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Abstract. This is the second part of a paper about the classification of 2-compact
groups. In the first part we set up a general classification procedure and applied it to the
simple 2-compact groups of the A-family. In this second part we deal with the other simple
Lie groups and with the exotic simple 2-compact group DI(4). We show that all simple
2-compact groups are uniquely N-determined and conclude that all connected 2-compact
groups are uniquely N-determined. This means that two connected 2-compact groups are
isomorphic if their maximal torus normalizers are isomorphic and that the automorphisms
of a connected 2-compact group are determined by their effect on a maximal torus. As an
application we confirm the conjecture that any connected 2-compact group is the product
of a compact Lie group with copies of the exceptional 2-compact group DI(4).
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1. INTRODUCTION

This is the second part of a paper whose aim is to show that connected
2-compact groups are determined by their maximal torus normalizers and
that some nonconnected 2-compact groups are determined by their maximal
torus normalizers together with information about the group of components.
The first part [24] contained a general classification scheme which

(1) reduces the classification problem to the case of a connected, simple
2-compact group with no center, and

(2) deals inductively with connected, simple 2-compact groups with no
center.

In the first part we applied this general procedure to the connected 2-
compact groups PGL(n + 1,C), n > 1, of the A-family and showed that
they are uniquely N-determined [24, Theorem 1.4]. In this second part we
shall apply the same procedure to the D-, B-, and C-families of Lie groups,
to the exceptional Lie groups Go, Fy, Eg, PE7, and Eg, and to the exotic
2-compact group DI(4) [9]. We show that there do not exist shadow versions
of these well-known 2-compact groups. The main results are the following.

1.1. THEOREM (The D-, B-, and C-families). The connected, simple 2-
compact groups PSL(2n,R), n > 4, SL(2n + 1,R), n > 2, and PGL(n,H),
n > 3, are uniquely N-determined. Their automorphism groups are

ZX\Z; x X3, n=4,
Aut(PSL(2n,R)) = § Z*\ZJ % (c1), n >4 even,
Zy, n >4 odd,
Aut(SL(2n+ 1,R)) = Z*\Z;, n>2,
Aut(PGL(n,H)) = Z*\Z, n >3,
where {(c1) is a group of order two (generated by conjugation with a matriz
c1 € GL(2n,R) of determinant —1).
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1.2. THEOREM ([36, 1.3]). The connected, simple 2-compact group G is
uniquely N -determined. Its automorphism group is Aut(Ga) = Z*\Z; x Cs.

1.3. THEOREM ([35]). The connected, simple 2-compact group F4 is
uniquely N-determined. Its automorphism group is Aut(Fy) = Z*\Z; .

1.4. THEOREM. The connected, simple 2-compact groups Fg, PE7, and

Eg are uniquely N-determined. Their automorphism groups are Aut(Eg) =
Z5, Aut(PE7) = Z*\Z;, and Aut(Eg) = Z*\Z .

1.5. THEOREM. The connected, simple 2-compact group DI(4) is uniquely
N-determined. Its automorphism group is Aut(DI(4)) = Z*\ZJ .

The method also applies to some nonconnected 2-compact groups and
as an example we consider the general linear groups over the field of real
numbers.

1.6. COROLLARY. The2-compact group GL(n,R) is totally N -determined
for allm > 2. Its automorphism group is

Z*\Z3, n >3 odd,
7y =2
Ant(GL(n,R)) = {2 e
5 %X (0), n=2mod4, n > 2,

ZX\Z5 x {(c1) X (0), m=0mod 4,
where (§) and (c1) are subgroups of order two.

The above results together with the corresponding result for the A-
family [24, Theorem 1.4] say that all simple 2-compact groups are uniquely
N-determined. Given this information, the general classification procedure
shows that in fact all connected 2-compact groups are uniquely N-determined
and that some nonconnected 2-compact groups are totally N-determined
[24, Theorem 1.1].

2. THE D-FAMILY

Let GL(2n,R), n > 1, be the matrix group of 2n by 2n real matrices
and SL(2n,R) the closed subgroup of matrices with determinant 1. The
D-family is the infinite family of matrix groups
SL(2n,R)

(-E) ~
with trivial center. Of course, these groups also exist for n = 1,2, 3; how-
ever, PSL(2,R) = {1} is the trivial group, and PSL(4,R) = PGL(2, C)?,
PSL(6,R) = PGL(4,C) will at this stage be known to be uniquely N-
determined [24, Theorem 1.4].

PSL(2n,R) = n >4,
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The maximal torus and the maximal torus normalizer of the Lie groups
GL(2n,R), SL(2n,R), and PSL(2n,R) are
T(GL(2n,R)) = SL(2,R)", N(GL(2n,R)) = GL(2,R) 1 X,
T(SL(2n,R)) = SL(2,R)", N(SL(2n,R))

(2.1) SL(2n,R) N N(GL(2n,R)),
_ SL(2,R)" Ry - ML R))
T(PSL(2n,R)) = —B N(PSL(2n,R)) —B

In all three cases, the maximal torus normalizer is the semidirect product
for the action of the Weyl group

01
2 W(GL(2n,R)) = Y51 X, 5y = W(GL(2,R)) = <(1 0) >
W (SL(2n,R)) = Agy N (222 5,) = W(PSL(2n, R))

on the maximal torus. It is known that

Z)2, n=3,
(2.3) H'W:T)=0, H'W;T)={ Z/2xZ/2, n=4,
07 n>4a

for PSL(2n,R), n > 3 [6, 16, 21, 22]. (The group of outer Lie automorphisms
of the Lie group PSL(8,R), isomorphic to X3, is faithfully represented in
H(W;T)(PSL(3, R)).)
The Lie groups
GL(2n,R) = SL(2n,R) x (D), PGL(2n,R) =PSL(2n,R) x (D(—E))

are the semidirect products of their identity components with the order
two subgroup generated by the matrix D = diag(—1,1,...,1) (or any other
order two matrix with negative determinant). Conjugation with D induces
an outer automorphism of the Lie groups SL(2n, R) and PSL(2n, R).

1. The structure of PSL(2n,R). In this section we investigate the
Quillen category A(PSL(2n,R)) [24, Definition 2.45] for the 2-compact
group PSL(2n, R) (and the related 2-compact groups SL(2n,R), GL(2n, R),
and PGL(2n, R)).

Consider the elementary abelian 2-groups
t(SL(2n,R)) = t(GL(2n,R)) = (e1,...,€n)
C SL(2n,R) C GL(2n,R),
Aoy = (€1, .. enyCl,. .., cp) = (diag(£1, ..., £1)) = (Z/2)*"
C GL(2n,R),

(2.4)
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PAy, = Ay, /{er---e,) = (Z/2)*" ' € PGL(2n,R),
SAg, = (e1,...,en,c102,...,c10) = SL(2n,R) N Ay,

>~ (Z/2)*"1 c SL(2n,R),
PSAs, = SAs,/{e1---e,) = (Z/2)*"2 c PSL(2n,R),

(2 deonc) #(PSL(2n,R)) = t(PGL(2n, R)) = (I,e1,. .., en)/(e1. . . en)
c PSL(2n,R) € PGL(2n, R),
Pt(SL(2n,R)) = Pt(GL(2n,R)) = (e1,...,en)/(e1 - €n)
C SL(2n,R) C GL(2n,R),
where

ej:diag«(l) 2)(‘(1) _2)((1) (1)>>GSL(2n,R),
(2.5) I:diag<((1) _01)(2 _01)>€SL(2n,R),
cj:diag(<(1) 2)(‘(1) ?)((1) (1))>EGL(2n,R).

The matrices e; and c¢j, 1 < j < n, have order two and commute with each
other while Ie; = e;I, Ic; = ejc;1, and I?=¢---e,=—F.
The representation of the Weyl groups

(2.6) W(GL(2n,R)) = (c1,...,¢p) X Xy = X0 X,
(27) W(SL(QTL, R)) = <6162, e ,clcn> X X, = Ao, N (22 ! Zn)

on the maximal toral elementary abelian 2-group ¢(GL(2n,R)) is trivial on
the subgroup (c1, ..., c,) = 2§ while X, C GL(n, C) C SL(2n, R) permutes
the n basis vectors ey, ..., e, of t(SL(2n,R)) = t(GL(2n,R)).

Let V' be a nontrivial elementary abelian 2-group in PGL(2n,R) and
V* its inverse image in GL(2n,R). Let ¢: V' — F3 = {0, 1} be the function
and [, |: V x V — Fy = {0,1} the bilinear map given by v*? = (—E)®)
and [v},v5] = (—E)v2l where v*,vf,v5 € SL(2n,R) are preimages of
v,v1,v2 € PSL(2n, R), respectively. The equations

[v1,v2] = [v2,v1], [v,v] =0, q(v1+v2) = q(v1) + q(v2) + [v1, V2]

show that ¢ is the quadratic function associated to the symplectic bilinear
form [, | [17, p. 356]. The bilinear form is the deviation from linearity of
the quadratic function. Define V+ O R(V) to be the subgroups

Vi={veV|[pV]=0}D>{veVt|ql)=0}=R(V)
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of V. Since ¢ is a group homomorphism on V+, the subgroup R(V) is either
all of V1 or a subgroup of index 2.

In the following we write G o H for the product of the groups G and
H with a common central subgroup amalgamated. The subgroup U1 (V™) is
generated by all squares of elements of V* [17, I11.10.4].

2.8. LEMMA. Let V be a nontrivial elementary abelian 2-group in the
adjoint group PGL(2n,R). The preimage, V*, in GL(2n,R) of V is

Co xV, q(V) =0,
B R V.V =0, q(V) #0,
] Px R(V)7 [V7 V] # 0, Q(Vl) =0,

(Cso P)x R(V), [V,V]#£0, q(V*)#0,

where Cy = (—E) C Cy C SL(2n,R), P = 2172 is extraspecial, Cy o P is
generalized extraspecial with center of order 4, and U1(V*) C (—E).

Proof. Aslong as the bilinear form is trivial, [V, V] = 0, V* is abelian and
the structure theorem for finitely generated abelian groups applies. Assume
that the bilinear form does not completely vanish, [V, V] # 0. Then V* is
nonabelian with commutator subgroup [V*, V*| = Cy. Write V. =U x R(V)
for some nontrivial subgroup U complementary to R(V). Then V+ =V+n
(UxR(V))=(VtNU) x R(V) and ¢(V+) = ¢(V+NU). If U* denotes the
preimage of U, we have V* = U*(Cax R(V)) = U* x R(V') as the preimage of
R(V), Cax R(V), is central in V*. The commutator subgroup [U*, U*] equals
[U*R(V),U*R(V)] = [V*,V*] = Cy and the center Z(U*) is the preimage
of VENU. If ¢(V1) = 0, then R(V) = V4 and VENU = R(V)NU is trivial
so Z(U*) = Cq and U* = P is extraspecial. If ¢(V1) # 0, R(V) has index 2
in V+, VNU has order 2, and q(V+NU) # 0 so that Z(U*) contains an el-
ement of order 4. Therefore Z(U*) = C4 and U™ is generalized extraspecial.
There are two isomorphism classes of such groups but only U* = Cy 0 Dg o
-+-0Dg = Cyo P has elementary abelian abelianization [33, Ex. 8, p. 146]. =

For instance, the preimage of the maximal toral elementary abelian 2-
group t(PSL(2n,R) of PSL(2n,R) is the abelian group
(2.9) t(PSL(2n,R))* = (I, e1,...,¢en),
generated by I and ¢(SL(2n,R)).

2.10. COROLLARY. LetV be a nontrivial elementary abelian 2-group in
PSL(2n,R). If

e (V) =0, [V,V] = 0 then V is toral in PSL(2n,R) if and only if

V* = Cy x V is toral in SL(2n,R);
e q(V)#0,[V,V] =0 then V is toral;
e q(V)#0,[V,V]#0 then V is nontoral.
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Proof. We have
V is toral & V C t(PSL(2n,R)) < V* C t(PSL(2n,R))*

where the symbol “C” reads “is subconjugate to”. In the first case of the
corollary, the preimage V* contains no elements of order 4 so that

V* C t(PSL(2n,R))* < V* C t(SL(2n, R))

as t(SL(2n,R)) consists of the elements of order < 2 in ¢(PSL(2n,R))*. In
the second case, we have V* = Cy x R(V) so that R(V) C Cgp2,r)(I) =
GL(n,C). But any complex representation of the elementary abelian 2-
group R(V) is toral, so R(V) C t(GL(n,C)) = t(SL(2n,R)) and V* C
(Cy,t(SL(2n,R))) = t(PSL(2n,R))*. In the third case, the nonabelian group
V* cannot be a subgroup of the abelian group ¢(PSL(2n,R))*. =

2.11. LEMMA. Let V| and Vs be elementary abelian 2-groups in the ad-
joint group PSL(2n,R). Then
Vi and Va are conjugate in PSL(2n, R)
< V" and V5 are conjugate in SL(2n,R)

where V¥, V5" C SL(2n,R) are the preimages.
Proof. This is clear. m

Write A(PGL(2n, R))4=° and A(PGL(2n,R))=%49=0 for the full subcat-
egories of A(PGL(2n,R)) generated by all elementary abelian 2-groups
V C PGL(2n,R) with trivial quadratic function ¢, respectively, all toral
elementary abelian 2-groups V' C PGL(2n,R) with trivial quadratic func-
tion ¢. Define A(PSL(2n,R))?=% and A (PSL(2n, R))=%9=0 similarly as full
subcategories of A(PSL(2n,R)).

2.12. LEMMA. Write GL for GL(2n,R), SL for SL(2n,R), and PSL for
PSL(2n,R). The inclusion functors

A (Yo, Agp) — A(GL), A (Yo, SAy,) — A(SL),
A(W(SL), €(SL)) — A(SL)<,
A(Zan, PAsy) — A(PGL)T0,  A(Ss,, PSAs,) — A(PSL)T,
A(W(PSL), t(PSL)) — A(PSL)=t,
A(W(PSL), Pt(SL)) — A(PSL)<%4=0
are equivalences of categories. In particular, A(SL) and A(PSL) are full

subcategories of A(GL) and A(PGL), respectively. (See [24, Definition 2.68]
for the meaning of A(Xap, Asy).)
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Proof. By real representation theory, any nontrivial elementary abelian
2-group of GL(2n,R) is conjugate to a subgroup V of Ay, (2.4) and

CarLenr)(V) = H GL(io, R)
oeVV

where i: V'V — Z records the multiplicity of o € V'V in the representation
V C Az, C GL(2n,R). Observe that Ay, is the maximal elementary abelian
2-group in Cgr,2n,r)(V). (For any i > 1, GL(4, R) contains the subgroup
A;, consisting of diagonal matrices with £1 in the diagonal, as a maximal
elementary abelian 2-group.) Therefore, by the standard argument from
[7, IV.2.5], used also in [24, Lemma 3.4], any group homomorphism be-
tween two nontrivial subgroups of A, induced by conjugation with a ma-
trix from GL(2n,R) is in fact induced by conjugation with a matrix from
Ngr@nr)(Q2n) = Az, x Yoy, [32, Lemma 3]. Thus the inclusion functor
A (Yo, Agy) — A(GL(2n,R)) is a category equivalence.

Any nontrivial elementary abelian 2-group V' C PGL(2n,R) with
q(V) =0 is conjugate to a subgroup of PAjg, since V*, the preimage in
GL(2n,R), is conjugate to a subgroup of Ay,. Let V1, V2 be two nontrivial
subgroups of PAs,. From the commutative diagram of morphism sets

A(22na AQn)(Vl*v V2*) A A(GL(QTL, R))(Vl*’ VvQ*)

| :

A (Y9, PAs,)(Vi, Vo) & A(PGL(2n, R))4=0(17, V3)

we see that the bottom horizontal arrow is a bijection. This implies that
A (s, PAy,) — A(PGL(2n,R))47° is an equivalence of categories.

Any nontrivial elementary abelian 2-group in SL(2n, R) is conjugate in
GL(2n,R) to a subgroup of SL(2n, R)NAsg, = SAy, (2.4). The Quillen cate-
gory of SL(2n, R) is a full subcategory of the Quillen category of GL(2n,R)
since Cgronr)(V) ¢ SL(2n,R) for all objects V' of A(SL(2n,R)). Thus
the inclusion functor A(Xy,, SAg,) — A(SL(2n,R)) is an equivalence of
categories.

Any toral elementary abelian 2-group in SL(2n,R) is conjugate to a
subgroup of t(SL(2n,R)) by its very definition [24, Definition 2.50]. Any
morphism between two nontrivial subgroups of ¢(SL(2n,R)) induced by
conjugation with a matrix from SL(2n,R) is in fact induced by conjugation
with a matrix from N(SL(2n,R)) and hence from W (SL(2n,R)) [7, IV.2.5].
Thus A(W(SL),#(SL)) — A(SL(2n,R))=! is a category equivalence. The
same argument can be used to identify the toral subcategory for PSL(2n, R)
(and it is actually a general fact that the inclusion functor A (W (X),¢(X))—
A(X)=!is an equivalence of categories, where ¢(X ) — X is the maximal toral
elementary abelian p-group in the connected p-compact group X [28, 2.8]).
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Any nontrivial toral elementary abelian 2-group V' C PSL(2n,R) with
q(V') = 0 is conjugate to a subgroup of Pt(SL) (2.4) since V*, the preimage
(2.8) in GL(2n,R), is conjugate to a subgroup of ¢(SL) C t(PSL)* (2.9).
As A(PSL)<t97Y s a full subcategory of A(PSL)<! = A(W (PSL),t(PSL)),
this means that A (W (PSL), Pt(SL)) — A(PSL)=%970 is a category equiv-
alence. m

We now specialize to the full subcategory A (PSL(2n, R))Eg of toral ob-
jects of rank at most two [24, Definition 2.50]. -

2.13. PROPOSITION. The chart

A(PSL(2n. R S; Lines Planes
(PSLCn. RIS =0 q#0 q=0 q#0
n even n/2 2 P(n,3)+ P(n,4) n/2+ [n/4]
n odd n/2] 1 P(n,3)+ P(n,4) [n/2]

gives the number of isomorphism classes of toral objects of rank at most two
in A(PSL(2n,R)).

When n is even, the n/2 toral lines with ¢ = 0 are L(2i,2n — 2i), 1 <
i <n/2, and the two toral lines with ¢ # 0 are I and IP. The toral planes
with ¢ = 0 are the planes P(2ig,2i1,2i2,0) where (ig,i1,i2) is a partition
of n into three natural numbers, P(2ig, 2i1, 2i2, 2i3) where (ig,i1,12,13) 1S
partition of n into four natural numbers, and the toral planes with ¢ # 0 are
I#L(i,n—1i), 1 <i<n/2, and I#L(i,n —14)P for even i.

When n is odd, the [n/2] toral lines with ¢ = 0 are L(2i,2n — 2i), 1 <
i < [n/2], and the toral line with ¢ # 0 is I. The toral planes with ¢ = 0
are the planes P(2ig, 2i1, 2i2,0) where (ig,i1,12) is a partition of n into three
natural numbers, P(2ig,2i1,2i2,2i3) where (ig,i1,12,13) is a partition of n
into four natural numbers, and the toral planes with ¢ # 0 are [#L(i,n—1),
1<i<[n/2.

In (2.14) and (2.15) we list the centralizers of the rank one objects and
in (2.16) and (2.17) the centralizers of the rank two objects.

Proposition 2.13 is the conclusion of the following considerations.

For any partition i = (ig,41) of n = igp + ¢1 into a sum of two positive
integers i9 > i1 > 1 let L(i) = L(2ip,2¢1) C t(SL(2n,R)) C SL(2n,R) be
the toral subgroup generated by

20 1

diag(+E,...,+E,—-E,...,—E).

Then the centralizer (of the image in PSL(2n, R)) of this subgroup is
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(2.14)  Cpsr(2n,Rr)L(2i0, 2i1)
SL(Qio, R) X SL(Qii, R)
(—E)

SL(2ip, R)? . O E o
% X <d1ag(D1,D2), <E O>>, 0 = 11,

X <diag(D1, D2)>, io 7é il,

where D; = diag(—1,1,...,1) € GL(2i;, R) are matrices of determinant —1.
The diagonal matrix diag(Dj, D2) acts on the identity component of the
centralizer by the outer action on both factors. In the second case, which
only occurs when n = 2ig is even, the matrix (% g ) acts by permuting the
factors.

The element I € ¢(PSL(2n,R))* C SL(2n, R) of order four generates an
order two toral subgroup of PSL(2n, R) with centralizer [28, 5.11]

GL n, C —F , n Odd,
(2.15) Cpsi(2nr) (1) = { GLE?’L, C;;é—Ei X (c1- - ¢p), n even,

where, in the even case, the component group acts on the identity com-
ponent through the unstable Adams operation ~'. The nontrivial outer
automorphism of PSL(2n, R) takes I to I” where I # I” if and only if n is
even [24, Example 5.4(4)].

For any partition ¢ = (ig,41,72,0) of n = ig + i1 + i2 into a sum of
three positive integers ig > i1 > io > 0 or any partition i = (ig, i1, i2,13) of
n = 19+ 11 + 12 + i3 into a sum of four positive integers iqg > i1 > i3 > i3 > 0
let P(i) = P(2ip, 211, 2i9, 2i3) C t(SL(2n,R)) C SL(2n,R) be the subgroup
generated by the two elements

20 11 12 3
diag(+E,...,+E,—-E,...,—E,+E,...,.+E,—-FE,...,—F),

10 1 12 i3

AN

diag(+E,...,+E,+E,...,.+E,-E,...,—E,~E,...,—E).

The centralizers in PSL(2n,R) are

(2.16)  Cpgr2n,r) (P (7))
SL(2ip, R)? x SL(2i2, R)?
(-E,~E,—E,—E)

x (ker(C5W — Cy) % Z/2),
i = (2do, 20, 212, 2iy),
— SL(2ip, R)*

TE b B gy * Kker(@ = O 1 (2/2x2/2)),

i = (2o, 20, 2ip, 21p),
X ker(C’gq ® Cs), otherwise,

15 SL(2i;,R)
(-E)
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where
ker(C’2S(i) — ()
= <diag(D17D27E>E)>diag(DlaE7 D37E)7diag(D17E7E> D4)>
(when #5(i) = 4) is generated by the diagonal matrices
D; = diag(—1,1,...,1) € GL(2i;,R), 1<j<4,
and the groups

0O E 0 0
E 0 0 O
Z/2 = )
0 0 0 F
0 0 E O
0 E 0 0 0 0 E O
E 0 0 0 0 0 0 FE
Z/2x7/2= ,
0 0 0 F E 0 0 O
0 0 £ O 0 E 0 0

are generated by block permutation matrices. (The component group of the
first line is Cy x Dg; the component group of the second line is extraspecial
of order 32 isomorphic to Dg o Dsg.)

For any partition i = (ig,41) of n = ip + ¢; into a sum of two positive
integers i9 > i1 > 0 let I#L(ip,71) C PSL(2n,R) be the elementary abelian
2-group that is the quotient of

20 11
(I#L(ip,11))* = (I,diag(+E,...,+E,—E,...,—E)) C t(PSL(2n,R))*
where t(PSL(2n,R))* is the group (2.9). It follows that

(2.17)  Cpsr2n,r) L # L (70, 71)
GL(iO, C) X GL(il, C)

dd
<_E7_E> ’ n odd,
GL(ip, C) x GL(i1,C o
= ( 0<_)E‘7 _E>< 1 ) X <Cl "'CTL>7 n even, ig 7£ i,
GL(79, C) x GL(%g,C . .
( 0<_)E‘7 _E>< - ) X <Cl o 'CH7P>7 n even, g = 11,

where P = (% ’g) permutes the two identical factors.

2.18. PROPOSITION. I#L(i,n — i) # I#L(i,n — )P if and only if n
and i are even.
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Proof. The automorphism group of (i) x () = Cy x Cy = [#L(i,n—1i)*
is the dihedral group of order eight
Aut(Cy x C) = {a,b| a*,b* bab = a®)
generated by the two automorphisms given by a(i) = ie, a(e) = i“c and
b(i) = i, b(e) = i%c. The automorphism a? € Aut(Cy) C Aut(Cy x Cy) is
induced by conjugation with the matrix

0 1
diag(P,...,P), P= :
g( ) (1 0>

2

of determinant (—1)". Thus
A(SL(2n,R))(I#L(i,n —1)*) # A(GL(2n,R))(I#L(i,n — 1)")
and I#L(i,n — i) = I#L(i,n —i)P when n is odd [24, Lemma 5.2].
Assume now that n is even. The group of trace preserving automorphisms
(a?,ba), 2i <n,
Aut(Cy x C3), 2i=n,

has index two in general but is actually equal to the full automorphism
group in case i = n/2. The conjugating matrix for ba is

A(GL(2n,R))(Cy x C) = {

‘ (2 n—
diag(P,...,P,E,..., E),
of determinant (—1)%. Thus I#L(i,n — i) = I#L(i,n — )P when i is odd.
If n = 2¢ then the conjugating matrices for the automorphisms a and b are

(E >d1ag(P,...,P,E,...,E) and <E 0).

