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The Lindelöf property and σ-fragmentability

by

B. Cascales (Murcia) and I. Namioka (Seattle, WA)

Abstract. In the previous paper, we, together with J. Orihuela, showed that a com-
pact subset X of the product space [−1, 1]D is fragmented by the uniform metric if and
only if X is Lindelöf with respect to the topology γ(D) of uniform convergence on count-
able subsets of D. In the present paper we generalize the previous result to the case
where X is K-analytic. Stated more precisely, a K-analytic subspace X of [−1, 1]D is
σ-fragmented by the uniform metric if and only if (X, γ(D)) is Lindelöf, and if this is
the case then (X, γ(D))N is also Lindelöf. We give several applications of this theorem
in areas of topology and Banach spaces. We also show by examples that the main theo-
rem cannot be extended to the cases where X is Čech-analytic and Lindelöf or countably
K-determined.

1. Introduction. In the paper [6], we, together with J. Orihuela, have
investigated conditions for a compact subset K of the product [−1, 1]D to be
fragmented by the uniform metric. We discovered, among other results, that
for K to be fragmented by the uniform metric, it is necessary and sufficient
that K is Lindelöf with respect to the topology γ(D) of uniform convergence
on countable subsets ofD, and if this is the case, then (K, γ(D))N is Lindelöf.
Although this topological result provided us with a number of applications
in topology and Banach spaces, we have been keenly aware of the limitation
on K to be compact.

In this paper we present a generalization of the result stated above to
the class of K-analytic spaces. More specifically, a K-analytic subset X in
the product [−1, 1]D is σ-fragmented by the uniform metric if and only if
(X, γ(D)) is Lindelöf, and if this is the case then (X, γ(D))N is also Lindelöf.
The proof of this main theorem, which is far more involved than that for the
compact case, is given in the next section, where the mathematical terms
used above are defined.
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The subsequent sections are devoted to the applications of the main
theorem and examples. In Section 3, we show that the main theorem gives
an easy proof of the theorem proved by Gul’ko [11] and Orihuela [23]: If K
is a Corson compact space, then (C(K), γ(K)) is Lindelöf. In this case, [23]
proves that (C(K), γ(K))n is Lindelöf for each n ∈ N, but we can do a bit
better: (C(K), γ(K))N is Lindelöf. The section concludes with an example
showing that the converse of the last statement is not true.

In Section 4, we apply the main theorem to investigateK-analytic Tikho-
nov spaces X. Specifically we give a number of conditions on X or C(X),
each equivalent to X being σ-scattered. We also give in this section examples
to show that our main theorem cannot be further generalized to the cases
where X is Čech-analytic and Lindelöf or countably K-determined.

In Section 5, we consider a class of Banach spaces wider than that of
representable Banach spaces introduced by Godefroy and Talagrand [10].
The new class includes all dual Banach spaces and the class of spaces con-
sidered in [6, Section 5]. Our main theorem is applied once again to prove
that a Banach space in this class is weakly Lindelöf if, and only if, its dual
unit ball endowed with the weak∗ topology is countably tight and has the
property that its separable subsets are metrizable.

2. σ-fragmentability and the Lindelöf property for γ(D). We
recall some topological terms. Let (T, τ) be a topological space and let δ
be a metric on T . Let S be a subset of T . Then we say that (S, τ) (or
simply, S) is fragmented by δ down to ε for some ε > 0 if, whenever A is a
non-empty subset of S, there is a τ -open set U in T such that A∩U 6= ∅ and
δ -diam(A∩U) < ε. The subspace (S, τ) (or simply, set S) is fragmented by δ
if it is fragmented by δ down to each ε > 0. The space (T, τ) is σ-fragmented
by δ if, for each ε > 0, T can be written as T =

⋃∞
n=1 Tn, where each Tn

is fragmented by δ down to ε. If the metric δ is that of a norm ‖ ‖, then
instead of “fragmented by the metric of the norm”, we say norm-fragmented
or ‖ ‖-fragmented.

A topological space (T, τ) is said to be K-analytic if there is an upper-
semicontinuous set-valued map F : NN → 2T such that F (σ) is compact for
each σ ∈ NN and F (NN) :=

⋃{F (σ) : σ ∈ NN} = T . Here the set-valued
map F is called upper-semicontinuous if for each σ ∈ NN and for an open
subset U of T such that F (σ) ⊂ U there exists a neighborhood V of σ
with F (V ) ⊂ U. Our basic reference for K-analytic spaces is [26]. A subset
S of T is said to be K-analytic if S with the relative topology, i.e. (S, τ),
is K-analytic. We use repeatedly the fact that each K-analytic Hausdorff
space is Lindelöf (see [26, Theorem 2.7.1]).

Let (M,%) be a metric space with the metric % bounded, and let D be
an index set. We consider various topologies on the product space MD in
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addition to the product (= pointwise) topology τp. If S is a subset of D, we
define the pseudo-metric dS on MD by

dS(x, y) = sup{%(x(p), y(p)) : p ∈ S}
for all x, y ∈ MD. Note that dD is the uniform metric on MD and we
denote it by d. Throughout this paper, we let C denote the family of all
countable subsets of D. Finally we let γ(D) denote the topology on MD of
uniform convergence on members of C. This is the topology of the uniformity
generated by the family {dA : A ∈ C} of pseudo-metrics.

Using the notation above our main theorem is the following.

Theorem 2.1. Let X be a K-analytic subspace of MD, where (M,%) is
a metric space with % bounded. Then the following statements are equivalent.

(a) The space (X, τp) is σ-fragmented by d.
(b) For each compact subset K of (X, τp), (K, τp) is fragmented by d.
(c) For each A ∈ C, the pseudo-metric space (X, dA) is separable.
(d) (X, γ(D)) is Lindelöf.

Proof. (Easy parts.) (a)⇔(b). This follows from [12, Theorem 4.1]. (A
simpler proof in [19].)

(c)⇒(b). (c) implies that, for each compact K ⊂ X, (K, dA) is separable
whenever A ∈ C. Then (K, τp) is fragmented by d by e.g. [6, Theorem 2.1].

(d)⇒(c). This is clear because if A ∈ C, then the topology of dA is
weaker than γ(D).

In order to prove (a)⇒(c), we need the following simple lemma.

Lemma 1. Let (T, τ) be metrizable and separable (or more generally ,
hereditarily Lindelöf ) and let δ be a metric on T . Then (T, τ) is σ-frag-
mented by δ if and only if (T, δ) is separable.

Proof. If (T, δ) is not separable, then there exist an ε > 0 and an un-
countable subset S of T such that δ(t, t′) ≥ ε whenever t, t′ are distinct
elements of S. If (T, τ) is σ-fragmented by δ, then T can be written as
T =

⋃{Tn : n ∈ N}, where, for each n, Tn is fragmented by δ down to
ε/2. Choose n so that Tn ∩ S is uncountable. Since (T, τ) is hereditarily
Lindelöf, there is an uncountable subset B of Tn ∩ S without a τ -isolated
point. Because of the property of Tn, there is a τ -open subset U of T such
that U ∩ B 6= ∅ and δ -diam(U ∩ B) ≤ ε/2. Since B is without a τ -isolated
point, U ∩ B contains two distinct points t, t′. Recalling that B ⊂ S, we
obtain ε ≤ δ(t, t′) ≤ δ -diam(U ∩B) ≤ ε/2, a contradiction.

Conversely if (T, δ) is separable, then for each ε, Y is a countable union
of subsets of δ-diameter < ε. So with any topology, T is σ-fragmented by δ.

