B)∪(A1×∂B) is a strong deformation
retract of (A2 × B) ∪ (A1 × (B \ O)). Then for A1 = (P ′ ∩ Bq) \ F and
A2 = P ′ ∩ ∂Bq we deduce by (∗) that Bm ∩ (P ′ \ (F ∪ IntBm)) = (A2 ×
Bm−q)∪ (A1×∂Bm−q) and Bm∩ (P ′ \ (F ∪ IntBq)) = (A2×Bm−q)∪ (A1×
(Bm−q \O)). Thus Bm ∩ (P ′ \ (F ∪ IntBm)) is a strong deformation retract
of Bm ∩ (P ′ \ (F ∪ IntBq)) and hence (∗∗∗) holds.

Let us compare the embeddings of Bq under h and e. For this purpose
we assume that Rm ⊂ M is identified with Rq × Rm−q according to the
embedding e and we disregard the identification induced by h. Then h(x) =
(x, a) for x ∈ Bq. One can easily observe that there is a PL-homeomorphism
ψ : M → M such that ψ ◦ h does not move the points of Sq−1, ψ does
not move the points outside Int(E(η)) and ψ(P ′) = P ′ for every P ′ ∈ P.
Moreover, choosing the point a arbitrarily close to O we may choose ψ to be
arbitrarily close to the identity map of M . Note that since ψ does not move
the points outside Int(E(η)), we have ψ(F ) = F . Now we can replace Φ by
ψ ◦ h ◦ Φ and h by ψ ◦ h, and after identifying Bq

1 × B
m−q
3 with its image

under the new embedding h, we find that Φ(Bq
Φ) = Bq and the properties

(∗)–(∗∗∗) are preserved.
Note that (∗) trivially implies that F ∩ Bm = (F ∩ Bq) × Bm−q and

P ′ ∩Bm = (P ′ ∩Bq)×Bm−q for every P ′ ∈ P.
Thus we have replaced the original map Φ by an arbitrarily close PL-

embedding which coincides with Φ on ∂Bq
Φ and we have found a PL-embed-

ding of Bm = Bq × Bm−q ⊂ IntM such that Bq = Φ(Bq
Φ) and Bm has the

required properties.

5.3. Digging holes for absorbing simplexes

Summary. Here we present a construction used in 2.6. Let M be a trian-
gulated (q − 1)-connected m-dimensional manifold with m ≥ 2q + 1 and let
l = m− q+ 1. Assume that F is a PL-subcomplex of M lying in IntM such
that U = M \F is l-co-connected (= (q−1)-connected) and dimF ≤ m− q,
and assume that P is a decomposition of M such that P is an l-co-connected
partition on U .

Fix a triangulation T0 of M which underlies F and the elements of P
and let the triangulation T be the second barycentric subdivision of T0. Let
TF be the collection of all (m−q)-dimensional simplexes of T lying in F and
let S∆ and ∆ ∗ S∆ be the link of ∆ and the join of ∆ with S∆ respectively.
Recall that

S∆ =
⋃
{∆′ ∈ T : ∆′ ∩∆ = ∅ and there is ∆′′ ∈ T with ∆,∆′ ⊂ ∆′′},

∆ ∗ S∆ =
⋃
{∆′ ∈ T : ∆ ⊂ ∆′}.
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Define Q as the union of Int(∆ ∗ S∆) for all ∆ in TF and N = M \ (Q∪F ).
Let ∆ ∈ TF and let an open subset V∆ of N be such that Sq−1 = S∆ ⊂ V∆
and Sq−1 is contractible in V∆.

We will show that there are an element P∆ ∈ P and a PL-embedding
of a cube Bm = Bq × Bm−q into IntM such that Bm ⊂ (∆ ∗ S∆) ∪ V∆,
∆ = O × Bm−q = F ∩ Bm, P ∩ U ∩ Bm = (P ∩ U ∩ Bq) × Bm−q for every
P ∈ P, ∂Bq × Bm−q ⊂ Int(P∆ ∩ U), P restricted to (M \ IntBm) ∩ U and
to ∂Bm ∩U are partitions, and (P \ IntBm)∩U is a deformation retract of
(P \ IntBq) ∩ U for every finite intersection P of P.

Construction. Let us repeat a few simple observations noted in 4.5 which
immediately follow from the fact that T is the second barycentric subdivi-
sion of a triangulation which underlies F and the elements of P. Namely,
we note that for every ∆ ∈ TF the link S∆ of ∆ is a (q − 1)-dimensional
sphere lying in IntM , and for different simplexes ∆1 and ∆2 in TF the
joins ∆1 ∗ S∆1 and ∆2 ∗ S∆2 do not intersect on U . We also note that for
every subset H which is the union of a finite intersection of P such that
H ∩ U 6= ∅, and for every ∆ ∈ TF , we know that (H ∩ U) \ Int(∆ ∗ S∆) is
a deformation retract of H ∩ U and hence H ∩ N is a deformation retract
of H ∩ U . Then N is an l-co-connected manifold (since N is a deforma-
tion retract of U) and P|N is an l-co-connected partition (since P|U is
l-co-connected).