The permutation matrix for b has positive determinant and the matrix for
a has determinant (—1)°. Thus I#L(i,n — 1) = I#L(i,n — )P if and only
if 7 is odd. m

2. Centralizers of objects of A(PSL(2n, R))% are LHS. In this
section we check that all toral objects of rank < 2 have LHS [24, 2.26]
centralizers.

2.19. LEMMA. The centralizers of the objects of A(PSL(2n, R))Z),
(1) GL(#,C)/(—FE) x C, 1 <17 (2.15),
(2) SL(Q’io, R) o SL(Qil, R) x Cy, 1 <idg < (2.14),
(3) (SL(2i,R) o SL(2i,R)) x (Cs x Cy), 1 < i (2.14),
(4) CPSL(Qn,R)(V)v q(V) =0 (216)7
(5) CPSL(Qn,R)(V)a q(V) #0 (217)7
are LHS.
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The cases of interest here are summarized in the following charts, ob-
tained by use of a computer, for rank one centralizers with quadratic form

qg=0(2.14)
SL(2ip,R) 0 SL(2i1,R)  kerd  Hom(W,TY) HY(W;T) 6
1=1i0,2 =11 (Z)2)? (Z/2)? Z/2 0
1 =1i0,3 =141 0 Z/2 (Z/2)*>  mono
1=i0,4 <41 0 Z/2 Z/2 iso
2 =g < i1 (Z/2)* (Z/2)* Z/2 epi
3<ip < iy 0 (Z/2)? (Z)2)? iso
SL(2i,R) 0o SL(2i,R)  kerd Hom(W,T%) H'(W;T) @
i=2 (z/2)* (z/2)* (z/2)° 0
i>3 0 (Z/2)? (Z/2)?  iso
and ¢ # 0 (2.15)
GL(;,C)/(—E) kerf Hom(W;T%) H'(W;T) 0
i=2 Z/2 (Z/2)? Z/2 epi
i=3 0 Z/2 Z/2 iso
i=4 0 Z/2 (Z/2)? mono
i>4 0 Z/2 Z/2 iso
and for rank two centralizers with quadratic form ¢ = 0 (2.16)
SL(2ip,R)? 0 SL(2i1,R)?  ker§  Hom(W;TV) H'(W;T) 6
1=140,2 =11 (Z/2)* (Z)2)"? (Z/2)®  epi
1=140,2 < i1 0 (Z/2)° (Z/2)° iso
2 =1ip < iy (Z/2)* (Z)2)'® (Z/2)'*  epi
2 <ig < i1 0 (Z/2)"? (Z/2)'*  iso
[17_,SL(2i;,R)/(~E)  ker§ Hom(W;T") H'(W;T) 6
1=140,2 =11 < is (Z/2)* (Z/2)° (Z/2)*  epi
1=i0,2 < i1 < iz 0 (Z/2)* (Z/2)*  iso
2 =g < i1 < iz (Z/2)? (Z/2)® (Z/2)8 epi
2 <9 <i1 <o 0 (Z/2)6 (Z/2)6 iso
[1;_,SL(2i;,R)/(~E)  ker  Hom(W;T") H'(W;T) 6
1=1i0,2 =11 <i2<iz (Z/2)? (Z/2)*? (Z/2)'°  epi
1=140,2 < i1 < ig < i3 0 (Z/2)° (Z/2)°  iso
2=idp <i1<i2<iz (Z/2)? (Z/2)*° (Z/2)**  epi
2 <idg < i1 <2 < i3 0 (Z/2)*? (Z/2)"?  iso
SL(2i,R)*/(—E)  ker§ Hom(W;T"%) H'W:;T) 6
2=7 (Z/2)® (Z/2)* (Z/2)'®  epi
3<4 0 (Z/2)*? (Z/2)'?  iso
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and with quadratic form ¢ # 0 (2.17)

GL(ip,C) o GL(71,C) kerd Hom(W;7V) H'(W;T) 6

1=1i0,2 =11 Z/2 (Z/2)? Z/2 epi
1 =1i0,2 < i1 0 (Z/2)* (Z/2)* iso
2 =i < iy Z/2 (Z/2)* (Z/2)®  epi
2 <ig < i1 0 (Z/2)* (Z/2)*  iso

GL(i,C) o GL(:,C)  kerd§ Hom(W;TV) HYW;T) 6
2=1 (z/2) (z/2)* (z/2)°
<i 0 (Z/2)* (Z/2)*  iso

Observe that the dimension of H'(W;T) stabilizes within the infinite
families of Lie groups included in these tables. Consider for instance the
case X = []]_y SL(2i;, R). The first cohomology H' (W;T) = H'(W;T)(X)

group sits in an exact sequence
HY(W;2) — H\(W;T) — H\(W;T/2) % HX(W; 2)

where W is the Weyl group. The kernel of the first homomorphism sta-
bilizes [24, Lemma 2.22]. As X/Z is a product of simple Lie groups, the
table from [16, Main Theorem| shows that the dimensions of the Fo-vector
spaces H'(W;T/Z) stabilize. Also HS?(%,; F3) stabilize [30, 6.7]. The for-
mula for the cohomology of a wreath product [13, 5.3.1], H*(C2 ! X,,; Fa) =
H*(X,; H*(C2; F2)®™), now shows that the Fa-vector spaces H<2(CnX,; Fa)
and H<2(W; Z ) stabilize. By naturality, the kernel of the homomorphism 0
stabilizes. We conclude that H'(W;T) stabilizes.

Proof of Lemma 2.19. (a) Let X = GL(i,C)/(—FE) x Cy for ¢ > 1. Since
the Weyl group for X is a direct product W = Wy x (9, X is LHS.

(b) Let X = (SL(2ip,R) o SL(2i1,R)) x Cy for 1 < iy < i1. The first
problematic case is when 79 = 1 and 43 = 2 or 3. In this case, explicit
computer computation results in the chart

X HY(m; 7o)  HY(W;T) HY(We,T) HY Wy, T)™
i1 =2 0 Z/2 Z/2 Z/2
i1 =3 0 (Z/2)? (Z/2)? (Z/2)*

showing that X is LHS. The second problematic case is 2 = ig < i¢; where
0(Xo) is epimorphic. Since H'(Wy; T) = Z/2, also 8(Xp)™ is epimorphic so
that X is LHS [24, Lemma 2.28].

(c) Let X = (SL(2¢,R) o SL(2i,R)) x (Cy x Cq) for i > 1. Then X is
a 2-compact toral group when ¢ = 1 and hence obviously LHS. For ¢ > 2
explicit computer computation gives
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X H'(mT™) HW:T) HWul) H Wol)
i—2 (@’ (@2 (22 (2/2)°
i3 2/ (2Z2° (22 z/2

so X is manifestly LHS for ¢ = 2. For i > 2, (X)) is bijective so X is LHS
[24, Lemma 2.28].

(d) Let X = (SL(2i,R)*/(—E)) x (Dgo Dg) fori > 1. When i = 1, X is
a 2-compact toral group which are all LHS. When ¢ = 2, explicit computer
computation gives

X  HY(mTWe) H'W;T) H WoT) HY(WuD)™
i=2 (z/2) (2/2)° (z/2)"° (2/2)?

so X is LHS by definition. For i > 2, (X)) is bijective.

(e) Let X = (SL(2ip, R)? o SL(2i1,R)?) x (Cy x Dg) for 1 < iy < iy.
The problematic cases are ig = 1, i1 = 2 and 2 = iy < i1 where 6(Xj) is
surjective but not bijective. With the help of computer computations we
obtain the table

X H'(mT%) H'(W:T) H Wol) H (Wel)"
n=li=2 (Z/2°  (2/2)  (Z/2] (2/2)°
=23<i (2/2°  (Z2"  (Z/)" (2

showing that X is LHS in these cases also.

(f) Let X = (H?:o SL(2ij,R)/(—FE)) x C3. The problematic cases are
1 =4y, 2 =141 < ig and 2 = iy < i1 < io. With the help of computer
computations we obtain the table

X HY(m; 7o)  HYW;T) H'(Wo;T) HY Wy, T)™
io=1,2 =11 < 42 (Z/2)* (Z/2)° (Z/2)* (Z/2)?
2 =g < i1 <2 (Z/2)* (Z/2)° (Z/2)° (Z/2)°

showing that X is LHS in these cases also.

(g) Let X = (H?:o SL(2ij,R)/(—FE)) x C3. The problematic cases are
1 =149,2 =141 <ig <izgand 2 = iy < i1 < iy < i3. With the help of
computer computations we obtain the table

X HY(m;TW0)  HY(W;T) H'Wy;T) H'Wo;T)™
io=1,2=11 <12 < i3 (Z/2)® (Z/2)*° (Z/2)*° (Z/2)8
2 =g < i1 <2 < i3 (Z/2)° (Z/2)*° (Z/2)'3 (Z/2)"

showing that X is LHS in these cases also.
(h) The 2-compact group (GL(7, C) o GL(¢,C)) x (Z/2 x Z/2) is LHS for
1 > 2 where 0 is bijective. When ¢ = 2 we find
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X H'(mT™) HW:T) HWul) H Wol)
i—2 (@2’ 2z (22 (2/2)°

so X is also LHS in this case.

(i) Let X = GL(ip,C) o GL(i1,C) x Co, 1 < iy < i1. Since the iden-
tity component has surjective #-homomorphism and the component group
7 = Cy acts trivially on H'(Wy;T), X is LHS by [24, Lemma 2.28]. The
values of the relevant cohomology groups are

X HY(m; 7o)  HY(W;T) H'(Wo,T) HY Wy, T)™
1=1d0,2 =11 0 Z/2 Z/2 Z/2
1=1d0,2 <11 0 (z/2)? (z/2)° (z/2)°
2= < i1 0 (z/2)° (z/2)° (z/2)?
2 <ig <y 0 (z/2)* (z/2)" (z/2)

according to computer computations. m

3. The limit of the functor H'(Wy;T)"/"o on A(PSL(2n,R))ZS.
Let H'(Wy; T): A(PSL(2n, R))gtt — Ab be the functor that takes the toral
elementary abelian 2-group V' C t(PSL(2n,R)) to the abelian group
HI(WOCPSL(QTZ’R)(V);T)), and Hl(WO;T)W/WO the functor that takes V
to the invariants for the action of the component group moCpsr,(2n,r)(V) on
this first cohomology group [24, 2.53].

2.20. PROPOSITION. The restriction map

Hl(W(PSL(2n,R));T) — limO(A(PSL(2n,R))§g; Hl(WO;T)W/WO)

s an isomorphism for all n > 4.

Proof. Consider first the case where n = 4. The 2-compact group X =
PSL(8,R) contains (2.13) the four rank one elementary abelian 2-groups
L(2,6), L(4,4),1, 1P with centralizers

SL(2,R) o SL(6,R) x C3, SL(4,R) o SL(4,R) x (Cy x Cy),
GL(4,C)/(—=E) (twice).
The claim of the proposition follows from the fact, verifiable by computer
computations, that in all four cases, the restriction
H'(W;T(X)) — H' (Wo(Cx (L)); T)"/™

happens to be an isomorphism.

For n > 4, the claim is that the limit of the functor H'(Wo; T)V/Wo is
trivial. In fact, even the limit of the functor H'(Wy;T) is trivial. To see
this, recall (2.13) that PSL(2n,R) contains the toral lines L(2i,2n — 2i),
1<i<[n/2], I, and also I D when n is even. Computer computations show
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that the morphisms
H (Wo; T)(L (2,20 — 2)) = H (Wo T)(I#L(1,n — 1)) — H' (Wo; T)(1)

are injective and that their images intersect trivially. When n > 6 is even,
also the images of the injective morphisms

HY(Wo: T)(L(4,2n — 4)) — H*(Wo; T)(I#L(2,n — 2)P) — HY(Wy; T)(IP)

intersect trivially. More computer computations show that, similarly, the
morphisms

H'(Wo; T)(L(2i,2n — 24)) — H*(Wo; T)(I#L(i,n — 1)) « H (Wy; T)(I)

are injective and that their images intersect trivially, 1 <i < [n/2]. m

4. Rank two nontoral objects of A(PSL(2n,R)). In this section we
take a closer look at the nontoral rank two objects of A(PSL(2n,R)) in
order to verify the conditions of [24, Lemma 2.63].

Nontoral rank two objects P of PSL(2n, R) satisfy either ¢(P) = 0 or
[P, P] # 0 (2.10) and the latter case only occurs if n is even.

q(P) = 0: For any partition ig > i1 > iy > i3 > 1 of 2n, let

Plio, i1y i2,13)" = ((+1)(=1)" (+1)=(=1)", (+1)° (+1)" (=1)"2 (=1)", — E)
C AQTLa
P(io, i1,12,13) = P(io, i1, i2,13)" /(= E) C PAg,

where we apply the notation from [24, (3.5), (3.9)]. Then P(ip, 1, 42,13)* C
S Ay, if and only if i, i, i2, and i3 all have the same parity and P(ig, i1,
i2,13)* is nontoral iff this parity is odd. It follows (2.12) that the set of
isomorphism classes of nontoral rank two objects of A(PSL(2n,R))?=" cor-
responds bijectively to the P(n+2,4) partitions i = (ig, i1, 92, i3) of n+2 into
sums of four natural numbers, n+2 = ig+1i1 + 19+ 13, ig > i1 > i9 > i3 > 1.
The correspondence is via the map

i = (i, i1, i2,3) > P(i) = P(2ig — 1,2i1 — 1,2y — 1, 2i5 — 1)
that to the partition i = (ig, i1, i2, 73) associates the quotient P(i) C PSAg,
of P(i)* C SAg, generated by the three elements
2ig—1 2i1—1 2ip—1 2i3—1
o =diag(3L,.. .+, ..., 041, .. 41,1, ),
2ip—1 2i1—1 2ip—1 2i3—1
vy = diag(¥1,...,+1,51,...,+1,°1,..., 1,71, ..., - 1),
vy = diag(—1,...,—1).
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The centralizer of P(i)* in SL(2n,R) is
Csrizn,r)(P(i)") = SL(2n, R) N Csp 25, r) (P (7))

= SL(2n,R) N (ﬁ GL(2i; — 1,R))
7=0

3
= P(i)* x [[ SL(2i; - 1,R)
§=0
and the centralizer of P(i) in PSL(2n,R) is therefore [28, 5.11]

3
(221)  Crsonm)(PG) = P() x ([T SL@i; 1L R)) % P@)Y

§=0
where P(i)) is a group of permutation matrices isomorphic to Cy if i =
(10,10, 12, 12), to Co x Cy if i = (ig, 40, %0,%0), and trivial in all other cases.
Note that P(i)* is contained in N(SL(2n,R)) = SL(2n, R) N GL(2,R) ! X,
because with R = ((1) _01) we may write

i0—1 i1—1 ig—1 i3—1

. —— ——
(2.22) vy =diag(E,...,E,R,~E,...,—E,E,...,E,R,“E,...,—E),
i0—1 i1—1 i9—1 i3—1
L —_—
(2.23) vy =diag(E,...,E,E,E,...,E,~E,...,.—E,—E,~E,...,—E),

and that the centralizer of P(i)* there is

Cn(srienr))(P(1)") = SL(2n, R) N Carerys, (v1) N Canerps, (v2)

24, 5.10]
= SL(2n, R) N Car@eRN(Siy 11, 1% Sy i 1) (V1)

3
24,5100 pe (HGL(z,R) z zij_l)

=0
It follows that the centralizer of P (i) in N(PSL(2n,R)) is

3
Cpsionmy (P() = P) x ([T GLER) 15, 1) x PG)Y
§=0
= N(Cpsr(2n,r)(P(7)))

For instance, if i = (g, ig, 92, 72), then P(7); is the group of order two gener-
ated by diag(Cp, C2) € N(PSL(2n,R)) where Cj is the (4ig —2) x (4ig — 2)

matrix
0O 0 F
0 1
o T o, T= ,
1 0
E 0 0
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and Cy is a similar (4i2 — 2) x (442 — 2) matrix. Thus P(i) C N(PSL(2n,R))
is a preferred lift [27] of P(i) C PSL(2n,R). The other two preferred lifts
[26, 6.2] of P(i) C PSL(2n,R) are obtained by composing the inclusion
P(i) ¢ N(PSL(2n,R)) with the inner automorphism given by the permu-
tation matrices (1,2)(2ig, 2n — 2i3 + 1),

2ip—1 2i1—1 2ip—1 2i3—1
(+1,+1,...,4+1,—1,...,—1,+1,...,+1,-1,...,—1)
t ¢ t t
2ip—1 2i1—1 2ip—1 2i3—1
(+1,+1,...,4+1,+1,...,+1,—-1,...,—1,-1,...,—1)
t ¢ t }
and (1, 2)(2i9,2n — 2i3 + 2),
2ig—1 21 —1 2ip—1 2i3—1
(+1,4+1,...,4+1,~1,...,—1,%1,...,+1,~1,...,-1)
t ¢ t }
2ig—1 21 —1 2ip—1 2i3—1
(+1,+1,...,4+1,+1,...,+1,-1,...,—1,-1,...,—1)
t ¢ t }
taking v; and vg as in (2.22), (2.23) to
io—1 i1—1 ia—1 iz—1
. —— ——t— —_——
vy =diag(E,...,E,E,-E,...,—E,E,....E,—E,—E,...,—F),
i0—1 i1—1 i9—1 i3—1
L ——
vy =diag(E,...,E,R,E,...,E,—-FE,...,—E,R,—E,...,—F),
respectively to
i0—1 i1—1 i9—1 i3—1
L —— —_—— —_—~—
vy = diag(E,...,E,R,—FE,...,.—E,E,...,E,R,—FE,...,—E),
io—1 i1—1 ig—1 iz—1
. —_—— - A
vy =diag(E,...,E,R,E,...,E,—FE,...,—E,R,—FE,...,—F).

In the same way as above, we see that these are really preferred lifts of P(3).
The three lifts are not conjugate in N(PSL(2n,R)) because the intersection
with the maximal torus is vy in case (2.22), (2.23) but v; and v; + v in
the other two cases. Observe that all three preferred lifts of P(i) have the
same image in W(PSL(2n,R)) = moN(PSL(2n,R)) C mGL(2,R) X,.
Observe also that the inclusion P(i) x P(i); — Cpgr,(2n,r)(P (7)) induces an
isomorphism on component groups and that the centralizer
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Crsr(anr)(P(1) X P(i)]) = Copgy o my (i) (P(0);)

P(Z) X SL(QiO — 1, R), 1= (io,io, io,io),
= P(Z) X SL(Q’iO —1, R) X SL(?iQ — 1, R), 1= (io,io, i2,’i2),
Cpsr2n,r) (P(1)), otherwise,

has nontrivial identity component when n > 2.

[P, P] # 0: A(PSL(4n,R)) contains (up to isomorphism) four rank two
objects with nontrivial inner product, namely H,, H f , H_, and H” where
Hy is the image of 217 € SL(2n, R) (2.51).

The extraspecial 2-group 2}r+2 C SL(4n,R) is described in [24, Ex-
ample 5.4(6)] or, alternatively, in [24, 5.7] as

n n

(o ) (o ) (o) (o )

= (91, 92)-

Note that 212 is contained in N(SL(4n, R)) = SL(4n, R) N (GL(2, R)1 X2,
where its centralizer is

Cn(stanr) (257?) = SL(4n, R) N Carunr) (V1) N CareRr)ss, (V2)

24, 5.10

P24 81 (40, R)NCaro.m)m wcms,) (1) = GL(2, RNE, = N(GL(2n, R)).
It follows, as in 2.51, that the centralizer of Hy in N(PSL(4n,R)) is

CnsLnRr)) (H+) =Hy x Cysnanry)(247%)/(—E) = N(H, x PGL(2n, R)),

which means that Hy C N(PSL(4n,R)) is a preferred lift of Hy. An-
other preferred lift can be obtained by precomposing the inclusion H; C
N(PSL(4n,R)) with the nontrivial automorphism in A(PSL(4n,R))(Hy) =
O (2,F2). The final preferred lift is

n

1+2\diag(B,...,B)
(257

; iag(B,... 1 (B 1
— <_(glg2)dlaug(B,...,B)7g<231 g(B, 7B)> B = _( >7

’ - V2\I E

: . I 0 I 0
_(9192)d1ag(3 ..... B) :dlag<<0 _I>7"'7 (O —I>>’ gQB = g2.

Also, this subgroup is actually contained in the maximal torus normalizer
with centralizer

Cn(sL(n,R)) (2472 Bioe (B B)

= SL(4n, R) N Car Ry, (—(9192) 25 PB))  Copan ) (92)



N -determined 2-compact groups. II 21

P2 (GL(1, C)2 % €)1 2 0 Carganry(92)

= (GL(1,C) x C2) 1 5, = N(GL(2n, R))

(!

Observe that, for all three preferred lifts of H,, the image in the Weyl
group W(PSL(4n,R)) = moN(PSL(4n,R)) C moGL(2,R) ! Xy, is the order
two subgroup of X, generated by the permutation (1,2)(3,4) - -- (2n—1, 2n).
Observe also that the inclusion Hy#L(1,2n — 1) — Cpgp,un,r)(H+) (2.40)
induces an isomorphism on component groups and that the centralizer
Cpsin,r)(H1+#L(1,2n — 1)) has nontrivial identity component (according
to the proof of 2.55) when n > 2.

The extraspecial 2-group 272 C SL(4n,R) is described in [24, Ex-
ample 5.4(7)] or, alternatively, in [24, 5.7] as

where

n n
A

Qo ) (o S me((Go) (o))

= (91, 92)-
Note that 272 is contained in N (SL(4n, R)) = SL(4n, R)N(GL(2,R)! Z,)

where its centralizer is
Cn(sLn,r))(257?) = SL(4n, R) N Car2,myssn, (91) N Caranr)(92)
e (GL(1,C)* x C2) 1 £n N Car(anr) (92)

- <GL(1,C), ( OT €>> 15, Y N (GL(n, H))

It follows, as in 2.51, that the centralizer of H_ in N(PSL(4n,R)) is
CnsinRr)) (H-) = H- X Cn(stanr)) (247°) /(= E) = N(H_ x PGL(n, H)),

which means that H_ C N(PSL(4n,R)) is a preferred lift of H_. The
other two preferred lifts can be obtained by precomposing the inclusion
H_ C N(PSL(4n,R)) with the nontrivial automorphisms in

A(PSL(4n,R))(H-) = O (2,F2) = Sp(2,F2) = GL(2,F2).
Observe that, for all three preferred lifts of H_, the image in the Weyl group
W(PSL(4n,R)) = moN(PSL(4n,R)) C mGL(2,R) ! Xy, is the order two
subgroup of X5, generated by (1,2)(3,4)---(2n — 1,2n). Observe also that
H_ is contained in the rank three subgroup H_#L(1,n — 1) (2.42) whose
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centralizer has a nontrivial identity component when n > 2 (according to
the proof of 2.55).

We conclude that for every nontoral rank two object P of A(PSL(2n,R))
the identity component Cpgy,2n,r)(P)o of the centralizer is centerless. By
(part of) [25, 5.2], the homomorphism

Aut(Cpgr,2n,r)(P)) — Aut(moCpsr,(2n,r) (P)) X Aut(Cpsr,(2n,r) (P)o),
obtained by applying the functors mp and ( )g, is injective. Under the in-
ductive assumption that Cpgy,2, r)(P)o (see (2.21) and 2.51) has m.(N)-

determined automorphisms it then follows from [24, Lemma 2.63, (2.64)]
that condition (3) of [24, Theorem 2.51] is satisfied.

5. Limits over the Quillen category of PSL(2n,R). In this section
we show that the problem of computing the higher limits of the functors
mi(BZCpsr2n,Rr)), 1 = 1,2, [24, (2.47)] is concentrated on objects of the
Quillen category with g # 0.

2.24. LEMMA. LetV C PSAg, (2.4) be a nontrivial subgroup represent-
ing an object of the category A(PSL(2n,R))4=" = A(Xy,, PSAs,) (2.12).
Then

Son(V
ZCpsLanr) (V) = PSA;, ")

where Xop (V') C Yoy, is the pointwise stabilizer subgroup [24, Definition 2.68].