Proof of (a)⇒(c) of Theorem 2.1. Let A ∈ C and let r : MD → MA

be the restriction map. Then r is continuous with respect to the prod-
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uct topologies as well as with respect to dD and dA, and these metrics
are lower-semicontinuous in respective product topologies. Since (X, τp) is
K-analytic and σ-fragmented by dD, by [12, Theorem 5.1], (r(X), τp) is
σ-fragmented by dA. Moreover, being the continuous image of a Lindelöf
space, (r(X), τp) is Lindelöf. Since A is countable, (MA, τp) is metrizable
and therefore (r(X), τp) is metrizable and separable. Hence by Lemma 1,
(r(X), dA) is separable. It follows that (X, dA) is separable.

This completes the proof of the equivalence of (a), (b) and (c) and they
are implied by (d). It remains to prove that (c)⇒(d). We do this in the next
two subsections 2.1 and 2.2.

2.1. Preliminary remarks. We use the following convention: If σ =
n1, n2, . . . ∈ NN and if k ∈ N, then σ|k = n1, n2, . . . , nk. Let A be a family
of subsets of a set T . Then a Suslin(A)-set is a subset S of T that can be
represented as

S =
⋃

σ∈NN

∞⋂

k=1

S(σ|k),

where S(σ|k) ∈ A for each σ ∈ NN and k ∈ N. The family of all Suslin(A)-
sets is denoted by Suslin(A). The family Suslin(A) is closed under countable
intersections and countable unions ([26, Corollary 2.3.3]). If A consists of
K-analytic subsets of a Hausdorff space (T, τ), then each Suslin(A)-set is
again K-analytic ([26, Theorem 2.5.4]). The intersection of a K-analytic
subset of T and a closed subset of T is K-analytic ([26, Theorem 2.5.3]).

We also recall some facts concerning Baire sets. Let (T, τ) be a Tikhonov
space. A subset Z of T is called a zero-set (in T ) if Z = f−1(0) for some
continuous function f : T → R. Let Z (or Z(T )) denote the family of all
zero-sets in T . Then Z is closed under finite unions and countable intersec-
tions. If f : T → R is continuous, then f−1(F ) ∈ Z for each closed subset F
of R. The σ-algebra generated by Z is denoted by Baire(T ) and the elements
of Baire(T ) are called the Baire sets in T . If Z ∈ Z, then T \Z is a countable
union of members of Z. Hence T \ Z ∈ Suslin(Z). Since the family

{S ⊂ T : S, T \ S ∈ Suslin(Z)}
is a σ-algebra, it follows that Baire(T ) ⊂ Suslin(Z).

Using the earlier notation, let X be a K-analytic subset of MD. Then
each zero-set in X, being closed, is K-analytic and therefore each member
of Suslin(Z) is K-analytic. It follows that each Baire set in X is K-analytic,
hence Lindelöf relative to τp.

Our proof of (c)⇒(d) is by contradiction. So suppose henceforward that
(c) holds and (d) fails for a fixed K-analytic subset X of (MD, τp), and we
agree upon the following notation. All topological terms (such as K-analytic,
Baire(X), Lindelöf, etc.) are relative to τp unless otherwise specified.
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Notation. Given x ∈ X, S ⊂ D and ε > 0 we write

U(x, S, ε) := {y ∈ X : dS(y, x) < ε},
V (x, S, ε) := {y ∈ X : dS(y, x) ≤ ε}.

Let U = {Uj : j ∈ J} be a γ(D)-open cover of X without a countable
subcover. We may assume that each Uj is of the form

Uj = U(xj , Aj , εj) = {y ∈ X : dAj (y, xj) < εj},
where xj ∈ X, Aj ∈ C, εj > 0 for each j ∈ J . For each A ∈ C, let

U(A) =
⋃
{Uj : j ∈ J, Aj ⊂ A}.

Clearly U(A) ⊂ U(A′) whenever A ⊂ A′. Since U covers X, X =
⋃{U(A) :

A ∈ C}.

Lemma 2. Under the notation above, the following statements hold.

(i) U(x,A, ε) ∈ Baire(X) whenever x ∈ X, A ∈ C, ε > 0.
(ii) U(A) ∈ Baire(X) for each A ∈ C. In particular U(A) is K-analytic

and Lindelöf for each A ∈ C.
(iii) A subset S of X is covered by a countable subfamily of U if and

only if S ⊂ U(A) for some A ∈ C.

Proof. (i) Since U(x,A, ε) =
⋃{V (x,A, ε− 1/n) : n ∈ N}, it is sufficient

to show V (x,A, ε) =
⋂{V (x, {a}, ε) : a ∈ A} ∈ Baire(X). Since y 7→

%(x(a), y(a)) is continuous on (X, τp), V (x, {a}, ε) ∈ Z(X), and because A
is countable, V (x,A, ε) ∈ Baire(X).

(ii) The set Uj = U(xj, Aj , εj) is dA-open whenever Aj ⊂ A. Since, by
(c), (X, dA) is hereditarily Lindelöf, U(A) is a countable union of sets Uj
with Aj ⊂ A. Therefore, by (i), U(A) ∈ Baire(X).

(iii) If S ⊂ ⋃{Uj : j ∈ J0} for some countable subset J0 of J , then
S ⊂ U(A) where A =

⋃{Aj : j ∈ J0}. Conversely if S ⊂ U(A), then from
the proof of (ii), we see that S is covered by a countable subfamily of U .

2.2. Proof of (c)⇒(d). All the assumptions and notation of subsec-
tion 2.1 are retained in this section. Let Y be the family of all K-analytic
subsets Y of (X, τp) such that there is no countable subfamily of U that
covers Y , i.e. for no A ∈ C, Y ⊂ U(A). By our assumption, X ∈ Y. If Y ∈ Y
with Y ⊂ Z ⊂ X and if Z is K-analytic then Z ∈ Y.

We distinguish two cases:

A. For each Y ∈ Y and each ε > 0, there is a Z ∈ Y such that Z ⊂ Y
and d -diamZ ≤ ε.

B. For some Z ∈ Y and some ε > 0, d -diamY > ε whenever Y ∈ Y and
Y ⊂ Z. (The negation of Case A.)

We show that each case leads to a contradiction.
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Lemma 3. Case A leads to a contradiction.

Proof. Assume Case A. Let G : NN → 2X be a compact-set-valued
upper-semicontinuous map such that G(NN) = X. Recall that if σ = n1, . . .
∈ NN and k ∈ N, then we let σ|k = n1, . . . , nk, and if n1, . . . , nk is a finite
sequence in N, we let [n1, . . . , nk] = {σ ∈ NN : σ|k = n1, . . . , nk}. We note
that [n1, . . . , nk] is a clopen subset of NN and that the family of the sets of
this form constitutes a base for the topology of NN. For convenience we set
[∅] = NN. Note that each set of the form G([n1, . . . , nk]) is K-analytic.

By induction, we construct a decreasing sequence F0 ⊃ F1 ⊃ F2 ⊃ . . . of
closed subsets of (X, τp) and a sequence σ = n1, . . . ∈ NN such that

(i) Fk ∩G([σ|k]) ∈ Y for each k ≥ 0.
(ii) d -diam Fk ≤ 1/k for each k ≥ 1.

Construction. To start the induction, let F0 = X. Clearly (i) holds
and (ii) does not apply. Inductively assume that F0, F1, . . . , Fk and
n1, . . . , nk have been constructed. Since

Fk ∩G([n1, . . . , nk]) =
∞⋃

i=1

Fk ∩G([n1, . . . , nk, i]) ∈ Y,

there is an i ∈ N with

Fk ∩G([n1, . . . , nk, i]) ∈ Y.
By the assumption of Case A, there is a Z ∈ Y such that

Z ⊂ Fk ∩G([n1, . . . , nk, i]), d -diamZ ≤ 1/(k + 1).