Consider M as embedded in a Hilbert space by an embedding which is
linear on every simplex of T0.

Fix ∆ ∈ TF and let Sq−1 = S∆ be the link of ∆ with respect to T ,
Sm−1 = ∂(∆ ∗ S∆) and b be the barycenter of ∆.

Let us show that P restricted to N , to Sm−1\∂∆ and to (∆∗S∆)\∆ are
partitions. For a point x ∈ Sm−1 \ ∂∆ choose an ε > 0 and a neighborhood
G of x in Sm−1 \ ∂∆ such that the map (z, t) 7→ z + tb, z ∈ G, t ∈ (−ε, ε),
embeds G×(−ε, ε) into M \F and for every simplex ∆′ of T0 that intersects
G× (−ε, ε) we have ∆′ ∩ (G× (−ε, ε)) = (∆′ ∩G)× (−ε, ε). Then for every
P ∈ P that intersectsG×(−ε, ε) we have P∩(G×(−ε, ε)) = (P∩G)×(−ε, ε).
Therefore, by 2.2, P restricted to G, to G × (−ε, 0] and to G × [0, ε) are
partitions and hence P restricted to Sm−1 \ ∂∆, to (∆ ∗ S∆) \∆ and to N
are partitions as well.

Denote by T∆ the collection of the simplexes of T intersecting Sq−1

and containing ∆. Let T ′ be the second barycentric subdivision of T . For
every ∆′ ∈ T∆ denote by G∆′ the simplicial neighborhood of ∆′ ∩ Sq−1 in
∆′ ∩ Sm−1 with respect to T ′. In a way similar to constructing ξP ′ in 5.2
we construct for every ∆′ ∈ T∆ a block bundle ξ∆′ over ∆′ ∩ Sq−1 such
that E(ξ∆′) = G∆′ and ξ∆′ |(∆′′ ∩ Sm−1) = ξ∆′′ if ∆′′ ⊂ ∆′. Then the block
bundles ξ∆′ define the corresponding block bundle ξ over Sq−1 with E(ξ)
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being the simplicial neighborhood of Sq−1 in Sm−1 with respect to T ′. Note
that E(ξ) is a regular neighborhood of Sq−1 in ∂N .

Extend the embedding of Sq−1 in N to a PL-embedding of a q-dimen-
sional cube Bq

1 into N such that Sq−1 = ∂Bq
1 and Bq

1 ∩ ∂N = Sq−1, and
note that the embedding of Bq

1 is locally flat because m ≥ 2q + 1. Extend
the regular neighborhood E(ξ) of Sq−1 in ∂N to a regular neighborhood
of Bq

1 in N , and by Theorem 4.3 of [10] represent this neighborhood as
the total space E(ν) of a block bundle ν over Bq

1 such that ν|Sq−1 = ξ.
Since ν is a trivial block bundle, E(ν) is PL-homeomorphic to the product
E(ν) = Bq

1×B
m−q
1 of Bq

1 with an (m−q)-dimensional cube Bm−q
1 such that

for each pair (σν , βν) of ν, βν = σν ×Bm−q
1 . Fix a triangulation Tν of E(ν)

which underlies T restricted to E(ν). In a way similar to constructing the
block bundle τ in 5.2 choose a point a in Bm−q

1 and a cube Bm−q
2 such that

a+Bm−q
2 ⊂ IntBm−q

1 and the pairs (στ , βτ ) defined by στ = ∆′ ∩ (Bq
1 × a),

βτ = ∆′∩(Bq
1×(a+Bm−q

2 )), ∆′ ∈ Tν , form a block bundle τ over Bq
1×a with

E(τ) = Bq
1 × (a+Bm−q

2 ) and E(τ |∂(Bq
1 × a)) = E(τ)∩ (∂Bq

1 × (a+Bm−q
2 ))

(= E(τ) ∩ Sm−1). Then the block bundle τ underlies P and T∆ restricted
to E(τ).