Proof. Let v*: V — SAy, be a lift to SL(2n,R) of the inclusion homo-
morphism of V' into PSL(2n, R). Then

Csrenr) (V) =SL2n,R)N [ GL(ip,R), Zon(v*V) = [] %,

oeVVY oeVVY
where i: VV — Z records the multiplicity of each o € V' in the representa-
tion v*. Write

%1 im

v*(v) = diag(o1(v), ..., 01(v), ..., 0m(v),..., 0m(v))
where 91, ..., 0m € VY = Hom(V, Cy) are pairwise distinct homomorphisms
V — Cy = (£1) and i1 + - - - + iy, = 2n. There is a corresponding decompo-
sition {1,...,2n} = [;U---UI,, of the set {1,...,2n} into k disjoint subsets
I containing ¢; elements.
Using [28, 5.11] and [24, Lemma 5.20] we get

CsLenR (V) *
Cpsrnr)(V) = (2(—E)) XV, Ton(V) = Ton (V' V) x VL

where V)l = {¢ € Hom(V,GL(1,R)) | Vo € V"V : i¢, = ip}. Suppose that ¢
is a nontrivial element of V.. Choose a vector v € V such that ((v) = —1.
Then the determinant of v*(v) is (—1)", for v*(v) consists of an equal number
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of +1 and —1. Thus n is even. Let ¢ be the permutation associated to  that

moves the subset I; monotonically to I;, where (o; = ;. Then o is even, for

it is a product of n transpositions. In this way we imbed V% as a subgroup of

the alternating group As, C PSL(2n,R) to obtain the semidirect products.
The center of the centralizer is

SL(2n,R) N GL(i,, R
ZCrsyanry(V) = 2 (LR EEH R )
[24, 5.14] Z(H SL(2n,R) N GL(%,, R) ) Vo
~B) v
[24, 5.18] <SL(2n, R) N [[ ZGL(i,, R))VV*
o (—E)
Zon(V*V VV\{k " v
_ (SA2n > — (PSA;?L(V V))VV* — PSAQE;n(V)7
(—E)
where the penultimate equality sign is justified by observing that the coef-
ficient group homomorphism H! (X, (v*V); (—E)) — H(Xs,(v*V); SAz,)
— HY(X9,(v*V); Agy) is injective. =

Let WZ(BZC) = Wi(BZCPSL(Qn,R)) [24, (247)]

2.25. COROLLARY. lim*(A(PSL(2n,R))4=%m;(BZC)) = 0 forn > 2
andi=1,2.

Proof. This is obvious for i = 2 as m(BZC) = 0. For i = 1, use
[24, Lemma 2.69] to compute the limits of the functor m (BZC)(V) =
PSAY) (2.24). The fixed point group PSDI2" is trivial since PSDs, is
an irreducible FyX5,-module of dimension 2n — 2 forn > 2. =

2.26. LEMMA. Let V C Pt(SL) = Pt(SL(2n,R)) (2.4) be a nontrivial
subgroup representing an object of the category A(Ag, N (X201 X,), Pt(SL)) =
A(PSL(2n,R))St47Y (2.12). Then

ZCps,anr) (V) = Pt(SL)A2nN(Z22n))(V)

where (Ag, N (X220 X)) (V) is the pointwise stabilizer subgroup [24, Defini-
tion 2.68].

Proof. The pointwise stabilizer subgroups are
(2.27) (A2, N (X1 Z))(V) = Ao N X (V), X9 (V) = X5 x X (V).

Because these stabilizer subgroups have these particular forms and P.S A?ﬂ?
- Pt(SL)7 we get
ZCpsonr)(V) = PSA;Y) = psay? 1 (V)
= Pt(SL)A2nN(ZENZn (V)

= pt(SL)*(V)

from 2.24. m
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Lemma 2.26 can also be proved along the lines of [28, 2.8] using [24,
Proposition 2.33].

2.28. COROLLARY. lim*(A(PSL(2n,R))<49% 7,(BZC)) =0 forn > 2
andi=1,2.

Proof. Similar to 2.25 but based on H°(Ag, N (X2 X,); Pt(SL)) =
H(X,; Pt(SL)) = 0. =

2.29. LEMMA. Let V C t(PSL) = ¢(PSL(2n,R)) (2.4) be a nontrivial
subgroup representing an object of the category A(Az, N (X1 X,), t(PSL)) =
A(PSL(2n,R))<t (2.12) where n > 32. Then

ZCpsi(an,r) (V) = T 3221,

where T = T(PSL(2n,R)) is the discrete approzimation [10, §3] to the maz-
imal torus of PSL(2n,R) and (A2, N (X201 25))(V) is the pointwise stabilizer
subgroup of V' [24, Definition 2.68].

Proof. Consider first the case where V' C P#(SL) C ¢(PSL). One checks
that 7422052 = Pt(SL) for n > 2. Since (Az, N (T2 X,))(V) D Az, N W
we get

ZCpsLinr)(V) 20 py(SL) (A EREDV) — PlAann(ZE))V)

in this case.

Consider next the case where V*, the preimage of V' in SL(2n,R), con-
tains I (2.5) so that V* = (I,U) (2.8) for some (possibly trivial) elementary
abelian 2-group U C t(SL) C Csp,(2n,r)(C1) = GL(n, C). Then

Cspienr) (V") = H GL(i, C), (X201 2,)(V*) = Zn(U) C Az,
oeUVY

where i: UV — Z records the multiplicity of the linear character o € UV in
the representation v*: U — GL(n, C) and X, (U) is the pointwise stabilizer
subgroup for the action of X, = W(GL(n,C)) on t(SL) = t(GL(n,C)) =
(e1,...en). It now follows from [28, 5.11] and [24, Lemma 5.20], as in (2.15)
and (2.17), that

Csrinm (V) n odd
CPSL(2TL R)(V) — <_E> . ’ )
) CsL(zn,—R)<V) q (U;/* X (c1-+-¢cn)), n even,
(—E)

Aoy D (22 l En)(v) = {i:ggi’x ( < .. n>) Z ijll

where U, = {¢ € UY = Hom(U, (—
as a subgroup of X, and (c1 - -~ ¢p) i

E)) | Vo € UV:i¢y =1i,} can be realized
is the diagonal order two subgroup of X3
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Consequently, if n is odd,

. _(TIGL(i,,C)\  [I1ZGL(i, C)
Z =7 =
CPSL(2n,R)<V) < <—E> <_E‘>
_ TELEnR)™ D s ) _ Asan(Zam))(v)
(—E) |

and if n is even,
7 > GL(i,,C
i (1208 €1
(—E)
B (T(SL(2n7 R))EH(U)>UU*X<01...%>
(—E)
— (TEn(U))UV* x(eren) _ pUyx x{er-en) _ p(A2nN(Z2280))(V)

where we use the fact that H(X,(U); (—E)) —>VH1(En(U); T(SL(2n,R))) is
injective. (In fact, the center of the centralizer, ZCpgr,(2,,,r)(V), is a product,
T5nU) | of 2-compact tori when n is odd, and a finite abelian group,

FIn(U) AU xleren)) — (lerea)y Tn(U)XUYe _ 4(pSL) Zn(U)AU%
when n is even.) =

2.30. COROLLARY. lim*(A(PSL(2n,R))St7m(BZC)) = 0 for n > 3
andi=1,2.

Proof. Similar to that of 2.25 but based on HY(W;T)(PSL(2n,R)) = 0
forn>3(2.3). =

As we shall see next, Corollaries 2.25, 2.28 and 2.30 reduce the prob-
lem of computing the graded abelian group lim*(A (PSL(2n,R)); m(BZC))
considerably.

Let A be a category containing two full subcategories, A, j = 1,2, such
that any object of A with a morphism to an object of A; is an object of A ;.
Write A1NAs for the full subcategory with objects Ob(A1NA2) = Ob(A1)N
Ob(As), and A1 U A, for the full subcategory with objects Ob(A; U Ay) =
Ob(A1) UODb(A3). Let M: A — Ab be a functor taking values in abelian
groups. Consider the subfunctor Mis of M given by

0, a € Ob(A, UAs),
Miz(a) = { M(a), a¢ Ob(A; U A).

We now state a kind of Mayer—Vietoris sequence argument for cohomology
of categories.
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2.31. LEMMA. If the graded abelian groups lim*(Aq; M), lim*(Aq; M),
and im* (A1 N Ag; M) are trivial, then im*(A; My2) = im*(A; M).

Proof. Consider also the subfunctor M; of M given by

0, a € Ob(A; ,
M1 (CL) = { ( )
M(a), a ¢ Ob(Ay).
Then there are natural transformations Mo — M; — M of functors. The in-
duced long exact sequences imply that it suffices to show lim*(A; M /M) =
0= lim*(A; Ml/Mlg).

The quotient functor M /M; vanishes outside A; where it agrees with M
and therefore [28, 13.12] lim*(A; M /M;) = lim(Ay; M), which is trivial by
assumption.

The same argument applied to Ay instead of A gives

lim*(Ag; M /M) = lim(A; N Ag; M)
Since this abelian group is trivial by assumption, we have
lHm*(Asg; M7) = lim*(Ag; M)

Also this abelian group is trivial by assumption.

The quotient functor My /Mo vanishes outside A; U Ag, where it agrees
with M; and therefore lim*(A; M;/Mi2) = lim(A; U Ag; M;). Here, the
functor M vanishes outside Az and hence im(A1UA9; M1) = lim*(Ag; My).
Since we just showed that this abelian group is trivial, we see that so is the
graded group lim*(A; My/M2). =

We conclude that
lim*(A(PSL(2n, R)); mj(BZ Cpsr,(2n,R))12)
= lim*(A(PSL(2n, R)); m;(BZCpsr2n,R)))
where 7;(BZCpgy,(2n,R))12 is the subfunctor of 7;(BZCpgr,2n,r)) given by
7rj(BZCPSL(zn,R))12(V)
0, V is toral or (V) =0,
| m(BZCpsr2n,r)(V)), V is nontoral and ¢(V) # 0.
According to 2.10 we have
V is nontoral and ¢(V) #0 < [V,V]#0

for all elementary abelian 2-groups V in PSL(2n,R). Thus the problem of
computing the higher limits of the functors m;(BZCpgy,2n,R)) is concen-
trated on the full subcategory A (PSL(2n,R))[:1#0 of A(PSL(2n,R)) gen-
erated by all elementary abelian 2-groups V' C PSL(2n, R) with nontrivial
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inner product. Note that if PSL(2n,R) contains an elementary abelian 2-
group V with [V, V] # 0 then PSL(2n, R) in particular contains such a sub-
group of rank two. The preimage in SL(2n,R) of rank two V' C PSL(2n,R)
with nontrivial inner product is an extraspecial 2-group 2?2 with central
U1 (2.8) so that, by real representation theory [24, 5.5], n must be even.

6. Higher limits of the functors m;(BZC) on A(PSL(4n,R))l:1#0,
In this section we compute the first higher limits of the center functors
i BZCpgr(an,r)s @ = 1,2 ([24, (2.47)]), using Oliver’s cochain complex [31].

2.32. LEMMA. The higher limits of the center functors are

lim' 1 BZCpst,(an,r) = 0 = lim* 11 BZCpgy(4n,R)»
th 7T2BZCPSL(4n,R) =0= lim3 WQBZCPSL(ZLTL,R)‘

The case i = 2 is easy. Since maBZCpsr,(4n,r) has value 0 on all objects

of A(PSL(4n,R))l:1#0 of rank < 4 (2.55), it is immediate from Oliver’s
cochain complex that lim? and lim? of this functor are trivial.

We shall therefore now concentrate on the case ¢ = 1. The claim of the
above lemma is that Oliver’s cochain complex [31]

(2.33) o— [[PE IS I ES--

|P|=22 |V|=23 |E|=24
is exact at objects of rank < 3. Here, as a matter of notational convention,

(2.34) [E] = Homa (psr4n,R))(E) (St(E), E)

stands for the Fa-vector space of FaA(PSL(4n,R))(E)-module homomor-
phisms from the Steinberg module St(E) to E. The Steinberg module is the
F>GL(E)-module obtained in the following way.

Let P = Fsye; + Faes be a 2-dimensional vector space over Fo with basis
vectors eg, ea. Let Fo[0] be the 3-dimensional Fa-vector space on length zero
flags, [L], of nontrivial and proper subspaces L of P. The Steinberg module
St(P) is the 2-dimensional kernel of the augmentation map d: F2[0] — Fy
given by d[L] = 1.

Let V = Fsye; + Faes + Foeg be a 3-dimensional vector space over Fo
with basis vectors ey, ez, es. Let Fo[1] be the 21-dimensional Fa-vector space
on length one flags [P > L] of nontrivial and proper subspaces of V', and
F5[0] the 14-dimensional Fa-vector space on all length 0 flags, [P] or [L], of
nontrivial and proper subspaces of V. The Steinberg module St(V') over Fy
for V is the 23-dimensional kernel of the linear map d: Fa[1] — F3[0] given
by d[P > L] = [P] + [L].
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2.35. PROPOSITION. H, # HP and H_ # H? in A(PSL(4n,R)). The
automorphism groups of the objects Hy and H_ (2.51) are

A(PSL(4n,R))(Hy) = OT(2,F3) = Co,
A(PSL(4n,R))(H-) = O™ (2,F32) = GL(2,F2),
and the dimensions of the spaces of equivariant maps are
dim[H;] =2, dim[H_]=1.
Proof. The first part will be proved in 2.51. The Quillen automorphism
group A(SL(4n,R))(2172) equals A(GL(4n,R))(217?) = Out(2}[™?) =

O*(2,F3) where the isomorphism is induced by the abelianization 2?2 —
H. [24, Example 5.4(2)—(3), 5.5]. =

The F2A(PSL(4n, R))(H4 )-equivariant maps given by
A(H
H+( +)7 q(L) =0,

0, otherwise,

(2.36) frlL] =L, folL] = {

form a basis for the 2-dimensional space [H]. The FoA(PSL(4n,R))(H_)-
equivariant map given by

(2.37) f[L] =L

is a basis for the 1-dimensional space [H_].

The quadratic function [24, 5.5] g(v1,v2,v3) = v? +vavs on Vg (2.52) has
automorphism group

100 1 00
O(q)%Sp(2,Fg)=< 11 1],]/1 11 >CGL(3,F2)
010 00 1

of order 6.

2.38. PROPOSITION. Vy # Vi’ in A(PSL(4n,R)). The automorphism
group A(PSL(4n,R))(Vb) equals O(q) and dim[Vp] = 4.

Proof. See [24, Example 5.4(5)] for the first part. According to magma,
dim[Vp] =4. =

The four FoA(PSL(4n,R))(Vh)-module homomorphisms

(239) {df+7df07df—7f0}
given by
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PA(P)a P:H+’

df [P > L] = Lo P=H dfolP > L] = L
* 10, otherwise, 0 N q(L) =0,
0, otherwise,
AV
g p>o={s F=H [P>1L]= vt [P P =0,
f- ~ 10, otherwise, fo N q(L) =0,
0, otherwise,

form a basis for [Vp].
The quadratic function on Hy#L(i,2n — i) € Ob(A(PSL(4n,R))), 0 <
i < n, q(v1,v2,v3) = v1v2, has automorphism group
010 1 00 1 00
O*(2,F2) 0
O(q) = )=t o o] fo o] oo
*
0 0 1 1 0 1 01 1
of order |01 (2,Fy)|-2%2 =8.
2.40. PROPOSITION. H #L(i,2n—1i) # (Hy#L(i,2n—1))" if and only
if i is even. The Quillen automorphism group is

A(PSL(4n, R))(H#L(i,2n — 7))

010 1 00
_ < 1 0 0],]0 1 O > , 1 odd,
0 01 1 11
O(q), 1 even,
and the dimension of the space of equivariant maps is
. ) ) 6, ¢ odd,
dim[H #L(i,2n — 1)] = ,
3, 1 even.

Proof. Hy#L(i,2n — i) C PSL(4n,R) is (2.52) the quotient of

% 2n—1
—_—N—
G = (diag(R, ..., R),diag(T,...,T),diag(—E,...,—E,E,..., E))

= (91, 92,93) C SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 2472 which is contained in SL(4n,R) [24, Example 5.4(6)]. Observe
that

e R and T are conjugate in GL(2,R).
i 2n—i
1

. . . . ﬂ%* .
e Conjugation with diag(7,...,T,FE,...,FE) induces (g1,92,93) —
(9193, 92, 93)-
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. o

. . . . ’—}A’_z; . $2

e Conjugation with diag(R,...,R,E,...,FE) induces (g1,92,93) —
(91, 9293, 93)-

e When ¢ =n, conjugation with (% ’g) induces (g1, g2, g3) 2, (91,92, —93)-

Consider the automorphism groups

A(SL(4n,R))(G) Cc A(GL(4n,R))(G) C Out(G) — O(q)
C Aut(H#L(i,2n — 1))

where the outer automorphism group has order 16. Note that the automor-
phism ¢ is in the kernel of the homomorphism Out(G) — O(q) induced
by the abelianization G — Hy#L(i,2n — i). Using the above observations
we see that A(GL(4n,R))(G), even A(SL(4n,R))(G) for even i, maps onto
O(q). Thus the Quillen automorphism group A(GL(4n,R))(G) has order
8 or 16. When ¢ = n the automorphism ¢ is in A(GL(4n,R))(G), even in
A(SL(4n,R))(G), and when i # n, ¢ ¢ A(GL(4n,R))(G) as it does not
preserve trace. Thus

16, 7 =n,
8, i#n.
In any case the group A(SL(4n,R))(G) equals the group A(GL(4n,R))(G)
if and only if ¢ is even. When i is odd, the automorphism ¢ is induced
from a matrix of negative determinant so that Ngp,nr)(G) ¢ SL(4n, R).

According to magma, dim[Hy#L(i,2n — i)] is 3 when 7 is even and 6 when
¢ is odd. =

A(GL(4n, R))(G)| = {

The six FoA(PSL(4n,R))(H#L(i,2n — i))-linear maps

(2.41) {df+.dfo, fo.df P, dfs, 8}
given by
L7 P = H—H
df \|P > L] =
fal ] {0, otherwise,
A(P) — —
dfo[P > L] _ {P ’ P H+) Q(L) 05
0, otherwise,

v, [P,P]=0,q(L)=0,

0, otherwise,

fo[P>L]:{

from a basis for the 6-dimensional Fa-vector space [Hy#L(i,2n — i)] for i
odd and [Hy #L(i,2n —i)] x [(Hy#L(3,2n —i))P] for i even. Here, v; is one
of the two nonzero vectors of VA() that are not D-invariant when 7 is odd
and the nonzero vector of VA(Y) when i is even, where V = H,#L(i,2n—1).
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The quadratic function on H_#L(i,n — i) € Ob(A(PSL(4n,R))), 1 <

i < [n/2], q(v1,v2,v3) = v? 4+ v1ve + v5, has automorphism group
0~ (2,F9) *)
O(q) =
W= (70
of order |0~ (2,Fy)| - 2% = 24.

2.42. PROPOSITION. H_#L(i,n—i) # (H_#L(i,n—1))P for alln > 2.
The Quillen automorphism group A(PSL(4n,R))(H_#L(i,n — 1)) = O(q)
has order 24 and the dimension of the space of equivariant maps s
dim[H_#L(i,n —1i)] = 1.

Proof. H_#1L(i,n — i) C PSL(4n,R) is the quotient of

G=2"1%x2

(o () )
ws((3 )2 )

i n—i

dos( (7 2o (F ) D (E D))
= (g1,92,93) C SL(4n,R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 272 which is contained in SL(4n, R) [24, Example 5.4.(7)]. Observe
that:

e A(SL(4,R))(27%) = O(q).

e Conjugation with

A n—i

(o 1) o o) (6 £}
diag Yy , Yoy
0 T 0 T 0 F 0 F

induces the automorphism (91, g2, 93) 2 (9193, 92, 93)-
e Conjugation with

@)
N—
N———

7 n—1i

w0 C D D)

induces the automorphism (g1, g2, 93) 23 (g1, 9293, 93)-
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e When i = n/2, conjugation with (% g ) induces the automorphism

¢
(91,92, 93) = (91, 92, —93)-
Consider the automorphism groups

A(SL(4n,R))(G) C A(GL(4n,R))(G) C Out(G) — O(q)
C Aut(H_#L(i,n —1))

where the outer automorphism group has order 48. Note that the automor-
phism ¢ is in the kernel of the homomorphism Out(G) — O(q) induced by
the abelianization G — H_#L(i,n — i). Using the above observations we
see that A(SL(4n,R))(G) maps onto O(g). Thus the Quillen automorphism
group A(GL(4n,R))(G) has order 48 or 24. When n is even and i = n/2,
the automorphism ¢ is in A(SL(4n,R))(G), and when i < n/2, ¢ is not in
A(GL(4n,R))(G) as it does not preserve trace. Thus

A(GL(4n, R))(G)| = {48’ i=n/2,

24, i<n/2.
In any case, the group A(SL(4n, R))(G) equals A(GL(4n,R))(G) so that

(
H_#L(i,n—i) # (H_#L(i,

n—1))P [24, Lemma 5.2]. According to magma,
the dimension dim[H_#L(i,n — i)] equals 1. m
The FoA(PSL(4n,R))(H-#L(i,n — i))-linear map {df_} given by
L, P=H_,
(2.43) df_[P> L) = .
0, otherwise,

is a basis for the 1-dimensional Fo-vector space [H_#L(i,n — i)].
The quadratic function g(vy,va,vs,v4) = v% + vov3 has automorphism
group

O(q) = (Sp(z’ F2) *>

0 1
100 100

Sp(2,F2)%< 11 1f,]1 11 >CGL(3,F2),
010 001

of order 48.

2.44. PROPOSITION. The 4-dimensional object Vo#L(i,n — i), 1 < i <
[n/2], of the category A(PSL(4n,R)) satisfies
Vo#L(i,n — i) # (Vo#L(i,n — )",
It contains the objects Vo, Hy#L(2i,2n — 2i), and H_#L(i,n — i). The
automorphism group A(PSL(4n,R))(Vo#L(i,n — 7)) equals O(q) and the
dimension of the space of equivariant maps is dim[Vo#L(i,n —i)] = 5.



N-determined 2-compact groups. II 33

Proof. Vo#L(i,n —1i) C PSL(4n,R) is [24, 5.7] the quotient of

G=2otx2= <diag<<g _0E><g _0E>>’
(2212 (- )

i n—i
N

diag<<_0E _°E>,...,(‘OE _OE),@ ;)(ﬁ g>>>
= (91,92, 93, 94) C SL(4n, R).

The centralizer of G in GL(4n,R) is contained in the centralizer of its sub-
group 272 which is contained in SL(4n,R) [24, Example 5.4.(7)]. Observe
that:
e A(SL(4,R))(21" 0 4) = Out(G) = Out(Cy) x Sp(2,Fs) [24, Ex-
ample 5.4(5)].
e Conjugation with

7 n—1i
7\

(3 5)- (2 (5 2 )

induces the automorphism (g1, g2, 93, 94) '¢—1> (9194, 92, 93, 94).
e Conjugation with

7 n—i
7\

(5 90 DG D o)

. . ¢
induces the automorphism (g1, g2, g3, 94) > (91, 9294, 93, ga)-
e Conjugation with

A n—i

w0 D 2)

. . ¢
induces the automorphism (g1, g2, g3, 94) = (91, 92, 9394, 9a)-
e Conjugation with diag((2%),..., (% %)) induces the automorphism

¢
(917927.937 94) '_4> (_917927 9394)’
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e When i = n/2, conjugation with (% &) € SL(4n, R) induces the au-
. ¢5
tomorphism (g1, g2, 93, 94) = (91, 92, g3, —9a)-

Consider the automorphism groups

A(SL(4n,R))(G) € A(GL(4n,R))(G) C Out(G) — O(q)
C Aut(Vo#L(i,n — 1)),

where the outer automorphism group has order 196 and O(q) has order 48.
Note that the automorphism ¢4 of order 2 is in the kernel of the homomor-
phism Out(G) — O(q) induced by the abelianization G — Vo#L(i,n — 7).
Using the above observations we see that A(SL(4n,R))(G) maps onto O(q)
with a kernel of order at least 2. Thus the Quillen automorphism group
A(GL(4n,R))(G) has order 192 or 96. When n is even and i = n/2, the
automorphism ¢5 is in A(SL(4n,R))(G), and when i < n/2, ¢5 is not in
A(GL(4n,R))(G) as it does not preserve trace. Thus

192, i=n/2,
96, i< n/2.

R))(G) equals A(GL(4n,R))(G) so that
D24, Lemma 5.2]. According to magma,

|A(GL(4n, R) ()| = {

In any case, the group A(SL(4n,
Vo#L(i,n —1i) # (Vo#L(i,n — 1))
dim[Vo#L(i,n —i)] =5. =

The five FoA(PSL(4n,R))(Vo#L(i,n — 7))-linear maps
(2.45)  {ddf 12i2n—2:)> ddfor(2i 2n—2i)> Afor(2i 2n—2:), Adf Lin—i), dfovy }
given by
L, V=H,#L(2i,2n—2i),P=H,,

ddf+L(2i,2n72i) V>P>1]= {0 otherwise

ddfor,2ion—2iV > P > L]
- {PA(P)7 V = Hy#L(2i,2n — 2i), P = Hy,q(L) =0,

0, otherwise,
dfor(2ign—20V > P > L]
B { VAWY) V= H #L(2i,2n — 2i), [P,P] =0, ¢(L) =0,
N 0, otherwise,
L, V=H_#L(i,n—1i),P=H_,
0, otherwise,
vAV) vV =V,,[P,P] =0,q(L) =0,

0, otherwise

ddf _p(im—o[V > P> L] = {

dfov, [V > P > L] = {

constitute a basis for [Vo#L(i,n —1)].
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2.46. LEMMA. The 4-dimensional object Hy#P(1,i —1,2n —1,0), 2 <
i < n, of the category A(PSL(4n,R)), n > 2, satisfies Hy#P(1,i — 1,
2n —4,0) = (Hy#P(1,i — 1,2n —4,0))P. It contains the 3-dimensional ob-
Jects

L(1,2n—1),L(i —1,2n —i + 1), L(i — 1,2n — i + 1)P, L(i,2n — i),
1 odd,
Hy# ) . . N D
L(1,2n—1),L(i—1,2n — 1+ 1), L(i,2n — i), L(i,2n — )",
1 even.