Let Fk+1 = Z ⊂ Fk and nk+1 = i, where the closure is taken in (X, τp). Then
d -diam Fk+1 ≤ 1/(k + 1). Clearly Fk+1∩G([n1, . . . , nk+1]) isK-analytic and
contains Z which is a member of Y. Hence (i) holds if k is replaced by k+1.
This completes the construction.

By [26, Lemma 3.1.1], (
⋂{Fk : k ∈ N})∩G(σ) 6= ∅. Hence by (ii), the set⋂{Fk : k ∈ N} is a singleton {a}. Now there is an A ∈ C such that a ∈ U(A).

Since U(A) is dA-open, there is a δ > 0 such that U(a,A, δ) ⊂ U(A). By (ii),
there is a k ∈ N such that d -diam Fk < δ. Then Fk ⊂ U(a,A, δ) ⊂ U(A).
This contradicts (i), and completes the proof.

Before we take up Case B, we prove the following lemma. Recall that all
topological terms are relative to τp unless otherwise mentioned.

Lemma 4. Let Y ∈ Y. Then there is a subset Q of Y such that

(i) Q ∈ Y.
(ii) If V is an open subset of (Y, τp) with V ∩Q 6= ∅, then for no A ∈ C,

V ⊂ U(A).
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Proof. Let
Q = Y \

⋃
{intY (U(A) ∩ Y ) : A ∈ C},

where intY indicates the τp-interior relative to Y . Then clearly Q is closed
in (Y, τp). Hence Q is K-analytic. We show that Q ∈ Y by contradiction.
Suppose then that Q ⊂ U(A0) for some A0 ∈ C. Then
⋃
{intY (U(A) ∩ Y ) : A ∈ C} = Y \Q ⊃ Y \ U(A0) = Y ∩ (X \ U(A0)).

By Lemma 2, U(A0) ∈ Baire(X) and hence X \ U(A0) ∈ Baire(X). Con-
sequently, the set X \ U(A0) is K-analytic. It follows that the intersection
Y ∩ (X \ U(A0)) is K-analytic and hence Lindelöf. Therefore, there is a
sequence {An : n ∈ N} in C such that

Y \ U(A0) ⊂
⋃
{intY (U(An) ∩ Y ) : n ∈ N} ⊂

⋃
{U(An) ∩ Y : n ∈ N}.

Let B =
⋃{An : n ∈ {0} ∪ N} ∈ C. Then Y ⊂ U(B), contradicting Y ∈ Y.

This proves (i).
Next, suppose that V is an open subset of (Y, τp) such that Q ∩ V 6= ∅.

If the conclusion of (ii) is not true, then V ⊂ U(A0) for some A0 ∈ C. This
implies that V ⊂ intY (U(A0) ∩ Y ) ⊂ Y \ Q and Q ∩ V = ∅, contradicting
the assumption.

Lemma 5. Case B leads to a contradiction.

Proof. Let Z ∈ Y and ε > 0 be fixed so that d -diam Y > ε whenever
Y ∈ Y and Y ⊂ Z. We let H : NN → 2Z be a compact-set-valued upper-
semicontinuous map such that H(NN) = Z. All the following construction
takes place in (Z, τp).

Let 2(N) be the set all finite sequences s of 0’s and 1’s, and in this case
let |s| denote the length of s. N(N) is similarly defined. For each s ∈ 2(N),
we construct a closed subset F (s) of (Z, τp), an `(s) ∈ N(N) and p(s) ∈ D
satisfying the following conditions.

(i) F (∅) = Z.
(ii) For each s ∈ 2(N), F (s, 0) ∪ F (s, 1) ⊂ F (s), |`(s)| = |s| and `(s, 0),

`(s, 1) extend `(s).
(iii) For each s ∈ 2(N), %(x(p(s)), y(p(s))) > ε whenever x ∈ F (s, 0),

y ∈ F (s, 1).
(iv) For each s ∈ 2(N), Y (s) := F (s) ∩H([`(s)]) ∈ Y.

Construction. The construction is by induction on |s|. When |s| = 0,
we let F (∅) = Z and `(∅) = ∅. Inductively assume that F (s), `(s) have been
constructed for all s with |s| ≤ n and p(s) for |s| ≤ n − 1 so that (ii), (iii)
hold for |s| ≤ n− 1 and (iv) for |s| ≤ n.

Let s ∈ 2(N) with |s| = n. Then by (iv), Y (s) ∈ Y. Hence by Lemma 4,
there exists a subset Q of Y (s) such that Q ∈ Y, and whenever V is an
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open subset of (Y (s), τp) with Q ∩ V 6= ∅, then V ⊂ U(A) for no A ∈ C. By
hypothesis d -diam Q > ε. So there are x0, x1 ∈ Q and a p ∈ D such that
%(x0(p), x1(p)) > ε+ δ for some δ > 0. Let

W0 = {x ∈ Y (s) : %(x0(p), x(p)) < δ/2},
W1 = {x ∈ Y (s) : %(x1(p), x(p)) < δ/2}.

Note first that if x ∈ W 0 and y ∈ W 1, where closures are taken in (Z, τp),
then %(x(p), y(p)) > ε. Next W0 is open in (Y (s), τp) and W0∩Q 6= ∅. Hence,
for no A ∈ C, W0 ⊂ U(A). Similarly for W1. It follows that W 0 ∩ Y (s) is
K-analytic and W 0 ∩ Y (s) ⊂ U(A) for no A ∈ C. Hence W 0 ∩ Y (s) ∈ Y.
Now

W 0 ∩ Y (s) = W 0 ∩ F (s) ∩H([`(s)]) =
⋃

k∈N
W 0 ∩ F (s) ∩H([`(s), k]).

Hence for some k, W 0 ∩ F (s) ∩ H([`(s), k] ∈ Y. Let F (s, 0) = W 0 ∩
F (s), `(s, 0) = `(s), k and p(s) = p. Then (iv) holds for (s, 0). Similarly
we let F (s, 1) = W1 ∩ F (s) and choose `(s, 1) to make (iv) hold for (s, 1).
Clearly conditions (ii) and (iii) are satisfied as well. This completes the
construction.

Now for each σ ∈ 2N, let `(σ) be the unique element in NN such that
`(σ)|n = `(σ|n) for each n ∈ N. Then by (iv), F (σ|n) ∩H([`(σ)|n]) 6= ∅ for
each n ∈ N. Therefore, by [26, Lemma 3.1.1],

K(σ) :=
(⋂
{F (σ|n) : n ∈ N}

)
∩H(`(σ))

is a non-empty compact subset of Z. For each σ ∈ 2N, choose a point x(σ) in
K(σ), and let B be the countable set {p(s) : s ∈ 2(N)} ⊂ D. Then from (ii)
and (iii) it follows that dB(x(σ), x(σ′)) > ε whenever σ and σ′ are distinct
elements of the uncountable space 2N. This contradicts (c), which proves
Lemma 5.

The proof of Theorem 2.1 now follows from Lemmas 3 and 5.
The proof of the next corollary is almost the same as the one for Corol-

lary 2.2 in our previous paper [6]. For the convenience of the reader, a part
of the proof is repeated here.

Corollary 2.2. Let X,M,D be as in Theorem 2.1. If X satisfies one
(hence all) of the four conditions of Theorem 2.1, then (X, γ(D))N is Lin-
delöf.

Proof. We may assume that the metric % of the space M is bounded
by 1. Let ϕ : (MD)N → (MN)D be the map defined by ϕ(ξ)(p)(j) = ξ(j)(p)
for all ξ ∈ (MD)N, p ∈ D, j ∈ N. Clearly ϕ is a homeomorphism when the
product topology is used throughout. Now the space MN is metrizable, and
we use the metric %∞(m,m′) :=

∑
j∈N 2−j%(m(j),m′(j)) for m,m′ ∈ MN.
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Let d∞ be the metric on (MN)D given by

d∞(x, x′) = sup{%∞(x(p), x′(p)) : p ∈ D} for x, x′ ∈ (MN)D.