Note that since the block bundle ν is trivial, the block bundle ξ is trivial
as well and E(ξ) = ∂Bq

1 × Bm−q
1 . Then it is obvious that the projection

∂Bq
1 × a → ∂Bq

1 extends to a PL-homeomorphism h : E(ξ) → E(ξ) such
that h(x) = x for every x ∈ ∂E(ξ), h(βξ) = βξ for every block βξ of ξ and
there is a PL-isotopy H : E(ξ) × [0, 1] → E(ξ) × [0, 1] relative to ∂E(ξ) so
that H0 = h. Recall that the barycenter of ∆ is denoted by b. Then, since
∂∆ ∩ E(ξ) = ∅, there is ε > 0 such that for every x ∈ E(ξ), P ∈ P and
t ∈ [0, 1], the point b+ (1 + tε)(x− b) belongs to P if and only if x belongs
to P . Embed E(ξ) × [0, 1] into N by sending (x, t) to b + (1 + tε)(x − b)
and define the PL-homeomorphism g : N → N such that g coincides with
H on E(ξ) × [0, 1] and g does not move the points outside E(ξ) × [0, 1].
From the properties described above it is clear that g(∂(Bq

1 × a)) = ∂Bq
1

and the block bundle g(τ) underlies P and T∆ restricted to E(g(τ)). Define
Bq

2 = g(Bq
1 × a) and θ = g(τ).

Thus we get a block bundle θ over a cube Bq
2 such that Sq−1 = ∂Bq

2 =
∂N ∩Bq

2, θ underlies P and T∆ restricted to E(θ), and E(θ|∂Bq
2) = Sm−1 ∩

E(θ). Then, since θ is trivial, E(θ) is PL-homeomorphic to Bq
2 ×B

m−q
3 such

that ∂N ∩ (Bq
2 × B

m−q
3 ) = ∂Bq

2 × B
m−q
3 ⊂ Sm−1 and for each pair (σθ, βθ)

of θ, βθ = σθ × Bm−q
3 . Take a cube Bm−q

4 such that Bm−q
4 ⊂ IntBm−q

3

and define the block bundle % over Bq
2 by restricting the blocks of θ to

E(%) = Bq
2×B

m−q
4 . Using a reasoning similar to the one applied for proving

the property (∗∗) in 5.2 we can show that P restricted N \ (Bq
2× IntBm−q

4 )
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and to ∂((∆ ∗ S∆) ∪ (Bq
2 × Bm−q

4 )) \ ∂∆ are partitions. It is clear that
E(%) ⊂ IntM .

Take a pair (σ∆% , β
∆
% ) of % such that dimβ∆% = m and let P∆ ∈ P be such

that β∆% ⊂ P∆. Since % is a trivial block bundle we can replace % by another
block bundle subdividing the cells of Bq

2 into smaller cells and defining the
corresponding blocks using the product structure. This way we may assume
that the cells of Bq

2 are so small that the pair (σ∆% , β
∆
% ) can be chosen so

that β∆% ⊂ Int(P∆ ∩N).
Let the cube Bq

3 ⊂ ∆∗S∆ be the join Bq
3 = b∗S∆. Define a block bundle

ψ over Bq
3 as follows: the pairs (σ%, β%) of % with σ% ⊂ Sq−1 are the pairs of

ψ, (b,∆) is a pair of ψ and the rest of the pairs (σψ, βψ) of ψ are of the form
σψ = ∆′ ∩ Bq

3, βψ = ∆′, ∆′ ∈ T∆. One can easily check that ψ is indeed a
block bundle and E(ψ) = ∆ ∗ S∆. Since ψ and % coincide over Sq−1, they
form the corresponding block bundle φ over the sphere Bq

3 ∪B
q
2. Note that

Bq = (Bq
2 ∪ B

q
3) \ Intσ∆% is a q-dimensional cube. Define the block bundle

η as φ restricted to Bq. Then (b,∆) is a pair of η, b ∈ IntBq, ∂Bq = ∂σ∆% ,
the intersections of the blocks of η with U = M \F underlie P restricted to
E(η) ∩ U , E(η) ∩ F = ∆ and hence η underlies F restricted to E(η).

Thus assuming that the center O of Bq is located at b we can represent
E(η) as the product Bm = Bq ×Bm−q such that ∆ = 0×Bm−q = F ∩Bm,
∂Bq×Bm−q ⊂ Int(P∆∩U) and P ∩U ∩Bm = (P ∩U ∩Bq)×Bm−q for every
P ∈ P that meets Bm ∩U . By a reasoning similar to the one applied in the
proof of (∗∗∗) in 5.2 these properties imply that for every finite intersection
P of P, P \ (F ∪ IntBm) is a deformation retract of P \ (F ∪ IntBq). Since
Bm = (∆ ∗S∆)∪ ((Bq

2 \ Intσ∆% )×Bm−q
4 ) and β∆% = σ∆% ×B

m−q
4 is contained

in Int(P∆ ∩ U), we derive from the properties of % that P restricted to
M \ (F ∪ IntBm) and to ∂Bm \ F are partitions and Bm ⊂ IntM .

Note that if Sq−1 can be contracted to a point in an open subset V∆
of N then the construction can be carried out so that Bm is contained in
(∆ ∗ S∆) ∪ V∆.
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