Its Quillen automorphism group is

A(PSL(4n, R))(H, #P(1,i—1,2n — i,0))

0100 1010 1000 1011
1000 0100 0110 0111 ‘
, , , , > 2 odd,
0010 0010 0010 0010
B 0001 0001 0001 0001
B 0100 1001 1000 1011
1000 0100 0101 0111 ‘
) ) ) , 1> 2 even,
0010 0010 0010 0010
0001 0001 0001 0001

\
of order 16. The space of equivariant maps has dimension
dim[H, #P(1,i — 1,2n — i,0)] = 16.
Proof. Hy#P(1,i—1,2n — i) C PSL(4n,R) is (2.53) the quotient of
G = (diag(R, ..., R),diag(T,...,T),
i1 2n—i i1 2n—i
. —— N ——
diag(E,—FE,...,—E,E,... ,FE),diag(E,E,...,E,—E,...,—E))
= <917 92, 93, g4> C SL(4TL, R)
The centralizer of G in GL(4n,R) is contained in the centralizer of its
subgroup 2?2, which is contained in SL(4n,R) [24, Example 5.4(6)]. This
means [24, (5.3)] that the elements of the automorphism groups A(GL(4n,
R))(G) and A(PGL(4n,R))(H+#P(1,i — 1,2n — i,0)) have a well-defined

O+(3,F2) * )

sign. The Quillen automorphism group is contained in the group ( s

of order 2° = 32. Observe that
e R and T are conjugate in GL(2, R) so that the automorphism (g1, g2,

93, 94) i\ (92,91, 93, 94) is in the Quillen automorphism group and has
sign +1.
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i—1 2n—i
. . . . #A A .
Conjugation with diag(E, E,...,E,T,...,T) induces the automor-
. (o) : i
phism (g1, g2, 93, 94) = (9194, g2, g3, g4) of sign (—1)".

2 o
Conjugation with diag(E,T,...,T,FE,...,E) induces the automor-
. é . .
phism (g1, g2, 93, 94) = (9193, 92, 93, 9a) of sign —(—1)".
i—1 2n—i
(2 n—1
Conjugation with diag(E,E,...,E,R,..., R) induces the automor-
phism (g1, g2, g3, 91) 2 (g1, 9204, g3, ga) of sign (—1)".
) o
K3 n—1 .
Conjugation with diag(E,R,...,R, E,..., FE) induces the automor-
. ?5 . i
phism (9193, 92,93, 94) = (91,9293, g3, 94) of sign —(—1)".

i—1 2n—i

Conjugation with diag(E, RT,...,RT,RT, ..., RT) induces the auto-
morphism given by (g1, g2, g3, 94) 2 (919394, 929394, 93, 94) of sign +1.

It follows that Ngpn,r)(G) ¢ SL(4n,R) as this normalizer contains ele-
ments of negative determinant regardless of the parity of . Also, the auto-
morphism group A(PSL(4n,R))(H #P(1,i—1,2n —i,0)) is generated by
(the automorphisms induced by) ¢1, ¢2, ¢4, and ¢ when i is even, and ¢,
@3, ¢5, and ¢g when ¢ is odd. =

(2.47)

The fourteen Fo A (PSL(4n,R))(H+#P(1,i — 1,2n — 1))-linear maps

{ddf+L(i71,2n7i+1) y ddff[,(iflygnfprl)y ddfOL(ifl,aniJrl)?
ddfoDL(z‘—1,2n—z'+10)v dfor(i—1,2n—i+1)» df()DL(Z'_l’Qn_i_A,_l)a
A 1631 AU, s iy Afor s m iy A s

dfoL (i 2n—i); df(ﬁ(i,Qn—z’)? dfor(1,2n—1) df(ﬂ(l,gn_l)}

form a partial basis for the 16-dimensional vector space [H #P(1,i — 1,
2n—1)], 2 <i<n.For 1 <i<nandiodd,

ddf , p(ion—0)|V > P> L] = {

ddffL(wn—i) V>P>L]= {

L, V=H{#L(i,2n—14), P=H,,
0, otherwise,
L, V=H#L(i,2n—1), P=HP,

0, otherwise,

ddfor(ion—iV > P > L

{pA(P), V =H #L(i,2n—1i), P=H,, q(L) =0,

0, otherwise,
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ddf(ﬁ(m_i) [V >P>I]

PAP) V= Hy#L(i,2n — i), P= HP, ¢(L) =0,
{ 0, otherwise,
dforL(izn—o[V > P > L]
VNO:, V=H #L(i,2n—1), [P,P]=0, q(L) =0,

{ 0, otherwise,
A Lion_nlV > P > L]

[ VNOy, V =H#L(i,2n —1), [P,P] =0, q(L) = 0,

B { 0, otherwise,

where (in the last two formulas), O1 and Os are the two orbits of length 2 for
the action of A(PSL(4n,R))(Hy+#P(1,i—1,2n —14,0)) on Hy#P(1,i— 1,
2n — i,0). Each of the hyperplanes isomorphic to V. = Hi#L(i,2n — i)
contains precisely one vector vy from O; and one vector vs from Os and
{v1,v2} is a basis for the fixed point group VAFPSLUnRNV) For 1 < i< n
and 7 even,

ddf {1 on—i)[V > P > L] = {L7 V= H.JF#L(% 0 =
0, otherwise,
B . N\ D _ D
ddf i on oV > P> L] = {OL :therg:jamn e
ddfori2n—iV > P > L]
B { PA®) V= H #L(i,2n — i), P = Hy, q(L) =0,
N 0, otherwise,

ddf(ﬁ(m”%) [V >P>I]
- { PAP) vV = (H #L(i,2n — )P, P = (H,)P, (L) =0,

0, otherwise,
dforgion—alV > P > L]
(vAV) vV = H #L(i,2n — i), [P,P] = 0, (L) = 0,
N { 0, otherwise,
dfODL(i,Qn—i) [V >P>1]
B { VAWV = (Hy#L(i,2n — i))P, [P, P] = 0, q(L) =0,

0, otherwise.

2.48. LEMMA. The 4-dimensional object Hy#P(1,1,2,0) of the cate-
gory A(PSL(8,R)) satisfies H, #P(1,1,2,0) = (H #P(1,1,2,0))?. It con-
tains the 3-dimensional objects

Hi#L(1,3), H#L(2,2), (Hy#L(2,2)".
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Its Quillen automorphism group is
A(PSL(8,R))(H+#P(1,1,2,0))

0100 1001 1000 1011 1000
<1000 01o00f [oro1| o111 0100>

) ) ) )

0010 0010 0010 0010 0011
0001 0001 0001 0001 0001
of order 32, and dim[H #P(1,i —1,2n —1i,0)] = 8.

Proof. The proof is similar to that of 2.46. The elementary abelian 2-
group H #P(1,1,2,0) C PSL(8,R) is the quotient of the group

G =
<dla‘g(R7 R7 R7 R)7 dlag(Ta Ta T7 T)a dlag(E> _Ev E7 E)7 dlag(Ea E7 _Ea _E)>

C SL(8,R)
The extra element of A(PSL(8,R))( +#P( ,1,2,0)) is induced by conjuga-
tion with the matrix diag((2 %), (5 %)) €S ,R) According to magma,

dim[H #P(1,1,2,0)] =8. =
The eight FoA(PSL(8,R))(H;+#P(1,1,2,0))-linear maps
(2.49) {ddf +L(2,2), ddf P19, 9)» Adfor2,2), ddf37 (2.9)»
dfor(2.2) HoL, 2.2y Wor00.3) Uit r 3 )

from a basis for the vector space [Hy#P(1,1,2,0)].
We are now ready to describe the differentials d' and d? in Oliver’s
cochain complex (2.33) for computing the higher limits of the functor

1 (BZCpsrunr)(V)) =V

on the category A(PSL(4n,R)). The 6 x (6n + 2[n/2] + 8) matrix for d! is
of the following form (shown here for n = 3):

| [H #L(L5)]  [Ho#L24) x [Hi#L(2,4)]°  H#L(3,3)

[H+] (4 0 (4 0 (4 0)
[Hy]” (0 4 (0 4 (0 4
[H-]
[H-]7

[H_#L(1,1)] x [H-#L(1,D]” Vo] x [V |

(H 0) [H4]
(0 H) [H]P
(1 0 (B 0) [H-]
0 1) o B) |I[H]P

where
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100 1000
A:( ) H:( > B=(0 0 1 0),
01 0 0100

is injective so lim! = 0. Exactness is thus equivalent to

dim(im d?) > 6n + 2[n/2] + 2.
We shall show this by mapping the n + [n/2] 4+ 2[n/2] + 2 objects of dimen-
sion 3,

H #L(i,2n — 1), (Hy#L(i,2n —i))? (i even), 1<i<n,
H_#L(i,n—i),( H_#L(i,n—9)?, 1<i<[n/2, WV, VL,
of A(PSL(4n,R)) to the n — 2 + 2[n/2] objects of dimension 4,
H,#P(1,i—1,2n—14,0), 2<i<n,
Vo#L(n —i,i), Vo#L(n —i,i))”, 1<i<[n/2],
for n > 2, and to
Hy#P(1,1,2,0), Vo#L(1,1), (Vo#L(1,1))”

when n = 2. The (6n + 2[n/2] + 8) x (16(n — 2) + 10[n/2]) matrix for d?
(shown here for n = 5) is

(He#P0,2,7)] [HAPO,3,6]  [HA#P(1,4,5)
[H, #L(1,9)] (A A B) (A A B) (A A B)
(AL x AL | (B 0 0)
[ #L(3,7)] 0 E 0 (E 0 0)
[ #L08,6)] % [ #L(1,6)]” © B0 (B0
[+ #L(5,5) © E 0
(H-#L01,9) % [H-#L(1,4)”
[ #L(2.)] % [H#(2,3))°
%l x Vol
VAL, 0) Vo L0, A7 Vo L(23)] kL)
(A L0,9)
(5) () (LA L(2,8)) X [H AL (2 9)]7
(H L3, 7)
(5) () [rraorximsrao
(H#L(6,5)
L 0 D
(o) (}) [ #L1,4)  [H#L(1,)
(5) (}) (H-#L(2,3)) % [H-#L(2,3)”
K 0 K 0 b
W W @) G e
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where

10 00 0O 00 0O
010000 00 0O
e 001 000 . B= 00 0O
000100 0 00O
0 00 0O0O 1 0 00
0 00 0O00O0 0100

10 0 00
H={0 100 0, L=(0

001 0O

o O O O
o O O O
oS = O O
— o O O

o o o =

001 0),

while F is the 6 x 6 unit matrix and 0 the zero matrix. These matrices are
given with respect to the bases (2.39), (2.41), (2.43), (2.47), (2.45).
The case n = 2 of PSL(8, R) is special. Part of the matrix for d? is the

22 x 18 matrix

Vo#L(1,1)] [Vo#L(1,1)]”

[H+#P(1,1,2,0)]
[ #L(1,3)] )
(L A#L(2,2)]  [Hi#L(2,2)]° (£ 0)
[H-#L(1,1)] x [H-#L(1,1)]”
[Vo] x [Vo]?
where now
00
00
B 00 7
00
10
01

(o)
(o)
(v)

()
(2)
()

while F is the 6 x 6 unit matrix and 0 the zero matrix. As (partial) bases
we use the ordered sets (2.41), (2.43), (2.39), (2.49), (2.45). This matrix has

rank 16.

2.50. COROLLARY. The partial differential

[T [E #LG,2n = i) x [ [Hi#L(i,2n — )] x [Hy#L(i,2n — i)

1<i<n
i odd

1<i<n
i even
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X H — )] X [H-#L(i,n — )" x [Vo] x [Vo]”
i [T tH#Pi—1.20—i,0)x [ [Vo#L(in—0)
2<i<n 1<i<[n/2]

has rank 6n + 2[n/2] + 2.

Proof. By now we know a matrix for this linear map so we simply check
its rank. m

Proof of Lemma 2.32. For ma use the fact that it is trivial on the objects
with [, ] #0. =

7. The category A(PSL(4n, R))[ 170 We shall need information about

all objects of A(PSL(4n, R))[»1#0 of rank < 3 and some objects of rank 4.
If V.c PSL(4n,R) is a nontoral elementary abelian 2-group with non-
trivial inner product then its preimage V* C SL(4n,R) is P x R(V) or
(Cyo0 P) x R(V), where P is an extraspecial 2-group, Cy o P a generalized
extraspecial 2-group, and U;1(V*) = (—FE) (2.8). We manufacture all ori-
ented real representations of these product groups as direct sums of tensor
products of irreducible representations of the factors [24, 5.6].

2.51. Rank two objects with nontrivial inner product. The category
A(PSL(4n,R)) contains up to isomorphism four rank two objects with non-
trivial inner product, Hy and HiD The elementary abelian 2-group Hy C
PSL(4n,R) is the quotient of the extraspecial 2-group 2172  SL(4n,R)
with UO1(252) = (—E) described in [24, Example 5.4(6)(7)]. Their central-
izers [32, Proposition 4] in SL(4n, R) and PSL(4n, R) are

CsL(4n, R)(21+2) = GL(2n,R), Cpsrunr)(H+) = Hy x PGL(2n, R),
Csp(anr)(257%) = GL(n,H),  Cpsrunr)(H-) = H- x PGL(n, H),

where H, and H_ are hyperbohc planes with quadratic functions ¢4 (v1, v2)
= v1vg and q_(v1,v2) = v} + vivy + v3 [24, 5.5], respectively. In the first
case, for instance, the commutative diagram

1 —PGL(2n,R) — Cpspnr)(H+) — —0
T /
H,

gives a central section of the short exact sequence from [28, 5.11]. Alterna-
tively, CPSL(4n,R) (H+) = H+ X PGL(QTL, R) = V+ X (PSL(2TL,R) A CQ)

2.52. Rank three objects with nontrivial inner product. Let V be a rank
three object of A(PSL(4n, R)) with nontrivial inner product. Then V or V¥
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is isomorphic to Hy #L(i,2n—1) (1 <i <n), H-#L(i,n—1) (1 <i <[n/2])
or Vp. Furthermore, Hy#L(i,2n — i) C PSL(4n,R) is defined to be the
quotient of

% 2n—1

———
(diag(R, ..., R),diag(T,...,T),diag(—E,...,—E,E, ..., E)),

R:<1 0>, T:(O 1>7
0 -1 1 0

isomorphic to 217% x Cy € SL(4n,R), and H_#L(i,n—14) C PSL(4n,R) to
be the quotient of

<diag<<1?% _0R>""’<S% _0R>>’diag<<; _0T>”"’<; _0T>>’

7 n—i

()T G D D)

isomorphic to 2112 x Cy C SL(4n,R). The elementary abelian 2-group Vp C
PSL(4n,R) is the quotient of

Q5 ) (o w)oel(s 7)o 1))
diag((g _0E>’”" (2 _OE)>>’

isomorphic to the generalized extraspecial 2-group Cy o 2_};2 C SL(4n,R) as
described in [24, Example 5.4(5)].

2.53. Rank four objects with nontrivial inner product. The following
partial census of rank four objects with nontrivial inner product suffices
for our purposes. Define the elementary abelian 2-group H#P(1,i— 1,
2n — i) C PSL(4n,R), 2 < i <mn, to be the quotient of

(diag(R, ..., R),diag(T,...,T),

- o - o
‘ (] n—1 . K2 n—1
diag(E,—-FE,...,—E,E,... F),diag(E,E,...,E,—E,...,—FE))
C SL(4n,R).

Define Vp#L(i,n — i) C PSL(4n,R), 1 <i < [n/2], to be the quotient of

(e 0 ) (e o)) oel(o n) (6 w)
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(93 3)

% n—i

(T C DG D)

isomorphic to Cy 0 27 x Cy € SL(4n, R).

2.54. Centers of centralizers. For the computations in §6 we need to
know the centers of the centralizers for some of the low-dimensional objects
of A(PSL(4n, R))l»1#0.

2.55. PROPOSITION. Let V € Ob(A(PSL(4n,R))l:1#9) be one of the
objects

d H+7 H—’

o Hi#L(i,2n—1i) (1 <i<n), H-#L(i,n—1) (1 <i<[n/2]), W,
introduced in 2.51-2.53. Then ZCpgr,unr)(V) = V.

Proof. The proof is a case-by-case checking.

H_ and H_: Since the centralizers of the rank two objects H; and H_
are Cpspunr)(Hy) = Hi x PGL(2n,R) and Cpgpnr)(H-) = H- X
PGL(n,H), the assertion is immediate in this case.

Hi#L(i,2n—14) (1 <i<n)and H #P(1,i—1,2n—1,0) (1 <i<mn):
We shall only prove the 2-dimensional case since the 3-dimensional case
is similar. The centralizer of Hy#L(i,2n — i) is isomorphic to the product
of H, with the centralizer of L = L(i,2n — i) in PGL(2n,R). There is [28,
5.11] a short exact sequence

GL(:,R) x GL(2n — i, R)
(—E)
where the rightmost group consists of all homomorphisms ¢: L — (—F)
such that p and ¢ - p are conjugate representations in GL(2n, R). By trace
considerations, this group is trivial if ¢ < n and of order two if i = n. Hence
GL(7,R) x GL(2n — 7, R)
(—E) ’

X <01>, i:n,

- CPGL(zn,R)(L) — Hom(L,(-E)), — 1

1 < n,
CPGL(Qn,R) (L) = GL(TL, R)Q

(—E)
where C1=( % £) is the 2n X 2n matrix that interchanges the two GL(n, R)
factors. In case i < n, use [24, Lemma 5.18]. In case i = n, the center is [24,
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Lemma 5.13] the pull-back of the group homomorphisms

GL(n,R) x ((B,~E)) _ (GL(n,R)*\‘ _ GL(n,R)?\ _
E) -(Fms) e (Fg) —@
which is GL(l’R)X<(>_E’E)> = L again.

(-F
Vo and Vo#L(i,n — i): The object Vy C PSL(4n,R) is the quotient of
G = 402" C SL(4n,R) as described in [24, Example 5.4(5)]. As this

representation 9 = n(x+YX) is the n-fold sum of an irreducible representation
of complex type there are exact sequences

1> CLO) . Cogy 4,y (Vo) — Hom(G, (~E)), — 1

J J J

1—= 2(Q) /G G/C G/Z(G)

1

where the top row is [28, 5.11]. The abelian group Hom(G, (—E)),, consisting
of all homomorphisms ¢: G — (—FE) such that ¢ and ¢ - ¢ are conjugate in
SL(4n, R), equals all of Hom(G, (—E)) = 23 since conjugation with the first
two of the generators from 2.52 and with

crmann((50) (5 0)

induces three independent generators. Hence

CpsLn,r)(V0) = (%E’)C) X VO/VOJ_> % (Ca).

Note that conjugation with the matrix C induces complex conjugation on
GL(n,C). The center of this semidirect product is [24, Lemma 5.13] the
pull-back of the group homomorphisms

GL(n,R) o (i) y Vb/vol _ <GIZ£nE,>C) y V()/VOJ‘><CQ>

GL(n,C)

— e (S

x wv&) (G,

which is

The case of Vo#L(i,n—1), 1 <i < [n/2], is quite similar. The centralizer
is

Crstanmy (it Lo — ) = (HEEEHOZRE v ) ()
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and its center is the pull-back of the homomorphisms
(GL(i,R) x GL(n —i,R)) o (3)

5) <l
i n—i C2)
_ <GL( 7C) ?_GEI;< 7C) > VO/VOJ_>
— g (SHEEX ROy ) — (e,

which is
. . GL(1,R) x GL(1,R)) o (i
ZCpsan,r) Vo#L(i,n — 1)) = (GL( ) <—E>( )t
=22 x Vy/V5- = Vo x L.

If n is even and i = n/2, there is a short exact sequence
GL(n,C)?
(~E)
where the elementary abelian group on the right is all of Hom(G x L, (—E))

= 2%, Hence the centralizer satisfies
GL(n, C)?
C VoxL)=|—"F-"+
PSL(4n,R)( 0 X ) ( <—E>
where (5 is as above and (] is the 4n x 4n matrix (% E ) The matrix Cs
commutes with Vp/V;" and acts as complex conjugation on GL(n, C)?/(—E).
The matrix C; commutes with V5/Vgt and switches the two factors of
GL(n, C)%. The center of the centralizer is the pull-back of the group homo-
morphisms

n o (3 — n 2 (C1,C2)
GL(n,R) <<—>EX (B -B) Vo Vit = (GL<(_;E§3) " VO/Vbi>

Hmnc%%§fx%wﬁ)emm@»

x Vo V-

1— — Cpsr(an,r) (Vo X L) — Hom(G x L,(-E)), — 1

x%ﬂﬁ)%@&%)

which is

ZCpsranr)(Vo X L) = GL(L,R) o () x ((E, —E))

(—E)
=22 x Vp/V5t =V x L.
H_#L(i,n —1i): As above, we have
Cpsrn,r)(H- x L)
GL(i,H) x GL(n — i, H)
(—E)

x Vo V-

x H_, i<]n/2],

GL(i, H)?

x (Cy) x H_, n even and ¢ = n/2,
(—E)
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with center

GL(1,R) x GL(1,R

ZCpsLnr)(H- x L) = LR) LR)

(—E)

in case i # n —i. If n is even and i = n/2, then the center is the pull-back

of the group homomorphisms
GL(i,H) x ((—E, E)) W I — GL(i,H)?

(—E) - (—E)

=2xH_=H_x1L

x H_

— Aut (%,EI?)? X H_> — (C1),

which is

ZCpsranry(H-x L) =

3. THE B-FAMILY

The B-family consists of the matrix groups
SL(2n+1,R), n>2,

of 2n 4+ 1 by 2n + 1 real matrices of determinant +1. When n = 1 we obtain
the 2-compact group SL(3,R) = PGL(2, C) considered in [24, Chapter 3].
The embedding

A 0
GL(2n,R SL(2n+1,R): A
(2n, R) = SL( )i A= (0 det A)
permits us to consider the general linear group GL(2n, R) as a maximal rank
subgroup of SL(2n + 1, R). The maximal torus normalizer for the subgroup
GL(2n,R) is therefore also the maximal torus normalizer for SL(2n+ 1, R),
N(SL(2n+ 1,R)) = N(GL(2n,R) (2.1), so that these two Lie groups have
the same Weyl group, W (SL(2n + 1,R)) = W(GL(2n,R)) = X3 X, (2.2).
It is known [22, 1.6], [16, Main Theorem] that
_ ) Z/2, =2,
HOW ) =22, HwT) = {2 "
Z/2xZ/2, n>2,
for these groups.
The full general linear group GL(2n +1,R) = SL(2n+ 1,R) x (—E) is
the direct product of SL(2n+ 1, R) with the opposite of the identity matrix,
so that PGL(2n + 1,R) = SL(2n + 1,R).

1. The structure of SL(2n + 1,R). Consider the elementary abelian
2-groups

A2n+1 = <diag(j:1, ey :|:1)> C GL(2n + 1,R),
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SAsn+1 =SL(2n+ 1,R) N Agpt1 € SL(2n + 1, R),
t=t(SL2n+1,R)) = A1 NT(SL(2n +1,R)) = (e1,...,€n)
C T(SL(2n+ 1,R))
in GL(2n 4+ 1,R) and SL(2n + 1,R).
3.1. LEMMA. The inclusion functors

A(Zony1, Agpi1) — A(GL(2n + 1, R)),

A(Yont1, SAzp41) — A(SL(2n + 1, R)),

A(X5! 5,,t) — A(SL(2n 4+ 1,R))=!
are equivalences of categories. (See [24, Definition 2.68] for the meaning of
A(Zoni1, A2nt1)-)

Proof. Similar to 2.12. A(SL(2n + 1,R) is a full subcategory of the
category A(GL(2n + 1,R) since conjugation with the central element —F
of negative determinant is the identity. m

(Note that the Quillen categories A(GL(2n,R)) = A(Xa,, Agy,) and
ASL(2n+ 1,R)) = A(Xop+1, Aont1) (2.12, 3.1) are not equivalent.)