Now, by [26, Theorem 2.5.5], XN is K-analytic, hence so is ϕ(XN). We
show that each compact subset of ϕ(XN) is fragmented by d∞. For this it
is sufficient to prove that each set of the form ϕ(K) is fragmented by d∞,
where K =

∏{Kj : j ∈ N} with each Kj compact in X. Let ε > 0, let C
be a non-empty subset of K and let πj : K → Kj be the jth projection.
Then, since each Kj is fragmented by d according to (b) of Theorem 2.1, we
can construct inductively a decreasing sequence V1 ⊃ V2 ⊃ . . . of non-empty
relatively open subsets of C such that d -diam πj(Vj) < ε/2 for each j ∈ N.
Choose k ∈ N so that 2−k < ε/2, and let ξ, ξ′ ∈ Vk. Then for each p ∈ D,

%∞(ϕ(ξ)(p), ϕ(ξ′)(p)) ≤
∑

j≤k
2−j%(ξ(j)(p), ξ′(j)(p)) +

∑

j≥k+1

2−j

<
∑

j≤k
2−jd(πj(ξ), πj(ξ′)) + ε/2 ≤ ε/2 + ε/2 = ε.

Thus ϕ(Vk) is a non-empty relatively open subset of ϕ(C) with d∞-diameter
not greater than ε. It follows that ϕ(K) is fragmented by d∞.

Hence by Theorem 2.1, ϕ(XN) is γ(D)-Lindelöf. So we finish the proof by
noting that ϕ maps (MD, γ(D))N homeomorphically onto ((MN)D, γ(D)).
This fact is shown at the end of the proof of [6, Corollary 2.2].

Remark 2.3. In Theorem 2.1 and Corollary 2.2 we have restricted our-
selves to metric spaces (M,%) with % bounded, because if % is unbounded,
then % can always be replaced by %′ := % ∧ 1 = min{%, 1} without changing
the uniformity. However in applications, there are cases when this replace-
ment of % by %∧1 is not necessary. More specifically, suppose % is unbounded,
but X ⊂MD is so situated that

d(x, y) = sup{%(x(p), y(p)) : p ∈ D} <∞
for each (x, y) ∈ X × X. In this case the uniformities and the topologies
of d, dA and γ(D) are unaffected by whether % or %′ is used in our defini-
tions. Hence Theorem 2.1 and Corollary 2.2 continue to hold for the original
unbounded metric %.

Remark 2.4. In Theorem 2.1, the equivalence of (a) and (b) is valid
under a less restrictive assumption than that of K-analyticity. In the unpub-
lished “Note of 8 December 1980”, D. H. Fremlin defined the weaker notion
of Čech-analyticity. We shall not repeat the definition here but refer instead
to [12, Section 8]. According to [12, Theorem 4.1], statements (a) and (b) are
equivalent whenX is assumed to be Čech-analytic. This may lead one to con-
jecture that Theorem 2.1 is true when X is only assumed to be Čech-analytic
and Lindelöf. A counter-example to this conjecture is discussed in Section 4.
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3. Corson compact spaces. Let I = [−1, 1] and let Γ be an arbitrary
index set. For an x ∈ IΓ , let us write supp(x) = {γ ∈ Γ : x(γ) 6= 0}. We
define two special subsets of IΓ as follows:

F(Γ ) = {x ∈ [−1, 1]Γ : supp(x) is finite},
Σ(Γ ) = {x ∈ [−1, 1]Γ : supp(x) is countable}.

Unless otherwise stated, the topology of IΓ and its subsets is the product
(= pointwise) topology τp.

Recall that a compact Hausdorff space K is said to be Corson compact
if K is homeomorphic to a τp-compact subset of Σ(Γ ). From the definition,
it follows that if A is a countable subset of a Corson compact space K, then
the closure of A is compact and metrizable. A topological space T is said
to be countably tight if, whenever S is a subset of T and t ∈ S, then for
some countable subset A of S, t ∈ A. One can show easily that the space
(Σ(Γ ), τp) defined above is countably tight (see [13, Lemma 1.6]). Hence the
Corson compact space K is countably tight.

As the first application of our main theorem, we show that for any Corson
compact space K the space (C(K), γ(K)) is Lindelöf, where γ(K) stands
for the topology in C(K) of uniform convergence on countable subsets of
K. This result, which implies that Cp(K) := (C(K), τp(K)) is Lindelöf, was
first proved by Gul’ko [11] by a direct method based on the abundance of
retracts in K. Orihuela [23] gave a different proof based on Banach space
techniques. That Cp(K) is Lindelöf also follows from the result of Alster and
Pol [2] obtained independently by yet a different method.

We need the following simple lemma first. If S is a subset of a linear space,
the convex hull and the absolute convex hull of S are denoted respectively
by co(S) and aco(S). The linear span of the set S is denoted by spanS.

Lemma 6. Let Γ be an index set and let H be a norm bounded subset of
`∞(Γ ) ⊂ RΓ . If

aco(H)
τp = aco(H)

‖ ‖
,(1)

then X := spanH
‖ ‖

is K-analytic with respect to the pointwise topology τp
of RΓ . In particular , if H is a norm bounded τp-compact subset of `∞(Γ )

that is norm-fragmented , then spanH
‖ ‖

is K-analytic relative to τp.

Proof. Let W = aco(H)
τp . Then W is τp-compact and the equation (1)

implies the equality X = spanH
‖ ‖

=
⋃
n nW

‖ ‖
. We define the set-valued

map ϕ : NN → 2`
∞(Γ ) as follows. For α = (ak) ∈ NN, let

ϕ(α) =
∞⋂

k=1

(
akW +

1
k
B

)
,(2)
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where B denotes the closed unit ball of `∞(Γ ) which is τp-compact. Each
ϕ(α) is a non-empty τp-compact set contained in X. Now, we prove that the
set-valued map ϕ is upper-semicontinuous relative to τp. Let U be a τp-open
set such that ϕ(α) ⊂ U . Then by the definition (2) for ϕ(α), we see that
there is an m ∈ N such that

m⋂

k=1

(
akW +

1
k
B

)
⊂ U.

Then ϕ([α|m]) ⊂ U , where [α|m] stands for the open neighborhood of α
defined by [α|m] = {β ∈ NN : β|m = α|m}. This proves that X = ϕ(NN) is
K-analytic with respect to τp.

Suppose that H satisfies the assumptions of the second part of the
lemma. If we regard `∞(Γ ) as the dual of the Banach space `1(Γ ), then, on
norm bounded subsets, τp is identical with the weak∗ topology. Now as easily
seen (cf. proof of [18, Theorem 2.5]) Ĥ := {th : t ∈ [−1, 1], h ∈ H} is again
norm bounded, τp-compact and norm-fragmented. Since aco(H) = co(Ĥ),
we see that H satisfies equation (1) by applying [18, Theorem 2.3] to Ĥ.
This completes the proof.

The following proposition is the basis for all the results in this section. If
K is a compact Hausdorff space and if S is a subset of K, then we let γ(S)
denote the topology for C(K) of uniform convergence on countable subsets
of S.

Proposition 3.1. . Let K be a compact subset of IΓ such that K∩F(Γ )
is dense in K. Then (C(K), γ(K ∩Σ(Γ )))N is Lindelöf.

Proof. Let D = K ∩ F(Γ ). Then by hypothesis, D is dense in K. For
each γ ∈ Γ , let πγ : K → I be the γ-th projection, i.e. πγ(x) = x(γ) for
x ∈ K, and let G = {πγ : γ ∈ Γ} ∪ {1}. Then G is a subset of the unit ball
of C(K) separating points of K. As in [6, Example B and C], we enlarge G
as follows. First for each n ∈ N, let

Gn = {g1 . . . gn : gi ∈ G, i = 1, . . . , n} ⊂ BC(K).