For any partition ¢ = (io,il), ig > 0,41 > 0, of 2n + 1, let L(io,il) C
Aogpy1 be the subgroup generated by

20 11
dlag(+17 ey +17 _]-a DRI _1) = (iOQO + 7:1@1)(61)-

For any partition (ig,i1,42,i3) of 2n + 1 where at least two of iy, 2,43 are
positive, let P(ig,i1,12,i3) C Ag,41 be the subgroup generated by

io i1 i2 i3
diag(¥1,...,+1,71,...,—0.51,...,+1,71,...,-D)
= (ipoo + i101 + 1202 + i303)(e1),
io i1 iz i3
diag(F1,...,+1,51,...,+1,=1,...,—-1,~1,...,-1)

= (000 + 1101 + G202 + i303)(e2)-
Note that L(ig,i1) is a subgroup of SAg,y; if and only if i1 is even, and
that P(ig,1,142,13) is a subgroup of SAg,+1 if and only of i1, i9, i3 have the
same parity, the opposite parity of ig.
Let P(k,r) denote the number of partitions of k = 9 + -+ + 4,1 into
sums of r positive integers 1 < iy < --- < 4,._1. From the above discussion
we conclude

3.2. PROPOSITION. The category A(SL(2n + 1,R)) contains precisely:

e n isomorphism classes of rank one objects represented by the lines
L(2ip 4+ 1,2i1) where 0 < iyp <n—1 and i1 =n — .
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o > o P(4,2) +>°5_3 P(4,3) isomorphism classes of toral rank two ob-
jects. They are represented by the subgroups P(2ig+1, 2i1, 2i2,0), where
0 <igp <n—2and (i1,i2) is a partition of n — ig, together with the
subgroups P(2ig + 1, 2i1, 2i9, 2i3), where 0 < iy < n — 3 and (i1,1i2,13)
is a partition of n — ig.

. Z”+2 P(34,3) isomorphism classes of nontoral rank two objects repre-
sented by the subgroups P(2ig,2i; — 1,2i9 — 1,2i5— 1), where 0 < iy <
n—1 and (i1,12,13) is a partition of n —ig + 2.

The centralizers of these objects are
(3:3)  Csvns1,r)L(2i0 + 1, 2i1)
=SL(2n+ 1,R) N (GL(2ip + 1,R) x GL(2i1,R))
= SL(2ip + 1,R) x GL(2i1, R),
(34)  Cspenri,r)P() = SL(2n+1,R) N [ GL(;, R)
SL(2ip + 1,R) x GL(2i1, R) x GL(2i2,R) x GL(2i3, R),
P(2ig + 1, 2i1, 2i9, 2i3) toral,
GL(2ig,R) x GL(2i; — 1,R) x GL(2i3 — 1, R) x SL(2i5 — 1, R),
P(2ig,2i7 — 1,2i3 — 1,2i3 — 1) nontoral,

as, for instance,
SL(2n+1,R) N (GL(2ip + 1,R) x GL(2i1,R))
=SL(2n+1,R)N (SL(2ip + 1,R) x (—E) x SL(2i1,R) x (D))
= SL(2ip + 1,R) x SL(2i1,R) x (—D) = SL(2ip + 1, R) x GL(2i1, R),

and the centers of the centralizers are

(35) ZCSL(2n+1 R)L(QZO +1 221) = L(220 +1 2@1)
(3.6) ZCsponr1,r)P()) = SL(2n + 1,R) N [ ZGL(i;, R)
;>0
(o #0j iy > 0) =3
P(i) x Z/2, #{j|i; >0} = 4.

3.7. LEMMA. For any nontrivial subgroup V. C SAs,11 there is a natu-
ral isomorphism

ZCs1n+1,8)(V) = H*(Z2n41(V); SAgni1)
where Xan11(V) is the pointwise stabilizer subgroup [24, Definition 2.68].

Proof. Let V. C SAg,41 be any nontrivial subgroup of rank r. Then
V = V(i) is the image of the representation ) ey Lo0 for some function
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i: Hom((Z/2)",R*) — Z where } .yvip =2n+1 and

ZCs i1 my)V (i) = Z(SL(2n +1,R) N [] GL(G,, R))

i9>0

—SL2n+ 1, R) N [[ ZGL(ip R) = SAgqy N AL T = 52320 V0,
ip>0

here the second equality can be proved by recalling that Cqr,; g)SL(i, R) =

ZGL(i,R) and the final equality follows from the observation that the sta-

bilizer subgroup Xo,+1(V (7)) equals [[, . X;

: . n
10>0 o

3.8. COROLLARY. lim’(A(SL(2n + LR);m(BZCsr2n4+1,r))) = 0 for
all i > 0.

Proof. Immediate from the general exactness theorem [24, Lemma 2.69]
for functors of the form as in 3.7. »

3.9. PROPOSITION. Centralizers of objects of A(SL(2n + 1,R))§t2 are
LHS. -

Proof. Let X1 and X5 be connected Lie groups and 7 and mo finite
2-groups acting on them. Suppose that the homomorphisms 0(X;)™ and
0(X1)™ [24, (2.20)] are surjective. Then also §(X; x X2)™*™ is surjective
and so the product X; x w1 X Xo x mp is LHS [24, Lemma 2.28]. This
observation applies to the products (3.3), (3.4) since the #-homomorphisms
are surjective [16, 5.6], [24, Example 2.29(5)] for SL(2: + 1,R), ¢ > 0, and
SL(2i,R),i>1. m

2. The limit of the functor H'(W;T)/H"(ro; Z( )o). In this sub-
section we check, using a modification of [24, 2.53], that conditions (1) and
(2) of [24, Theorem 2.51] with X = SL(2n + 1, R) are satisfied under the
inductive assumptions that the connected 2-compact groups SL(2i + 1, R),
0 <i < n,and SL(2;,R), 1 <i < n, are uniquely N-determined.

The objects V' C SL(2n+ 1, R) of the category A(PSL(2n+1, R))Et2 are
the rank one objects L(ig,71) and the rank two objects P(2ig + 1, 2i1, 2i2,0)
and P(2ig+1, 2i1, 2i9, 2i3) as described in 3.2. The rank two object P(2ip+1,
2i1, 219, 2i3), i3 > 0, contains the three lines L(2ig + 2i1 + 1,2iy + 2i3),
L(2ip + 2i2 + 1,201 + 2i3), and L(2ip + 2i3 + 1, 2i1 + 2i3). Their centralizers
are described in (3.3) and (3.4). Note that there are functorial isomorphisms

(3.10) TWo(Gsnrim (V) = (g, /2)mintiol} Z(Csrn+1,r)(V)o)

as modules over moCsy,(2n41,R)(V)-
Condition (1) of [24, Theorem 2.51] is satisfied as the centralizer C'x (V)
has N-determined automorphisms and is N-determined for general reasons
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[24, 2.39, 2.35, 2.40]. This means that there are isomorphisms, ay and fy,
such that the diagrams

On(V) —==Cn (V)

oL

Cx(V) % Cx/(V)

commute and oy € H'(W;T)(Cx (V). There may be more than one choice
for avy but for each oy there is just one possibility for fy [24, Lemma 2.14(2)].
The set of possible ay for a given V is a H'(mg; Z(( )o))(Cx(V))-coset in
HY(W;T)(Cx(V)) [24, Lemma 2.37]. The collection of the ay for various
V represents an element of the inverse limit

. < H'WT)
(3.11) lim" (A<SL<2"+ RS B >o>>>

of the quotient functor over the category A(SL(2n + 1, R))g2

Condition (2) of [24, Theorem 2.51] is satisfied if the restriction map from
the abelian group H'(W;T)(SL(2n + 1,R)) to (3.11) is surjective. Because
of the natural splitting (3.10) and because the centralizers Csy,(2,41,r) (V)
are LHS, there is a short exact sequence

HY(W;T)
H(m0; Z(( )o))
of functors on A(SL(2n + 1,R))§g. If we now apply the functor given by
Hom (7o, (Z/2)™{i0:1}) to the morphisms

(3.12) L(2ig + 1,26y + 2ia) — P(2ig + 1,20y, 2i2,0) «— L(2ig + 2i1 + 1, 2i3)

0 — Hom(mo, (Z/2)mntio:1}) — HY(Wo; T)™ — 0

we see that the induced morphisms are injective and that their images in-
tersect trivially. Thus the inverse limit of this functor is trivial and from the
above short exact sequence we obtain an injective map

1 e
T

— lim®(A(SL(2n + 1, R))Z%; H' (Wo; T)™)

between the inverse limits. As the inverse limit on the right is a subgroup of
the inverse limit of the functor H'(Wy; T'), we conclude that if the restriction
map

(3.13) H'(Wo; T)(SL(2n+1,R)) — lim®(A(SL(2n +1, R))Zh; H' (Wo; T))

is surjective, then condition (2) of [24, Theorem 2.51] is satisfied.
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3.14. LEMMA. The restriction homomorphism (3.13) is an isomorphism
for all n > 2.

Proof. For n = 2, the image under the functor H'(Wp;T) of the cat-
egory L(1,4) — P(1,2,2,0) « L(3,2) is 0 — 0 « Z/2 so that the limit
of the functor H'(Wpy;T) is Z/2. Since SL(3,R) x SL(2;R) — SL(5,R)
turns out to induce an isomorphism on H'(Wy; T) the claim follows in this
case.

For n=3, taking into account only the planes of type P(2ip—1, 2i1, 2i2,0),
we should compute the limit of the diagram

H'(WoCsp,7 ) L(1,6))
T

Hl(WDCSL(7,R)P(17 4—7 27 O))

/

HY(WoCsp,7r)L(3,4))

H' (WUCSL(7,R)P(3a 2,2, 0))
/
H'(WoCsp,7r)L(5,2))

of Fa-vector spaces. For each of the planes P take the intersections of the im-
ages in the cohomology groups Hl(WOCSLU’R)P; T) of Hl(WOC'SL(ZR)L; T)
for each line L C P. Take the intersection of the preimages in each
HI(WOC’SLW’R)L; T) of these subspaces of HI(WOCSL(ZR)P;T). Using the
computer program magma one may see that these subspaces have dimen-
sions 1,2,2 for L = L(1,6), L(3,4), L(5,2), respectively, and that they equal
the image of the restriction maps from H'(Wy;T)(SL(7,R)). This shows
that the lemma is true in this case.

In general, the above-mentioned subspaces of H I(WOCSL(7,R)L§ T) have
dimension one for L = L(1,2n) and dimension two for the lines L =
L(2i+1,2n — 2i) with 1 < ¢ < n — 1 and these subspaces equal the im-
age of the restriction maps from H'(Wy; T)(SL(2n +1,R)). =

3. Rank two nontoral objects of A(SL(2n + 1,R)). The nontoral
rank two objects of A(SL(2n 4+ 1,R)) are represented by the subgroups
P(i) C SAg,+1 generated by the elements

2o 2i1—1 2ip—1 2i3—1
er = diag(3L, ..., 41,1, ..., —1,%L,....+1,°1,...,-D),
2o 2i1—1 2iz-1 2i3—1
eg = diag(+1,...,+1,+1,...,+1,-1,...,—1,—-1,...,—1),
where i = (2i0,2i1 - 1,2@2 - 1,2i3 - 1), 0 < io <n-— 1, and (il,ig,ig) is
a partition of n 4+ 2 — iy (3.2). The generators of P(i) may also be written
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as
i0—1 i1—1 i2—1 i3—1
B —— ——
(3.15) e =diag(®,....E,.E.~E,...,—E,~RE,... B,"E,...—E,~1),
i0—1 i1—1 i9—1 iz—1
L =N~
(3.16) ey =diag(E,....B,BEE,... . E,R"E,...—E"E,...—E,~1)
where

1
r=(; ")
0 -1
The centralizer of P(i) is
Csr2n+1,R) (P (7))
=SL(2n+1,R)
N (GL(2ip, R) x GL(2i; — 1,R) x GL(2i2 — 1,R) x GL(2i3 — 1,R))
= GL(2ip,R) x GL(2i; — 1,R) x GL(2i2 — 1,R) x SL(2i3 — 1, R).
Let us observe that P(i) is contained in the maximal torus normalizer
N(SL(2n + 1,R)) = GL(2,R) X,. Since the centralizer of P(¢) in the
maximal torus normalizer,
CGL(Q,R)ZETL (P(Z)) = GL(2, R) i Zio X GL(Q,R) i Zﬁfl X GL(l,R)
x GL(1,R) x GL(2,R) ! X;,—1 x GL(2,R) ! X, _1,
is the maximal torus normalizer for the centralizer of P(), the lift P(i) C
N(SL(2n+1,R)) is a preferred lift of P(i) C SL(2n+ 1,R) [27]. The other
two preferred lifts are given by composing with the permutation matrices

for the permutations (1,2)(ip + i1,2n + 1) and (1,2)(igp + 41 + 1,2n + 1)
(assuming igp > 0) resulting in the lifts given by

e1 = diag(E,....BE,E,"E,...,—B,~E,E,.. .B,~E,...,—E, 1),
i0—1 i1—1 ig—1 i3—1
. —
es = ding(®,....E,E,E,... . E,R"E,...,—E,"E,....—E,~1)
and
io—1 i1—1 i2—1 i3—1
) PN, P i . N
e1 = diag(E,....BE,E,"E,...,—B,RE,....E,~E,...,—B, 1),
i0—1 i1—1 i2—1 i3—1
) —_—— —_——
ey = diag(E,... . BE,E,E,.. .B,~E"E,...,— B E,...,_E,~1),

respectively. These two lifts are also preferred lifts of P(i) C SL(2n+1,R).
The three preferred lifts are not conjugate in N(SL(2n + 1,R)) because
the intersection with the maximal torus is generated by e; 4 eo in the first
case and by e, respectively es, in the other two cases. Note that all three
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preferred lifts have the same maximal torus, SL(2,R)% x SL(2,R)2~! x
SL(2,R)™27! x SL(2,R)%~1.
Let U = (e1,e2,e3) be the elementary abelian 2-group generated by e;
and e as in (3.15), (3.16) together with
io—1 i1—1 ia—1 iz—1

L — —_——
es = diag(E,...,E,R.E,... ,E,E,E,... ,E,E,...,E, 1),

Note that the centralizer of U has a nontrivial identity component, and that
the inclusion U C Cgy,(2,,4.1,r)(P(4)) induces an isomorphism on 7.

Under the inductive assumption that SL(2i,R), 1 < i < n — 1, and
SL(2i — 1,R), 1 < i < n, have m,(V)-determined automorphisms (or using
[19]) we conclude from [24, Lemma 2.63, (2.64)] and (part of) [25, 5.2] that
condition (3) of [24, Theorem 2.51] is satisfied for SL(2n + 1, R). (Namely,
[24, Lemma 2.63(1)] says that v} does not depend on the choice of L < V.
The difference f;éZ o fy1, between any two of the maps f, from [24,
Theorem 2.51(3)] is an automorphism of Csp2,41,r)(P(7)) that, by [24,
Lemma 2.63(2)], is the identity on the identity component and by the com-
mutative diagram [24, (2.64)]

U

(3.17 / \
) f_IQOfV,Ll

Csr(2n+1,R) (P (1)) — Csrn+1,R) (P (7))

also the identity on moCgr,(2n+1,r)(P(7)). Any such automorphism of the
centralizer Cgr(2n41,r)(P(4)) has [25, 5.2] the form A — ¢(A)A where
¢: GL(2ip,R) x GL(2i; — 1,R) x GL(2iy — 1,R) x SL(2i3 — 1,R)

— mp(GL(2ip, R) x GL(2i; — 1,R) x GL(2i2 — 1,R) x SL(2i5 — 1, R))

— ZGL(2i9,R)

is some homomorphism. Diagram (3.17) thus implies that the inclusion U —
SL(2n + 1,R) and the monomorphism given by e; — ¢(e;)e;, 1 < i < 3,
are conjugate. Since the trace of e;, 1 <i < 3, is odd (nonzero), ¢ must be
trivial. Thus f, 1, and f, 1, are identical isomorphisms.)

4. THE C-FAMILY
Let H= {a+bj | a,b € C}, where j2 = —1 and ja = aj for a € C, be
the quaternion algebra. The C-family consists of the matrix groups
PGL(n,H) = GL(n,H)/(—E), n >3,
of quaternion projective n x n matrices. (These 2-compact groups also exist

for n = 1 or n = 2. However, PGL(1,H) = SL(3,R) = PGL(2,C) and
PGL(2,H) = SL(5,R) [24, 5.24] are already covered.)



54 J. M. Mgller

The maximal torus normalizer for GL(1,H) = H*, generated by the
maximal torus GL(1,C) = C* and the element j, sits in the nonsplit ex-
tension

1 — GL(1,C) — N(GL(1,H)) — (j)/(-1) — 1
of ¥y by GL(1,C) = C*. The maximal torus normalizer for GL(n,H) is
the subgroup
N(GL(n, H)) = N(GL(1, H)) 1 X,
generated by N(GL(1,H))"™ C GL(n,H) and the permutation matrices. The

maximal torus normalizer for PGL(n, H), the quotient N(GL(n, H)) by the
order two group (—F), sits in the extension

_ GL(LO)"  N(GL(LH)"  N(GL(1,H))

1 5, -1,
(~E) ~E) cLe) T
which does not split (for n > 3).
It is known that [22, 1.6], [16, Main Theorem)]
. . Z/2 =3,4
HOWS T)PGLL ) =0, (7 T)(paLi 1) = { 8 7~
) n )

for the projective groups.

1. The structure of PGL(n,H). Let
A, = t(GL(n,H)) = (diag(+1,...,+1)) C GL(n,H)

be the maximal elementary abelian 2-group in GL(n,H), and Cy = (I) C
GL(n,H) the cyclic order four group generated by I = diag(i,...,4). The
maximal elementary abelian 2-group in PGL(n, H) is the quotient
_ t(PGL(n,H))*
(-E)
so that the toral part of the Quillen category,
Cy o (diag(+1,..., :|:1)>>
(—E) ’
is equivalent to the category whose objects are nontrivial subgroups of
t(PGL(n,H)) and whose morphisms are induced from the action of the
Weyl group [24, Definition 2.68|.
For any partition i = (ig,41) of n = ig + i1 into a sum of two positive
integers ig > i3 > 1 > 0 let L(i) = L(ig,i1) C GL(n,H) be the subgroup
generated by

t(PGL(n, H)) t(PGL(n,H))* = C4 o t(GL(n,H)),

A(PGL(n,H))S! = A<02 ' 0,

10 11

A

diag(+1,...,+1,—1,...,—1).
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Then the centralizer is
GL(i9, H) x GL(71, H ) .
(0 <)—E> (1 )7 2075217
(4.1)  Cpgrnm)Llio,i1) = GL(io, H)? ) <<0 E>< E>> .
S\ T — , 1g =11,
) E 0 o

so that ZCpgr(nm)L(i0,71) = L(io,71) as in the proof of 2.55 and [24,
Lemma 5.18].

Let (also) I € PGL(n, H) denote the order two element that is the image
of the order four element i € GL(n, H). Then

(4.2) CpaLm,m)(I) = %é;j) x (j(—=E))

so that ZCpqr,n,m1)(I) = (I) as shown in the proof of 2.55.

For any partition (ig,41,72,0) of n = ip + i1 + iz into a sum of three
positive integers ig > i3 > i2 > 0 or any partition (ig,i1,12,73) of n =
19 + i1 + 12 + i3 into a sum of four positive integers ig > i1 > io > i3 > 0 let
P(ig,i1,12,13) C Aopt+1 be the subgroup generated by the two elements

io i1 ia is
diag(+1,...,+1,=1,...,—1,%1,..., +1,=1,...,—1),
io i1 is i

diag(+1,...,+1,+1,...,+1,-1,...,—1,—1,...,—1).

Then the centralizer is

(4.3)  Cpargnm)(P(1))

GL(i ,H4 . L
% x (Cy x Cy), i = (io, o, o, o),
L(io, H)2 x GL(i2, H)2
_ G (20, ) x G (127 ) x Cs, 1= (Z.[)J'O?Z.QJ?)?
(—E)
GL(io, H) x GL(i1, H) x GL(iz, ) x GLGs. H)
(~E) T

where the groups Cs are generated by permutation matrices.

For any partition ¢ = (ig,i1) of n = ip + 41 into a sum of two positive
integers ig > i1 > 0 let I1#L(ig, 1) C PGL(n,H) be the elementary abelian
2-group that is the quotient of

70 21

(I#L(ig,i1))* = (I,diag(F1,...,+1,~1,...,—-1)).

Then the centralizer is
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(44)  Cparn,m)(I#L(io, 1))

GWO’Cg_XEfL(“’ Dii-my, it

LS s (-8 () £)eB) =i

4.5. PROPOSITION. The category A(PGL(n,H)) contains exactly

e [n/2] + 1 rank one toral objects represented by the lines L(i,n — i),
1 <i<[n/2] (with g =0), and by the line I (with q # 0).

e P(n,3) + P(n,4) 4+ [n/2] rank two toral objects represented by the
P(n,3) planes P(ig,i1,12,0) (with ¢ = 0), and the P(n,4) planes
P(ig,i1,12,13) (with ¢ = 0), and the [n/2] planes I#L(i,n — i), 1 <
i < [n/2] (with g #0).

4.6. PROPOSITION. Let V. C PGL(n,H) be a nontrivial elementary

abelian 2-group. Then

Vs toral < [V,V]#0.

Proof. The proof is similar to 2.10 with the extra input that all elemen-
tary abelian 2-groups in GL(n,H) are toral by quaternion representation
theory [1]. m

4.7. PROPOSITION. Centralizers of objects of A(GL(n,H))ig are LHS.

Proof. The centralizers C = Cy x 7 in question are the nonconnected
centralizers listed in (4.1), (4.2), (4.3), and (4.4). In fact, we only need to
deal with
GL(i, H)? GL(ip, H)? x GL(i1, H)? GL(i, H)*

(E) ~E) (—E)
as the other cases are covered by 2.19. It suffices to show that §(Cp)™ is
surjective [24, Lemma 2.28, (2.20)].

Computations with the program magma result in the table

NCQ, ><]CQ, N(CQXCQ)

Glz(_ii’EI,;I)Z x Co kerd  Hom(W,7%) H'W;T) 6 HY(W;D)"
L= (Z/2)? (Z/2) 0 epi 0
2=1 (Z/2)? (Z/2)* (Z/2)? (Z/2)?
2<i 0 (z/2)* (Z/2)*  iso  (Z/2)?

From the table we see that ™ is surjective unless ¢ = 2. In that exceptional

case, more computations show that H'(7; TV) = Z/2 and H' (W xCy; T) =

(Z/2)3, which means that also (GL(2,H)?/(—E)) x Cy is LHS.
Computations with the program magma result in the table
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GL(io, H)? x GL(i1, H)?

kerd  Hom(W,7%) H'(W;T) 6 H'W;D)"

(-E)
1=14p,2 =41 (Z/2)* (Z/2)'® (Z/2)**  epi (Z/2)7
1=149,2 <11 (Z/2)* (Z/2)*® (Z/2)*®  epi (Z/2)®
2 =iy < i1 (Z/2)* (Z/2)* (Z/2)*  epi (Z/2)"
3 <o < iy 0 (Z/2)** (Z/2)**  iso (Z/2)*?

Since 6 is surjective and H>°(r;ker §) = 0 because the action of 7 on ker
is induced from the trivial subgroup, 8™ is surjective.
Computations with the program magma result in the table

(3[(;(_@'77;;1)4 x (C2 x C3) ker Hom(W,TV) H'W;T) 0 HYW;T)"
. @Dt @27 @ i (2]
i @2t @t @2 e (@)
et 0 @p* @ o (Z2)

Since 0 is surjective and H>(m; ker #) = 0 because the action of 7 on ker
is induced from the trivial subgroup, 0™ is surjective. m

2. The limit of the functor H'(Wy;T)"V/Wo on A(PGL(n,H))%.
Let H'(Wo; T): A(PGL(n, H))S, — Ab be the functor that takes the toral
elementary abelian 2-group V C t(PGL(n,H)) to the abelian group
HI(WOCPGL(TL7H)(V);T), and H'(Wy; T)W/Wo the functor that takes V to
the invariants for the action of the component group moCpqr(n,m)(V) on
this first cohomology group.

4.8. PROPOSITION. The restriction map

H'(W(PGL(n, H)); T) — lim’(A(PGL(n, H))Z%; H' (Wo; T)"/"0)
s an isomorphism for all n > 3.

Proof.

PGL(4,H): Computer computations show that the intersection of the
images of the morphisms

HY(Wo; T)W/Wo(L(1,3)) — HY(Wo; T)V/Wo(I4£L(1, 3))
= HH(Wo; T)"V/"o (1)

is 1-dimensional and that its preimage in H L(Wo; TYW/Wo(I) equals the im-
age of the restriction map from H(W, T)(PGL(4, H)). Similarly, the images
of the monomorphisms

Hl(Wo; T)W/WO(L(L 3)) - H1<WO;T)W/WO(P<17 1,2, 0))
= HY (Wo; T)V/Wo(L(2,2))
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meet in a 1-dimensional subspace whose inverse images in the cohomology
groups to the right and to the left agree with the images of the restriction
maps from H'(W,T)(PGL(4, H)).

PGL(n,H), n > 4: Computer computations show that the images of the
morphisms

H (Wo; TYV/Wo(L(1,n — 1)) — HY(Wo; T)V/™Wo(I#L(1,n — 1))
= H(Wo; 1)V (1)

intersect trivially and that the arrow pointing left is an isomorphism. Simi-
larly, the images of the injective morphisms

HY(Wo: TYYWo(L(i,n — i) — H (Wo; T)V/Wo(P(i,1,n — i —1,0))
= H'(Wo; YV (L(i+1,n—i—1)), 1<i<][n/2],
intersect trivially. These observations imply that
lim” (A (PGL(n, H))Z}; H'(Wo; T)"/0) = 0
and also H'(W,T)(PGL(n,H)) =0asn > 4. =

3. The category A(PGL(n, H))[<’4}7$0. We shall need information about
all nontoral objects of A(PGL(n, H)) of rank < 3 and some objects of rank 4.
If V c PGL(n,H) is an elementary abelian 2-group with nontrivial inner
product then its preimage V* C GL(n,H) is P x R(V) or (Cyo P) x R(V),
where P is an extraspecial 2-group, Cy o P a generalized extraspecial 2-
group, and U1(V*) = (—FE) (2.8). We manufacture all oriented quaternion
representations of these product groups as direct sums of tensor products
of irreducible representations of the factors [24, 5.6] as described in [1, 3.7,
3.65].

Note that the degrees of the faithful irreducible representations over H
for the groups 2}:“2 and Cy4 o 2?2 are even, and that the quaternion group

21%2 has a faithful irreducible representation over H, namely the defining
representation.

4.9. The category A(PGL(2n + 1, H))[<’4]7é0. The Quillen category
A(PGL(2n +1,H)) contains up to isomorphism just one nontoral rank two
object, H_, whose inverse image in GL(2n + 1, H) is

Qs = 2142 = (diag(i, . . ., 1), diag(j, . .., 7).

As in 2.51, the centralizers [32, Proposition 4] of 2172 and H_ are
Caoreni1m(27%) = GL(2n + LR),
CraL@nt1) (H-) = H- x SL(2n + 1, R),

so that ZCpgr2n+1,m)(H-) = H-.
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There are n nontoral objects of rank three, H_#L(i,2n+1—i),1 < i < n.
The inverse image in GL(2n + 1,H) of H_#L(i,2n+ 1 — 1) is
i 2n+1—i
(diag(i,...,1),diag(j,...,7),diag(+1,...,+1,—1,...,—1))

and the center of the centralizer, Cpgr 241, (H-#L(i,2n + 1 — i) =
H_ x Csnt1,r)(L(i;n — 1)), is ZCpqrnt1m (H-#L(i,2n + 1 — i) =
H_#L(i,2n+ 1 — i) according to (3.5).

The objects H_#P(ig,1,12,13), where P(ig,i1,142,13) is as in (4.3), are
rank four nontoral objects.

We need to know that the nontoral object H_ satisfies condition (3)
of [24, Theorem 2.51]. Note that the conditions of [24, Lemma 2.63] are
satisfied because the identity component of Cpgr,(2n+1,1)(H-) is nontrivial
and because the Quillen automorphism group A(PGL(2n + 1,H))(H_) =
GL(2, F2) acts transitively on the set of preferred lifts H_ € N(PGL(2n + 1,
H)) of H. € PGL(2n+1, H). Under the inductive assumption that SL(2n+
1,R) has 7, (N )-determined automorphisms (or using [19]) we conclude from
[24, Lemma 2.63, (2.64)] and (part of) [25, 5.2] that condition (3) of [24,
Theorem 2.51] is satisfied for the nontoral rank two object H_. (Namely,
[24, Lemma 2.63(1)] says that v} does not depend on the choice of L < V.
The difference fV_ iz o fy1, between any two of the maps f, from [24,
Theorem 2.51(3)] is an automorphism of Cpgr,2n+1,1)(H-) that, by [24,
Lemma 2.63(2)], is the identity on the identity component and by the com-
mutative diagram [24, (2.64)]

H_

(4.10) /f 12%\

v, L
Cpar(2n+1,H) (H-) ' Crar(2nt1,1)(H-)

also the identity on moCpar(2n+1,1)(H-). Since the identity component
SL(2n+1,R) of the centralizer Cpgr,(25,+1,1)(H ) has no center, this shows
that fy_iQ o fy1, is the identity automorphism [25, 5.2].)

4.11. Rank two nontoral objects of A(PGL(2n,H)). The category

A(PGL(2n,H)) contains up to isomorphism two nontoral rank two objects,
H, and H_, whose inverse images in GL(2n, H) are

. 1
2!*2 = (diag(R, ..., R), diag(T, ..., T)), RZ(O 01>’T:((1) 0>’

21—+2 = <diag(z? A ?Z.)7 diag(]? A 7j)>7
where the representation of the dihedral group 2}:“2 is of real type and the

representation of the quaternion group 2172 6f quaternion type. This follows
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from 2.8 because 2?2 has one faithful irreducible H-representation of degree
two and 2172 has one faithful irreducible H-representation of degree one. The
centralizers are [32, Proposition 4]

Carnm (247%) = GL(n, H), CraLnm) (H1) = Hy x PGL(n, H),
Carenm) (217%) = GL(2n, R), Cparenm)(H-) = H- x PGL(2n, R),
as we see by an argument similar to that of 2.51. This implies [24, Lemma
5.18] that ZCpqr(onm)(H) = H for all nontoral rank two objects H of

A(PGL(2n,H)).
We need to know that these nontoral objects satisfy condition (3) of [24
Theorem 2.51]. To see this we use [24, Lemma 2.63].

H: Condition (1) of [24, Lemma 2.63] is clearly satisfied since the iden-
tity component of Cpgr,(2,,m)(H+) is nontrivial when n > 3. The group
H% = 21%? is contained in N(GL(2n,H)) = N(GL(1,H)) Xy, and its

centralizer there is

Cr(cLenm) (247 = Cy(aramys,, 257 = N(GL(1,H)) 1 £,
= N(GL(n,H)),
and therefore H_ is contained in N(GL(2n,H))/(—E) = N(PGL(2n,H)),

where its centralizer is

Cn(paLienm)(Hy) = Hy x N(PGL(n,H)) = N(Cgr2n,m)(H+))
as in 2.51. This means that Hy C N(PGL(2n,H)) is a preferred lift [27] of
H, C GL(2n,H). Precomposing the inclusion H; C N(PGL(2n,H)) with
the nontrivial element of A(PGL(2n,H))(H;) = O1(2,Fs) = Oy (4.18)
leads to another preferred lift. The third preferred lift is the quotient of

(2172 delBB) — (diag(R”, ..., RP), diag((RT)",..., (RT)")),

B:%C i) RB=T (RT)B:(é _OZ)

Note that these three preferred lifts all have the same image in the Weyl
group moN (GL(2n,H)) = mo(N(GL(1, H)))! X5, namely the subgroup gen-
erated by the permutation (1,2)(3,4)---(2n —1,2n) € Xy,.

Under the inductive assumption that PGL(n, H) has m,(/V)-determined
automorphisms (or using [19]) we conclude from [24, Lemma 2.63, (2.64)]
and (part of) [25, 5.2] that condition (3) of [24, Theorem 2.51] is satis-
fied for the nontoral rank two object Hy of A(PGL(2n,H)). (Namely, [24,
Lemma 2.63(1)] says that v/ does not depend on the choice of L < V. The
difference fz: 1%2 o fy.r, between any two of the maps f, ; from [24, Theo-
rem 2.51(3)] is an automorphism of Cpgr,(2, 1) (H+) that, by [24, Lemma
2.63(2)], is the identity on the identity component and by the commutative
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diagram [24, (2.64)]
H

(4.12) / \
f712ofu,L1

Cparnm) (Hy) —— Crar(enm)(Hy)

also the identity on moCpqr,on,m)(H+). Since the identity component of
Cpar(ona)(H+) has no center, this shows that f;]fQ o fyr, is the identity
automorphism [25, 5.2].)

H_: Condition (1) of [24, Lemma 2.63] is clearly satisfied since the iden-
tity component of Cpgr(2nm)(H-) is nontrivial when n > 3. The group
H* = 22 is contained in N(GL(2n,H)) = N(GL(1,H)) Xy, and its
centralizer there is

24, 5.10 o
212 210 Cnar,m)) (i, 5) 1 2n

= GL(1,R) ! %y, = N(GL(2n,R)),

and therefore H_ is contained in N(GL(2n,H))/(—E) = N(PGL(2n,H)),
where its centralizer is

CnpoL@nm)(H-) = H- x N(GL(2n,R))/(-E)
= H_ x N(PGL(2n,R)) = N(Cpr(2nm)(H-))

as in 2.51. This means that H_ C N(PGL(2n,H)) is a preferred lift [27] of
H_ c GL(2n,H). Precomposing the inclusion H_ C N(PGL(2n,H)) with
elements of A(PGL(2n,H))(H-) = O~ (2,F3) = GL(2,F3) (4.18) leads to
the other two preferred lifts of H_.

Under the inductive assumption that the identity component PSL(2n, R)
of PGL(2n, R) has m,(V)-determined automorphisms (or using [19]) we con-
clude from [24, Lemma 2.63] and diagram [24, (2.64)] and (part of) [25, 5.2]
that condition (3) of [24, Theorem 2.51] is satisfied for the nontoral rank
two object H_ of A(PGL(2n,H)). (The argument for this is the same as
in the case of H with the little extra complication that moCpgr,(2n, 1) (H-)
has an extra generator, so that we replace diagram (4.12) by

CN(GL(1,H) Do, (

(H_,diag(—1,1,...,1))

(4.13) / \
f712ofu,L1

Cpar(znm) (H+) - Crarionm) (Hy)

from [24, (2.64)] where the slanted arrows induce isomorphisms on the com-
ponent groups.)
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4.14. Rank three nontoral objects of A(PGL(2n,H)). The nontoral rank
three objects of the category A(PGL(2n,H)) are the quotients of H#
L(i,n —1i), 1 < i < [n/2], H-#L(i,2n — i), 1 < i < n, and Vj. These
subgroups of GL(2n, H) are defined to be

. n ' n . K3 n—
(diag(R, ..., R),diag(T,...,T),diag(E,...,E,—E,...,—E)),

2n 2n i 2n—1i

. /d\—\ . /.—/\—\ . s U
(diag(i,...,1),diag(j,...,7),diag(1,...,1,=1,...,—1)),
2n n n
— ——

(diag(i,...,7),diag(R,..., R),diag(T,...,T))
and their centralizers are

Cparenm)(H+#L(i,n — i) = Hy X Cparn,n) (L(i,n — 1)),

Cpariena)(H-#L(i,n —i)) = H- X Cpgr2nr)(L(i,2n — 1)),
(42) GL(n,C) .
H _— -F

+ X <—E> X (.7( >>7

so that (4.1, 2.55, 4.2) ZCpqr2n,m)(V) = V for all nontoral rank three ob-
jects V of A(PGL(2n,H)). The elements of H, #L(i,n—i), H_#L(i,2n—i),
and Vj have traces (computed in GL(4n, C)) in the sets +{0,4n — 8i,4n},
+{0,4n — 4i,4n}, and +{0,4n}.

4.15. Rank four nontoral objects of A(PGL(2n,H)). The elementary
abelian 2-group H_#P(1,i—1,2n —14,0) C GL(2n,H), 1 <i <n, is

Crarnm (Vo) = Hy X Cparnm) (1)

2n 2n i—1 2n—1
— — —_—N—
(diag(t,...,2),diag(j,...,j),diag(l,—1,...,—1,1,..., 1),
i—1 2n—i
. —— ———
diag(1,1,...,1,=1,...,=1)).

The elements of P have traces in {2n + 2 — 2i, —2n + 2i,2n + 1} and these
three integers are all distinct, so that the Quillen automorphism group (4.18)
has order 3 - 2°. This nontoral rank four object contains the two nontoral
rank three objects H_#L(1,2n — 1), H_#L(2,2n — 2) when i = 2 and the
three nontoral rank three objects H_#L(1,2n—1), H_#L(i—1,2n—i+1),
H_#1L(i,2n — i) when i > 2.

The elementary abelian 2-group Vo#L(i,n—i) C GL(2n, C) C GL(2n, H),
1 <1< [n/2], is the subgroup

2n n n

—N —
(diag(7, ... 1), diag(R, ..., R), diag(T, ..., 1),
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containing the three rank three objects Hy#L(i,n — 1), H_#L(2i,2n — 2i),
and V.

For these nontoral rank four objects E C GL(2n,H), the center of
the centralizer is finite (2.55) and as, of course, E' C ZCpqr,2n,m)(E) we
see that Homa (par(onm)) (St(E), E) is a subspace of the Fa-vector space

Hom A (pGr(2n,1)) (St(E), 11 BZCpqr2n,1)(E))-

4. Higher limits of the functor 7;(BZC) on A(PGL(n,H))l:1#0,
In this section we compute the first higher limits of the center functors
ﬂ-iBZCPGL(n,H)? 1= 1, 2 [24, (247)]

4.16. LEMMA. The first higher limits of the center functors are
liml TrlBZCPGL(n,H) =0= th FIBZCPGL(n,H)v
th WQBZCPGL(TL,H) =0= hm?’ WQBZCPGL(TL,H)'

The case ¢ = 2 is easy. Since maBZCpqr,(n, 1) has value 0 on all objects

of A(PGL(n,H))l:#0 of rank < 4, it is immediate from Oliver’s cochain
complex [31] that lim? and lim® of this functor are trivial. We shall therefore
now concentrate on the case ¢ = 1.

For any elementary abelian 2-group E in PGL(n, H) we shall write

(4.17) [E] = Homy (parn,m)(E)) (SHE), E)

for the Fa-vector space of FoA(PGL(n, H))(E)-equivariant maps from the
Steinberg representation St(E) over Fa of GL(E) to E. Oliver’s cochain
complex has the form (2.33).

4.18. PROPOSITION. Regardless of the parity of n, the Quillen automor-
phism groups are
A(PGL(?’L’ H))<H—) = O_(27 F2)7
o~ (2, Fg) * >
0 A(GL(n,R))(V) )’
and dimp,[H_] = 1 = dimp,[H_#L(i,2n + 1 — i)] as described in 2.35 and
2.42.

Proof. A(GL(n,H))(2:%) = Out(217?) since all automorphisms of 2! 2
preserve the trace. This group maps (isomorphically) to the subgroup
O~ (2,F3) C GL(H-) of automorphisms that preserve the quadratic func-
tion ¢ on H_. The Quillen automorphism group of H_#V consists of the au-

tomorphisms that lift to trace preserving automorphisms of 21724V . The di-
mension of the vector spaces of equivariant maps was computed by magma.

In the odd case of GL(2n + 1, H) the cochain complex (2.33) takes the
form

A(PGL(n, H))(H_#V) = (
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419) 0= [H S [ H-#LG2m+1-i) S ] B S
1<i<n =
and we need to show that d' is injective and that dim(imd?) > n — 1.
If E = H_#P(i), where P(7) is as in (4.3), then

07 (2,F9) *

0 A(SL(2n +1, R))(P(z)))
where A(SL(2n + 1,R))(P(7)) is the group of trace preserving automor-
phisms of P(i). It turns out that

2, A(SL(2n+1,R))(P(i)) ={E},
: C 1, A(SL(2n+1,R))(P(i)) = Cq,
i, [H-##Plio i )] = 3 AESLE% + l,R;;EPEi;; — GL(2,F2).

A(PGL(2n + 1, H))(H_#P(i)) = (

When n =1 or n = 2, the cochain complex (4.19) has the form

0 [H.] 9 [H_#0(1,2)] L [H_#P(1,1,1,0)] — - --

or respectively
1
0 — [H_] & [H_#L(1,4)] x [H_#L(2,3)]
2
& [H_#P(1,1,3,0)] x [H_#P(1,2,2,0)] — - -~ ,
where all vector spaces are one-dimensional. In the case of n = 1, d' is an
isomorphism, and in the case n = 2, d* has matrix (1 1) and d? has matrix

(11). In case n > 3, it is enough to show that d' is injective and d? has
rank n — 1 in the cochain complex

0— [H-] L T (H-#LG.2n+1-i)] S [ [H-#P(1,i—1,2n—i+1,0)]

1<i<n 2<i<n

that agrees with (4.19) in degrees one, a product of one-dimensional vector
spaces, and two, a product of two-dimensional vector spaces. The elemen-
tary abelian 2-group H_#P(1,i — 1,2n — i+ 1,0) C GL(2n + 1,H) con-
tains the nontoral subspaces H_#L(1,2n), H_#L(i — 1,2n — i + 2), and
H_#L(i,2n—i+1). The map f_, defined exactly as in (2.37), is the nonzero
element of [H_], and the maps df_, defined exactly as in (2.43), are nonzero
in H_#L(i,2n + 1 — 7). It follows that d' is injective. A magma compu-
tation reveals that {ddf_r—12n—it2),ddf_L(io2n—i+1)}, Where these
FoA(GL(2n+ 1,H))(H_-#P(1,i — 1,2n — i + 1,0))-maps are defined as in
(2.45), is a basis for the two-dimensional space H_#P(1,i—1,2n—i+1,0)
and that ddf—L(1,2n) = ddf—L(i—1,2n—i+2) —+ ddf—L(i,?TL—i—i—l)’ ThlS ShOWS that
d? has rank n — 1.
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In the even case of GL(2n, H) the cochain complex (2.33) takes the form

0— [H )x[H % [ IH-#LG2n-0]x [ [H#L6n—0)x Vi)

1<i<n 1<i<[n/2]
d2
= 1[I =]
|E|=24

4.20. PROPOSITION. The automorphism groups of the low-degree non-
toral objects of the Quillen category A(PGL(2n,H)) are

A(PGL(2n,H))(Hy) = O (2,Fy),

+ *
AL ) 47) = (770 AL H)W))
A(PGL(2n,H))(Vh) = Sp(2,F2),
A(PGL(2n, H))(Vo#L(i,n — i) = (Sp(20’ F2) i)

Furthermore, dimg,[Hy] = 2, dimp,[H+#L(i,n — i)] = 3, dimg,[Vb] = 4,
and dimp, [Vo#L(i,n — i)] =5 as described in 2.35, 2.40, 2.38, and (2.45).

Proof. The Quillen automorphism groups of the dihedral group 2?2 and
the generalized extraspecial group 4 o 2_3;2 are the full outer automorphism
groups because the traces are nonzero only on the derived groups which are
characteristic. The images in GL(H}.), respectively, GL(V}), isomorphic to
O%(2,F3) = (Cy and to Sp(2,F2) = GL(2,F3), are the Quillen automor-
phism groups for H; and Vj. For the middle formula, recall that the trace
of H1#V is the product of the traces. m

As in the real case (Chap. 2) we see that d* embeds [H_] x [H4] into [Vp].
The only problem is to show that the rank of d? is > n +3[n/2] +4 — 3 =
n + 3[n/2] + 1. We have to show that

dim(im d?) > n + 3[n/2] + 1.
We do this by mapping the n + [n/2] + 1 nontoral rank three objects (4.14)

o [H_#L(i,2n —1)], 1 <i < n, with basis {df_} as in (2.43),
o [Hy#L(i,n—1)],1<i<[n/2], with basis {df+,dfo, fo} as in (2.41),
o Vo] with basis {df+, dfo,df—, fo} as in (2.39)

into the (n — 2) + [n/2] nontoral rank four objects (4.15)
o H #P(1,i—1,2n+1—1),2 < i< n, with basis
{ddf _ri-120+1-0), ddf LG 2n—i)}

where these maps are defined as the similar maps in (2.45),
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o Vo#L(i,n—1),1<1i<[n/2], with basis
{ddf 1 1.(i.n—iy> Adfor(i.n—i)s Worn—iy» A —1.(2i,2n—24)> Afove }
as in (2.45).

Computations with magma show that the resulting (n + 3[n/2] + 4) x
(2n + 5[n/2]) matrix has rank n + 3[n/2] + 1. The matrix has the form
(shown here for n = 5)

[H_#P(1,2,7)] [H-#P(1,3,6)] [H_#P(1,4,5)] Vo#L(1,4) Vo#L(2,3)
H_#L(1,9) 1 1 11 1 1)
H_#L(2,8) (1 0) (00010)
H_#L(3,7) 0 1 (1 0)
H_#L(4,6) (0 1) (1 0) (00010)
H_#L(5,5) 0 1)
H,#L(1,4) A
H #L(2,3) A
Vo B B
where
1 0 0 00
1 0 0 00 0100 0
A=1]101 0 0 0], B=
00 010
001 00
00 0 01

5. PROOFS OF THE MAIN THEOREMS

This chapter contains the proofs of the main results stated in the intro-
duction of this Part II and also of three theorems from Part I.

1. Proof of Theorem 1.1. The proof of Theorem 1.1 uses induction
over n simultaneously applied to the three infinite families PSL(2n,R),
SL(2n + 1,R), and PGL(n, H).

Note first that the proof of [24, Theorem 2.51] goes through with only
insignificant changes if we replace hypotheses (1) and (2) by

(1 & 2) The centralizer of any toral (V,v) € Ob(A(X)?;) is uniquely N-
determined

and leave the other conditions unchanged.

Proof of Theorem 1.1. The statement of the theorem means [24, Defini-
tion 2.10] that the 2-compact groups
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e PSL(2n,R), SL(2n + 1,R), and PGL(n,H) have m,(V)-determined
automorphisms,

e PSL(2n,R), SL(2n + 1,R), and PGL(n, H) are N-determined.

We may inductively assume the connected 2-compact groups PSL(2i,R),
1<i<n-1,8L(2i+1,R),1 <i<n-—1,and PGL(7,H), 1 <i < mn, to be
uniquely N-determined. From [24, Theorem 1.4] we know that PGL(7, C) is
uniquely N-determined for all ¢ > 1. The plan is now to use [24, 2.48, 2.51]
inductively.

Consider first the connected, centerless 2-compact group PSL(2n,R).

PSL(2n,R) has N-determined automorphisms: According to [24, 2.48]
it suffices to show that:

(1) Cpsi(2n,r)(L) has N-determined automorphisms for any rank one
elementary abelian 2-group L C PSL(2n,R).

(2) The limit lim'(A(PSL(2n, R)); m BZCpgr,(2,r)) is 0 and the limit
lim*(A(PSL(2n, R)); 72 BZCpsr(2n.r)) i 0.

Item (2) is proved in 2.32. The centralizers that occur in item (1) are listed
in (2.14) and (2.15). That the centralizers from (2.14) have N-determined
automorphisms follows, under the induction hypothesis that the 2-compact
groups PSL(2;,R), 1 < ¢ < n — 1, have N-determined automorphisms,
from general hereditary properties of N-determined 2-compact groups [24,
Chapter 2]. Note here that Z(Cy) = T(Co)"(©) for C = Cpsranr)(L)
by [22, 1.6]. Similarly, the centralizers from (2.15) have N-determined au-
tomorphisms because the 2-compact groups PGL(n,C), 1 < n < oo, have
N-determined automorphisms [24, Theorem 1.4].

PSL(2n,R) is N-determined: We verify the four conditions of [24, The-
orem 2.51]. Let V' C PSL(2n,R) be a toral elementary abelian 2-group of
rank at most 2. The centralizer C' = Cpgr,(2n,r) (V) is one of the 2-compact

groups listed in (2.14), (2.16), (2.15), or (2.17), so it is LHS (2.19). The
identity component Cy of C' satisfies the equation Z(Cp) = T(Cp)W(©0) [22,
1.6] and the adjoint form is

PSL(2ip, R) x PSL(2i1,R), ip+ i1 =n,

1} PSL(2i;, R), G0+ i1 +io + i3 =n,
PGL(n, C),

PGL(io, C) X PGL(il, C), 10 + 11 = n,

in these four cases. The induction hypothesis and the general results of [24,

Chapter 2, §2] imply that Cp is uniquely N-determined and that C is totally
N-determined. Since also the homomorphism

H'(W;T) — lim' (A(PSL(2n, R)Z5, 1 (Wos )V/™0)

PCy =
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is surjective (2.20), we deduce from [24, Lemma 2.54] that the first two
conditions of [24, Theorem 2.51] are satisfied. The third condition has been
verified in Chapter 2, §4, and the fourth, and final, condition in 2.32.

PSL(2n,R) has 7. (V)-determined automorphisms: This means that the
only automorphism of PSL(2n, R) that restricts to the identity on the max-
imal torus is the identity, i.e. that

HY(W;T)(PSL(2n,R)) N AM(Aut(PSL(2n,R))) = {0}

where AM is the Adams—Mahmud homomorphism [24, (2.4)]. For n > 4,
HY(W;T)(PSL(2n,R)) = 0, and there is nothing to prove. Consider the
case n = 4. Let f be an automorphism of PSL(8,R) such that AM(f) €
H'(W;T). Let L C PSL(8,R) be any rank one elementary abelian 2-group.
Since f is the identity on the maximal torus, f(L) is conjugate to L, so that
[ restricts to an automorphism of Cpgrsr)(L) and to an automorphism
of the identity component of Cpgy,g r)(L). Since Cpgr,s,r)(L)o has m.(N)-
determined automorphisms by [24, Lemmas 2.38-2.39], it follows that f €
HY(W;T)(PSL(2n,R)) restricts to 0 in H'(W; T)(CPSL(&R)(L)O). However,
the restriction map is injective (see the proof of 2.20) so that f = 0. This
shows that PSL(8, R) has 7, (/N )-determined automorphisms.

Consider next the 2-compact group SL(2m + 1, R) where m =n — 1.