Then for each x ∈ D, {g ∈ Gn : g(x) 6= 0} is finite, and hence Gn \ U is
finite for each τp(D)-neighborhood U of 0 in C(K). Let H =

⋃{(1/n)Gn :
n ∈ N} ∪ {0}. Then again H \ U is finite for each τp(D)-neighborhood U
of 0. It follows that H is τp(D)-compact and each non-zero element of H is
isolated. Hence H is also a norm-fragmented subset of C(K). Furthermore

by the Stone–Weierstrass theorem C(K) = spanH
‖ ‖

. Since

C(K) ⊂ `∞(D) ⊂ RD

and the norm of C(K) is that of `∞(D), we conclude from Lemma 6 that
C(K) is K-analytic relative to τp(D). We claim that X := C(K) satisfies
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condition (c) of Theorem 2.1. In fact, for any countable subset A of D, the
closure A ⊂ K is metrizable, since it is homeomorphic to a subset of IS ,
where we have written S =

⋃{supp(a) : a ∈ A}. Hence, the Banach space
(C(A), ‖ ‖∞) is separable, and from this we can conclude that C(K) is sep-
arable with respect to the pseudo-metric dA. Consequently, by Corollary 2.2
and Remark 2.3, (C(K), γ(D))N is Lindelöf. Note that D ⊂ K ∩Σ(Γ ) ⊂ K.
Hence, D is dense in K ∩Σ(Γ ) and K ∩Σ(Γ ) is dense in K. Since Σ(Γ ) is
countably tight, each element of K ∩ Σ(Γ ) is in the closure of a countable
subset of D. It follows that on C(K) the topologies γ(D) and γ(K ∩Σ(Γ ))
agree, and hence (C(K), γ(K ∩Σ(Γ )))N is Lindelöf.

A compact Hausdorff space K is said to be Valdivia compact if K can be
so embedded in the space (IΓ , τp) that K ∩Σ(Γ ) is dense in K. The spaces
which satisfy the hypothesis of the previous theorem are Valdivia compact.
Obviously Corson compact spaces are Valdivia compact. The next theorem,
stated in the context of Banach spaces, is due to Orihuela [23].

Theorem 3.2. Let K be a Valdivia compact subset of IΓ with K∩Σ(Γ )
dense in K. Then (C(K), γ(K ∩Σ(Γ )))N is Lindelöf.

Proof. Let the map

ϕ : [0, 1]Γ ×K → IΓ

be defined by ϕ((tγ)γ∈Γ , (xγ)γ∈Γ ) = (tγxγ)γ∈Γ . Then ϕ is continuous. There-
fore K̂ := ϕ([0, 1]Γ ×K) is a compact subset of (IΓ , τp) containing K and
K̂ ∩ F(Γ ) is dense in K̂. Hence by Proposition 3.1, (C(K̂), γ(K̂ ∩ Σ(Γ ))N

is Lindelöf. Since the restriction map C(K̂) → C(K) is surjective and
γ(K̂ ∩ Σ(Γ ))-γ(K ∩ Σ(Γ ))-continuous, the conclusion of the corollary fol-
lows.

Remark. As the proof shows, the conclusion of the theorem above is
true for any compact subset K of IΓ . The assumption of K being Valdivia
compact makes the space (C(K), γ(K ∩Σ(Γ ))) Hausdorff.

The next corollary is an immediate consequence of the previous theorem.

Corollary 3.3. If K is a Corson compact space, then (C(K), γ(K))N

is Lindelöf. In particular Cp(K)N is Lindelöf.

Example. The converse of the preceding corollary is false. To show this
we use the space X used by R. Pol in [24]. The compact Hausdorff space X
is defined as follows. Let Ω = [0, ω1), i.e. the set of all countable ordinals,
let Λ be the set of all limit ordinals in Ω and let Γ = Ω \ Λ. For each
λ ∈ Λ, choose an increasing sequence sλ : N → Γ that converges to λ and
let Sλ = {λ} ∪ sλ(N). The topology on Ω is defined as follows: each point
in Γ is open and, for each λ ∈ Λ, the family {Sλ \ F : F ⊂ Γ , F is finite}
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is a base of open neighborhoods of λ. Thus the space Ω is locally compact
and Hausdorff; let X = Ω ∪ {ω1} be its one-point compactification. The
space X is scattered and X is not Eberlein compact [24]. Consequently,
X is not Corson compact (cf. [1]). However, (C(X), γ(X))N is Lindelöf,
showing that the converse of the preceding corollary is false. The proof that
(C(X), γ(X))N is Lindelöf consists of a result from [8, Section 4] as well
as modifications of ones in [24]. Below, we give a general remark and an
outline of the proof. We gratefully acknowledge the helpful exchanges of
e-mail concerning this example with Professor R. Pol.

1. Let K be a compact Hausdorff space and let (M,%) be a metric space,
where % is not necessarily bounded. We let C(K,M) denote the space of all
continuous maps K → M . Since C(K,M) ⊂ MK , the various topologies
defined at the beginning of Section 2 can be localized to C(K,M), and
Remark 2.3 applies to C(K,M). Whereas [24] is concerned with the point-
wise topology, we are interested in γ(K) for C(K,M), which is, of course,
stronger. Throughout this Example only, we denote (C(K,M), γ(K)) by
Cγ(K,M).

The following general remark is helpful when modifying the proofs in [24]
for Cγ(K,M). For a subset A of M and a subset B of M , we let W (A,B) =
{f ∈ C(K,M) : f(A) ⊂ B}. Then one can see easily that the family of the
sets of the form W (L,U), where L is a compact separable subset of K and
U a non-empty open subset of M , form a subbase for the topology γ(K).
Hence γ(K) depends only on the topology of (M,%).

2. [24, Lemma 1] can be modified as follows: Let S be a compact zero-
dimensional space. Then the space Cγ(S,R)N is Lindelöf if and only if the
product Cγ(S,D)N is Lindelöf. Moreover , given a point p ∈ S, the space
Cγ(S,D) can be replaced in this equivalence by the space Gp = {f ∈C(S,D) :
f(p) = 0}. Here D denotes the two-point space {0, 1}, the discrete group of
order two. The proof follows the one for the original lemma. The exponen-
tial law involving γ(S) has already been alluded to at the end of the proof
of Corollary 2.2. Keeping in mind that γ(S) is stronger than the pointwise
topology, one can follow the proof in [24] to conclude that Cγ(S, P ) is Lin-
delöf. Hence, the proof is complete if it is shown that Cγ(S,R)N ≡ Cγ(S,RN)
is a continuous image of Cγ(S, P ). As in [24], choose a continuous, open and
onto map u : P → R. Since P and PN are homeomorphic, u gives rise to a
continuous, open and onto map u∗ : P → RN, which induces the continuous
map F ∗ : Cγ(S, P ) → Cγ(S,RN) by F ∗(f) = u∗ ◦ f . That F ∗ is onto can
be seen exactly as in [24]. The second part of the assertion follows from
Cγ(S,D) ≡ (Gp, γ(S))×D.