SL(2m + 1,R) has N-determined automorphisms: We verify the condi-
tions of [24, Lemma 2.48]. Let L C SL(2m + 1, R) be an elementary abelian
2-group of rank 1. The centralizer C' = Cgp,(25m41,r)(L) is given in (3.3).
According to [24, Chapter 2, §2], C' has N-determined automorphisms. (Use
the natural splitting of (3.10) in connection with [24, Lemma 2.35].) See 3.8
for the vanishing of the higher limits.

SL(2m + 1,R) is N-determined: Conditions (1) and (2) of [24, Theo-
rem 2.51| are verified in Chapter 3, §2, condition (3) in Chapter 3, §3, and
condition (4) in 3.8.

SL(2m + 1,R) has m,(IV)-determined automorphisms: To prove this, it
suffices to find a rank one elementary abelian 2-group L C SL(2m + 1,R)
such that Cgp(2m+1,r)(L)o has m.(N)-determined automorphisms and such
that Cspom41,r)(L)o — SL(2m + 1,R) induces a monomorphism on
HY(W;T). Such a line is provided by L = L(2m — 1,2) with centralizer
identity component Cgr,(2,m41,Rr)(L)o = SL(2m — 1,R) x SL(2,R); see the
proof of 3.14.

Consider finally the 2-compact group PGL(n, H) for n > 3.

PGL(n,H) has N-determined automorphisms: We verify the conditions
of [24, Lemma 2.48]. Let L C PGL(n,H) be an elementary abelian 2-group
of rank one. The centralizer C' = Cpgr,(nm)(L) is given in (4.1) and (4.2).
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According to the general results of [24, Chapter 2, §2], C' has N-determined
automorphisms, and according to 4.16, the higher limits vanish.

PGL(n,H) is N-determined: Note that PGL(3,H) satisfies condition
(1 & 2) so that we may apply the variant of [24, Theorem 2.51] mentioned
above. When n > 3, conditions (1) and (2) of that theorem follow if we can
verify that the conditions of [24, Lemma 2.54] are satisfied. That the cen-
tralizer Cpgrna)(V) (4.1, 4.2, 4.3, 4.4), where V is an elementary abelian
2-group of rank at most two, satisfies the conditions of [24, Lemma 2.54]
is a consequence of the general results of [24, Chapter 2, §2] and 4.7, 4.8.
See 4.9 and 4.11 for condition (3) and 4.16 for condition (4) of [24, Theo-
rem 2.51].

PGL(n,H) has 7. (N)-determined automorphisms: We only need to con-

sider the cases n = 3 and n = 4 as H'(W;T)(PGL(n,H)) = 0 for n > 4
[16, Main Theorem]. In those two cases, it suffices, as above, to find a rank
one elementary abelian 2-group L C PGL(n, H) such that Cpgrmm)(L)o
has 7.(IV)-determined automorphisms and such that Cpgrnm))(L)o —

PGL(n, H) induces a monomorphism on H'(W;T). Such a line is provided
by L= I, for which CPGL(n,H) (I)O = GL(TL, C)/<—E> (42)

Since PSL(2n,R), n > 4, is uniquely N-determined and has a split
maximal torus normalizer, we see that its automorphism group is isomor-
phic to W\Ngr)(W) by [24, Lemma 2.16]. When n = 4, the group,
Out, (W), on the right in the exact sequence [24, (2.8)] is the permutation
group Ys. There are Lie group outer automorphisms inducing X'5. When
n >4,

Aut(PSL(2n,R))
= W\ Nap) (W) = W\ (Z5, W (PGL(2n, R))) = W\(Z, W, 1)

= (Wn(Z3,c1)\(Z3, 1)

_ { (—e)\(Z5, 1) = Z3, n odd,

C L(=D\(ZS, 1) = ZX\ZS x (1), n even.
Similarly,

Aut(SL(2n + 1, R)) = W\Nay ) (W) = W\ (25, W)

= (WNZ3N\2; =Z°\Z;
for n > 2 by [24, Lemma 2.16].
The automorphism group Aut(PGL(n,H)), n > 3, is contained in the

quotient group W\Ngr,) (W) = Z*\Z5 [24, Lemma 2.16]. Since H*(W; T
is an elementary abelian 2-group [21], it is isomorphic to the second coho-

mology group H?(W;t(PGL(n,H))) with coefficient module t(PGL(n, H)),
the maximal elementary abelian 2-group in the maximal torus. The unstable
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Adams operations with index in ZJ act trivially here since they act as coef-
ficient group automorphisms. Thus all elements of W\ Ngr,r)(W) preserve
the extension class e € H(W;T) and we conclude that Aut(PGL(n, H)) =
Z\ZJ.

Proof of Corollary 1.6. Note first that GL(n,R) is LHS for all n > 1.
If n is odd, GL(n,R) = SL(n,R) x (—E) is LHS because its Weyl group
is the direct product of the Weyl group of the identity component with the
component group. If n is even, see [24, Example 2.29(5)]. According to [24,
2.35, 2.40], GL(n, R) is totally N-determined.

If n is odd, the identity component has trivial center, so that the auto-
morphism group is Aut(GL(n,R)) = Aut(SL(n, R)) = Z*\ZJ by the short
exact sequence [25, 5.2].

Suppose next that n = 2m is even. When m = 1, Aut(GL(2,R)) =
Aut(Z/2,Z/2%,0) = Aut(Z/2°) = Z; according to [24, (2.6)]. When
m > 1, H'(m; Z(SL(2m,R))) = H'(r; (—E)) is the order two subgroup (4)
of Aut(GL(2m,R)) generated by the group isomorphism §(A) = (det A)A,
A € GL(2m,R), and HY(W;T) = Hom(Wa,, (—F)) = Z/2 x Z/2 (for
m > 2) [16, 21] is the middle group of an exact sequence

0— H'(m (—E)) — H'(W;T) — H'(Wp; T) — 0
because GL(2m, R) is LHS. (For m = 2, the cohomology group H'(Wy; T) is
trivial and H'(r; Z(SL(2m, R))) = Z/2, though.) In the exact sequence [24,
(2.5)] for the automorphism group of N = N(GL(2m,R)) = N(SL(2m +
1,R)), the group on the right hand side is Aut(W,T,0) = (W, Z5) as for
SL(2m+1,R). Thus Aut(N) is generated by H'(W;T), W, and ZJ, so that
Aut(N, Ng) = Aut(N) as Wy is normal in W. Note that these three sub-
groups of Aut(NV, Ny) commute because of the special form of the elements
of HY(W;T) = Hom(W,y,, (—E)). Hence
Aut(N, Ny)
Wo
(H'(W;T),W,Z5) (H'(W;T),Wo,c1,25)
Wo B Wo
_ (H'WT), 01, 25)
Wo N (HY(W;T), c1, Z5)

(H'W;T),c1,25)

= H'(W;T) x Z, m odd,
— (—c1)
) (HY(W; T Z; y
< (W<_i>01, I HYW;T) x {e1) x Z“\Z}, m even.

According to [24, Lemma 2.17], the automorphism group Aut(GL(2m,R))
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is a subgroup of the above group and
0) x Z5 dd,
Aut(GL(2m, R)) = {< ) 2y, me
(0) x (c1) X Z*\Z5, m even,
form>1.n

2. The 2-compact group Gas. The group BGs is a rank two 2-compact
group containing a rank three elementary abelian 2-group F3 C Gg such that
A(Go)(Es) = GL(3,F3) [14, 6.1] [11, 5.3] and

H*(BGQ; FQ) = H*(BEg; FQ)GL(?”FQ) = FQ[C4, Cg, 67]

realizes the mod 2 rank 3 Dickson algebra [23]. The Quillen category A(Ga)
contains exactly one isomorphism class of objects E1, Fo, F3 of ranks 1,2, 3,
as Lannes theory [20] implies that the inclusion functor

A(GL(3,F2), E3) — A(G2)
is an equivalence of categories. The centralizers of £y C Fo C E3 are
SO(4) DT x (—E) D Es.

In all three cases, ZCq,(E;) = E; so that m1aBZCqg, = 0 and mBZCgq, =
H°(GL(3,F2)(—); E3). Thus m; BZCg, is an exact functor [24, Lemma 2.69]
with lim® 1 BZCq, = H°(GL(3,F2); E3) = 0.

The Weyl group W (Gs) C GL(2,Z) C GL(2,Z5), of order 12, is gener-
ated by the two matrices [5, VI.4.13]

(o2 G )

and the maximal torus normalizer N(G3) is the semidirect product of the
maximal torus and the Weyl group [8].

It is known that HO(W;T)(Gs) = 0, that H'(W;T)(G2) = 0, and that
H?(W;T)(Gg) = 0 [16, 15].

Proof of Theorem 1.2. The rank one centralizer
SL(4,R) = SL(2,C) o SL(2,C)

is uniquely N-determined by [24, Theorem 1.4] and [24, Chapter 2.5§2]. Con-
dition (2) of [24, Theorem 2.51] is satisfied because H'(W(X);T(X)) =0
for X = Gg,SL(4,R) [16, Main Theorem]. Conditions (1) and (3) are satis-
fied because the only rank two object in Gg is toral and its centralizer is a
2-compact toral group. We noted above that the higher limits vanish. Now
[24, 2.48, 2.51] show that Go is uniquely N-determined.

We have Aut(Ga) = W(G2)\Ngr,(2,2,) (W (G2)) [24, Lemma 2.16] as the
extension class is e(Gz) = 0 [8]. The exact sequence [24, (2.8)] can be used to
calculate the automorphism group. Using the description of the root system
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from [5, VI.4.13] with short root a; = €1 —e9 and long root ag = 2e —e3 —e3
generating the integral lattice in Z3 one finds that

Nar(2,2,)(W(G2)) = (Z3, A, W(Ga)), A= \/__3((1) g)’

and therefore Aut(Gsg) = Z5 /Z* x Cy where the cyclic group of order two
is generated by the exotic automorphism A interchanging the two roots. m

3. The 2-compact group DI(4). BDI(4) is a rank three 2-compact
group containing a rank four elementary abelian 2-group E4 C DI(4) such
that A(DI(4))(Es) = GL(4,F3) and [9]

H*(BDI(4); Fy) & H*(BEy; Fy) S 4 F2) = Fyeg ¢19, 14, ¢15)

realizes the mod 2 rank 4 Dickson algebra. Lannes theory [20] implies that
the Quillen category A (DI(4)) is equivalent to A(GL(4,F2), E4) with ex-
actly one elementary abelian 2-group (isomorphism class), Ei,..., Ey, of
each rank 1,...,4. The centralizers of the toral subgroups FEp, Fs, 3 and
the nontoral subgroup F, are, respectively,

Spin(7) D SU(2)3/{((=E,—E,—FE)) DT x (—E) D Ey4
and ZCpy4)(E;) = Ej; in all four cases, so that the functor
7;BZCpi(a): A(GL(4,F2), By) — Ab

is the O-functor for j = 2 and equivalent to the functor H°(GL(4, F2)(—); E4)
for j = 1. This is an exact functor [24, Lemma 2.69] and lim° mBZCpyy) =
H°(GL(4,F2); E4) = 0.

As may be seen from [34], the Weyl group W(DI(4)) C GL(3,Z2) of
order 2|GL(3, F2)| = 336 is generated by the matrices

1 0 0 1 0 0 -1 1 1 —v 0 v¥+4w
2 -1 -1/, o o 11, 0 1 0]}, -1 1 v
0 0 1 2 -1 -1 0 0 1 —20 0 v

where v € Zs is the unique 2-adic integer with 202 —v+1 = 0. The first three
matrices generate W (Spin(7)) [7, 3.9, 3.11]. Since W(DI(4)) is isomorphic
to GL(3,F3) x (—E),

H(W; T)(DI(4)) = ) H" (GL(3, Fa); H*((~E); T))

= P H"¥(GL(3,F2); (2/2)°)

2i<n
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and, in particular,
HO(W;T)(DI(4)) =0, H'(W:T)(DI(4)) = Z/2,
H*(W;T)(DI(4)) = Z/2.

We may characterize the maximal torus normalizer short exact sequence
for DI(4) as the unique nonsplit extension of 7' by W (DI(4)); it is nonsplit
because the restriction to W (Spin(7)) € W(DI(4)) is nonsplit [8].

We cannot use [24, Theorem 2.51] as it stands because condition (2) fails:
the restriction map

Z/2 = H\(W;T)(DI(4)) — H'(W;T)(Spin(7)) = (2/2)”

is not surjective. Instead, we use the version of [24, Theorem 2.51] where
the first two conditions have been replaced by (1 & 2).

Proof of Theorem 1.5. Condition (1 & 2) is satisfied for DI(4) since
the connected 2-compact groups Spin(7) and SU(2)?/A are uniquely N-
determined by [24, Theorem 1.4], Theorem 1.1, and the general results of
[24, Chapter 2, §2]. Since also the relevant higher limits vanish [9, 2.4],
DI(4) is uniquely N-determined by [24, 2.48, 2.51]. Since Out, (W (DI(4)))
is trivial and Z(W(DI(4))) = (—FE) has order two, Aut(DI(4)) can be read
off from [24, (2.8), Lemma 2.16]. =

4. The 2-compact group F4. BFy is a rank four 2-compact group
containing a rank five elementary abelian 2-group E5 C F4 such that [35,
2.1]

H*(BF4;Fp) 2 H*(BE5; Fo)AF0ES) = Fylyy, ys, yr, y16, youl,
where the Quillen automorphism group is the parabolic subgroup

GL(2,F2) *

A(F4)(E5) = < 0 GL(3,F5)

> C GL(5,F9)

of order 26|GL(2, F2)| |GL(3, F2)|. The inclusion functor
A(A(F4)(FE5),E5) — A(Fy)

is a category equivalence by Lannes theory [20]. Inspection of the list of cen-
tralizers of elementary abelian 2-groups in Fy4 [35, 3.2] shows that ZCF, (V)
= V for each nontrivial V' C Es so that the functor meBZCF, is 0 and
mBZCp, = H°(A(F4)(E5)(—); E5). Thus m BZCp, is an exact functor
[24, Lemma 2.69] and lim® my BZCr, = H°(A(F4)(E5); E5) = 0.

It is known that HO(W;T)(F4) = 0, that H (W;T)(F4) = 0, and that
H?*(W;T)(F4) = Z/2 [16, 15]. The poset of the toral part of the Quillen
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category is

— [

A*B3
i /1/7

where the labels on the arrows indicate multiplicities.

Proof of Theorem 1.3. Table 1, based on [18, 6.11], [14, 2.14, 7.3, 7.4],
[35, 3.2] and explicit computation, collects information about the toral ob-
jects of rank < 2 of the Quillen category of F4. (The third column shows
the cohomological dimension of the centralizer and the fourth column the
number of reflections in Wy, the Weyl group of the identity component of
the centralizer.)

Table 1. Toral subgroups of F4 of rank < 2

Class Centralizer dim refl.  |Wo| H'(Wo;T)
2A SU(2) xc, Sp(3) 24 10 2°3! (Z/2)?
2B Spin(9) 36 16 273 Z/2
4A%  (U(1) xc, UB) xC2 10 3 213t (Z/2)?

4A’B'  Spin(4) x¢, Spin(5) 16 6 2° (Z/2)°

4B3 Spin(8) 28 12 203! (Z/2)?

Condition (1 & 2) is satisfied for Fy because centralizers of rank one
objects and centralizers of rank two objects have uniquely N-determined
centralizers. This follows from [24, Chapter 2, §2] as their simple factors are
uniquely N-determined by [24, Theorem 1.4] and Theorem 1.1; note in par-
ticular that the unique nonconnected centralizer is uniquely N-determined
according to [24, Lemma 2.37]. We already noted that the relevant higher
limits vanish, and since there are no nontoral elementary abelian 2-groups
of rank two [35, 3.2], Fy is uniquely N-determined by [24, 2.48, 2.51].

The automorphism group of the 2-compact group Fy is the middle term
of the exact sequence [24, (2.8), Lemma 2.16]. (All automorphisms of Fy4
automatically preserve the extension class e(Fy), which is the nontrivial
element of H*(W;T) = Z/2 [8, 21].) The group Outy (W (F4)) of trace
preserving outer automorphisms is cyclic of order two but the nontrivial
outer automorphism of W (Fy) cannot be realized as conjugation with an
element of Ngp,z)(W). The center of W(Fy) is C2 = (—E). We conclude

that Aut(F4) = Z*\ZJ consists entirely of unstable Adams operations. =
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5. The E-family. We consider the centerfree simple 2-compact groups
E6, PE7, and Eg.

Proof of Theorem 1.4. Using the information from [14, 18] one finds that
the Quillen category for Eg contains six isomorphism classes of toral objects
of rank at most two. Their class distribution and centralizers are listed

in Table 2, in which S(U(m) x U(n)) = U(1) Xc .0y (SU(mM) x SU(n))

Table 2. Elementary abelian toral subgroups of E¢ of rank < 2

Class Centralizer dim refl. |Wo| H'(Wy;T)
2A SU(2) x¢, SU(6) 38 16 2°325! Z/2
2B U(1) x¢, Spin(10) 46 20 273'5! Z/2
4A%  (U(1) xc, S(UB) xUB))xCa 18 6 2232 (Z/2)*

4A°B SU(2) xc, S(U(2) x U(4)) 32 8  2°3! (Z/2)*

4AB? U(1) xc, S(U(1) x U(5)) 26 10 233'5'  (Z/2)?

4B®  U(1) xc, (U(1) x((—1.)) Spin(8)) 30 12 263! (Z/2)?

stands for (U(m) x U(n)) N SU(m + n). Note that Eg satisfies condition
(1 & 2), because the only nonconnected centralizer in the table happens
to be uniquely N-determined by [24, Lemma 2.37], and that all rank two
elementary abelian 2-groups are [4] toral in the simply connected compact
Lie group Eg. As the higher limits vanish (5.1 below), the 2-compact group
Eg is uniquely N-determined by [24, 2.48, 2.51].

According to [14, 9.4] and [18, 6.11, 6.12], the Lie group PE7 contains
three conjugacy classes of elements of order two with centralizers

SU(2) x Spin(12)

Cr:(2B) = SU(2) 0 88pin(12) = 7 p =5 =55,

CPE7(2H) = (U(l) X Eﬁ) x Oy,
Com.(2A) = SU(8) /(i) x Co.

(The classes 2B, 2H, 2A correspond to 2B, 4H, 4A from [14, Table IV];
z € Spin(2n) is the nontrivial element in the kernel of Spin(2n) — SO(2n)
and = € Spin(2n) is an element in the fiber over —E € SO(2n).) We verify
the first two conditions of [24, Theorem 2.51] by using [24, Lemma 2.54].
For all centralizers C' of Table 3, Z(Cy) = TWo [24, 2.32] as the identity
component Cy does not contain SO(2n + 1) as a direct factor, and direct
computation shows that they are all LHS [24, 2.26]. At this stage we are
assuming that Cp is uniquely N-determined. Since H*(W;T)(PE;) = 0 [16,
Main Theorem] it remains to show that the limit from [24, Lemma 2.54] is
trivial. This is a machine computation in the toral subcategory of PE7: there
is a unique rank two toral object in A(PE7) with class distribution BHA.
It turns out that H'(Wy;T) = Z/2, because the three rank one objects
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embed into H'(Wy; T) = (Z/2)? for this single rank two object as pairwise
complementary subspaces, and therefore the limit is indeed trivial.

Table 3. Elementary abelian toral subgroups of PE7 of rank < 2

Class Centralizer dim refl.  |Wo|  H'(Wp)
2B SU(2) o SSpin(12) 69 31 2%3%5'  Z/2
2H (U(l) x Eg) x Ca 79 36 273*5! Z/2
2A SU(8)/(iE) x Cy 63 28 273%5'7Y Z/2

U(l) x SU(2) x SU(6) - 3

4BHA =) B (i BB Co 39 16 2°3%5'  (Z/2)
3 U(1) x SU(4) x SU(4) 692 4
4BA (G BB (LiBiE) (Co x C3) 31 12 253 (Z/2)
3 U(1) x U(1) x Spin(10) Talgl 2
4BH 012 (T Lo Co 47 20 273's5Y  (Z/2)
3 U()XU()XSU() 40251 2
4B LB (1 -LE) Co 37 15 2%3?5Y  (Z/2)
4B3 SU(2) x SU(2) x SU(2) X Spin(8) 37 15 9931 (Z/2)°

<(E7E7 —E,l‘), (—E,—E7E,l‘2’), (Ev_Ev —E,2)>

Still according to [14], there are three nontoral rank two elementary
abelian 2-groups in PE7. One is 2A-pure, has centralizer (Z/2)? x PSO(8)
and automorphism group GL(2, F3), one has class distribution 22A2H, cen-
tralizer (Z/2)? x PSp(4) and automorphism group Cs, and the third one is
2H-pure, has centralizer (Z/2)? x F4 and automorphism group GL(2, F3).
We use [24, Lemma 2.63] to verify the third condition of [24, Theorem 2.51].
It turns out that W (PE7) contains two elements, v; and vy, of order two with
+1-eigenspace of dimension four. The image of Cyy(pg,)(v1) in GL(71(T%)
® Q) = GL(4, Q) has order 2° - 3! while in the case of vo we get an image
of order 27 - 32, We conclude that if Vo C N(PE7) is the preferred lift of
the nonpure nontoral rank two object, then the image in W(PEy) is v [27,
1.3, 4.2]. This observation can be used in connection with [24, Lemma 2.63]
to verify the third condition of [24, Theorem 2.51]. Since the higher limits
vanish (5.2), the 2-compact group PE7 is uniquely N-determined by [24,
2.48, 2.51].

Table 4, based on [14, 18] and explicit computations, collects information
about centralizers of elementary abelian 2-groups in Eg of rank < 2. We ver-
ify the first two conditions of [24, Theorem 2.51] by using [24, Lemma 2.54].
For all centralizers C' of Table 4, Z(Co) = T"0 [24, 2.32] as the identity
component Cy does not contain SO(2n + 1) as a direct factor, and direct
computation shows that they are all LHS. At this stage we are assuming
that Cp is uniquely N-determined. Since H'(W;T)(Eg) = 0 [16, Main The-
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Table 4. Elementary abelian toral subgroups of Eg of rank < 2

Class Centralizer dim refl |[Wol H'(Wo; T)
2A SU(2) o Er 136 64 23457t Z/2
2B SSpin(16) 120 56 213257t Z/2

U(1) x SU)

AAIB2 4 28 273257 z/2)°
Gl -py 2 OB EEET (2
Spin(4) x Spin(12)

4A2B! 72 32 2135 z/2)"
(21, 22), (x1,22)) e
U(1) x U(1) x Eg 73451 ?

AAD )X U)X B 80 36 2'3%5 Z/2
(—L-Ley 7 o
4B3 Spin(8) x Spin(8) x Cy 56 24 21237 (Z/2)°

((21, 22), (w1, 22))

orem] it remains to show that the limit from [24, Lemma 2.54] is trivial.
This is a machine computation in the toral subcategory of Eg: there is a
unique rank two toral object in A(Eg) with class distribution A'B2. Tt
turns out that H'(Wo;T) = Z/2, because the two rank one objects em-
bed into H'(Wy;T) = (Z/2)? for this single rank two object as comple-
mentary subspaces, and therefore the limit is indeed trivial. There are no
nontoral rank two elementary abelian 2-groups in the simply connected com-
pact Lie group Eg [4]. Since the higher limits vanish (5.3), the 2-compact
group Eg is uniquely N-determined by [24, 2.48, 2.51]. In all three cases,
HY(W;T) = 0 [16, Main Theorem], H*(W;T) = Z/2 (where the extension
class e(X) is nontrivial) [21], and the group Out, (W) is trivial so that [24,
Lemma 2.16, (2.8)] immediately gives the formulas for the automorphism
groups. m

Alternatively, for X = Eg, PE7, Eg, we may apply the method used by
Vavpeti¢ and Viruel in [35] and shift from the category A(X) of elementary
abelian subgroups to the category Ra(X) of 2-stubborn subgroups of X. In
the situation of [24, Theorem 2.51], their functor Ro(X)? — A(X): P —
2Z(P) gives induced maps

BP — BCx(2Z(P)) — BX/,

for each 2-stubborn P C X, that respect the morphisms of the stubborn
category up to homotopy. Since the obstruction groups for the stubborn
category are known to vanish, these maps rigidify to a map BX — BX’ un-
der the maximal torus. This way one circumvents the problem of computing
the higher limits over the Quillen category and relies instead on the result
from [18] that the higher limits over Ro(X) are known to vanish.

5.1. Limits over the Quillen category of Eg. The poset for the toral part,
A (Eg)<t, of the Quillen category for Eg:
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contains three objects Va, V3, Vi, with class distributions 4A3, 8ASB!, and
16A B3, with nonconnected centralizers

S(U(1)?) x@, S(U(3)?) x Cy D S(U(1)?) x¢, S(U(1)? x U(2)?) x Cy
D S(U(1)?) x¢, S(U(1)8) x O,

where the component group C is generated by

o= ((? _01> (g _OE)> € SU(2) x¢, SU(6).