3. Now, let X be the space defined above. As in [24], let G = {f ∈
C(X,D) : f(ω1) = 0}, and write Gγ = (G, γ(X)). Then for each f ∈ G, the
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sets of the form {f ∈ G : f |A = g|A}, with A ⊂ X countable, constitute a
γ(X)-neighborhood base of f . This means that on G, γ(X) coincides with
the topology generated by the Gδ-subsets of (G, τp) (cf. Section 4). We must
prove that GNγ is Lindelöf. For this we apply [24, Lemma 3] to Gγ, which
obviously is an Abelian topological group, with a suitably chosen E. Here
we follow [8]. For each λ ∈ Λ, Sλ is a compact and open subset of X. Hence
the characteristic function fλ of Sλ is in G. Define

E = {fλ : λ ∈ Λ} ∪ {χF : F ⊂ Γ, F is finite} ⊂ G.
Then a special case of the result in [8, Section 4] shows that (EN, γ(X))
is Lindelöf. Note that each element of G is the characteristic function of a
compact open subset of Ω, i.e. a set of the form F4⋃{Sλ : λ ∈ L}, where F
and L are finite subsets of Γ and Λ respectively. It follows that each element
of G is the finite sum of elements in E, and therefore the set E satisfies the
conditions of [24, Lemma 3].

4. K-analytic spaces without compact perfect subsets. Let (X, τ)
be a Tikhonov (completely regular and T1) space, and let C(X, I) be the
space of all continuous functions f : X → I = [0, 1]. Then the map
Φ : X → IC(X,I), given by Φ(x)(f) = f(x) for x ∈ X, f ∈ C(X, I), embeds
X topologically in (IC(X,I), τp) (see e.g. [15]). Here τp denotes the product
(= pointwise) topology as before. Thus X may be regarded as a subspace of
ID with D = C(X, I), and this makes it possible to apply our main theorem
and its corollary to the space X when it is K-analytic. In the next para-
graphs, we interpret the topological properties mentioned in Theorem 2.1
for our situation here.

The uniform metric d on X is given by

d(x, x′) = sup{|f(x)− f(x′)| : f ∈ C(X, I)}
for x, x′ ∈ X. Hence if x 6= x′, then d(x, x′) = 1, i.e. d is the discrete metric.

Given a topological space (Z, τ), the Gδ-topology associated to τ is the
topology τδ on Z whose basis is the family of all Gδ-sets in Z, i.e. the family
of sets of the form

⋂{Un : Un ∈ τ, n ∈ N}. When no confusion is likely,
we simply write Z for the topological space (Z, τ) and refer to τδ as its
Gδ-topology. The proof of the next lemma is omitted, since it is a verbatim
repetition of the short one given for [6, Lemma 2].

Lemma 7. Let X be a Tikhonov space. Then the Gδ-topology for X is
identical with γ(C(X, I)) on X.

Let d denote the discrete metric as above for the space (X, τ). For S ⊂ X,
(S, τ) is fragmented by d down to ε, 0 < ε < 1, if and only if each non-empty
subset of S contains an isolated point, i.e. S is scattered. Therefore (X, τ) is
σ-fragmented by d if and only if X is σ-scattered, that is, X is a countable
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union of scattered subsets. One can easily check that each compact subset
of (X, τ) is fragmented by d if and only if there is no compact perfect subset
of X (i.e. a compact subset of X without an isolated point). In the con-
text of the present section, Theorem 2.1 and its Corollary 2.2 can now be
translated as:

Theorem 4.1. Let (X, τ) be a K-analytic Tikhonov space. Then the fol-
lowing statements are equivalent.

(a) X is σ-scattered.
(b) X does not contain a compact perfect subset.
(c) (X, τδ) is Lindelöf.
(d) (X, τδ)N is Lindelöf.

To the list of conditions of the theorem above, we wish to add several
more. For this we need some more definitions. A Hausdorff topological space
Z is said to be Fréchet–Urysohn if, whenever, S ⊂ Z and z ∈ S, z is the limit
of a sequence in S. We use the following simple fact: for Z to be Fréchet–
Urysohn, it is sufficient that Z be countably tight and each separable subset
of Z be metrizable. A subset S of Z is said to be sequentially closed if the
limit of each sequence in S is in S. The topological space is said to be se-
quential if each sequentially closed subset is closed. The topological space Z
is called a k-space if a subset S of Z is closed provided S∩C is closed for each
compact subset C of Z. The space Z is called a kR-space if a real-valued func-
tion f on Z is continuous whenever its restriction f |C is continuous for each
compact subset C of Z. For a Tikhonov space X, B1(X) denotes the space
all functions f on X which are the pointwise limits of sequences in C(X).

Finally we recall two facts. The first one is due to Arkhangel’skĭı [3,
Theorem II.1.1]: If Z is a topological space such that Zn is Lindelöf for each
n ∈ N, then (C(Z), τp) is countably tight. The second one is the following
simple lemma quoted from [6].

Lemma 8. Let Z be a Lindelöf space, and let H ⊂ C(Z) be equicontin-
uous. Then (H, τp) is metrizable.

Corollary 4.2. Let (X, τ) be a K-analytic Tikhonov space. Then each
of the statements of the theorem above is equivalent to each of the following.

(i) For any countable set A ⊂ C(X), A
τp (closure in RX) is τp-metri-

zable.
(ii) (B1(X), τp) is Fréchet–Urysohn.

(iii) (C(X), τp) is Fréchet–Urysohn.
(iv) (C(X), τp) is sequential.
(v) (C(X), τp) is a k-space.
(vi) (C(X), τp) is a kR-space.
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Proof. We first remark that if A is a countable subset of C(X) then it
is τδ-equicontinuous. Hence A

τp (closure in RX) is again τδ-equicontinuous
and is a subset of C(X, τδ).

(c)⇒(i). This is clear from the remark above and Lemma 8.
(d)⇒(ii). By (d) and the Arkhangel’skĭı theorem above, (C(X, τδ), τp)

is countably tight. By the remark at the beginning of the proof, B1(X) ⊂
C(X, τδ) and so (B1(X), τp) is countably tight. Hence to show (ii), it is
sufficient to prove that A

τp is τp-metrizable for each countable subset A of
B1(X). In fact, if A is a countable subset of B1(X), then, for some countable
C ⊂ C(X), A ⊂ Cτp and C

τp is τp-metrizable by (i) (which is a consequence
of (c) and hence of (d)). Hence A

τp is τp-metrizable as desired.
(i)⇒(iii). Since (X, τ) is K-analytic, the product space (X, τ)N is also

K-analytic (see [26, Theorem 2.5.5]). It follows that (X, τ)n is Lindelöf for
each n ∈ N. Hence by the Arkhangel’skĭı theorem, (C(X), τp) is countably
tight, and by (i), if A is a countable subset of C(X), A

τp ∩ C(X) is τp-
metrizable. This shows (iii).

The implications (ii)⇒(iii)⇒(iv)⇒(v)⇒(vi) are obvious.
To complete the proof we show that (vi)⇒(b) by contradiction. So we

assume (vi) and that there is a compact perfect subset K of X, and try to
reach a contradiction. Let π : (C(X), τp) → (C(K), τp) be the restriction
map f 7→ f |K. Then f is continuous and open. By applying the Tietze
extension theorem to βX, one can see that π is onto. Hence π is a quotient
map, and this fact together with (vi) implies that (C(K), τp) is a kR-space.
Since R is homeomorphic to the interval (−1, 1), (C(K, (−1, 1)), τp) is also
a kR-space. We show that this is not the case.

Since K is compact and perfect, there is a continuous onto map ϕ :
K → [0, 1] (cf. [26, Proposition 5.4.1]). Let λ denote the Lebesgue mea-
sure on [0, 1]. Since the map ϕ induces the map of all Radon probability
measures on K onto that of [0, 1], there exists a Radon probability mea-
sure µ on K such that λ(B) = µ(ϕ−1(B)) for each Borel subset B of
[0, 1]. In particular µ({x}) = 0 for each x ∈ K. We show that the func-
tion Ψ : (C(K, (−1, 1)), τp)→ R given by

Ψ(f) =
�

K

f dµ,

for each f ∈ C(K, (−1, 1)), is continuous when restricted to compact sub-
sets of (C(K, (−1, 1)), τp) but it is not τp-continuous on the whole of
C(K, (−1, 1)).