It follows from [24, 2.33, 5.14] that ZCg, (V) = TW(E)V) for every toral
object V' of the Quillen category. As in [24, 3.13-3.15], this implies that
lim*(A(Eg);m(BZCEfB)ﬁ) = lim*(A(E¢); mi(BZCxg,)) for i = 1,2. The el-
ementary abelian subgroups (Va, ¢), (Va,¢), (Vy,c), with class distributions
23A7, 2 AMB!, and 2°A28B3, are nontoral and, according to [14, 8.2], they
are the only nontoral elementary abelian subgroups of Eg. Their central-
izers are (Va,c) x SU(3), (Va,c) x U(2), and (Va,c) x U(1)2. The automor-
phism groups in A (Eg) for the first two subgroups contain the automorphism
groups in A(F4). Thus

A(E)(2°A7) = GL(3,F,), A(Eq)(2*AYBY) = (GL(3,F2) 0)

* 1

of order 168 and 1344. Their contributions to Oliver’s cochain complex [31]
for the higher limits of the functor w1 (BZCgy) [24, (2.47)] are

HomA(EG)(23A7)(St(23), 23) = 0, HOI’IlA(E6)(24A14B1)(St(24), 24) =0

and hence lim’ (A (Eg); 71 (BZC)) = 0 for j = 1,2. The functor mo(BZCg,)
[24, (2.47)] is 0 on nontoral objects of rank < 3 and has value Zz on the
nontoral object of rank four. It follows that lim’(A (E¢); m2(BZCg)) for
j=2,3.

5.2. Limits over the Quillen category of PE7. As for Eg, inspection of
A(PE;)st:
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B3A4 —14—> B7A8

shows that the problem of computing the higher limits of the functors
mi(BZCpg,) is concentrated on the nontoral objects of the Quillen cate-
gory.

Let V be a rank three elementary abelian 2-group in PE; containing a
nontoral elementary abelian 2-group H of rank two. Then V' is generated by
H and an involution L C Cpg, (H) not contained in H where Cpg, (H) = Fy,
PSp(4), or PSO(8). The orthogonality relations [14, 1.5] and the eigenvalue
multiplicities from [14, Table VI] (with small corrections for the classes A
and B) determine the class distribution for V' as shown in the following
table:

Crr, (H) L C =Cpp,(Hx L) dimC  HxL
2A[F4) SU(2) o Sp(3) 24 B'A’H?

Fa 2B[F4] Spin(9) 36 B'H®
L(1,3) SU(2) o Sp(3) 24 B!AH?
PSp(4) | L(2,2) Spin(5) o Spin(5) x Cy 20 B'A‘H?
1 U4)/(—E) x Cs 16  B'A°H'
L(2,6) U(4)/(—E) x Cy 16 B!AH!

PSO(8) | L(4,4) SO(4)0S0(4) x (Cy x Cs) 12 B'AS
I, 1P U(4)/{(—E) x C3 16 B'A’H!

Of course, some of the nontoral elementary abelian 2-groups in this table
may be conjugate in PE~.

Any elementary abelian 2-group of rank three in PE; is contained in
and contains the center of the maximal rank subgroup Cpg.(2B) = SU(2) o
SSpin(12) because the orthogonality relations combined with eigenvalue
multiplicities [14, 1.5, Table VI] imply that any elementary abelian 2-group
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of rank three in PE; contains an element from the class 2B. Thus any
elementary abelian 2-group of rank three in PE7 is conjugate to the preim-
age V* C SU(2) o SSpin(12) of an elementary abelian 2-group of rank two
V € SO(3) x PSO(12). The elementary abelian 2-group V* is toral if and
only if V is toral. Suppose from now on that V is nontoral. Then the im-
age, Va, of V' in PSO(12) must be a nontoral elementary abelian 2-group of
rank two. Indeed, if V5 is toral in PSO(12), the image, Vi, of V in SO(3)
must be nontoral. Then [Va, V3] = {e} in SSpin(12) and [V;, V1] = {E,—FE}
in SU(2) so that [V*,V*] # {e} in SU(2) o SSpin(12), contradicting that
V* is abelian. Thus V5 is one of the nontoral elementary abelian 2-groups
described in Chapter 2, §4, with (V) = 0 or Vo = Hy, HP as in 2.51.

q(V2) = 0: The possibilities for Vo C PSO(12) are indexed by the five

partitions (ig,1,42,43) € {(5,1,1,1),(4,2,1,1),(3,3,1,1),(3,2,2,1), (2,2,
2,2)} of 8 into four natural numbers. The nontoral elementary abelian 2-
group corresponding to (ig, i1, 2,43) is Vo = (v, v2) generated by

—_ ((+1)2i071(_1)21'171(_’_1)21'271(_1)21‘371)7

— ((+1)2i0—1(+1)2i1—1(_1)2i2—1(_1)2i3—1).
The following table describes the preimage V5" C SSpin(12) of Vo € PSO(12)
using [24, Lemma 5.28].

(57 171’1) (47 27 17 1) (3’ 3’171) (37 271’1) (27 27 27 2)

2

v z e 1 e z
v% z z z e z
[v1,v2] z z z z z

V5 C SSpin(12) 21 +2 24 21 +2 21+ 2! +2

As the extraspecial 2-group 21*? does not imbed in SU(2) [24, 5.5 no V
with V5 = 2172 has elementary abelian preimage in SU(2) o SSpin(12). In
the other three cases, we need u1,us € SU(2) such that (u?,u3, [ug,us]) =
(—E,—E,—E). The only possibility is 272 = (uj,us) = (iR,iT) [24, 5.5]
and we see that

V* = ((E,2),(iR,v), (T, v2)) = ((—E,e), (iR,v1), (iT, v2))

is elementary abelian. The centralizer of V* in PE7 or SU(2)oSSpin(12) is the
preimage under the map SU(2)oSSpin(12) — SO(2) xPSO(12) of a subgroup
of Cso(3)xpso(12)(V) [28, 5.11]. In the case (5,1,1,1), the centralizer of V*
has type By, dimension 36, and

V*=23B'HS  Cpg.(V*) = V* o Spin(9) = V x Spin(9),
GL(2,F2) =
A(PER) (V) = ( ]
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In the case (3,3,1,1), the centralizer of V* has type B%, dimension 20, and
V* = 2B'H?AY,  COpg,(V*) =V x Spin(5) o Spin(5) x Cs,

acenv) = (7).

In the case (2,2,2,2), the centralizer of V* has type A}, dimension 12, and
V*=23B'AS,  Cpp (V*) =V xSU(2)oSU(2)0SU(2) 0SU(2) x (Cy x Cs),
GL(2,F
A@E(V) = (FHBF) ),

In all these cases, V* contains a single element from the class 2B, which
implies that A(PE7)(V*) = A(SU(2) o SSpin(12))(V*). (If g € PE7 normal-
izes V*, conjugation by g, cy: V* — V*, must fix the unique element in V*
from the class 2B, and thus g € Cpg.(2B) = SU(2) o SSpin(12).)

H_: The elementary abelian 2-group Vo = H_ C PSO(12) is the image
of 2172 = (v1,vy) C SO(12) generated by [24, 5.7]

B A )
amae((0 0.0 D0 )

In SSpin(12) we have (v}, v3,[v1,v2]) = (e, e,e) because, in Spin(12), we

see that (v},v3, [v1,v9]) = (z,z,7) as (v}, v3,[vi,va]) = (—E,—FE,—FE)

in SU(6) C Spin(12). To match this we need uj,us € SU(2) such that

(u2,u2, [u1,u2)) = (E, E, E). The only possibility is u1 = +E = uy and then
V' =((E,z), (E,v),(E,v2)).

The centralizer of V* has type A1 D3, dimension 24, and

V*=2B'H3A3%,  Cpg,(V*) =V x SU(2) o Sp(3).

~ O

The unique occurrence of 2B means that the automorphism group of V* is
A(PE;)(V*) = A(SU(2) o SSpin(12))(V*) and this group is a subgroup of

(GL(? Fs) ’1ﬁ>

that maps onto A(SO(3) xPSO(12))(V) = GL(2, F2). The class distribution
forces

A(PE;)(V*) = (GL<27F2) 0).

0 1
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HP: The elementary abelian 2-group Vo = HP ¢ PSO(12) is the image

of (FQ)D = (vP,vP) € SO(12) where vy, vy are as above. In Spin(12) we
get ((v1)7, (13)7, [v1, v2]”) = (22,22, 22) so that ((v7)7, (13)7, [v1,v2]") =
(2,2, 2) in SSpin(12). To match this we need the extraspecial 2-group 272 =
(iR,iT) C SU(2) and we get
V* = ((E,2),(iR,vP), (iT,v?)).
The centralizer of V* has type (3, dimension 21, and
V*=2°B7, Cpg,(V*) =V* x PSp(3),

GL(2, F») *)

A(PE;)(V*) D A(SU(2) o SSpin(12))(V*) = ( N )

There are two conjugacy classes of involutions, v; and ve, in W(PE7) with
+1-eigenspace of dimension three corresponding, respectively, to this non-
toral elementary abelian 2-group and to the one discussed later under item
H f . The index

GL(2, F5)

* * 1

A(PE) (V") (

V)s av@en v n (K2R D)

equals the number of lifts

N(PE7)

V* —= W (PEy)
for which Cn(PE7)(V*) = N(V* x PSp(3)). According to magma computa-

tions using the short exact sequence [27, 4.2], this number is 12 and hence
the Quillen automorphism group A(PE7)(V*) equals GL(3, F2).
Hy: The elementary abelian 2-group Vo = Hy C PSO(12) is the image
of 2112 = (v1,v2) C SO(12) generated by [24, 5.7]
v, = diag(R, R, R, R, R, R), vy = diag(T,T,T,T,T,T).

In Spin(12) we have (v?,v3,[v1,v2]) = (z,2,7), and so in SSpin(12) we
2

have (v?,v3, [v1,v2]) = (2,2,¢e). To match this we need (u2,u3, [u1,us]) =

(—=E,—E, E). The only possibility is u; = £ diag(i, —i) = ug and we get
V* = ((E,2), (diag(i, —i),v1), (diag(i, —i), v2)).

The centralizer of V* has type 11 As, dimension 16, and

V*=23B'H'A®,  Cpg, (V") =V x U4)/(—E) x Cy,
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010\ (101
A(PE7)(V*):<100,011>.
001/ \o o1

Hf: The elementary abelian 2-group Vo = HP C PSO(12) is the im-
age of (217)P = (vP,vP) c SO(12) where v; and vy are as above. In
Spin(12) we have ((v?)?, (v3)?, [v1,v2]P) = (2, 2,2z) and in SSpin(12) we
have ((v3)P, (v3)P,[v1,v2]P) = (z,2,2). To match this we need 2! =
(tR,iT) C SU(2), which gives

V* = {(E,2),(iR,v}), (iT,v})}.
The centralizer V* has type A3, dimension 15, and

V*=23B3AY,  Cpg,(V¥) = V* 0 SSpin(6) = V x SU(4)/(—E),

acev) = (7).

From this list of rank three nontoral elementary abelian 2-groups one may
find some rank four nontoral elementary abelian 2-groups. For instance, one
may replace H f above by H f #L(2,4) to obtain a rank four nontoral ele-
mentary abelian 2-group with class distribution 2*B"H'A" and use 2.40 to
estimate the Quillen automorphism group. There are the following relations
between the nontorals of rank two or three:

AN AN
SON TN N

23B3A4 23B1H6 23B1H3A3 23B1H2A4 23B1H1A5 23B1A6 23B7
24B"THIAT 24B3H6 A6 24B3H4A83 24B3H2A10

where the nontoral elementary abelian 2-groups of the third row contain no
other of the nontoral elementary abelian 2-groups of the second row than
the ones indicated. Using the bases {f_}, {f-}, and {f4, fo} for [H3], [A3],
and [H2A] (2.34) described in (2.37, 2.36), the (1+2+1) x (1+4+3+6+1)
matrix for the first differential
0 — [H?] x [H'A?] x [A3]
4, [B'H x [B'H?A?| x [B'H2A"] x [B'H'A%] x [B!'A"]

becomes
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\ [B'H®] [B'H?A?] [B'HZAY] [B'H'A®] [B'AY]
[F7] 1 @ o o0 0
e 01 0 0y /1 00y (L 0O0O0O0O0
[F A (0010)(010)(000000)
[A3)] 0o 100 0 0 (1)

using the basis (2.39) for [B'H3A3] and similar bases for the other sum-
mands. Computations with magma show that [B'H3A3] — [B3HCAS] is
injective, [B'H2A%] — [B®H*A?®] has rank at least 2, and [B'H'A%] —
[B3H2A 9] at least 5. This means that lim? (A(PEy); 1 (BZCpg,)) = 0 for
ji=12.

The functor mo(BZCpg,) is trivial on all the rank three nontoral elemen-
tary abelian 2-groups in PE7. Let now V' be a nontoral elementary abelian
2-group of rank four. Again, the orthogonality relations imply that V' con-
tains an involution from class 2B so that V is contained in and contains
the center of SU(2) o SSpin(12). The image of V' in SO(3) x PSO(12) must
be nontoral of rank three and the image of V' in PSO(12) nontoral of rank
two or three. In any case, V = V* x L where V* is one of the rank three
nontorals and L is generated by an involution in Cpg,(V*) not contained
in V*. Going through the list of nontoral rank three objects V*, one sees
that mo(BZCpg,) is trivial on all rank four objects V* x L as well. In most
cases, the identity component of Cpg, (V* x L) is semisimple. In the case
where Cpg, (V*) =V x U(4) x Cy, note that the centralizers have the form
V x U(1) o U(j) x Cq, i + j = 4, and that these compact Lie groups have
finite center. Consequently, lim’ (A (PE7); m2(BZCpg,)) = 0 for j = 2,3.

5.3. Limits over the Quillen category of Eg. As for Eg, inspection of
A(Eg)gt:

B15
/ ~
- B7 —— A4B11 —28& A8B23
5 —" \1 127//4 \\ 7 T A24R39
7 ?2 A8 ~_
3 1 AZB® -3 ABBT 63> A12B19 6 N
B—2— AlB2 4 A28B35 —48> A56B71
}/—/ A4B3 -1 ASB7 Al6B15 67
~ s 6~ 364
. 21 321p31 — 641263
A 2— A°B' _ P 1 \ /2/3272 B GS;A B

3
~ X<>A4 O
A5 7@
A6B1 %\12133/54 A20RB11 27

Al0OB5
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shows that the problem of computing the higher limits of the functors
mi(BZCpg,) is concentrated on the nontoral objects of the Quillen cate-
gory.

Let V be a nontoral rank three elementary abelian 2-group in Eg. Unless
V is A-pure, V is contained in and contains the center of the maximal
rank subgroup SSpin(16) of Eg. Let V C PSO(16), V* C Spin(16), and
V* C SO(16) be the (pre)images of V under the isogenies

SSpin(16) <" Spin(16)

) o
(—=E)

PSO(16) <2 SO(16)

of compact Lie groups. Then V is a nontoral rank two elementary abelian 2-
group in PSO(16). If V* is abelian, also V* is abelian and, in fact, elementary
abelian, for if V* contains an element of order 4 it is toral (2.10). Thus V
is one of the nontoral elementary abelian 2-groups described in Chapter 2,
84, contradicting that [V*, V*| = (z) for all these groups [24, Lemma 5.28].
Therefore V* is not abelian and then [V*,V*] = (x) so that [V,V] # 0
and V = Hy, HP is one of the nontoral rank 2 elementary abelian 2-groups
described in 2.51. However, V cannot be both H and H? as [V*,V*] = (z)
for one of these alternatives and [V*, V*| = (zz) for the other choice [24,
Lemma 5.28], [14, 2.9].

So there are, up to conjugation in SSpin(16), just two possibilities for V.
The class distributions, which we get from the orthogonality relations [14,
1.5], are 22A'BY (projecting onto H,) and 23A3B* (projecting onto H_),
and the centralizers are

Cig (2°A'BY) = Csgpinaie) (V) =V x PSO(8),

Cry (2°A°BY) = Cspin(16)(V) = V x PSp(4).
In particular, A(Eg)(V) cannot be all of GL(3,F2). Computations with
preferred lifts based on the exact sequence [27, 4.2] show that these auto-

morphism groups have index at most 7 in GL(3,F3). Then there are only
two possibilities and the class distributions force

1 * 3A3R4

0 GL(2,F2)>’ AlB)(ZAB) = (
both of order 22 - |GL(2, F2)| = 24. The remaining case is when V is A-
pure. Then V is contained in and contains the center of the maximal rank
subgroup SU(2) o E; of Eg. Let V. C PU(2) x PE; be the image of V.
The centralizer of V' in Eg has rank four as seen by inspecting the non-
connected rank two centralizers (Table 4) in Eg. Therefore the embedding

A(Eg)(2°A'B) = < GL(2,Fy) *>

0 1
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V — PU(2) x PE; must have the form V > v — (¢1(v), p2(v)) where o1
is the nontoral embedding of V in PU(2) [24, Corollary 3.19] and ¢ one of
the three nontoral embeddings in PE. The preimage V* of V' in SU(2) x E7
is then V* = ((—E,e)) x 272 — SU(2) x E;, the monomorphism being
VD22 5 g (p1(9), 2(g)) where g is the faithful representation of
the extraspecial group 217 in SU(2) and s is one of the three nontoral
embeddings of 22 in E; [14, 9.5], and Csu@)xe, (V") = (=F) x (2) x X
where X is PSO(8), PSp(4), or Fy (and z generates the center of E7). The
commutative diagram, where the exact row is [287 5.11],

1 — Csu@)xe, (V") /((—=F, 2)) — Csy(2)or, (V) —= Hom(V, ((—E, 2)))

J/

can be used to show that Cgy(a)or, (V) = V x X. Since we are assum-
ing that V' is A-pure, the dimension of this centralizer is 52 so Cg, (V) =
Csu(2)or, (V) = V x F4 and there is only one possibility in this case. The
Quillen automorphism group A (Eg)(22A) = GL(3,F3) can be determined
by computations based on the short exact sequence [27, 4.2].

The contribution, [V] = Homa gg)v)(St(V),V), to Oliver’s cochain
complex [31] for computing lim*(A (Eg); 71 (BZCEy)) is 0 when V = 23A7.

When V = 23A'BS, the stabilizers for the action of A(Eg)(V') on planes
P < V have orders 6 or 8. The Fa-vector space [V] is 1-dimensional and the
homomorphism

(L JAE)(V)p| =8,
P> 1= {o, A(Es)(V)p| =6,

where A(Eg)(V)p is the stabilizer at the plane P < V', is a nontrivial vector
in [V]. There is a rank one elementary abelian 2-group L(1,3) C PSO(8)
such that (2.14) the centralizer of V x L(1,3) C V x PSO(8) C Eg is
CE8<V X L(1,3)) =V x Cpso(g)(L(1,3)) =V x SO(Q) o SO(G) X Cy =
V x U(4)/(—E) x Cy. The class distribution of this rank four elementary
abelian 2-group in Eg is 2 A?B® according to the orthogonality relations.
The only rank three nontoral contained in this subgroup is 23A'B®, for
SO(2) 0 SO(6) does not occur as the identity component of a rank one cen-
tralizer in F4 (Table 1) or PSp(4) (Chap. 4, §1). The Quillen automorphism
group of V' x L(1,3) is contained in the subgroup

Y (A(Eg)(V) 0)

* 1

of order 23-|A(Eg)(V)| = 192 because conjugation in Eg takes the subgroup
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V' into itself since this subgroup is determined up to conjugacy by its class
distribution. The differential d in Oliver’s cochain complex is an isomorphism
between [V] and the 1-dimensional subspace

HOHIA(St(V X L), V x L) C [V X L] = HomA(Es)(VXL)(St(V X L), V x L)
as
L, |Ap| =192, |Ap| =38,
0, otherwise,
is nontrivial in Hom4 (St(V x L),V x L) = Fs.

When V = 23A3B*, the stabilizers for the action of A (Eg)(V) on planes
P < V have orders 24 or 4. The Fa-vector space [V] is 1-dimensional and

the homomorphism
s = {1 AEIVI =21
0, |A(Es)(V)p| =4,

where A(Eg)(V)p is the stabilizer at the plane P < V, is a nontrivial
vector in [V]. There is a rank one elementary abelian 2-group L(1,3) C
PSp(4) such that the centralizer of V' x L(1,3) C V x PSp(4) C Eg is
Ces(V x L(1,3)) = V x Cpgpa)(L(1,3)) = V x Sp(1) o Sp(3) (4.1). The
class distribution is 2*ASB!0. The only rank three nontoral contained in
this subgroup is 22A3B%, for Sp(1) o Sp(3) does not occur as the identity
component of a rank one centralizer in F4 (Table 1) or PSO(8) (Chap. 2,
§1). The Quillen automorphism group is contained in the group A defined
as above but in fact the class distribution forces

A(Es)(V x L(1,3)) C (A(Es)(V) 0) —A

#W>P>M:{

0 1

of order 24. The corresponding space of equivariant linear maps St(V x L) —
V' x L is 10-dimensional and the image of f under the differential d,
df[E>P > 1] = { I — 24 end B Zmamao) Vs
0, otherwise,
is nonzero.
We conclude that lim!(A(Eg); 71 (BZCg,)) = 0 since there are no non-
toral elementary abelian 2-groups of rank two, and that

lim?(A(Eg); m (BZCgg)) = 0

since the differential is injective.

We have already seen that the functor mo(BZCg,) has value 0 on all non-
toral elementary abelian 2-groups of rank at most three. Consider a nontoral
elementary abelian 2-groups of rank four, £ C Eg say. If E' is A-pure, then
FE contains the A-pure nontoral elementary abelian 2-group V of rank three.
Otherwise, F is contained in and contains the center of SSpin(16). As before,
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let E C PSO(16), E* C SO(16), and E* C Spin(16) be the groups corre-
sponding to E. The image E in PSO(16) is a rank three nontoral elementary
abelian 2-group. If [E, E] # 0, then E contains a nontoral rank two group
(2.52), which means that E contains a nontoral rank three group. In these
cases, Oy (F) =V x Cx (L) where V has rank three and L rank one and X
is PSO(8), PSp(4), or Fy4. In all cases, the center ZCg, (E) of the centralizer
equals E (2.14, 2.15, 4.1, 4.2, Table 1). In the remaining cases, [E, E] = 0
and ¢(E) = 0 as E is nontoral (2.10) so that E* C SO(16) is elementary
abelian. This faithful representation of E has the form ), pv 4,0 for certain
integers i, > 0. As [E*, E*] C (x) it follows from [24, Lemma 5.28] that all
the numbers i, have the same parity, which must be odd since E* is non-
toral. Since Cgo(16) = SO(16) N ][], O(4,), where the i, are odd, the centers
of this centralizer and the closely related centralizer Csgpin(16)(£) are finite.
We conclude that the functor mo(BZCE,) has value zero on all nontoral el-
ementary abelian 2-groups of rank at most four. Oliver’s cochain complex
now immediately shows that lim’ (A (Eg); ma(BZCgy)) = 0 for j = 2, 3.

6. Proofs of 1.1, 1.2, and 1.3 from Part I. At this stage we know
that DI(4) and any compact, connected simple, centerless Lie group G are
uniquely N-determined when considered as 2-compact groups.

Proof of Theorem 1.1 and Corollary 1.2 from Part I. Let X be a con-
nected 2-compact group. From [12, 1.12] we know that N(X) = N(G) x
N(DI(4))! for some integer ¢ > 0. From [24, 2.38, 2.39, 2.42, 2.43] we know
that G x DI(4) is uniquely N-determined. In particular, X and G x DI(4)!
are isomorphic.

Let next X be any 2-compact group, not necessarily connected. By the
remarks at the beginning of [24, Chapter 3, §2], the H'-injectivity, i = 1,2,
condition holds for X. Thus X has N-determined automorphisms by [24,
Lemma 2.35] and X is N-determined by [24, Lemma 2.40] if it is LHS [24,
Definition 2.27]. =

Proof of Corollary 1.3 from Part I. Let BL be a connected finite loop
space with maximal torus BT — BL and let BN — BL be the normalizer
of the maximal torus [29, 1.1, 1.3, 1.4]. For each prime p, the p-completion,
BL,, of BL is a connected p-compact group with maximal torus normalizer
BN, — BL,, the fiberwise p-completion of BN — BL. In particular, at
p =2, BNy is BN(G)y for some connected compact Lie group G [12, 1.12]
and there is [24, Theorem 1.1] a commutative diagram

BN, —== BN(G),

bl

BLs —— > BGs
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where the horizontal maps are homotopy equivalences. There is no BDI(4)-
factor in the 2-compact group BLs because the Weyl group of the finite
loop space L is a reflection group at all primes [29, 1.2]. We also see that
BN, = BN(G), at all odd primes because the extension class is trivial at
odd primes [2]. The classification theorem for p-compact groups at p > 2
[3] provides homotopy equivalences BL, — BG), for primes p > 2. Using
Sullivan’s Arithmetic Square, these maps combine, since they are all defined
as maps under BN, to a homotopy equivalence BL — BG.
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