Let H be a τp-compact subset of C(K, (−1, 1)) and let C ⊂ H be arbi-
trary. If f ∈ Cτp , then there is a sequence (fn)n in C that converges to f
pointwise (cf. [16, Theorem 2.8.20]). Then by the Dominated Convergence
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Theorem we have Ψ(f) = limn Ψ(fn). It follows that Ψ(C
τp) ⊂ Ψ(C)

τp . This
shows that Ψ |H is τp-continuous.

On the other hand, suppose that Ψ is continuous on C(K, (−1, 1)) at,
say, 0. Then there is a finite subset F ofK and an ε > 0 such that Ψ(f) < 1/4
whenever f ∈ W := {g ∈ C(K, (−1, 1)) : |g(x)| < ε for each x ∈ F}. Since
µ(F ) = 0, there is an open subset U of K with F ⊂ U and µ(U) < 1/2.
Let L = K \ U . Then by Urysohn’s lemma [15, Lemma 4, p. 115], there is
a continuous function h : K → [0, 1/2] such that h|F ≡ 0 and h|L ≡ 1/2.
Then h ∈ W but Ψ(h) > 1/4 since µ(L) > 1/2. This contradiction proves
that Ψ is not τp-continuous.

Examples. We give examples to show that Theorem 4.1 cannot be gen-
eralized to the case where (X, τ) is a Čech-analytic Lindelöf space or a
countably K-determined space.

A. Čech-analytic Lindelöf space, assuming CH. The following example
has been communicated to us by Professor V. Tkachuk in response to a
related question. A similar construction has been used by him in [21]. We
gratefully acknowledge his permission for us to use the example here. Let
L be a Lusin set in R, i.e. a subset L of R of cardinality continuum such
that, whenever N is a nowhere dense subset of R, L∩N is countable. Recall
that N is nowhere dense in R if the interior of its closure in R is empty.
Such a set L can be constructed assuming the Continuum Hypothesis (CH)
(see e.g. [17, Theorem 2.1]). Note that if a subset A of L is nowhere dense
relative to L, then it is nowhere dense in R and so it is countable. Let λ
be the usual topology of R relativized to L and let D be a countable dense
subset of (L, λ). Now the family B of subsets of L given by

B = {{x} : x ∈ L \D} ∪ {U ∈ λ : U ∩D 6= ∅}
is a base for a unique topology τ for L. Clearly the space (L, τ) is Hausdorff
and regular. The following are additional properties.

(1) (L, τ) is Lindelöf. For suppose U is a covering of L by a subfamily of
B. Then V := {V ∈ U : V ∩D 6= ∅} has a countable subcover W of D. Let
W =

⋃W. Then W is open dense in (L, λ) and so L \W is nowhere dense
in (L, λ) and hence countable. It follows that U has a countable subcover
of L.

(2) Since (L, τ) is regular and Lindelöf, it is normal by Tikhonov’s
Lemma (see [15, Lemma 3.1]). Thus (L, τ) is a Tikhonov space.

(3) The space (L, τ) is σ-discrete. In fact, L \ D is discrete and D is
countable.

(4) The space (L, τ) is Čech-analytic. A discrete space, being Čech-
complete, is Čech-analytic. Since the family of Čech-analytic sets is closed
under the Suslin operation, (L, τ) is Čech-analytic by (3).
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(5) The Gδ-topology τδ is the discrete topology. Hence the space (L, τδ)
is not Lindelöf.

In Theorem 4.1, assume only that (X, τ) is a Čech-analytic Lindelöf
space. Then the equivalence of (a) and (b) still holds because of [12, Theorem
4.1]. However, the example above shows that (a)⇒(c) fails. In fact, (2) and
(4) show that (L, τ) is Tikhonov, Lindelöf and Čech-analytic, and (3) shows
that (a) holds. However, (5) shows that (c) fails. Consequently, as pointed
out in Remark 2.4, Theorem 2.1 is not valid when X is assumed to be
Čech-analytic and Lindelöf in lieu of “K-analytic”.

B. Countably K-determined spaces. There is another kind of generaliza-
tion of K-analyticity. A topological space (T, τ) is said to be countably K-
determined if there is an upper-semicontinuous set-valued map F : M → 2T

for some separable metric space M such that F (M) = T and F (m) is com-
pact for each m ∈ M . Obviously any separable metric space is countably
K-determined. Let B ⊂ R be a Bernstein set , i.e. an uncountable set B
such that each compact subset of B is countable (see [28, Corollary 1.5.14]).
Then (B, τ) is countably K-determined, where τ is the relativization of the
usual topology for R. The space (B, τ) clearly satisfies the condition (b) of
Theorem 4.1. Since each scattered subset of (B, τ) is countable, (B, τ) is not
σ-scattered. Also the Gδ-topology of (B, τ) is discrete, and hence (B, τδ) is
not Lindelöf. Thus conditions (a) and (c) fail in (B, τ).

Remarks. We add a few comments on known results vis-à-vis our The-
orem 4.1 and Corollary 4.2.

(I) The equivalence of (iii), (iv) and (v) is valid for an arbitrary
Tikhonov space X (see [3, Section II.3]). Our results show that if we impose
the condition that X is K-analytic, then any one of (iii), (iv) or (v) implies
that X is σ-scattered.

(II) The equivalence of (b) and (c) is one of the main results of Blasco
in [4]. We acknowledge that some of the techniques in the proof of our
Theorem 2.1 were inspired by studying his paper.

(III) A topological space is called a P -space if itsGδ-topology agrees with
the original one. Noble has shown in [20] that the product of a countable
family of Lindelöf P -spaces is again Lindelöf. Hence the equivalence of (c)
and (d) holds for an arbitrary topological space (X, τ).

(IV) A topological space T is said to be angelic if, whenever C is a
relatively countably compact subset of T , its closure C is compact and each
element of C is a limit of a sequence in C. It is known that (C(X), τp) is
angelic whenever X is K-analytic (see [22]). Condition (iii) of Corollary 4.2
shows that there is a big difference between angelicity and Fréchet–Urysohn
property of C(X).
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(V) In [14] Kąkol and López-Pellicer state the equivalence (iii), (vi) and
condition (a′) below:

(a′) The space X is scattered,

in case X is Čech-complete and Lindelöf (see [14, Theorem 2]). Since, in this
case, X is hereditarily Baire, (a) and (a′) are actually equivalent (see e.g. [12,
Corollary 3.1.2]). Now, one can show that a Čech-complete Lindelöf space
is a Kσδ subset of its compactification, hence K-analytic. So, Theorem 2
in [14] is also a consequence of our Theorem 4.1 and Corollary 4.2.

5. Applications to Banach spaces. In this section, we abstract some
of the arguments in the previous sections in the setting of Banach spaces.
Let X be a Banach space and X∗ its dual Banach space. The unit ball
{x ∈ X : ‖x‖ ≤ 1} is denoted by BX . Thus the unit ball of X∗ is BX∗ .
If S is a subset of X∗, then σ(X,S) denotes the weakest topology for X
that makes each member of S continuous, or equivalently, the topology of
pointwise convergence on S. Dually, if S is a subset of X, then σ(X∗, S) is
the topology for X∗ of pointwise convergence on S. In particular σ(X,X∗)
and σ(X∗,X) are the weak (w) and weak∗ (w∗) topologies respectively. Of
course, σ(X,S) is always a locally convex topology and it is Hausdorff if and
only if X∗ = spanS

w∗
and similarly for σ(X∗, S). When S ⊂ X∗, γ(X,S)

(or simply γ(S)) is the topology for X of uniform convergence on countable
subsets of S. The Banach space is said to have property (C) (after Corson) if
each collection of (norm) closed convex subsets of X with empty intersection
contains a countable subcollection with empty intersection. A subset B of
X∗ is said to be norming if the function p of X given by p(x) = sup{|x∗(x)| :
x∗ ∈ B} is a norm equivalent to ‖ ‖. This is the case if and only if B is norm
bounded and kBX∗ ⊂ acoB

w∗
for some k > 0. Without loss of generality

we assume that k = 1 so that ‖x‖ ≤ p(x) for x ∈ X.
In [10], Godefroy and Talagrand called a Banach space X representable

if there is a countable norming subset B of X∗ such that (X,σ(X,B)) is
analytic. In this section, we consider a wider class of Banach spaces X such
that (X,σ(X,B)) is K-analytic for some norming subset B of X∗.

We need the following lemma that improves Proposition 4.1 in [6].

Lemma 9. Let X be a Banach space and B ⊂ X∗ a norming subset. If
X has property (C), then γ(B) is stronger than the weak topology of X.

Proof. We simply have to show that for each x∗ ∈ BX∗ and ε > 0 the
weak open neighborhood of the origin

V = {x ∈ X : |x∗(x)| < ε} = {x ∈ X : x∗(x) < ε} ∩ {x ∈ X : x∗(x) > −ε}
is a γ(B)-neighborhood of the origin, or equivalently that the weak open
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semi-spaces

U0 = {x ∈ X : x∗(x) < ε} and U1 = {x ∈ X : x∗(x) > −ε}
are γ(B)-neighborhoods of the origin. For each b∗ ∈ B, let

Db∗ = {x ∈ X : |b∗(x)| ≤ ε/2}.
Clearly for i ∈ {0, 1},

⋂
{Db∗ : b∗ ∈ B} ⊂ {x ∈ X : ‖x‖ ≤ ε/2} ⊂ Ui,

or equivalently, (X \ Ui) ∩
⋂{Db∗ : b∗ ∈ B} = ∅.

Now fix i ∈ {0, 1}. Since X has property (C) and each entry in the
intersection above is convex closed, there is a countable subset A of B such
that

(X \ Ui) ∩
⋂
{Db∗ : b∗ ∈ A} = ∅,

or equivalently ⋂
{Db∗ : b∗ ∈ A} ⊂ Ui,

which means that

{x ∈ X : sup
b∗∈A
|b∗(x)| ≤ ε/2} ⊂ Ui.

This shows that Ui is a γ(B)-neighborhood of the origin for each i ∈ {0, 1}.
Proposition 5.1. Let X be a Banach space such that , for some norming

subset B of X∗, (X,σ(X,B)) is K-analytic. Then the following statements
are equivalent.

(i) X has property (C) and (X,σ(X,B)) is σ-fragmented by the norm.
(ii) (X,w) is Lindelöf.

(iii) (BX∗ ,w∗) is countably tight and its w∗-separable subsets are metriz-
able.

Proof. (i)⇒(ii). (X, γ(B)) is Lindelöf after Theorem 2.1. By Lemma 9,
γ(B) is stronger than the weak topology, and consequently (X,w) is Lin-
delöf.

(ii)⇒(i). Property (C) is obvious. We use [7, Theorem B] to deduce
that each σ(X,B)-compact subset of X is norm fragmented. Now, by The-
orem 2.1, (X,σ(X,B)) is σ-fragmented.

(i)&(ii)⇒(iii). If we assume (i)&(ii) then we know that γ(B) is stronger
than the weak topology by Lemma 9 and that (X, γ(B))N is Lindelöf
by Corollary 2.2. Consequently, being a continuous image of the space
(X, γ(B))N, (X,w)N is Lindelöf. Hence by Arkhangel’skĭı’s theorem (see Sec-
tion 4), (X∗,w∗) ⊂ (C(X,w), τp) is countably tight.

We prove that each w∗-separable subset M of BX∗ is w∗-metrizable.
SinceBX∗ ⊂ acoB

w∗
and (X∗,w∗) is countably tight,M ⊂ acoA

w∗
for some
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countable subset A of B. Then acoA is γ(B)-equicontinuous on the Lindelöf
space (X, γ(B)). Consequently, acoA

w∗
is γ(B)-equicontinuous, and hence

w∗-metrizable by Lemma 8.
(iii)⇒(i). By [25, Theorem 3.4], if (BX∗ ,w∗) is countably tight then X

has property (C). To prove that (X,σ(X,B)) is σ-fragmented by the norm,
by Theorem 2.1, it is enough to show that (X, dA) is separable for each
countable subset A of B, where dA is a pseudo-metric on X given by

dA(x, y) = sup{|x∗(x)− x∗(y)| : x∗ ∈ A} = sup{|x∗(x)− x∗(y)| : x∗ ∈ Aw∗}.

But this is obvious since X|Aw∗ ⊂ C(A
w∗
,w∗) and C(A

w∗
,w∗) is norm

separable on account of (A
w∗
,w∗) being compact and metrizable by (iii).

It should be noted that σ-fragmentability cannot be dropped in state-
ment (i) of Proposition 5.1. An example follows. Take X = JT ∗, the dual of
the James tree space JT , and B the unit ball of JT . In this case σ(JT ∗, B)
= w∗ and we have:

(i) (X,σ(X,B)) is σ-compact;
(ii) X has property (C) according to Example 5.8 of [9];

(iii) (X,σ(X,B)) is not σ-fragmented by the norm (i.e. JT ∗ does not
have the RNP) and (X,w) is not Lindelöf.

There are plenty of Banach spaces X for which there is a norming set
B ⊂ BX∗ such that the space (X,σ(X,B)) is K-analytic. The following are
some of the examples.

• Weakly K-analytic Banach spaces. If X is a Banach space that is K-
analytic for its weak topology then for any norming set B ⊂ X∗ the space
(X,σ(X,B)) is K-analytic too because it is a continuous image of (X,w).
We refer to the paper by Talagrand [27] for an account concerning weakly
K-analytic Banach spaces.
• Dual Banach spaces. If X = Y ∗ is a dual Banach space, and we write

B := BY , then B ⊂ BX∗ is norming and X =
⋃
n nBY ∗ is σ-compact with

respect to σ(X,B).
• Representable Banach spaces. As mentioned earlier the class of Ba-

nach spaces that satisfies condition of Proposition 5.1 includes the class
of representable Banach spaces introduced in [10]. In this paper Godefroy
and Talagrand proved that if X is representable, then (X,w) is Lindelöf if
and only if X is separable (see the proof of (1)⇔(3) of [10, Théorème 7]).
Proposition 5.1 gives an alternative proof of this fact.

Corollary 5.2 (Godefroy and Talagrand [10]). Let X be a represent-
able Banach space. Then X is weakly Lindelöf if , and only if , X is separable.
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Proof. We prove the non-obvious direction. Assume that (X,w) is Lin-
delöf. According to the definition of representability, there is a countable
norming subset B of X∗ such that (X,σ(X,B)) is analytic. Hence by Propo-
sition 5.1, (X,σ(X,B)) is σ-fragmented by the norm. Since B is countable
(X,σ(X,B)) is metrizable and separable. So by Lemma 1, X is separable
for the norm topology.

• Banach spaces generated by RN-compact subsets. Let X be a Banach
space, B a norming subset of BX∗ and H ⊂ X a σ(X,B)-compact set which

is fragmented by the norm. If X = span(H)
‖ ‖

then X is said to be generated
by the RN-compact set H (see [6]). In this case (X,σ(X,B)) is K-analytic
by Lemma 6.

Open problems. In Proposition 5.1, can one replace statement (iii)
with the stronger one, viz. (BX∗ ,w∗) is Corson compact?
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Proc. Amer. Math. Soc. 128 (2000), 3301–3309.
[8] K. Ciesielski and R. Pol, A weakly Lindelöf function space C(K) without any con-
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